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HIGH-DIMENSIONAL INSTRUMENTAL VARIABLES REGRESSION AND
CONFIDENCE SETS

ERIC GAUTIER(1) AND CHRISTIERN ROSE(2)

Abstract. This article considers inference in linear instrumental variables models with many
regressors, all of which could be endogenous. We propose the STIV estimator. Identification robust
confidence sets are derived by solving linear programs. We present results on rates of convergence,
variable selection, confidence sets which adapt to the sparsity, and analyze confidence bands for
vectors of linear functions using bias correction. We also provide solutions to some instruments
being endogenous. The application is to the EASI demand system.

1. Introduction

The high-dimensional paradigm concerns models in which the number of regressors dX is
large relative to the number of observations n but there is an unknown small set of relevant regres-
sors. This can happen for various reasons. Researchers increasingly have access to large datasets
and theory is often silent on the correct regressors. The number of observations can be limited be-
cause data is costly to obtain, because there simply exist few units (e.g., countries), or because the
researcher is interested in a stratified analysis. The usual fixed dX large n asymptotic framework
does not necessarily provide a good approximation when there is high-dimensionality. A challeng-
ing situation is when dX is much larger than n (dX � n). Comparing models for all subsets of
regressors is impossible when dX is even moderately large. The main focus of the high-dimensional
literature is therefore the analysis of computationally feasible methods. For high-dimensional re-
gression, the Lasso [38] involves an `1-penalty. The Dantzig Selector [19] is a linear program
(henceforth LP).

We study the high-dimensional linear instrumental variables (henceforth IVs) model where
all regressors can be endogenous but the parameter β is sparse, meaning it has few nonzero entries,
or approximately sparse, meaning it is well approximated by a sparse vector. Sparsity can arise
naturally when β has an economic interpretation. Examples include social effects models with un-
observed networks, models with uncertain exclusion restrictions, and treatment models with group
heterogeneity in the treatment effect and many groups. Approximate sparsity is more appropriate
when a linear model is used to approximate a function and the regressors and IVs comprise func-
tions (e.g., splines) of baseline regressors and IVs. This can arise due to linearization or the use
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2 GAUTIER AND ROSE

of series. The latter is relevant if the structural model has a nonparametric component or such
components arise by including controls to justify IV exogeneity.

With many endogenous regressors the number of IVs, dZ , can be large. We allow for dZ � n
but of order less than exp(n). Strong IVs are often scarce, particularly when there are many en-
dogenous regressors. For these reasons, we pay attention to finite sample validity and robustness to
identification. Indeed, if there are weak and/or many IVs, inference based on standard asymptotic
approximations can fail even if dX is small. To achieve this, we use a `∞-norm statistic derived
from the moment condition. This is close in spirit to identification robust test inversion in which
the exogeneity is the null hypothesis and a confidence set is formed by parameters which are not
rejected. The Anderson-Rubin test is an example. In practice, such tests are conducted over a
grid, which is only feasible for small dX . To allow for large dX , we use convex relaxations (linear or
conic) instead. Our approach does not estimate reduced form equations and imposes no structure
on them (e.g., sparsity).

We propose the Self Tuning Instrumental Variables (henceforth STIV) estimator and es-
tablish its error bounds, which are used to obtain confidence sets for a vector of functions of β
and rates of convergence. Some confidence sets are uniform over identifiable parameters and dis-
tributions of the data among classes which leave the dependence between the regressors and IVs
unrestricted, implying robustness to identification. Under stronger assumptions, including on the
joint distribution of the IVs and regressors, the STIV estimator can be a pilot estimator to perform
variable selection, obtain confidence sets which adapt to the sparsity, and conduct joint inference
on linear functions of β based on a data-driven bias correction. We also propose solutions to the
problem that, in this data rich environment, a few IVs can be endogenous. All of our methods are
pivotal because they jointly estimate standard deviations of structural errors or moments, making
the tuning parameters data-driven.

The application is to Engel curves in the EASI system of [33]. We show that the first-order
in prices approximation error can be large and propose a second order approximation leading to
a linear system with thousands of endogenous regressors. To achieve this, our theory allows for
empirically relevant specificities, including knowledge of the relevance of certain regressors (e.g.,
price and quadratic expenditure), parameter restrictions (e.g., symmetry of the Slutsky matrix),
approximation error, and systems of equations.

2. Preliminaries

Notations. To simplify the exposition we consider an i.i.d. sample of size n. The population
model comprises an outcome Y , regressors X ∈ RdX , and IVs Z ∈ RdZ of joint distribution P. E
is the expectation under P. For a mean zero random variable A, σA , E[A2]1/2. We denote
stacked matrices in bold, e.g., X ∈ Mn,dX , where Md,d′ is the set of d × d′ matrices. For d ∈ N
and a random vector W ∈ Rd, En[W ] is the sample mean, DW is the diagonal matrix with

entries En [W 2
k ]
−1/2

for k ∈ [d] , {1, 2, ..., d}, and DW its population counterpart. For b ∈ RdX ,

U(b) , Y − X>b, P(b) is the distribution of (X,Z, U(b)) implied by P, and σ̂(b)2 , En[U(b)2].

We write Ψ̂ , DZEn[ZX>]DX and Ψ , DZE[ZX>]DX . The set SI ⊆ [dX ] collects the indices
of the regressors which are also IVs and SQ ⊆ [dX ] of size dQ collects those of the regressors of
questionable relevance. When we make inference on a vector of functions, its dimension is dΦ.
Some results are asymptotic in n → ∞ in which case dZ , dX , dΦ and dQ can increase with n and
triangular arrays are permitted. Inequality between vectors is entrywise. Mk,· (resp. M·,k) is the
kth row (resp. column) of M . 1l is the indicator function. For S ⊆ [d], |S| is its cardinality and Sc
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its complement. For ∆ ∈ Rd, S(∆) , {k ∈ [d] : ∆k 6= 0} and ∆S , (∆k1l{k ∈ S})k∈[d]. |∆|p is the
`p-norm of ∆ or a vectorization if ∆ is a matrix.

Baseline moments model. The linear IV model is

E [ZU(β)] = 0, (1)

β ∈ B, P(β) ∈ P , (2)

where B ⊆ RdX accounts for restrictions on β and P is a nonparametric class, e.g.,
Class 1: ZlU(β) is symmetric for all l ∈ [dZ ] and dZ < 9α/ (4e3Φ (−

√
n))

where α ∈ (0, 1) is a confidence level and Φ the normal CDF. Other classes allow for non i.d. and
dependent data, and asymmetry (see Section A.1.1). Their basic versions do not restrict the joint
distribution of Z and X. All but Class 4 allow for conditional heteroscedasticity. The set I collects
the vectors which satisfy (1)-(2). Our results are for all β ∈ I, hence for the true β∗.

The `∞-norm statistic. Our confidence sets and estimators use slack versions of (1)
based on the statistic t̂(b) , |DZEn[ZU(b)]|∞ /σ̂(b) for b ∈ RdX . We use, for β ∈ I, the

event G ,
{
t̂(β) ≤ r̂

}
. Taking r̂ = rn

∣∣DZZ>
∣∣
∞, the base choice in the main text, and rn =

−Φ−1 (9α/(4dZe
3)) /
√
n for Class 1,1 yields P(G) ≥ 1−α for all n and (β,P) such that β ∈ I. Such

a simple bound is possible due to the division by σ̂(b). The set {b ∈ B : t̂(b) ≤ r̂} is a confidence set
but it is infeasible because it is nonconvex and b is high-dimensional and (approximately) sparse.
Class 4 determines r̂ by bootstrap under conditional homoscedasticity.

Sparsity certificate. A sparsity certificate is a bound s ∈ [dQ] on the sparsity and Is ,
I∩
{
b ∈ RdX : |S(b) ∩ SQ| ≤ s

}
is the set of s-sparse identifiable parameters. For asymptotic results

and triangular arrays, s can depend on n. Is can be a singleton when s+ dX − dQ < dZ < dX and
sparsity implies exogenous regressors have a zero coefficient (i.e., they are excluded). This occurs
when exclusion restrictions are uncertain (see [32, 31]). When dQ = dX , Is is a singleton if there

is a solution for only one of the
(
dX
s

)
overdetermined systems based on (1)-(2) and it is unique.

Another condition (see [19]) is that all matrices formed from 2s columns of E[ZX>] have full rank.

Example SE. The outcome Yj of individual j ∈ [m] depends on peer outcomes. When the
peers are unknown and there are endogenous peer effects, a linear model is Yj =

∑m
k 6=j ρj,kYk +

Z>j πj +Uj, where ρj,k is the effect of k on j and Zj are low-dimensional exogenous characteristics.

If we set β = (ρj,1, ..., ρj,j−1, ρj,j+1, ..., ρj,m, π
>
j )> and all peers are unknown then SQ = [m − 1],

SI = ScQ and Pj = S(β) ∩ SQ is the set of j’s peers. If the network is sparse (e.g., due to costly
link formation) then |Pj| � dX . A sparsity certificate is an upper bound on the number of peers.
The IVs are Z = (Z>1 , Z

>
2 , ..., Z

>
m)>, so dZ ≥ dX . If there are also exogenous peer effects then Zj

is replaced by Z in the structural equation and dZ < dX .

Example NP. The model is Y = f(X̃) +U with a nonparametric f and an IV Z̃ such that

E[U |Z̃] = 0. Assuming no approximation error, which we cover in Section 6.2.1, (1) holds with

Xk = gXk (X̃) and Zl = gZl (Z̃) for approximating functions (gXk )k∈[dX ] and (gZl )l∈[dZ ].

Roadmap. The paper is organized to progressively strengthen the assumptions. Here, we
summarize our methods with the simplifications dQ = dX , and, for all β ∈ I, U(β)|Z is normally
distributed with mean 0 and known variance σ2. The simplifications permit to replace σ̂(b) by σ

1rn ≤ 2 log
(
4dZe

3/(9α)
)
/
√
n, ∀α ∈ [0, 1], dZ ≥ 1(because Φ−1(a) ≥ 2 log(a) if 0 < a ≤ exp(−1/(4π))).
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and r̂ by rn = −Φ−1(α/(2dZ))/
√
n of order log(dZ)/

√
n.

A starting point is to find b ∈ RdX by minimizing |D−1
X b|1 subject to t̂(b) ≤ rn. A solution β̂

is obtained by solving a LP and is called the nonpivotal STIV estimator. STIV does not require a
known σ and is introduced in Section 3. To analyze the estimation error and construct confidence
sets, we introduce sensitivity characteristics in Section 3.1. To explain their role, we now take a

β ∈ I. Since β̂ is a minimizer, on the event G we can use |D−1
X β̂|1 ≤ |D−1

X β|1, t̂(β̂) ≤ rn and

t̂(β) ≤ rn. Letting ∆̂ , D−1
X (β̂ − β), the first inequality implies |D−1

X β̂S(β)|1 + |D−1
X β̂S(β)c |1 ≤

|D−1
X βS(β)|1, hence |D−1

X (β̂ − β)S(β)c |1 ≤ |D−1
X βS(β)|1 − |D−1

X β̂S(β)|1, and by the triangle inequality

|∆̂S(β)c|1 ≤ |∆̂S(β)|1. The last two imply |Ψ̂∆̂|∞ ≤ σ(|t̂(β̂)|∞ + |t̂(β)|∞) ≤ 2σrn. For k ∈ [dX ], we
introduce a sensitivity

κ̂`k,S(β) = min
∆∈RdX :|∆k|=1,|∆S(β)c |1≤|∆S(β)|1

|Ψ̂∆|∞, (3)

which gives |∆̂k| ≤ |Ψ̂∆̂|∞/κ̂`k,S(β) ≤ 2σrn/κ̂`k,S(β). The first inequality holds if ∆̂k = 0 and

otherwise follows by |∆̂S(β)c |1 ≤ |∆̂S(β)|1, homogeneity, and

|Ψ̂∆̂|∞/|∆̂k| ≥ min
∆: ∆6=0,|∆S(β)c |1≤|∆S(β)|1

|Ψ̂∆|∞/|∆k|.

Omitting the constraint |∆S(β)c |1 ≤ |∆S(β)|1 from (3) leads to a smaller κ̂`k,S(β), hence wider
confidence sets below. We do not know S(β) but if we know |S(β)| ≤ s, we replace κ̂`k,S(β) by a

lower bound κ̂`k(s) (see Section 3.2). Adding |∆̂S(β)|1 to |∆̂S(β)c |1 ≤ |∆̂S(β)|1 yields |∆̂|1 ≤ 2|∆̂S(β)|1
and using |∆̂S(β)|1 ≤ s|∆̂S(β)|∞ ≤ s|∆̂|∞, we obtain

κ̂`k,S(β) ≥ min
j∈[dX ]

min
∆,µ∈RdX :−µ≤∆≤µ≤∆j ,µk=1,µ>1≤2sµj

|Ψ̂∆|∞ , κ̂`k(s). (4)

This yields the bounds β̂k± 2En[X2
k ]−1/2σrn/κ̂`k(s). κ̂`k(s) is obtained by solving dX LPs so this is

a computationally feasible confidence set. The coverage guarantee is uniform over (β,P) such that
β ∈ Is for P from Class 1. The set is robust to arbitrarily weak IVs because P does not restrict
the dependence between X and Z. Also, Is need not be a singleton. In Section 3.3 we obtain rates

of convergence for β̂ (possibly to a set) by replacing sensitivities with population analogues. A
simple condition to analyze the rates is that, for every relevant regressor Xk (i.e., k ∈ S(β)), there
is a linear combination λ>k Z of IVs, where |λk|1 ≤ 1, which has low correlation (if E[Z] = 0) with
the other regressors relative to Xk. This yields the rate∣∣∣D−1

X (β̂ − β)
∣∣∣
q
. rn|S(β)|1/q

(
max
k∈S(β)

λ>k Ψ·,k

)1/q (
max
k∈[dX ]

λ>k Ψ·,k

)1−1/q

(5)

for all q ∈ [1,∞]. Assuming the nonzero entries of β are sufficiently large relative to the `∞-rate,

we obtain S(β) ⊆ S(β̂), and if they are larger still, S(β) = S(β̂ω̂) for a thresholded estimator β̂ω̂.

We then build confidence sets based on κ̂`k(Ŝ) for such an estimator Ŝ.
Our confidence sets need few assumptions, can be robust to identification, and are useful

for inference on a function of the entire parameter β. However they may be conservative when
stronger assumptions can be maintained and the object of interest has dimension much smaller
than dX . In Section 4 we present confidence bands for a vector of linear functions Φβ based on

a bias correction of β̂. A special case is a confidence interval. These are obtained by applying a

variant of STIV to estimate Λ satisfying ΛE[ZX>] = Φ, and then combining Λ̂ with β̂.
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In Section 5, we present a method to detect endogenous IVs. The basic idea is to use a

variant of STIV to estimate the correlation of the IVs with the residuals (i.e., U(β̂)) from a first-
stage STIV estimator which uses only the IVs known to be exogenous.

In Section 6, we conduct simulations and apply STIV to build confidence bands around the
EASI Engel curves. This is similar in spirit to Example NP, but the approximation error arises
due to linearization rather than use of approximating functions. To make full use of economic
theory, we require SQ ⊂ [dX ], a set B based on theory, and a minor modification of STIV to permit
approximation errors and systems of structural equations. Proofs are in the appendix.

References. High-dimensional estimation and inference has become an active field. To
name a few; [3] uses Lasso type methods to estimate the optimal IV and make inference on a low-
dimensional structural equation, [24] consider a nonconvex approach to IV estimation, [13, 14, 20]
consider GMM with large dimensions but do not handle the high-dimensional regime. Inference
for subvectors in high-dimension is an active topic related to Section 4 (see [5, 29, 40, 12], but also
[27, 3, 10, 15] in the case of IVs. [7] reviews results based on the nonpivotal STIV and others. Our
results are applied to social effects models with unknown networks in [36, 26] and [2].

3. Self-Tuning IV Estimator and Confidence Sets

Definition 3.1. For c > 0, a STIV estimator is any solution (β̂, σ̂) of

min
b∈Î(r̂,σ),σ≥0

(∣∣D−1
X bSQ

∣∣
1

+ cσ
)
, (6)

where, for r, σ > 0,

Î(r, σ) , {b ∈ B, |DZEn[ZU(b)]|∞ ≤ rσ, σ̂(b) ≤ σ} . (7)

The `1-norm is a convex relaxation of |S(b) ∩ SQ|. The term cσ favors small σ, hence

increasing c tightens the set Î(r, σ). D−1
X and DZ guarantee invariance to scale of the regressors

and IVs. If B comprises linear (in)equality restrictions, a STIV estimator is computed by solving
a convex (second-order) conic program, similarly to the Square-root Lasso of [4]. Linearity of (1)

in β is key to obtain such a simple program. σ̂(β̂) and σ̂ are estimators of the standard deviation
of the structural error which need not be known. Taking Z = X in the nonpivotal STIV estimator
gives the Dantzig Selector.

Minimizing O(b) , max (σ̂(b), |DZEn[ZU(b)]|∞ /r) trades-off least-squares and exogeneity
of the IVs, which is desirable in the presence of weak IVs (see [1]). STIV implements this in
high-dimension because

β̂ ∈ argminb∈B

(
1

c

∣∣D−1
X bSQ

∣∣
1

+O(b)

)
, σ̂ = O(β̂). (8)

If O were a differentiable and strictly convex function of Wb and the entries of W drawn from
a continuous distribution, minimizers of (8) would be unique and one could obtain regularization
paths (see [39]) for ad hoc determination of the penalty level. Our analysis is valid for all minimizers
and determination of the penalty level is not an issue because STIV is pivotal. Non uniqueness
also occurs for LIML, which minimizes the Anderson-Rubin statistic.
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3.1. Sensitivity Characteristics. If Z = X, the minimal eigenvalue of En[XX>] can be used
to obtain error bounds for quantities such as the mean squared error. It is the minimum of
b>En[XX>]b/|b|22 over b ∈ RdX , and is equal to zero if dX > n. Under sparsity, RdX can be
replaced by a subset in the case of the Dantzig Selector and Lasso. This is typically expressed via
the restricted eigenvalue condition of [11]. The sensitivity characteristics introduced in this paper
are core elements to analyze STIV and provide sharper results for the Dantzig Selector and Lasso

(see Section O.1.1). They are related to the action of Ψ̂ on a subset K̂S for S ⊆ [dX ].

As in the Roadmap, we bound |Ψ̂∆̂|∞ on G. To bound `(∆̂) for a loss `, we use a sensitivity

κ̂`,S , min
∆∈K̂S : `(∆)=1

|Ψ̂∆|∞. (9)

When S = [dX ] we use the shorthand κ̂`. We require that ` ∈ L, where L are the continuous
functions from RdX to [0,∞) which are homogeneous of degree 1. An important loss is `pS0

(∆) ,
|∆S0|p for p ∈ [1,∞] and S0 ⊆ [dX ]. For S0 = [dX ] and S0 = {k} for k ∈ [dX ], we use the shorthand
notations `p and `k. The sensitivities for these losses can be related to one another as expressed in

Proposition A.1. Due to the `∞-norm in (9), additional IVs can only increase |Ψ̂∆|∞. Their cost
is mild because it appears only through the log(dZ) factor in rn.

The cone {∆ ∈ RdX : |∆S(β)c |1 ≤ |∆S(β)|1} for the nonpivotal STIV is modified to be

K̂S ,
{

∆ ∈ RdX : ∆Sc∩S(β̂)c = 0,
∣∣∆Sc∩SQ

∣∣
1
≤
∣∣∆S∩SQ

∣∣
1

+ cĝ(∆)
}
. (10)

ĝ(∆) , min(r̂, 1)|∆SI |1 +
∣∣∆ScI

∣∣
1

is used because, by convexity and since the regressors of index in

SI are used as IVs, σ̂(β)− σ̂(β̂) ≤ ĝ(∆̂). ĝ(∆) = |∆̂|1 when all regressors are endogenous. Similarly

to the Roadmap, for every β ∈ I, on the event G, we have ∆̂ ∈ K̂S(β). The error bounds for STIV

in Proposition 3.1 are decreasing in the sensitivities, hence it is important that K̂S be small so
that the sensitivities can be bounded away from zero. The researcher’s knowledge components
B, SI , and SQ serve this purpose. When, e.g., B comprises linear equalities {b : Mb = m}, we

add MDX∆ = 0 to K̂S. Because r̂ < 1 is typical, accounting for SI yields a smaller set. If we
omit ∆Sc∩S(β̂)c = 0, take dQ = dX , B = RdX , and replace ĝ(∆) by |∆|1 we obtain the simple

cone of dominant coordinates
{

∆ ∈ RdX : (1− c)|∆Sc |1 ≤ (1 + c)|∆S|1
}

, due to which ∆ has most

of its `1-norm concentrated on the indices in S. This cone is RdX if c ≥ 1. Using the smaller

K̂S is empirically relevant because in practice we find that STIV performs better for c > 1. The
constraint ∆Sc∩S(β̂)c = 0 can be removed to obtain rates of convergence, but is useful to construct

confidence sets which are as small as possible.

If β is not sparse, K̂S(β) can be large (e.g., RdX when S(β) = [dX ]), so the sensitivities,

denoted by κ̂ instead of κ̂, are defined by replacing K̂S by

K̂S ,
{

∆ ∈ RdX :
∣∣∆Sc∩SQ

∣∣
1
≤ 2

(∣∣∆S∩SQ
∣∣
1

+ cĝ(∆)
)

+ |∆ScQ
|1
}
.

Due to the additional terms on the right-hand side, K̂S is larger than K̂S. However, in our analysis

these sensitivities need not be computed at S = S(β). The slackness allows ∆̂ ∈ K̂S on G provided
that

∣∣D−1
X βSc∩SQ

∣∣
1

is sufficiently small. The form of the additional terms is related to the factor 6
in the second inequality in Proposition 3.1.
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Our results involve the weakly increasing function

γ(x) , 1/max(1− x, 0),

where by convention 1/0 = ∞. It is close to 1 for small x and is ∞ when x ≥ 1. We also let

σ , (σ̂ + σ̂(β̂))/2 and ĥ(∆) , min(|∆SQ |1, (3|∆S∩SQ|1 + cr̂|∆SI |1 + c|∆ScI
|1 + |∆ScQ

|1)/2).

Proposition 3.1. For all (β,P) such that β ∈ I, any STIV estimator, ` ∈ L, q ∈ [1,∞], S0, S ⊆
[dX ], and c > 0, we have, on G,

`
(
D−1

X

(
β̂ − β

))
≤ 2r̂

κ̂`,S(β)

min

σγ ( r̂

κ̂ĝ,S(β)

)
, σ̂(β)γ

 r̂

cκ̂`1
S(β)∩SQ

,S(β)

 ,

∣∣∣∣D−1
X

(
β̂ − β

)
S0

∣∣∣∣
q

≤ max

(
2r̂

κ̂`qS0
,S

min

(
σγ

(
r̂

κ̂ĝ,S

)
, σ̂(β)γ

(
r̂

cκ̂ĥ,S

))
, 6
∣∣D−1

X βSc∩SQ
∣∣
1

)
.

The first term in the minimum in the first inequality is used for confidence sets, and the
second for rates of convergence. The second inequality is used when I contains nonsparse vectors,
and is the basis of the sparsity oracle inequality in Theorem 3.1 (iii). To obtain a confidence set one
needs to circumvent the dependence of the sensitivities on the unknown S(β) in a computationally
feasible way. This is the focus of Section 3.2. For rates of convergence one requires population
analogues of the upper bounds. This is the focus of Section 3.3.

3.2. Computable Bounds on the Sensitivities and Confidence Sets. Confidence sets can
be obtained by using lower bounds on the sensitivities. To obtain (4) in the Roadmap, we use a

sparsity certificate s. Alternatively, one replaces S(β) by Ŝ such that Ŝ ⊇ S(β) with probability

converging to 1. We explain how STIV can be used to obtain such Ŝ in Section 3.3. We now
present our base result, which provides bounds through LPs.

Proposition 3.2. For all S ⊆ Ŝ ⊆ [dX ], ` ∈ L, |S ∩ SQ| ≤ s, and c > 0,

κ̂`,S ≥ max
(
κ̂`

(
Ŝ
)
, κ̂`(s)

)
, κ̂`,S ≥ max

(
κ̂`

(
Ŝ
)
, κ̂`(s)

)
,

where the quantities in the bounds and losses ` are in Table 1.

Using a sparsity certificate s and

Ĉ(s) ,

{
b ∈ B : ∀` ∈ L,∀c > 0, `

(
D−1

X

(
β̂ − b

))
≤ 2r̂σγ (r̂/κ̂ĝ(s))

κ̂`(s)

}
, (11)

the confidence set for Φβ, where Φ ∈MdΦ,dX , denoted ĈΦ(s) , {Φb : b ∈ Ĉ(s)} verifies

min
s∈[dQ]

inf
(β,P):β∈Is

P
(
Φβ ∈ ĈΦ(s)

)
≥ 1− α. (12)

The set is robust to identification if, as for Class 1, P does not restrict the dependence between X
and Z. Though we do not make it explicit, the bound in (11) depends on c. Increasing c decreases
σ (by increasing the penalty on σ in the STIV objective function) but increases γ (r̂/κ̂ĝ(s)) /κ̂`(s)

(by enlarging K̂S). The set (11) can be made computationally feasible with correct coverage by
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Table 1. Lower bounds on sensitivities

κ̂`∞S0
(Ŝ) ,min

j∈S0

min
(∆,µ,ν)∈B̂(Ŝ)
∆j=1,µS0

≤1

ν κ̂`∞S0
(s) ,min

j∈S0

min
(∆,µ,ν)∈B̂(j)
∆j=1,µS0

≤1

ν

κ̂`k(Ŝ) , min
j∈[dX ]
η=±1

min
(∆,µ,ν)∈B̂(Ŝ)

µk=1,∆k=η,µ≤∆j

ν κ̂`k(s) , min
j∈[dX ]
η=±1

min
(∆,µ,ν)∈B̂(j)

µk=1,∆k=η,µ≤∆j

ν

κ̂ĝ(Ŝ) , min
j∈[dX ]

min
(∆,µ,ν)∈B̂(Ŝ)∑

k∈SI
r̂µk+

∑
k∈Sc

I
µk=1,µ≤∆j

ν κ̂ĝ(s) , min
j∈[dX ]

min
(∆,µ,ν)∈B̂(j)∑

k∈SI
r̂µk+

∑
k∈Sc

I
µk=1,µ≤∆j

ν

B̂(Ŝ) ,

{
−µ ≤ ∆ ≤ µ, µ

Ŝc∩S(β̂)c
= 0,−ν1 ≤ Ψ̂∆ ≤ ν1

(1− cr̂)
∑

k∈SI µk + (1− c)
∑

k∈ScI
µk ≤ 2

∑
k∈Ŝ∩SQ µk +

∑
k∈ScQ

µk

}

B̂(j) ,

{
−µ ≤ ∆ ≤ µ,−ν1 ≤ Ψ̂∆ ≤ ν1
(1− cr̂)

∑
k∈SI µk + (1− c)

∑
k∈ScI

µk ≤ 2sµj +
∑

k∈ScQ
µk

}
Notes: κ̂`∞

S0
,S is also bounded by (iv) in Proposition A.1. Bounds for κ̂`1,S (resp.

κ̂`ϕ,S) replace
∑
k∈SI

r̂µk +
∑
k∈Sc

I
µk = 1 (resp. µk = 1,∆k = η) by 1>µ = 1 (resp.

ϕ>D−1
X ∆ = η) in the bounds for κ̂ĝ,S (resp. κ̂`l,S). Section O.1.1 gives sharper but

more computationally demanding bounds.

replacing ∀` ∈ L,∀c > 0 with a finite intersection. If Φ = I and Ξ is a grid for c, we can define the

confidence set [Ĉk(s), Ĉk(s)] for k ∈ [dX ], with

Ĉk(s) = max
c∈Ξ

(
β̂k −

2r̂σγ (r̂/κ̂ĝ(s))

κ̂`k(s)En[X2
k ]1/2

)
, Ĉk(s) = min

c∈Ξ

(
β̂k +

2r̂σγ (r̂/κ̂ĝ(s))

κ̂`k(s)En[X2
k ]1/2

)
. (13)

We can replace κ̂`k(s) by κ̂`∞(s) to obtain a larger but less computationally demanding set (i.e.,

with less LPs). If Φ 6= I, we use the loss `ϕ , |ϕ>D−1
X ∆|, where ϕ> = Φf,· for f ∈ [dΦ].

The above confidence sets are nonempty hyperrectangles, and are infinite if κ̂ĝ(s) ≤ r̂. This
is unavoidable for sets which are robust to weak IVs (see [22]). Section 6.1 provides a rule of thumb
to determine a single value of c. Even if c is determined from the data, the set has coverage at
least 1 − α due to (11). Because the researcher may be unsure about an appropriate value of s,
the minimum over s in (12) allows to construct nested sets over different values. This can be used
to assess the information content of progressively stronger sparsity assumptions.

Example SE continued. A sparsity certificate (upper bound on the number of peers)

yields a confidence set for the peer effects. By (12), the estimator P̂j = {k ∈ SQ : 0 /∈
[Ĉk(s), Ĉk(s)]} of the peers satisfies mins∈[dQ] inf(β,P):β∈Is P(P̂j ⊆ Pj) ≥ 1 − α. A subset is un-
avoidable because the peer effects can be arbitrarily close to zero, an issue to which we return in
Section 3.3. A confidence interval for the average peer effect uses Φβ = (

∑
k 6=j ρj,k)/(m− 1).

3.3. Deterministic Error Bounds, Model Selection, and Refined Confidence Sets. We
give deterministic counterparts of the bounds in Proposition 3.1 based on an event GA1, on which
(τn)n∈N ∈ (0, 1)N controls the deviation of the sample from the population, where

log(max(dZ , dX , dΦ))/(nτ 2
n)→ 0. (14)

On GA1, r̂ can be replaced by a deterministic upper bound rn (see (A.1), which also defines GA1)

and σ̂(β) and the sensitivities by population analogues σU(β) and κ and κ, obtained by replacing Ψ̂

by Ψ and K̂S, K̂S by KS, KS (see Lemma A.2). We restrict P using Assumption A.1, which places
mild restrictions on second moments and the tails of the IVs so that P(GA1) ≥ 1 − αA1

n , where
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αA1
n → 0 is defined in (A.2). Asymptotic statements allow c to depend on n. In the discussion of

orders below Theorem 3.1 and in Section 4, Z and X are assumed uniformly bounded, so αA1
n → 0

under (14) and, for the choice of r̂ using classes 1-3, rn has same order as rn (i.e., log(dZ/α)/
√
n).

Section A.1.1 presents the general case.

3.3.1. Deterministic Error Bounds and Rates of Convergence. The deterministic bounds below
hold without additional assumptions. We leave the dependence between Z and X unrestricted,
allow for partial identification, and c� 1 when SI 6= ∅, which works well in practice. For the bounds
to be orders in probability, we replace the confidence level α used to set r̂ by (αn)n∈N ∈ (0, 1)N

converging to 0, so

P(G ∩ GA1) ≥ 1− αSn , where αSn , αn + αA1
n → 0.

For a function ω from RdX to RdX and given P, we set

I(ω) , {b ∈ I : ∀k ∈ S(b), 1nE[X2
k ]1/2|bk| > ωk(b)} and 1n ,

√
(1− τn)/(1 + τn).

Theorem 3.1. Let c > 0 and P be such that Assumption A.1 holds.

(i) For all (β,P) such that β ∈ I and any STIV estimator, we have, on G ∩ GA1, for all ` ∈ L,

`
(
D−1
X

(
β̂ − β

))
≤

2rnσU(β)

1nκ`,S(β)

Γκ(S(β)),

where for S ⊆ [dX ], Γκ(S) , (1 + τn)γ(τn/κ`1,S + rn(1 + τn)/(cκ`1S∩SQ ,S
)).

(ii) For all (β,P) such that β ∈ I(ω), where ωk : b ∈ RdX → 2rnσU(b)Γκ(S(b))/κ`k,S(b), and any

STIV estimator, we have, on G ∩ GA1, S(β) ⊆ S(β̂).
(iii) For all (β,P) such that β ∈ I and any STIV estimator, we have, on G∩GA1, for all q ∈ [1,∞]

and S0 ⊆ [dX ],∣∣∣∣D−1
X

(
β̂ − β

)
S0

∣∣∣∣
q

≤ min
S⊆[dX ]

max

(
2rnσU(β)

1nκ`qS0
,S

Γκ(S),
6

1n

∣∣D−1
X βSc∩SQ

∣∣
1

)
,

where Γκ (resp. h) replaces κ`1,S, κ`1S∩SQ ,S
by κ`1,S, κh,S in Γκ (resp. r̂ by rn in ĥ).

Theorem 3.1 (i)-(ii) provide a bound and a model selection result suited to the sparse case.
Result (iii) gives an alternative bound better suited to approximate sparsity. The dependence of
the bounds on the function γ is unavoidable. It means that they can be infinite, and so hold with
high probability regardless of the dependence between Z and X. Bounds for `1-loss are used in the
next section, in which STIV is used as a pilot estimator. The loss `∞S0

for S0 ⊆ [dX ] is used in (ii)
with S0 = {k}. It can be used to obtain uniform rates of convergence for the coefficients of index
in S0 (e.g., S(β)). The bona fide loss for model selection is `∞ (see [34]).

Result (ii) means that, for all β ∈ I(ω), STIV finds a superset of the regressors. The term

ωk corresponds to the upper bound on 1nE[X2
k ]1/2|β̂k−βk|. Using `k in its definition allows a larger

I(ω) than using `∞. Due to (ii), the confidence set ĈΦ , {Φb : b ∈ Ĉ}, where

Ĉ ,

b : ∀` ∈ L, `
(
D−1

X

(
β̂ − b

))
≤

2r̂σγ
(
r̂/κ̂ĝ(S(β̂))

)
κ̂`(S(β̂))

 , (15)
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is such that
inf

(β,P): β∈I(ω)
P
(
Φβ ∈ ĈΦ

)
≥ 1− α− αA1

n . (16)

It is not robust to identification because ω depends on the population sensitivities (which depend
on Ψ), hence on the joint distribution of Z and X (recalling Ψ = DZE[ZX>]DX). The condition
β ∈ I(ω) in Theorem 3.1 (ii) is a beta-min condition. It requires that the nonzero entries of β be
large enough, and is interpretable if β is a structural parameter. It is not intended to be used if
the regressors are used to approximate a function as in Example NP.

Example SE continued. The beta-min condition means that the peer effects are suffi-
ciently large so as to be distinguishable from zero. It is reasonable because a typical parameteri-
zation when the social effect is via the mean (see [9]) is ρj,k = ρ1l{k∈Pj}/|Pj| where ρ is a scalar, so
when the network is sparse the relevant effects are bounded away from zero. STIV finds a superset
of the peers with asymptotic (uniform) probability at least 1− α.

If β ∈ I is sparse, the upper bound in Theorem 3.1 (iii), which holds for all S ⊆ [dX ], also
applies to S = S(β), for which the second term in the maximum is zero. We are then left with a
bound similar to the right-hand side of (i). When q = 1 and S0 = SQ = [dX ], it is 6 times the error

made when β̂ = βS (estimating perfectly the components in S). In this sense the second term is
an approximation error. STIV performs a data-driven trade-off for nonsparse parameter vectors.
Result (iii) implies that, for an optimal set S∗ ⊆ [dX ] (not necessarily S(β)),∣∣∣D−1

X

(
β̂ − β

)∣∣∣
1
≤

2rnσU(β)

1nκ`1,S∗
Γκ(S∗). (17)

This allows us to define formally approximately sparse parameter vectors as vectors which are
sufficiently well approximated by a sparse vector so that the right-hand side of (17) is small.

Remark 3.1. Theorem 3.1 applies if I is not a singleton, in which case, for a given β̂, one can
take the infimum over β ∈ I on both sides of the inequality in (i) and (iii). The left-hand side can

be viewed as the distance to a set, and the right-hand side defines the elements of I to which β̂ is
closest. The discussion below uses such β. For a model which is not indexed by n, if there is β ∈ I
such that, for a constant C < ∞, for n large enough, σU(β)Γκ(S(β)) ≤ Cκ`,S(β), then β̂ converges
to such β ∈ I. It will become apparent from the lower bounds on κ`,S(β) that these are usually
sparse vectors in I. When β are coefficients of a function on a collection of simple functions and

dX increases with n, due to (iii), β̂ can converge to the coefficients of a smooth function and the
population sensitivities vary with n. It is typically the case in nonparametric IV that the coefficients
decay rapidly to zero (see Example NP continued below).

Remark 3.2. Deterministic bounds for σ̂(β̂) and σ̂ are given in Lemma O.2. These can be used
to justify applying nonpivotal STIV in two-stages, or to obtain confidence bands such as those in
Section 4 under conditional homoskedasticity.

We now discuss rates of convergence based on the bounds in Theorem 3.1, which depend
on the population sensitivities. For ease of exposition we focus on explaining (i). Proposition
A.2 relates the population sensitivities to one another, so we start by considering the following
alternative expression for κ`∞S0

,S for all S0, S ⊆ [dX ],

κ`∞S0
,S = min

k∈S0

min
∆∈KS :∆k=1,|∆S0

|∞≤1
max
l∈[dZ ]

∣∣∣∣∣Ψl,k −
∑
k′ 6=k

Ψl,k′∆k′

∣∣∣∣∣ , (18)
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which has a natural interpretation as a measure of the strength of the IVs for the regressors in S0.
If the IVs are centered, the second minimum in (18) is a maximum absolute normalized partial
covariance between regressor k and the IVs, where the partialling-out of the other regressors is
restricted (i.e., ∆ is constrained). Ignoring for the moment the constraints on ∆, the second
minimum in (18) is zero if DZE[Z(XDX)k] ∈ RdZ lies in a vector space of dimension at most
min(dX − 1, dZ) of Lebesgue measure zero if dZ ≥ dX . The vector space has a smaller maximum
dimension min(n, dX − 1, dZ) for κ̂`∞S0

,S. This contrasts with the restricted and sparse eigen and

singular values (see [11, 3]) which can be zero even if |S| < min(n, dX−1, dZ) (else are always zero)
and depend on S only via its size.

For simplicity of exposition we now use Condition IC (see the appendix for the general case),
under which we provide interpretable conditions to derive explicit rates.

Condition IC. dQ = dX and c is a constant such that c < 1n.

Under Condition IC, by Proposition A.2, we have, for all S ⊆ S0 ⊆ [dX ] and q ∈ [1,∞],

uκ|S|1−1/qκ`1,S ≥ κ`qS ,S ≥ κ`qS0
,S ≥ κ`∞S0

,S/(min(uκ|S|, |S0|))1/q, (19)

KS = {∆ ∈ RdX : (1n − c)|∆Sc |1 ≤ (1 + c)|∆S|1} = {∆ ∈ RdX : |∆|1 ≤ uκ|∆S|1}, (20)

where uκ , (1 + 1n)/(1n− c). Due to the form of Γκ(S(β)) and (19), the upper bound in Theorem
3.1 (i) and (ii) is finite if

κ`1
S(β)

,S(β) > τnuκ + rn(1 + τn)/c (∼ rn/c). (21)

Sufficient conditions for consistency can be obtained based on the easier to interpret κ`∞
S(β)

,S(β). If

S ⊆ S0 (as when both are S(β)), we can further interpret the expression of κ`∞S0
,S in (18) due to

the constraints on ∆. The constraints (20), ∆k = 1, and |∆S0 |∞ ≤ 1 imply that the subvector of ∆
appearing in

∑
k′ 6=k Ψl,k′∆k′ has `1-norm m ≤ uκ|S| − 1. Also, if k ∈ S, the subvector with indices

in S \ {k} has `1-norm larger than (m+ 1)/uκ + 1 and `∞-norm smaller than 1. This restricts the
set of vectors used to perform the partialling-out to have mass at most uκ|S| − 1, predominantly
concentrated on S (e.g., S(β)). Moreover, by Proposition A.2 (v)

∀S ⊆ S0, κ`∞S0
,S ≥ sup

η∈(0,1)

ηmin
k∈S0

wk(S, η), (22)

where Sk(S, η) ,

{
λ ∈ RdZ : |λ|1 ≤ 1, (uκ|S| − 1) max

k′ 6=k
|λ>Ψ·,k′| ≤ (1− η)λ>Ψ·,k

}
,

wk(S, η) , max
λ∈Sk(S,η)

λ>Ψ·,k = max
λ∈Sk(S,η)

E[(λ>DZZ)(XDX)k].

Assumption C(S0, q, η, η0). Condition IC holds, β ∈ I, P ∈ P satisfies Assumption A.1, α = αn,
and

(i) for all k ∈ S0 if q > 1 (resp. for all k ∈ S(β) if q = 1), Sk(S(β), η) 6= ∅,
(ii) cη0ηmink∈S(β) wk(S(β), η) ≥ rn|S(β)| for n large enough,

(iii) mink∈S(β) wk(S(β), η)/(rn|S(β)|)→∞ if q = 1, else mink∈S0 wk(S(β), η)/rn →∞.

By Theorem 3.1 (i), (19), and Hölder’s inequality, we obtain the following corollary.
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Corollary 3.1. Let S0 ⊆ [dX ], q ∈ [1,∞], and (η, η0) ∈ (0, 1)2. For all (β,P) satisfying Assumption
C(S0, q, η, η0), S0 ⊇ S(β), and any STIV estimator, we have, for n large enough,

P
(∣∣∣D−1

X (β̂ − β)S0

∣∣∣
q
≥

2rnσU(β)|S(β)|1/q(1 + τn)γ(η0)/(1nη)

mink∈S(β) wk(S(β), η)1/q mink∈S0 wk(S(β), η)1−1/q

)
≤ αSn . (23)

Taking S0 = S(β) ∪ {k} and q =∞ yields rates for the `k-loss and upper bounds on ωk in
Theorem 3.1 (ii) (see also (A.7)). For simplicity, the discussion now uses the word ‘correlation’ as
if the IVs and/or regressors were mean zero. Assumption C(S0, q, η, η0) (i) means that for regressor
k there exists a nonempty set of linear combinations of the IVs of small enough relative absolute
correlation with the other regressors. It is similar to the coherence condition for symmetric matrices
of [21], but more general because it allows for rectangular matrices and linear combinations of the
IVs (i.e., λ>Ψ·,k rather than |Ψl,k| for l ∈ [dZ ]). The coherence condition is used to study `∞-norm
convergence rates and model selection in [34]. Item (ii) is introduced to guarantee (21) and (iii)
for consistency. They require that for each regressor of index k ∈ S(β) (but not for the other
regressors), there is a linear combination of the IVs, which does not need to be known, of large
enough absolute correlation with Xk. If q = 1 then, by (iii), (ii) holds for all η0 for n large enough.
Consistency can hold with dZ < dX .

Remark 3.3. Assume dX is fixed, we add to Assumption C([dX ], 1, η, η0) that, for all k ∈ S(β),
Sk(S(β), η) contains the vectors from the canonical basis of RdZ with a 1 at the indices of the dR
largest entries in absolute value of Ψ·,k, and |Ψ·,k|2 = ψ where ψ does not vary with n. STIV is
consistent when log(dZ)2/(nρ2

n) → 0, where ρn = mink∈S(β) |Ψ·,k|∞. Assume ρn = ψ/
√
dR, so the

dR IVs are equally relevant. If dR = dZ/dX then STIV is consistent if dZ log(dZ)2/n → 0. Like
2SLS, it may not be consistent if dZ/n converges to a nonzero constant. When dZ/n → 0 but
dZ log(dZ)2/n 6→ 0, 2SLS is consistent (see [16]) but STIV may not be. If dR = 1 then, for each
relevant regressor, all but one of the IVs can be arbitrarily irrelevant and STIV is consistent when
dZ . exp(

√
nεn) with εn → 0.

Remarkably, for q = 1, (23) is not affected if all IVs are irrelevant for an irrelevant regressor.
This is important to handle ill-posed inverse problems such as the following.

Example NP continued. Assume the baseline endogenous regressor and IV are related

via X̃ = πZ̃+σV and the approximating functions are Xk = hk−1(X̃/
√
π2 + σ2) and Zk = hk−1(Z̃)

for k ∈ [dX ], where hk is the kth Hermite polynomial. If, for simplicity, (Z̃, V ) follows a standard
normal distribution, Ψ is diagonal with Ψk,k = (1 + (σ/π)2)(1−k)/2 (see Section O.1.2), so the `1-
rate depends on the exponentially small Ψk,k for the largest k ∈ S(β). Due to Theorem 3.1 (iii), a
bound on the `1-rate without sparsity is

min
S⊆[dX ]

max

(
log(dZ)√

n
max
k∈S

(
exp

(
(k − 1)

2

(σ
π

)2
))

, |βSc|1
)
. (24)

Assumption C(S0, q, η, η0) (i) is in line with the common empirical practice of, for each
endogenous regressor, finding an IV which is correlated more specifically with that regressor, and
arises naturally in our application. To obtain adaptive nonparametric estimators in statistical
inverse problems using series, it is common to use basis functions adapted to the operator so that
Ψ is (nearly) diagonal (see, e.g., [28] and [25] in conjunction with wavelet/needlet thresholding and
Galerkin approximation), and so Assumption C(S0, q, η, η0) (i) is not restrictive.

For the sake of comparison, we present an assumption similar to that in [3].
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Assumption SV(q, (δn)n∈N, (δn)n∈N, (ln)n∈N, η0). Condition IC holds, β ∈ I, P ∈ P satisfies
Assumption A.1, α = αn, and

(i) 4|S(β)|δ2

nu
2
κ/δ

2
n is an integer smaller than |S(β)|ln and

δn ≤ min
K⊆[dX ]

|K|≤|S(β)|ln

max
L⊆[dZ ]

|L|≤|S(β)|ln

σmin(ΨL,K) ≤ max
K⊆[dX ]

|K|≤|S(β)|ln

max
L⊆[dZ ]

|L|≤|S(β)|ln

σmax(ΨL,K) ≤ δn, (25)

where σmin(M) and σmax(M) are respectively the smallest and largest singular values of M
and ML,K is the submatrix obtained by extracting the rows in L and columns in K,

(ii) cη0δ
2
n/(4(1 + uκ)u

2
κδn) ≥ rn|S(β)|,

(iii) δ2
n/(4(1 + uκ)u

2
κδnrn|S(β)|1/q)→∞.

By adapting the proofs to apply to population sensitivities and all c ∈ (0, 1n), we obtain

Corollary 3.2. Let q ∈ {1, 2}, (δn)n∈N, (δn)n∈N, (ln)n∈N, and η0 ∈ (0, 1). For all (β,P) satisfying
Assumption SV(q, (δn)n∈N, (δn)n∈N, (ln)n∈N, η0), and any STIV estimator, we have

P
(∣∣∣D−1

X (β̂ − β)
∣∣∣
q
≥ 8rnσU(β)|S(β)|1/q(1 + τn)γ(η0)(1 + uκ)u

2
κδ

2

n/(δn1n)

)
≤ αSn . (26)

For q = 1, δ2
n/δn plays the same role as mink∈S(β) wk(S(β), η) under C([dX ], 1, η, η0). Item (ii)

guarantees (21) and (iii) gives consistency. Assumption SV(1, (δn)n∈N, (δn)n∈N, (ln)n∈N, η0) can be
more appealing than C([dX ], 1, η, η0) (i). However, δn can be small (even 0) due to one irrelevant
regressor. For example, suppose there is k ∈ S(β)c such that Ψ·,k = (rn, 0, . . . , 0)>. Taking
K = {k} in the first inequality of (25), δn ≤ rn, hence (unlike (23)) the upper bound in (26)
does not converge to 0. The fundamental issue is that Assumption SV provides a rate based on
the worst-case subset of regressors, regardless of their relevance. This is less costly for regression
(i.e., Z = X) than for IV because exogenous regressors have higher correlation with the IVs than
do endogenous regressors, and given many endogenous regressors it is likely that one is weakly
correlated with the IVs.

Example NP continued. The bound on the rate in (26) is rn|S(β)|1/q(1 + (σ/π)2)(dX−1)/2

while dX is replaced by k = max{l : l ∈ S(β)} under Assumption C([dX ], 1, η, η0).
Assumption SV does not apply to `∞S0

-losses, hence cannot be used for model selection. We
provide a more technical comparison with Assumption SV and the results of [3], and a sharper
condition in the same spirit in Section O.1.2.

3.3.2. Selection of Variables and Confidence Sets with Estimated Support. Theorem 3.1 (ii) provides
a superset of the relevant regressors. Under a stronger beta-min condition exact selection can be

performed. For this purpose, we use a purely data-driven thresholded STIV estimator β̂ω̂ which
uses a sparsity certificate. It is defined by

β̂ω̂k , β̂k1l
{
En[X2

k ]1/2|β̂k| > ω̂k(s)
}
, ω̂k(s) ,

2r̂σγ (r̂/κ̂ĝ(s))

κ̂`k(s)
. (27)

for k ∈ [dX ]. The following theorem shows that this estimator achieves sign consistency and

hence, S(β̂ω̂) = S(β) for all β ∈ Is ∩ I(2ω(s)). It uses sign(b) , (sign(bk))k∈[dX ], where sign(t) ,
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1l{t > 0} − 1l{t < 0}, and makes use of the population counterparts, for all k ∈ [dX ],

ωk(s) : b ∈ RdX →
2rnσU(b)γ(r/κg(s))

κ`k(s)

√
1 + τn

1 +
2rnΓκ(S(b))

cκ`1
S(b)∩SQ

,S(b)

 ,

where g and κ`(s) are defined before (A.3) and in (A.5). Under Condition IC, κg(s) = κ`1(s) (and
κ̂ĝ(s) = κ̂`1(s)).

Theorem 3.2. Let s ∈ [dQ] and P be such that Assumption A.1 holds. For all (β,P) such that

β ∈ Is ∩ I(2ω(s)) and any STIV estimator, we have, on G ∩ GA1, sign(β̂ω̂) = sign(β).

Example SE continued. By Theorem 3.2, the peers are exactly recovered with asymptotic
probability at least 1− α if the endogenous effects are sufficiently large.

Theorem 3.2 yields a confidence set by replacing S(β̂) by S(β̂ω̂) in (15), which satisfies (16)
with Is ∩ I(2ω(s)) in place of I(ω). The value of s can be large (possibly dX). The set’s width
matches the error bound in Proposition 3.1 with respect to S(β), hence it adapts to the sparsity.
To achieve this we remove a small set from I (vectors too close to |S(β)|-sparse vectors).

4. Confidence Bands using Bias Correction

Confidence sets for Φβ, where Φ ∈MdΦ,dX , can be robust to identification and are particu-
larly useful when one is interested in a feature of the whole parameter vector such as the network
in Example SE. But they can be conservative when stronger assumptions on the data generating
process can be maintained and dΦ is small relative to dX . The confidence bands below address
this. Using dΦ = 1 yields a confidence interval (e.g., for the average peer effect in Example SE).
Using dΦ > 1 one can build a confidence band for a structural function such as f in Example NP

or the Engel curves in Section 6.2. A first estimator is the plug-in Φβ̂. Another uses

∃Λ ∈MdΦ,dZ : ΛE[ZX>] = Φ. (28)

Indeed, by (1), for all β ∈ I and Λ which solves (28), Φβ = ΛE[ZY ]. (28) is a system of equations
of the same form as the following equation derived from (1)

∃β ∈ RdX : β>E[ZX>]> = E[ZY ]>. (29)

A STIV estimator Λ̂ is obtained by solving (31). For simplicity, we assume (28) holds exactly but,
as in Section 6.2.1, one can handle an approximation error going to zero with n.

Using either plug-in strategy poses problems because STIV is ”biased” towards zero and
can converge slowly. To deal with this we combine the two to form the bias corrected estimator

Φ̂β , Φβ̂ +
1

n
Λ̂Z>U(β̂) (30)

and build a confidence band around Φ̂β.

Remark 4.1. (30) is close in spirit to the bias correction in [29]. Another motivation for it is that
O : (b, L)→ Φb+ L(E[Z>Y ]− E[Z>X]b) has zero partial derivatives at, respectively, identified Λ
and β (due to (28) and (29)) and O(β,Λ) = Φβ. This is a type of double-robustness (see [17]). In
this paper β appears in a structural equation and our analysis does not involve machine learning
for regressions.



HIGH-DIMENSIONAL INSTRUMENTAL VARIABLES REGRESSION AND CONFIDENCE SETS 15

Definition 4.1. For λ ∈ (0, 1), a BC-STIV estimator is any solution (Λ̂, ν̂) of

min
L∈ÎΦ(r′n,ν),ν>0

∣∣LD−1
Z

∣∣
1

+
λν

ρ̂ZX
, (31)

where ρ̂ZX , ρ̂ZX[dZ ] (see (37)) and for r, ν > 0,

ÎΦ(r, ν) ,
{
L ∈MdΦ,dZ :

∣∣(Φ− LEn[ZX>]
)
DX

∣∣
∞ ≤ rν, Σ̂ (L) ≤ ν

}
,

Σ̂ (L) , max
(f,k)∈[dΦ]×[dX ]

σ̂f,k(L), σ̂f,k(L)2 , En
[
(Φ− LZX>)2

f,k

]
(DX)2

k,k .

To choose r′n, one uses one of classes 1-3, replacing α by αn and dZ by dΦdX . If Φ = I

and Z = X, Λ̂ is an approximate inverse of En[XX>], which improves on the CLIME estimator
of [12] by estimating standard errors. BC-STIV differs from STIV in that it is for a system of
dΦ (rather than 1) equations, each with dZ (rather than 1) second-order cones, making it more
computationally intensive. We provide a computational solution and its analysis in Section A.1.2.
The counterpart of I is IΦ ,

{
β ∈ I,Λ : ΛE

[
ZX>

]
= Φ,P (β,Λ) ∈ PΦ

}
, where PΦ is a class for

the distribution of (X,Z, U(β), Φ − ΛZX>,ΛZU(β)). Asymptotically uniformly valid confidence
bands are obtained as

ĈΦ ,
[
Φ̂β − q̂, Φ̂β + q̂

]
, q̂ ,

qGΦ|F(β̂)Λ̂>(1− α) + 3ζn
√
n

D−1

F(β̂)Λ̂>
1, (32)

where qGΦ|F(β̂)Λ̂>(1 − α) is the 1 − α quantile of GΦ = |DF(β̂)Λ̂>Λ̂F(β̂)>E|∞/
√
n given F(β̂)Λ̂>

(obtained by simulation), F (b) , ZU(b), E ∈ Rn is a standard Gaussian vector independent of

F(β̂)Λ̂>, and (ζn)n∈N is a positive sequence.

Theorem 4.1. Let PΦ and (ζn)n∈N be such that Assumption A.3 holds. Then, for αA2
n → 0 defined

in (A.8), for all (β,Λ,P) such that (β,Λ) ∈ IΦ,

∀n ∈ N, P
(
Φβ ∈ ĈΦ

)
≥ 1− α− αA2

n .

The sequence (ζn)n∈N restricts PΦ and IΦ on which uniformity over distributions and param-

eters holds. We denote by (vβn)n∈N (resp. (vΛ,β
n )n∈N) the deterministic upper bound on |D−1

X (β̂−β)|1
(resp. on |DΛF (β)(Λ̂− Λ)D−1

Z |∞,∞σU(β), see Proposition A.3), where | · |∞,∞ is the maximum row-
wise `1-norm. These bounds hold on an event of probability at least 1 − αSn − αBCn , where αBCn
is defined in Assumption A.2, converging to one, and vΛ,β

n and vβn can depend on (β,Λ) ∈ IΦ.
Proposition A.3 is the analogue of Theorem 3.1. It provides deterministic upper bounds for useful

losses and characterizes the limit of Λ̂ when there are multiple solutions to (28), as discussed for β̂
in Remark 3.1.

For the discussion, we now take ζn → 0 (e.g., log(n)−1), (β,Λ) ∈ IΦ to which (β̂, Λ̂)
converges, and assume X and Z are uniformly bounded. Assumption A.3 holds if

max(vΛ,β
n , τn) max(log(dZ/αn) log(n/αn), log(dΦ/αn) = o(ζn),

vβn|DΛF (β)|∞max(log(dXdΦ),
∣∣ΛD−1

Z

∣∣
∞,∞ log(dΦ/αn)) = o(ζn). (33)

The requirement on vΛ,β
n is mild. It can be logarithmic if max(dZ , dΦ) is of polynomial order

in n. When dΦ = 1 (i.e., a confidence interval) and we use |DΛF (β)(Λ̂ − Λ)D−1
Z |∞,∞σU(β) ≤
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|(Λ̂ − Λ)D−1
Z |∞,∞/(σmin(DZE[ZZ>U(β)2/σ2

U(β)]DZ) minf |Λf,·D
−1
Z |2)), we can obtain similar up-

per bounds on vΛ,β
n as on vβn under Condition IC in Section 3.3 because the set K ′S used to analyze

Λ̂ is equal to the set KS in (20), replacing c by λ and dX by dZ . The key difference is that
Z and X switch roles and Ψ is replaced by Ψ> in assumptions C and SV for q = 1. So S(Λ)
plays the role of S(β) under sparsity, and otherwise bounds in the spirit of (24) can be derived
under approximate sparsity. The requirement on vβn is also mild if the rows of Λ are (approxi-
mately) sparse. For example, if dΦ = 1, vβn|DΛF (β)|∞

∣∣ΛD−1
Z

∣∣
∞,∞ log(dΦ/αn) is of order at most

(vβn/σmin(DZE[ZZ>U(β)2]DZ))
√
|S(Λ)| log(dΦ/αn). Hence, if |S(Λ)| grows slowly the rate of esti-

mation of β could also be logarithmic. We provide alternative confidence bands under conditional
homoscedasticity and their analysis in Section O.1.5.

5. Endogenous IVs

With many endogenous regressors and IVs, the exogeneity of some IVs could fail. We
now consider a high-dimensional framework for the problem of IV exogeneity (see, e.g., [37]).
Introducing θ ∈ RdZ to account for the possible failure of (1), we replace (1)-(2) by

E[ZU(β)− θ] = 0, (34)

(β, θ) ∈ B ×Θ, P (β, θ) ∈ P6⊥, (35)

where θl 6= 0 means that Zl is endogenous, P (b, t) is the distribution of (X,Z, ZU(b)− t) implied by
P and Θ ⊆ RdZ encodes restrictions on θ. For example, the sign of the correlation of a regressor and
the structural error could be known. Another restriction is θS⊥ = 0 for S⊥ ⊆ [dZ ] of cardinality d⊥
which indexes the IVs known to be exogenous. The counterpart of Is, denoted by Is,s̃, collects the
vectors (b, t) ∈ B×Θ which satisfy (34)-(35), |S(b)∩SQ| ≤ s, and |S(t)| ≤ s̃}, where s̃ ∈ [dZ − d⊥]
is a sparsity certificate for the possibly endogenous IVs.

To detect endogenous IVs, we use a variant of STIV to estimate θ by replacing U(β) by the

residuals U(β̂) from a pilot STIV estimator which uses only the IVs in S⊥ and r̂⊥ (in place of r̂)
based on G⊥, which differs from G by using only d⊥ moments and α⊥ (in place of α). Based on

STIV, one then computes δ̂ and δ̂Σ such that for all (β,P) such that β ∈ I, on G⊥∣∣∣∣(Ψ̂D−1
X

(
β̂ − β

))
Sc⊥

∣∣∣∣
∞
≤ δ̂, ρ̂ZXSc⊥

∣∣∣D−1
X

(
β̂ − β

)∣∣∣
1
≤ δ̂Σ, (36)

ρ̂ZXS , max
l∈S,k∈[dX ]

(DZ)l,l (DX)k,k En
[
Z2
l X

2
k

]1/2
. (37)

Though the analysis does not require the sparsity certificate approach, if β ∈ Is we can use

δ̂ = 2r̂⊥σγ
(
r̂⊥/κ̂ĝ(s)

)
/κ̂Ψ(s) and δ̂Σ = 2r̂⊥ρ̂ZXSc⊥ σγ

(
r̂⊥/κ̂ĝ(s)

)
/κ̂`1(s), (38)

where the lower bound κ̂Ψ(s) on κ̂Ψ
S , the sensitivity for the loss in the first inequality of (36),2 is

obtained by linear programming. Unlike the Hansen-Sargan test, we can use a pilot STIV estimator
when s < d⊥ < dZ and with an approximately sparse reduced form.

Definition 5.1. For c̃ > 0, a NV-STIV estimator is any solution (θ̂, ̂̃σ) of

min
t∈Î6⊥(r 6⊥n ,σ̃),σ̃≥0

(∣∣DZtSc⊥
∣∣
1

+ c̃σ̃
)
, (39)

2The sensitivities of the pilot STIV replace |Ψ̂∆|∞ (resp. r̂) by |(Ψ̂∆)S⊥ |∞ (resp. r̂⊥) in (9) (resp. in ĝ in (10)).
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where, for r, σ > 0,

Î 6⊥(r, σ) ,

{
t ∈ Θ :

∣∣∣∣∣DZ

(
1

n
Z>U(β̂)− t

)
Sc⊥

∣∣∣∣∣
∞

≤ rσ + δ̂, Σ̂6⊥

(
β̂, t
)
≤ σ + δ̂Σ

}
,

Σ̂ 6⊥ (b, t) , max
l∈Sc⊥

σ̂l(b, t), σ̂l(b, t)
2 , (DZ)2

l,lEn[(ZlU(b)− tl)2].

To set r 6⊥n to control P(G 6⊥) (see (A.9)), we use one of classes 1-3, replacing dZ by dZ − d⊥ and α by

α 6⊥. P6⊥ in (35) combines the classes for r̂⊥ and r 6⊥n . For deterministic bounds, it is further restricted
using a minor modification of Assumption A.1 and we modify the event GA1 of probability 1−αA1

n

accordingly (see Section A.1.3). We still refer to them as Assumption A.1 and GA1 in Theorem 5.1.
Also, for a function ω from RdX × RdZ to RdZ and given P, we set Is,s̃(ω) , {(b, t) ∈ Is,s̃ : ∀l ∈
S(t), |tl| > ωl(b, t)((1 + τn)E[Z2

l ])1/2}. The definitions of ω̃ and ω̃ used below are in Section A.1.3

and σ̃ , (̂̃σ + Σ̂6⊥(β̂, θ̂))/2.

Theorem 5.1. For all s ∈ [dQ] and s̃ ∈ [dZ − d⊥], (β, θ,P) such that (β, θ) ∈ Is,s̃, c̃ ∈
(
0, 1/r 6⊥n

)
and c > 0 and any NV-STIV estimator, we have, on G⊥ ∩ G 6⊥,∣∣∣∣DZ

(
θ̂ − θ

)
Sc⊥

∣∣∣∣
∞
≤ γ

(
2(r 6⊥n )2s̃γ(c̃r 6⊥n )

) (
r 6⊥n

(
2σ̃ + (1 + c̃r 6⊥n )γ(c̃r 6⊥n )δ̂Σ

)
+ 2δ̂

)
, ̂̃ω (s̃) . (40)

For fixed c̃ ∈
(
0, 1/r 6⊥n

)
, c, s ∈ [dQ] and s̃ ∈ [dZ − d⊥], if we restrict Is,s̃ so that Assumption A.1

holds, then, for all (β, θ,P), if (β, θ) ∈ Is,s̃(ω̃(s, s̃)), then S(θ) ⊆ S(θ̂). If (β, θ) ∈ Is,s̃(2ω̃(s, s̃)),

then sign(θ̂
̂̃ω) = sign(θ), where θ̂

̂̃ω , (θ̂l1l{|θ̂l| > En[Z2
l ]1/2 ̂̃ω(s̃)})dZl=1 on G⊥ ∩ G 6⊥ ∩ GA1. Setting

α⊥ = α 6⊥ to αn, we have P(G⊥ ∩ G 6⊥ ∩ GA1) ≥ 1− 2αn − αA1
n → 1.

The first statement of Theorem 5.1 provides a 1− α⊥ − α 6⊥ confidence band based on (40).
As for the STIV set in (11), uniformity in c̃ and c permits intersection over a grid. As in Example

SE in Section 3.2, it provides Ŝ(θ) such that mins∈[dQ],s̃∈[dZ−d⊥] inf(β,θ,P):(β,θ)∈Is,s̃ P(Ŝ(θ) ⊆ S(θ)) ≥
1 − α⊥ − α 6⊥. The second statement of Theorem 5.1 concerns model selection. If the endogenous
IVs induce a large enough violation of (1) then either superset or exact recovery of S(θ) is achieved.
We provide NV-STIV rates of convergence in Section A.1.3. The C-STIV in Section O.1.4 is an
extension estimating simultaneously (β, θ) and allowing for unknown S⊥.

6. Inference In Practice

6.1. Monte-Carlo. We study model (1)-(2) with B = RdX and dQ = dX , set β∗ = (1,−2,−0.5, 0.25, 0, . . . , 0)>

and let Z be a standard Gaussian vector in RdZ . The exogenous regressors are the first |SI | IVs.

For an endogenous Xk we set Xk = Z>Π·,k + Ũk where Π ∈ MdZ ,|ScI | and Ũ ∈ R|ScI |. We let

(U(β∗), Ũ>)> be a mean zero Gaussian vector in R1+|ScI | with variance having entries .05 but in
the diagonal where the first entry is 1 and the others are 1− π. We set Π so that |Π·,k|22 = π for
k ∈ [|ScI |] and π ∈ {0.5, 0.8}, hence all regressors have unit variance. Since the IVs are uncorre-
lated with one another, the concentration matrix Π>Z>ZΠ/(1− π) has diagonal elements close to
nπ/(1−π) and the degree of endogeneity is 0.05/

√
1− π (see [1]). In low dimensions the IVs could

be considered strong. However, the first-stage is not approximately sparse so even a first-stage
Lasso would not be consistent (so it is impossible to estimate the concentration matrix and apply
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Table 2. STIV estimator

dZ = 1500, dX = 1750, n = 750, π = 0.8
cr̂ = 0.95 cr̂ = 0.75 cr̂ = 0.5 cr̂ = 0.25

p2.5 p50 p97.5 p2.5 p50 p97.5 p2.5 p50 p97.5 p2.5 p50 p97.5

β∗1(= 0.5) 0.8 0.88 0.95 0.74 0.82 0.91 0.67 0.78 0.88 0.27 0.55 0.78
β∗2(= −2) -1.9 -1.83 -1.75 -1.9 -1.83 -1.75 -1.9 -1.82 -1.74 -1.89 -1.81 -1.73
β∗3(= −0.5) -0.41 -0.33 -0.26 -0.41 -0.33 -0.26 -0.41 -0.33 -0.26 -0.41 -0.32 -0.25
β∗4(= 0.25) 0.01 0.08 0.16 0.01 0.08 0.16 0 0.08 0.16 0 0.08 0.16
β∗5(= 0) 0 0 0 0 0 0 0 0 0 0 0 0
β∗6(= 0) 0 0 0 0 0 0 0 0 0 0 0 0
σ∗(= 1) 1 1.05 1.1 1.01 1.06 1.12 1.02 1.07 1.13 1.05 1.12 1.2∣∣∣(β̂ − β∗)S(β∗)

∣∣∣
∞

0.15 0.2 0.25 0.16 0.21 0.27 0.17 0.23 0.33 0.23 0.45 0.73∣∣∣(β̂ − β∗)S(β∗)c

∣∣∣
∞

0 0 0.03 0 0 0 0 0 0.03 0 0.17 0.39

S(β̂) ⊇ S(β∗) .98 .98 .98 .96

S(β̂) = S(β∗) .62 .95 .91 .06
dZ = 1500, dX = 1750, n = 750, π = 0.5

β∗1(= 0.5) 0 0.79 0.96 0 0.78 0.96 0 0.79 0.98 0 0.8 0.98
β∗2(= −2) -1.93 -1.83 -1.5 -1.91 -1.83 -1.48 -1.9 -1.83 -1.47 -1.93 -1.83 -1.49
β∗3(= −0.5) -0.39 -0.32 0 -0.4 -0.34 0 -0.4 -0.34 0 -0.4 -0.33 0
β∗4(= 0.25) 0 0.08 0.18 0 0.07 0.18 0 0.08 0.16 0 0.07 0.15
β∗5(= 0) 0 0 0 0 0 0 0 0 0 0 0 0
β∗6(= 0) 0 0 0 0 0 0 0 0 0 0 0 0
σ∗(= 1) 1 1.09 3.3 0.99 1.09 3.42 0.99 1.08 3.4 0.98 1.08 3.38∣∣∣(β̂ − β∗)S(β∗)

∣∣∣
∞

0.15 0.24 1 0.15 0.23 1 0.15 0.23 1 0.15 0.24 1∣∣∣(β̂ − β∗)S(β∗)c

∣∣∣
∞

0 0.02 0.42 0 0.02 0.43 0 0.02 0.45 0 0.02 0.43

S(β̂) ⊇ S(β∗) .82 .82 .80 .78

S(β̂) = S(β∗) .49 .45 .47 .46
Notes: 1000 replications. rn = 0.16.

a method akin to 2SLS) and most of the IVs are weakly correlated with the endogenous regressors.

We take ΠdZ ,1 = ΠdZ−1,2 = · · · = ΠdZ−|ScI |+1,|ScI | =
√

3π/4. For the remaining entries we set

Πi,j =

{
−
√

(π/4)/(dZ − 1) i is odd and j is odd, or i is even and j ≥ dZ/2

+
√

(π/4)/(dZ − 1) otherwise

This means that there is one stronger IV and dZ − 1 weaker IVs for each endogenous regressor.
Though each weaker IV accounts for a small fraction of their variance, collectively the weaker
IVs account for fraction π/4. If dZ ≤ dX each IV has a stronger correlation with one regressor.

We construct 0.95 confidence sets and bands for β∗. For sets we use rn from Class 3 with
α = 0.05 and set r̂ = 1.01rn

3. We consider sparsity certificates 4, 5, 6, 7, 10. Is is a singleton for each
sparsity certificate and dX , dZ below. We construct the bounds in (13), replacing c > 0 with a grid,
the construction of which is discussed below. For computational reasons (to allow sufficiently many
replications) we limit the grid to at most two points. Using more points (and/or loss functions)
could lead to narrower sets. We follow the same approach to construct the confidence set in (15)

3This is possible under Assumption O.1, which permits r̂ = rn
√

1 + τn/(1 − τn) rather than r̂ = rn|DZZ
>|∞,

delivering a smaller value of r̂, which we find works better in practice.
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Table 3. 0.95 confidence sets and bands

dZ = 2050, dX = 50, n = 2000, π = 0.8
STIV SC 4 SC 5 SC 6 SC 10 ES Bias-corrected STIV CB

p2.5 p50 p97.5 Median width/2 p2.5 p50 p97.5 Width/2

β∗1(= 1) 0.9 0.95 0.99 0.8 1.02 1.32 6.07 0.33 0.94 1 1.06 0.1
β∗2(= −2) -1.95 -1.9 -1.85 0.58 0.73 0.94 4.55 0.26 -2.04 -1.99 -1.95 0.07
β∗3(= −0.5) -0.45 -0.4 -0.36 0.57 0.73 0.94 4.64 0.26 -0.54 -0.49 -0.45 0.07
β∗4(= 0.25) 0.11 0.15 0.19 0.57 0.73 0.95 4.65 0.26 0.2 0.24 0.29 0.07
β∗5(= 0) 0 0 0 0.8 1.02 1.31 6.03 0 -0.05 0 0.06 0.1
β∗6(= 0) 0 0 0 0.57 0.73 0.95 4.62 0 -0.04 0 0.04 0.07

S(β̂) ⊇ S(β∗) 1 Cover 1 1 1 1 .98 .94

S(β̂) = S(β∗) .98 (.996,1) (.97,.98) (.92,.95)
dZ = 49, dX = 50, n = 2000, π = 0.8

β∗1(= 1) 0.84 0.9 0.96 ∞ ∞ ∞ ∞ 0.24 0.94 0.99 1.05 0.07
β∗2(= −2) -1.96 -1.91 -1.87 ∞ ∞ ∞ ∞ 0.2 -2.04 -2 -1.95 0.07
β∗3(= −0.5) -0.47 -0.43 -0.39 ∞ ∞ ∞ ∞ 0.2 -0.54 -0.5 -0.46 0.07
β∗4(= 0.25) 0.13 0.18 0.23 ∞ ∞ ∞ ∞ 0.2 0.2 0.25 0.3 0.07
β∗5(= 0) 0 0 0 ∞ ∞ ∞ ∞ 0 -0.03 0.02 0.08 0.1
β∗6(= 0) 0 0 0 ∞ ∞ ∞ ∞ 0 -0.04 0 0.04 0.07

S(β̂) ⊇ S(β∗) 1 Cover 1 1 1 1 1 .93

S(β̂) = S(β∗) .96 (.996,1) (.91,.95)
dZ = 2050, dX = 50, n = 2000, π = 0.5

β∗1(= 1) 0.98 1.02 1.07 1.55 2.31 3.78 ∞ 0.43 0.92 1 1.07 0.12
β∗2(= −2) -1.95 -1.9 -1.86 0.85 1.26 2.08 ∞ 0.27 -2.04 -1.99 -1.95 0.07
β∗3(= −0.5) -0.45 -0.4 -0.36 0.86 1.27 2.1 ∞ 0.27 -0.54 -0.49 -0.45 0.07
β∗4(= 0.25) 0.11 0.16 0.2 0.85 1.26 2.08 ∞ 0.26 0.2 0.24 0.29 0.07
β∗5(= 0) 0 0.03 0.07 1.56 2.32 3.78 ∞ 0 -0.07 0 0.07 0.12
β∗6(= 0) 0 0 0 0.85 1.26 2.1 ∞ 0 -0.04 0 0.04 0.07

S(β̂) ⊇ S(β∗) 1 Cover 1 1 1 1 .75 .95

S(β̂) = S(β∗) .13 (.996,1) (.72,.77) (.93,.96)
dZ = 49, dX = 50, n = 2000, π = 0.5

β∗1(= 1) 1 1.05 1.09 ∞ ∞ ∞ ∞ 0.31 0.99 1.03 1.08 0.03
β∗2(= −2) -1.97 -1.93 -1.88 ∞ ∞ ∞ ∞ 0.2 -2.04 -1.99 -1.95 0.07
β∗3(= −0.5) -0.47 -0.42 -0.38 ∞ ∞ ∞ ∞ 0.2 -0.54 -0.49 -0.45 0.07
β∗4(= 0.25) 0.13 0.18 0.22 ∞ ∞ ∞ ∞ 0.2 0.2 0.25 0.29 0.07
β∗5(= 0) 0 0.05 0.09 ∞ ∞ ∞ ∞ 0 -0.03 0.03 0.09 0.1
β∗6(= 0) 0 0 0 ∞ ∞ ∞ ∞ 0 -0.04 0 0.04 0.07

S(β̂) ⊇ S(β∗) 1 Cover 1 1 1 1 1 .50

S(β̂) = S(β∗) .02 (.996,1) (.47,.53)
Notes: 1000 replications. ‘SC s’ use sparsity certificate s. ‘ES’ use estimated support. ‘CB’
use Φ = I. SC/ES use one grid point for c. For dZ = 49 (resp. 2050) rn = 0.074 (resp. 0.094).
‘STIV’ uses c = 0.99/r̂. For SC/ES (resp. CB) ‘Cover’ is the frequency with which β∗ lies in the
bounds defined in (13) (resp. (32)). 0.95 confidence intervals for the coverage are in parentheses
(see [41]).

based on an estimated support, taking c equal to the first grid point and S(β̂) to be the indices of

the elements of D−1
X β̂ with absolute value larger than 10−4. For the confidence bands we use STIV

for the pilot and Class 4 to set r̂. Since the IVs are uncorrelated, the values of r̂ for classes 3 and
4 are nearly identical. We use the STIV estimator with c = 0.99/r̂ for the pilot and set λ = 0.99

and use Class 3 to estimate Λ̂.
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Table 4. 0.95 confidence sets with dX > n

dZ = 4100, dX = 4100, n = 4000, π = 0.8
STIV SC 4 SC 5 SC 6 SC 7 SC∗ 7 SC 10 ES

p2.5 p50 p97.5 Median width/2

β∗1(= 1) 0.87 0.91 0.94 0.65 1.08 2.66 ∞† 97.7 ∞ 0.22
β∗2(= −2) -1.96 -1.93 -1.90 0.40 0.59 1.29 ∞† 42.84 ∞ 0.17
β∗3(= −0.5) -0.46 -0.43 -0.39 0.40 0.60 1.29 ∞† 42.51 ∞ 0.17
β∗4(= 0.25) 0.14 0.18 0.21 0.40 0.59 1.29 ∞† 41.89 ∞ 0.17
β∗5(= 0) 0 0 0 0.65 1.09 2.68 ∞† 97.37 ∞ 0
β∗6(= 0) 0 0 0 0.40 0.60 1.29 ∞† 43.32 ∞ 0

S(β̂) ⊇ S(β∗) 1 Cover 1 1 1 1 1 1 .97

S(β̂) = S(β∗) .99 (.98,1) (.94,.99)
dZ = 4100, dX = 4100, n = 4000, π = 0.5

β∗1(= 1) 1.02 1.05 1.08 3.52 18.64 ∞ ∞ ∞ ∞ 0.65
β∗2(= −2) -1.96 -1.93 -1.90 1.56 7.02 ∞ ∞ ∞ ∞ 0.4
β∗3(= −0.5) -0.46 -0.43 -0.4 1.57 6.97 ∞ ∞ ∞ ∞ 0.4
β∗4(= 0.25) 0.15 0.18 0.21 1.55 6.99 ∞ ∞ ∞ ∞ 0.4
β∗5(= 0) 0.02 0.05 0.08 3.58 19.18 ∞ ∞ ∞ ∞ 0
β∗6(= 0) 0 0 0 1.57 7.05 ∞ ∞ ∞ ∞ 0

S(β̂) ⊇ S(β∗) 1 Cover 1 1 1 1 1 1 .97

S(β̂) = S(β∗) .01 (.98,1) (.94,.99)
Notes: 200 replications. ‘SC s’ use sparsity certificate s. ‘ES’ use estimated support.
‘CB’ use Φ = I. SC/ES use one grid point for c. rn = 0.07.‘STIV’ uses c = 0.99/r̂.

‘Cover’ is the frequency with which β∗ lies in the bounds defined in (13). †: The
frequency of replications with sets of finite width is 0.03. ∗: Sets using two grid
points for c.

Table 5. 0.95 NV-STIV confidence sets for detection of endogenous IVs

dZ = 100, dX = 90, n = 3000, π = 0.8
NV-STIV SC 4,1 SC 4,2 SC 4,3 SC 4,5 SC 4,7 SC 4,10

p2.5 p50 p97.5 Median width/2

θ89(= 0.8) 0.55 0.6 0.65 0.53 0.53 0.53 0.53 0.54 0.54
θ90(= 0) 0 0 0 0.53 0.53 0.53 0.53 0.54 0.54

S(θ̂) ⊇ S(θ∗) 1 Power .95 .94 .94 .93 .92 .91

S(θ̂) = S(θ∗) 1 (.93,.96) (.92,.95) (.92,.95) (.91,.94) (.9,.93) (.89,.92)
Notes: 1000 replications. ‘SC s, s̃’ use sparsity certificates s, s̃. SC use one grid point
for c. rn = 0.07 is from Class 3 with α = 0.025, and r̂1 = 1.01r1,n. r 6⊥n = 0.06 is from
Class 3 with α = 0.025. Confidence sets use a grid of 19 points for c̃. ‘NV-STIV’
uses c̃ = 0.99. ‘Power’ is the frequency with which the confidence sets do not include
θ89 = 0.

Rule of Thumb for c. We apply STIV with c = r̂−1, corresponding to the least shrinkage.
As c decreases STIV is almost unchanged, until a point after which σ increases discontinuously.
We recommend this for a single value of c. As c decreases further, STIV is almost unchanged until
a point after which there is another increase in σ. This gives a second grid point, and so on. This
rule means that we take the smallest c (yielding the largest sensitivities) for each σ.

Estimation. We consider the challenging setting with n < dZ < dX . We set n = 750, dX =
1750 and dZ = 1500 and ScI = {1, 5, 1503, ..., 1750}, hence there are 250 endogenous regressors.
Table 2 reports the results. For sufficiently large c, STIV performs well in terms of selecting nonzero
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entries, and does not select those with values of zero. Due to the shrinkage, STIV is biased towards
zero with bias decreasing in c.

Confidence Sets and Bands. We set n = 2000, dX = 50, dZ ∈ {2050, 49}, ScI = {1, 5}
and make inference on β∗. This design is challenging since there are two endogenous regressors
and either dZ < dX or n < dZ . We limit dX so as to permit application of all of our methods to
the same design over 1000 replications. Below we modify the design to allow for dX > n.

Table 3 reports the results. Sets based on a sparsity certificate are nested. If dZ = 2050,
they can be informative on the sign of the first three entries of β∗. Though robust to identification,
the sets can be conservative, are infinite if dZ = 49 and have coverage close to 1 if dZ = 2050.
STIV performs well in selecting the nonzero parameters, resulting in less conservative sets based
on estimated support. These are narrower than with sparsity certificate s = |S(β∗)| = 4 as
they use information on both the number and identities of relevant regressors. Coverage is below
0.95 when dZ = 2050 and π = 0.5 because STIV using the rule of thumb value of c can fail to
distinguish β∗4 = 0.25 from zero. In the other designs, the sets can be informative on the signs of
the first three entries of β∗. The bias correction reduces the shrinkage and centers STIV on β∗.
For dZ = 2050, there exists a sparse Λ verifying (28), with |SI |+ |ScI |dZ = 4148 nonzero entries out
of dXdZ = 102500. The bands are narrower than the sets but have coverage slightly below 0.95
due to shrinkage when estimating Λ. For dZ = 49, there does not exist Λ verifying (28), leading to
coverage below 0.95, significantly so for π = 0.5.

Confidence Sets with dX > n. We set n = 4000, dX = 4100, ScI = {1, 5} and dZ = 4100.

Bands are infeasible since Λ̂ requires dXdZ = 41002 second-order cones. Table 4 reports the results.
If π = 0.8, sets using a small sparsity certificate are informative on the signs. For s = 7, the set
is infinite if one grid point over c is used but finite with two. STIV performs well in terms of
selection, translating into narrower sets based on estimated support. Reducing the strength of the
IVs (π = 0.5) increases the width of the sets but coverage remains above 0.95.

Endogenous Instruments. We take n = 3000, dX = 90, ScI = {1, 5} and dZ = 100. There
are 10 possibly endogenous IVs with indices Sc⊥ = {89, 90, ..., 98} and Z89 =

√
1− 0.82E+0.8U(β∗)

is endogenous, where E is an independent standard Gaussian. This preserves the variance of Z
but implies that θ∗ has one nonzero entry given by θ∗89 = 0.8. There are as many known exogenous
IVs as regressors. We apply the NV-STIV estimator, using STIV for the first stage and taking rn
from Class 3 with α = 0.025 and r̂1 = 1.01rn. For the NV-STIV estimator we take r 6⊥n from Class 3
with α = 0.025. As both stages use α = 0.025 we construct 0.95 sets. We use sparsity certificates
s = 4 for β and s̃ ∈ [10] for θ. The sets are intersected over a grid of 19 points for c̃. Table 5
reports results. Due to shrinkage, NV-STIV is centred on 0.6. The endogenous IV is detected with
frequency 0.95 for s̃ = 1 and 0.91 for s̃ = 10.

6.2. EASI Demand System. The EASI demand system of [33] implies the vector of expenditure
shares S ∈ RdG for dG goods consumed by a household satisfies

S =

dR∑
r=0

brT
r + C1H + C2HT + A0P +

dH∑
h=1

AhPHh +BPT +W, (41)

T =
1

1− P>BP/2

(
E − P>S + P>

(
A0 +

dH∑
h=1

AhHh

)
P/2

)
, (42)
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where E ∈ R is nominal expenditure, T ∈ R is deflated expenditure, P ∈ RdG is log-prices, H ∈ RdH

is household characteristics, and W ∈ RdG are structural errors. Log-prices are normalized to be
zero for a subset of households. The parameters are br ∈ RdG for r = 0, ..., dR, C1, C2 ∈ MdG,dH

and A0, ..., AdH , B ∈ MdG,dG . Theory imposes restrictions such as (1) expenditure shares sum to
one and (2) Slutsky symmetry, hence

A0, . . . , AdH and B are symmetric; 1>b0 = 1, 1>C1 = 1>C2 = 0, 1>B = 0;

∀r ∈ [dR], 1>br = 0; ∀h ∈ [dH ], 1>Ah = 0. (43)

Because T depends on the parameters, the system (41) is nonlinear, so difficult to estimate. [33]
propose an approximate system, replacing T with its first-order in prices approximation D =
E−P>S, which is nominal expenditure deflated by a Stone price index. To reduce approximation
error, we consider a second-order approximation and inject

∀r ∈ N, T r = Dr−1

(
D +

r

2
P>

(
A0 +

dH∑
h=1

AhHh +BD

)
P

)
+O(|P |42) (44)

(derived from (42)) into (41). An approximation error arises due to the second term in (44), but
it is small due to the normalization on log-prices. Our approximation depends on products of
parameters, violating linearity. We replace each by a new parameter, restricted using (43).

6.2.1. Systems with Approximation Error. Our results can be applied to estimate the system one
equation at a time, ignoring cross-equation restrictions and approximation error. This does not
make proper use of the underlying economic theory and would not allow a comparison with [33]. For
this reason, we make some minor modifications to STIV. We allow for an approximation error by
adding an additional (unobserved) term V (β) to the structural equation such that σV (β) ≤ vdX → 0.
The practical implication is a minor modification to the IV-constraint, replacing r̂σ with r̂σ+(1+r̂)v̂
in (7), where v̂ decays to zero with n. This allows for other models with approximation error
including nonparametric IV (e.g., Example NP with approximation error) or when a fraction of
the data is bracketed (in which case v̂ is random). To allow for a system of dG equations, the
STIV objective function is summed and the IV-constraint is intersected over the equations, and α
is replaced by α/dG. The latter allows the structural errors to be dependent across equations, and
dG can depend on n. The bias correction and confidence bands are easily modified, and we also
allow for approximation error in Φβ (i.e., the function of interest is approximately linear). Further
details and analysis are provided in Section A.1.4.

6.2.2. Implementation and Results. We use the Canadian data of [33] for n = 4847 rental-tenure
single-member households with expenditure on rent, recreation and transportation. The dG = 9
goods are: food consumed at home, food consumed out, rent, clothing, household operation, house-
hold furnishing/equipment, transportation operation, recreation, and personal care. Individual
characteristics are: age, gender, a dummy for car nonownership equal to one if real gasoline ex-
penditure (at 1986 prices) is less than $50, a social assistance dummy equal to one if government
transfers are greater than 10 percent of gross income, and a linear time trend. Following [33],
we use dR = 5 for the degree of the expenditure polynomial. Each equation has dX = 1570 pa-
rameters. Log-prices are normalized to zero for residents of Ontario in 1986. The approximation
error from the second order approximation is likely small because En[|P |42] = 0.0008. In contrast,
En[|P |22] = 0.0268, and the mean share for 5 goods is less than 0.1, suggesting a large first-order
approximation error. Since D = E − P>S depends on W , the |ScI | = 963 regressors which depend
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Figure 1. Engel Curve for Rent

on D are endogenous. We construct dZ = dX IVs by replacing D by D = E − P>En[S] (i.e.,
replacing individual by average shares).

The IVs are strong and dZ = dX and so we apply Section 4 to construct uniform 0.9 confi-
dence bands for the Engel curves based on dΦ = 9 grid points. In the first step, we apply STIV,
adjusting r̂ according to Class 4, taking α = 0.05/dG, c = 0.99/r̂ and v̂g = 1/n for all g ∈ [dG]. We
choose SQ to exempt the constant, linear, and quadratic parts of the Engel curves (b0, b1, b2) and
the linear price parameters (A0) from the penalty. It is reasonable to expect that the rest of the
parameter be approximately sparse, particularly for the second-order approximation terms.

For brevity, we do not present β̂ in full because it has 14, 130 elements. Instead, we sum-
marize its support. Of 14, 022 parameters in SQ, only 47 are estimated as nonzero, 22 of which are

due to the second-order approximation. To build confidence bands for Engel curves, we obtain Λ̂
using r′n from Class 3 with α = 0.05 and λ = 0.99. Figure 1 depicts the preliminary estimator for
rent, its bias corrected counterpart and confidence bands. The second-order approximation yields
a different curve to the that of [33], which peaks at a higher expenditure level. The bias correction
is large as the preliminary estimator lies outside the band. The band is wider at the end points,
most likely due to lack of data. Engel curves for the remaining goods are available on request.
The bias correction is large for household operation, clothing, personal care and transportation
operation. The bands are marginally wider than those of [33] because we construct uniform bands
rather than pointwise intervals and use a more flexible second-order approximation.

Appendix

A.1. Complements. The proofs of the results below are in Section O.2. We denote by F (b) ,
ZU(b), T (L) , Φ − LZX>, and qA (resp. qA|M) the quantile function of A (resp. of A given

M). When a random vector is a function of an estimator as in U(β̂), En is still used to denote∑
i∈[n] Ui(β̂)/n.

A.1.1. Complements on Section 3. Proposition A.1 relates the sensitivities (see also Section O.1.1).
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Proposition A.1. Let S ∈ [dX ], c > 0, and r̂ ≤ 1. For all S0 ⊆ [dX ], q ∈ [1,∞], and ` ∈ L,

(i) If S ⊆ S0 ⊆ [dX ], κ̂`,S ≥ κ̂`,S0;
(ii) κ̂`qS0

,S ≥ κ̂`q ,S;

(iii) max
(
ĉκ(S)−1/qκ̂`∞

Ŝ(S)∪S0
,S, |S0|−1/qκ̂`∞S0

,S

)
≤ κ̂`qS0

,S≤ κ̂`∞S0
,S, ĉκ(S)−1κ̂`∞

Ŝ(S)
,S ≤ κ̂`1,S;

(iv) κ̂`∞S0
,S = mink∈S0 κ̂`k,S = mink∈S0 min∆∈K̂S : ∆k=1,|∆S0

|∞≤1

∣∣∣Ψ̂∆
∣∣∣
∞

,

where Ŝ(S) , S ∪ (ScQ ∩ S(β̂)) and ĉκ(S) , γ(c)(2|S ∩ SQ| + |ScQ ∩ (S ∪ S(β̂))|) if 0 < c < 1 and

else Ŝ(S) , (S ∩SQ)∪ ((ScQ ∪ScI)∩ (S ∪S(β̂))) and ĉκ(S) , γ(cr̂)(2|S ∩SQ|+ |ScQ ∩ (S ∪S(β̂))|+
c(1−min(r̂, 1))|ScI ∩ (S ∪ S(β̂))|).

We emphasize 3 more baseline classes P which we further restrict when need be. Some
confidence sets require very mild assumptions on P while deterministic bounds require working
within subsets of these classes. The baseline classes are identification robust because they do
not restrict the joint distribution of (Z,X). Let, for b ∈ RdX , D(b) be the diagonal matrix with
positive diagonal elements 1/σ̃l(b) for l ∈ [dZ ], where σ̃l(b)

2 , En[Fl(b)
2], t̂(b) , |D(b)F>(b)|∞/n,

G ,
{
t̂(β) ≤ rn

}
. The value of rn for classes 1-3 is obtained using a union bound and the results

in [35, 8, 30].
Class 2: ∃µ4 > 0 : maxl∈[dZ ] E[Fl(β)4](E[Fl(β)2])−2 ≤ µ4 and dZ < α exp (n/µ4) /(2e+ 1). We set

rn =
√

2/(n/ log(dZ(2e+ 1)/α)− µ4).
Class 3: There exists δ in (0, 1] and µ2+δ > 0 such that∣∣∣∣((E [|Fl(β)|2+δ

]) (
E
[
Fl(β)2

])−(2+δ)/2
)
l∈[dZ ]

∣∣∣∣
∞
≤ µ2+δ,

and dZ ≤ α/(2Φ(−n1/2−1/(2+δ)µ
−1/(2+δ)
2+δ )). We set rn = −Φ−1 (α/(2dZ)) /

√
n.

Here P(G) ≥ 1−α−αBn and αBn , αC1µ2+δ (1 +
√
nrn)

2+δ
n−δ/2, where C1 is an unknown universal

constant, is a finite sample bound on coverage error. For classes 1 and 2, P(G) ≥ 1− α, so we set
αBn = 0. For classes 3-4, (12) is modified to replace 1− α by 1− α− αBn .

We use concentration arguments which involve CN(m) , e(2 log(m)−1) for m ≥ 3 (Theorem
2.2 in [23]). For random A ∈ RdA and B ∈ RdB and sequences MA, M ′

A, and MAB> which can
depend respectively on dA(dA + 1)/2, dA, and dAdB, denote by

EA ,
{∣∣DA(En − E)

[
AA>

]
DA

∣∣
∞ ≥ τn

}
, EAB> ,

{∣∣DA(En − E)
[
AB>

]
DB

∣∣
∞ ≥ τn

}
,

E ′A ,
{

min
l∈[dA]

(
D−1

A

)
l,l

(DA)l,l ≤
√

1− τn or max
l∈[dA]

(
D−1

A

)
l,l

(DA)l,l ≥
√

1 + τn

}
,

(N.i) E
[∣∣DA

(
AA> − E

[
AA>

])
DA

∣∣2
∞

]
≤MA,

(N.ii) E
[∣∣DA

(
AB> − E

[
AB>

])
DB

∣∣2
∞

]
≤MAB> ,

(N.iii) E
[∣∣∣(A2

l /E [A2
l ]− 1)

dA
l=1

∣∣∣2
∞

]
≤M ′

A,

αn(A) , CN(dA(dA+1)/2)MA/(nτ
2
n), αn(A)′ , CN(dA)M ′

A/(nτ
2
n), and αn(AB>) , CN(dAdB)MAB>/(nτ

2
n).

When A depends on β or Λ but we omit it from the definition of MA and αn(A), it means that the
same sequence is used for all β ∈ I, hence restricting P . When A in (N.iii) is a matrix, everything
holds for the vectorization.
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Lemma A.1. Under (N.i) for A and MA, P (EA) ≤ αn(A), under (N.iii) for A and M ′
A, P (E ′A) ≤

αn(A)′, and under (N.ii) for A and B and MAB>, P (EAB>) ≤ αn(AB>).

Taking r̂ = rn
∣∣DZZ>

∣∣
∞ yields G ⊆ G. Assumption O.1 permits to work with the smaller

r̂ = rn
√

1 + τn/(1−τn). The union bound used for rn in classes 1-3 does not account for dependence
over l ∈ [dZ ] of Fl(β), and so r̂ can be larger than necessary. To account for dependence, we
consider Class 4 presented in Section O.1.1 under which r̂ =

(
qG|Z(1− α) + 2ζn

)
/
√
n, where G ,

|
√
nDZEn[ZE]|∞ and ζn ≥ 2 max

(
τn/(1− τn), (1/

√
1− τn − 1)

)
log (2dZ/αn). Section O.1.1 also

points to useful results for dependent data.
We now provide probabilistic conditions under which we can replace random quantities

appearing in the right-hand sides in Proposition 3.1 by deterministic ones. These are r̂, σ̂(β), and
the sensitivities. For classes 1-3 we set

rn , rnBZ/
√

1− τn and GA1 , {r̂ ≤ rn} ∩ E ′cZ ∩ E ′cX ∩ EcZX> ∩ E
c
U(β) (A.1)

and, for Class 4, rn is defined in Section O.1.1 and GA1 , {r̂ ≤ rn} ∩ EcZ ∩ E ′cX ∩ EcZX> ∩ E
c
U(β). for

all n ∈ N, P (GA1) ≥ 1− αA1
n . We further restrict the class P and add:

Assumption A.1. Let dX , dZ ≥ 3, αn, MU , MZX>, M ′
X , M ′

Z, and BZ (that can depend on n
and dZ) positive. P is such that (N.iii) holds for X and M ′

X , (N.ii) holds for Z and X and
MZX>. For P from class 1-3, we maintain (N.i) holds for U(β) and MU , (N.iii) Z and M ′

Z, and
P
(∣∣DZZ>

∣∣
∞ > BZ

)
≤ αn. Moreover,

αA1
n , αBn + αCn + αn(X)′ + αn(ZX>)→ 0, (A.2)

where αCn , αn + αn(Z)′ + αn(U) for classes 1-3 and is defined in Section O.1.1 for Class 4.

If DZZ is sub-Gaussian, BZ can be proportional to
√

log(CndZ/αn), where the constants C
and of proportionality depend on tail parameters of the sub-Gaussian distribution. Section O.1.1
presents the adjustments for classes 1-3 with assumptions A.1 and O.1.

The population counterparts of K̂S and K̂S replace r̂ in ĝ by rn, which we denote by g:

KS ,
{

∆ ∈ RdX : 1n
∣∣∆Sc∩SQ

∣∣
1
≤
∣∣∆S∩SQ

∣∣
1

+ cg(∆)
}
, (A.3)

KS ,
{

∆ ∈ RdX : 1n
∣∣∆Sc∩SQ

∣∣
1
≤ 2

(∣∣∆S∩SQ
∣∣
1

+ cg(∆)
)

+
∣∣∣∆ScQ

∣∣∣
1

}
,

Lemma A.2. On the event GA1, we have, for all c > 0,

σ2
U(β)(1− τn) ≤ σ̂(β)2 ≤ σ2

U(β)(1 + τn),

∀S ⊆ [dX ], ` ∈ L, κ̂`,S ≥
κ`,S

1 + τn

(
1− τn

κ`1,S

)
, κ̂`,S ≥

κ`,S
1 + τn

(
1− τn

κ`1,S

)
, (A.4)

if |S ∩ SQ| ≤ s, ∀` ∈ L, κ̂`(s) ≥ κ`(s) ,
κ0
`(s)

1 + τn
min

S:|S∩SQ|≤s

(
1− τn

κ`1,S

)
, (A.5)

where κ0
`(s) is the population analogue of κ̂`(s). Under Assumption A.1, for classes 1-4, we have

P(r̂ ≤ rn) ≥ 1− αCn .

Proposition A.2. We have, for all S, S0 ⊆ [dX ], q ∈ [1,∞], and k ∈ [dX ],

(i) κ`qS0
,S ≥ κ`q ,S,

(ii) max(cκ(S)−1/qκ`∞
S∪S0

,S, |S0|−1/qκ`∞S0
,S) ≤ κ`qS0

,S ≤ κ`∞S0
,S, cκ(S)−1κ`∞

S
,S ≤ κ`1,S,
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(iii) κ`qS ,S ≤ uκ|S|1−1/qκ`1,S under Condition IC,

(iv) κ`∞S0
,S = mink∈S0 κ`k,S,

(v) κ`∞S0
,S ≥ mink∈S0 maxλ:|λ|1≤1

(
λ>Ψ·,k − (cκ(S)− 1) maxk′ 6=k |λ>Ψ·,k′|

)
if S ⊆ S0,

(vi) κ`k,S ≥ maxλ:|λ|1≤1(λ>Ψ·,k+maxk′ 6=k |λ>Ψ·,k′|)(1+cκ(S) maxk′ 6=k |λ>Ψ·,k′ |/κ`∞
S
,S)−1 and κ`k,S ≥

κ`∞
S∪{k}

,S,

where S , (S∩SQ)∪ScQ and cκ(S) , ((1 + 1n)|S∩SQ|+ 1n|ScQ|)/max(0, 1n− c) if 0 < c < 1n, else

S , (S∩SQ)∪ScQ∪ScI and cκ(S) , ((1 + 1n)|S∩SQ|+ 1n|ScQ|+ c(1−min(rn, 1))|ScI |)/max(0, 1n−
cmin(rn, 1)).
Moreover, if ∆ ∈ KS then

|∆|1 ≤ cκ(S)|∆S|∞. (A.6)

The above statements hold if we replace κ by κ and cκ(S) by cκ(S), the definition of which is the
same but replacing (1 + 1n) by (2 + 1n) and c by 2c. We also have κh,S ≥ κ`1,S.

By item (vi) in Proposition A.2 under Condition IC, we have

κ`k,S ≥ max

(
sup
η∈(0,1)

η max
λ∈Sk(S,η)

λ>Ψ·,k, κ`∞
S∪{k},S

)
, (A.7)

where, for all η ∈ (0, 1) and k ∈ [dX ],

Sk(S, η) ,

{
λ ∈ RdZ : |λ|1 ≤ 1, 1 + max

k′ 6=k
|λ>Ψ·,k′ |/(λ>Ψ·,k) ≥ η

(
1 + max

k′ 6=k

∣∣λ>Ψ·,k′
∣∣ /κ`1,S)} .

A.1.2. Complements on Section 4. Estimation of Λ is more computationally intensive than STIV
because there are dΦdZ second-order cones (STIV has 1). For STIV we use the MOSEK solver,
but if dΦ and dZ are very large, MOSEK can fail. For this reason we use an iterative procedure,

which alternates between updating Λ̂ and ν̂. Updating Λ̂ is more computationally demanding, so
we apply FISTA with partial smoothing ([1, 2]). Details are in Section O.1.4.

We now analyze Λ̂, which is a special case of the C-STIV estimator presented in Section
O.1.4, applied to a system of dΦ equations. We also allow for approximation error, as in Section
A.1.4. We denote by G(b) , ZW (b) and

G ′ ,

{
max

f∈[dΦ],k∈[dX ]

|En [Tf,k(Λ)]|
En [Tf,k(Λ)2]1/2

≤ r′n

}
.

The cones used to establish the rate of convergence of Λ̂ are sets of ∆′ ∈MdΦ,dZ such that

K ′S , {∆′ : 1n(1− λ) |∆′Sc |1 ≤ (1 + λ) |∆′S|1} , K
′
S , {∆′ : 1n(1− λ) |∆′Sc |1 ≤ (2 + λ) |∆′S|1} ,

where |∆′S|1 follows the obvious modification to our notation in which one sums the absolute values
of the entries (k, l) ∈ S ⊆ [dΦ]× [dZ ] of ∆′. We use κ′, κ′ to denote the population sensitivities using

the cones above defined identically to κ, κ, replacing |Ψ∆|∞ by |∆′Ψ|∞. Since Λ̂ can have more
than one column, we use the operator norm from `p to `q which we denote by | · |p,q. We denote the
population sensitivities for those losses by κ′

`(p,q),S
, κ′

`(p,q),S
. We also define ρZX as ρ̂ZX replacing

DZ (resp. DX) by DZ (resp. DX) and P(β,Λ) the distribution of (X,Z, U(β), T (Λ),ΛZU(β)).
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Assumption A.2. Let M ′
T , MG, M2,G, MEZX>, q2 > 0, (Bn)n∈N such that Bn ≥ 1, (ρZXn )n∈N,

and j ∈ [3] and a prior value of the parameter of Class j, such that, for all (β,Λ,P) such that
(β,Λ) ∈ IΦ : P(β,Λ) ∈ PΦ, q1 ∈ [2] and n ∈ N,

(i) Assumption A.1 holds and P
(
ρZX > ρZXn

)
≤ αn;

(ii) (N.iii) holds for T (Λ) and M ′
T ;

(iii) (N.i) holds for G(β) and MG;
(iv) (N.i) holds for ΛG(β) and M2,G;

(v)

∣∣∣∣∣
(

max

(
E
[((

DΛG(β)Λ
)
f,·G(β)

)2+q1
]
,E
[((

DΛG(β)Λ
)
f,·G(β)E

)2+q1
]))dΦ

f=1

∣∣∣∣∣
∞

≤ Bq1
n ;

(vi) max
(
E
[(∣∣DΛG(β)ΛG(β)

∣∣
∞ /Bn

)q2] ,E [(∣∣DΛG(β)ΛG(β)E
∣∣
∞ /Bn

)q2]) ≤ 2;
(vii) The distribution of T (Λ) belongs to Class j replacing α by αn;

(viii) (N.ii) holds for EZX> and 4MZX>;
(ix) αA2

n → 0, where

αA2
n , 2ζ ′n + ζ ′′n + ϕ(dZ , τn) + ι(dΦ, n) + CN(dΦ(dΦ + 1)/2)M2,G/(nτ

2
n) + αSn + αBCn , (A.8)

(ζ ′n)2 , 3αn + αn(ZX>) + αSn + αBCn + ι(dΦ, n), ζ ′′n , αn + αSn + αBCn + ι(dΦ, n),

ι(d, n) , C2

((
B2
n (log(dn))7 /n

)1/6
+
(
B2
n(log(dn))3n−1+2/q2

)1/3
)
∀d ∈ N,

∀x ∈ (0, 1), ϕ(d, x) , C1x
1/3 max (1, log(2d/x))2/3, C1 is constant and C2 can depend on q2,

αBCn = P(Ec), E , G ′ ∩ GA1 ∩ {ρZX ≤ ρZXn } ∩ E ′cT ∩ EcG(β) ∩ EcZ.

Proposition A.3. When PΦ is such that Assumption A.2 (i), (ii), (iii), and (N.i) holds for Z and

MZ, then for all (β,Λ,P) such that (β,Λ) ∈ IΦ and all solution (Λ̂, ν̂) of (31) with λ ∈ (0, 1), we
have, on E,

(i) For all ` ∈ L, `
((

Λ̂− Λ
)
D−1
Z

)
≤ 2r′n

√
1+τnΣ(Λ)Γ′κ(S(Λ))

1nκ′`,S(Λ)
,

ν̂ ≤ (1 + τn)Σ (Λ)

(
1 +

2r′nρ
ZX
n Γ′κ(S(Λ))

λκ′
`1
S(Λ)

,S(Λ)

)
,

where Γ′κ(S) , (1 + τn)γ
(
τn/κ

′
`(∞,∞),S

+ r′nρ
ZX
n (1 + τn)/(λκ′

`1S ,S
)
)

;

(ii)
∣∣∣(Λ̂− Λ

)
D−1
Z

∣∣∣
1
≤ 2

1n
minS⊆[dΦ]×[dZ ] max

(
r′n
√

1+τnΣ(Λ)Γ′κ(S)

κ′
`1,S

, 3+λ
1−λ

∣∣ΛScD
−1
Z

∣∣
1

)
,

ν̂ ≤ (1 + τn)

(
Σ(Λ) +

ρZXn
λ

min
S⊆[dX ]

max

(
2Σ(Λ)

(
γ

(
r′nρ

ZX
n (1 + τn)

λκ′h,S
γ

(
τn
κ′`1,S

))
− 1

)
,

3
∣∣ΛScD

−1
Z

∣∣
1

2
√

1 + τn

))
,

where Γ′κ(S), given by replacing κ′
`(∞,∞),S

, κ′
`1S ,S

by κ`(∞,∞),S, κ
′
h,S.

We denote by vΛ,β
n and v

Σ(Λ)
n the upper bounds on the right of (i) and (ii) (taking |DΛG(β) ·

|∞,∞σW (β) for `, |DΛZ · |∞,∞ in Section O.1.5, and multiplying both sides by |DΛG(β)|∞ in case (ii))
which can depend on (β,Λ). For coverage guarantees we use:

Assumption A.3. PΦ is such that Assumption A.2 holds and, for all (β,Λ) ∈ IΦ, we have
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(i) 2vDn < 1;
(ii) ζn ≥ max

(
2vGn , 2v

T
n , 4v

D
n log (2dΦ/αn) /(1− 2vDn ), vRn

)
;

where vGn ,
√
nvΛ,β

n rEn +(|DΛG(β)ΛD
−1
Z |∞,∞+vΛ,β

n /σW (β))(v
β
nτn+

√
nrEn vdX ), vTn ,

√
nvΛ,β

n rn
√

1− τ 2
n,

rEn , rEn 2 log (2n/αn)BZ

√
1 + τn, rEn is obtained like rn for Class 1 replacing α by αn and dZ by

2dZ, and

vDn , vΛ,β
n BZ

√
1 + τn + (

∣∣DΛG(β)ΛD
−1
Z

∣∣
∞,∞+ vΛ,β

n /σW (β))(v
β
nρ

ZX
n +BZ

√
1 + τnvdX ) + τn,

vRn ,
√
n
( ∣∣DΛG(β)

∣∣
∞ (r′nv

Σ(Λ)
n vβn

√
1 + τn + |V (β)|∞)

+
(∣∣DΛG(β)ΛD

−1
Z

∣∣
∞,∞ + vΛ,β

n /σW (β)

)
vdX
√

1 + τn

)
/(1− vDn ).

The coverage result that we obtain is more general than stated in Theorem 4.1. It is for
approximately linear functions Φβ + V (β) for V (β) ∈ RdΦ and is stated as

P
(
Φβ + V (β) ∈ ĈΦ

)
≥ 1− α− αA2

n .

We provide analysis under conditional homoskedasticity in Section O.1.5.

A.1.3. Complements on Section 5. We denote by Σ6⊥(β, θ) , maxl∈Sc⊥((DZ)l,lσTl(β,θ)), T (β, θ) ,
ZU(β)− θ, and

G 6⊥ ,

{
max
l∈Sc⊥

|En [Tl(β, θ)]|
En [Tl(β, θ)2]1/2

≤ r 6⊥n

}
. (A.9)

We modify Assumption A.1 by replacing
{∣∣DZZ>

∣∣
∞ > BZ

}
by
{∣∣(DZZ>)S⊥,·

∣∣
∞ > BZ

}
and

adding P
(
ρ̂ZXSc⊥ > ρZXSc⊥n

)
≤ αn, (N.iii) for (T (β, θ))l∈Sc⊥ and M ′

T , and αn(T ) → 0. Theorems 5.1

and A.1 use vectors of functions which have s, s̃ as arguments and we denote the evaluation using
4 arguments. The population sensitivities and their lower bounds replace |Ψ∆|∞ (resp. rn) by
|(Ψ∆)S⊥|∞ (resp. r⊥n ), κ`(s) is defined in Lemma A.2, and κΨ(s) is defined similarly from κ̂Ψ(s).

Theorem A.1. Let s ∈ [dQ], s̃ ∈ [dZ − d⊥], c̃ ∈
(
0, 1/r 6⊥n

)
, and c > 0. If P6⊥ is such that

Assumption A.1 holds then, for all (β, θ,P) such that (β, θ) ∈ Is,s̃, and any NV-STIV estimator,
on G⊥ ∩ G 6⊥ ∩ GA1, ∣∣∣∣DZ

(
θ̂ − θ

)
Sc⊥

∣∣∣∣
∞
≤
√

1 + τnω̃ (s, |S (θ)| , β, θ) , (A.10)

where ω̃(s, s̃, β, θ) = 2γ
(
r 6⊥n s̃/c̃

) (
r 6⊥n Σ 6⊥ (β, θ) /1n + δΨ(s, β)

)
, δΨ(s, β) , δ(s, β)/κΨ(s), and δ(s, β) ,

2r⊥n γ
(
r⊥n /κg(s)

)
σU(β)

√
1 + τn(1 + 2r⊥n Γκ(S(β))/(cκ`1

S(β)∩SQ
,S(β))).

By (N.ii) for Z,X (which is part of Assumption A.1) and the computations in (O.27), on
GA1, κΨ(s) ≥ κ`1(s)(1 − τn)/(|Ψ|∞ + τn). Recall also that κg(s) = κ`1(s) under Condition IC,
otherwise it depends on the LP used to compute κ̂g(s). For the second statement in Theorem 5.1,

ω̃ (s, s̃, β, θ) is obtained by replacing δ̂ and δ̂Σ in the definition of ̂̃ω (s̃) by their deterministic upper

bounds. For δ̂Σ we use ρZXSc⊥,nδ(s, β)/κ`1(s). The deterministic upper bounds on δ̂ and δ̂Σ hold on

G⊥ ∩ G 6⊥ ∩ GA1 and are obtained using Lemma O.2.
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A.1.4. Systems of Equations with Approximation Errors. To allow for approximation error we use
U(β) = W (β) + V (β) and suppose that (1) holds with W (β) in place of U(β) and V (β) is a small
approximation error, for which we assume that σV (β) ≤ vdX , for vdX decaying to zero with dX .
The assumptions previously made on (X,Z, U(β)) are made on (X,Z,W (β)) and I is modified
accordingly and incorporates σV (β) ≤ vdX . The model with approximation errors allows for the
structural equation

Y = f(X̃) +W, E[W |Z̃] = 0, (A.11)

where f ∈ S, and for functions (gXk )k∈N and a decreasing sequence (vdX )dX∈N,

∀dX ∈ N, sup
g∈S

inf
b∈RdX

E

(g (X̃)− dX∑
k=1

gXk

(
X̃
)
bk

)2
 ≤ v2

dX
. (A.12)

The rate of decay of (vdX )dX∈N is usually taken slow so S can be large. It corresponds to minimum
smoothness but f can lie in a class of smoother functions. The model with approximation error

involves X = (gX1 (X̃), . . . , gXdX (X̃)), V (β) = f(X̃)−
∑dX

k=1 g
X
k (X̃)βk, and σV (β) ≤ vdX . V (β) is the

error made by approximating the function in the high-dimensional space, and vdX = o(n−1/2) for dX
large enough. For well chosen classes S and functions (gXk )k∈N, the vector β ∈ I is approximately

sparse. We use IVs which are functions of Z̃.
We consider a system where Y, U(β), V (β),W (β) ∈ RdG , Ug(b) , Yg −X>b·,g, β ∈MdX ,dG ,

SQ, SI ⊆ [dX ]× [dG], and σVg(β) ≤ vg,dX for all g ∈ [dG]. This is the setup of Section 6.2 where X
is used in all equations. Else, a simple modification applies. We now define:

Definition A.1. For c, v̂ > 0, the E-STIV estimator
(
β̂, σ̂

)
is any solution of

min
b∈ÎE(r̂,σ),σ≥0

(∣∣D−1
X bSQ

∣∣
1

+ c|σ|1
)
, (A.13)

where, setting for all b ∈MdX ,dG and g ∈ [dG], σ̂g(b)
2 , En[Ug(b)

2],

ÎE(r̂, t) ,
{
b ∈ B, ∀g ∈ [dG], |DZEn[ZUg(b)]|∞ ≤ r̂σg + (r̂ + 1)v̂g, σ̂g(b) ≤ σg

}
.

For a nonparametric model (A.11) one can take v̂ =
√

1 + τnvdX . The E-STIV can also be
used when, for i ∈ B ⊆ [n], the outcomes are bracketed. Then, we let for i ∈ Bc yi be the observed
outcome and vi = 0, while, for i ∈ B, yi is the midpoint of the bracket. One has |vi| ≤ ei, where ei
are half-widths of the brackets, and we let v̂ = n−1

∑
i∈B e

2
i and v2

dX
= EnE [1l{i ∈ B}e2

i ]. With dG
equations, we allow for cross-equation restrictions, and the number of equations dG can depend on
n. The E-STIV estimator is used in Section 6.2.

To allow for approximation error, we modify P so that W (β) plays the role of U(β). For
simplicity we only analyze classes 1-3. We choose rn and rn as in Section A.1.1 replacing α by α/dG
and use G , {maxg∈[dG], l∈[dZ ] |En [ZlWg(β)]|En[Z2

l ]−1/2En [Wg(β)2]
−1/2 ≤ rn} and GA1 is defined

in Section A.1.1 replacing EcU(β) by EcV (β) ∩ EcW (β), where the probability αn(U) in the definition

of αCn is replaced by 2dGαn(U). The population sensitivities are obtained replacing |Ψ∆|∞ by∑dG
g=1 |Ψ∆·,g|∞, K̂S and K̂S by KS , {∆ ∈ RdX : 1n|∆Sc∩SQ|1 ≤ |∆S∩SQ|1 + cg(∆)} and KS

where the right-hand side is 2(|∆S∩SQ |1 + cg(∆)) + |∆ScQ
|1, g(∆) , rn(β)|∆SI |1 + |∆ScI

|1, and

rn(β) , maxg∈[dG] min(rn+(rn+1) max(0, 1nσWg(β)/vg,dX − 1)−1, 1) replaces rn in the sensitivities.
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Proposition A.4. For all (β,P) such that β ∈ I, assuming as well En[v2
g,dX

] ≤ v̂2
g on GA1 and all

solution
(
β̂, σ̂

)
of (A.13), the following hold on G ∩ GA1

(i) For a sparse matrix β, for all ` ∈ L, we have

`
(
D−1
X

(
β̂ − β

))
≤ 2rn

1nκl,S(β)

(
dG∑
g=1

σWg(β) + (rn + 2) vg,dX

)
Γκ(S(β));

(ii) For all S, S0 ∈ [dX ]dG, and q ∈ [1,∞], we have∣∣∣∣D−1
X

(
β̂ − β

)
S0

∣∣∣∣
q

≤ max

(
rn

1nκ`qS0
,S

(
dG∑
g=1

σWg(β) + (rn + 2) vg,dX

)
Γκ(S),

6

1n

∣∣D−1
X βSc∩SQ

∣∣
1

)
.

In a model with Vg(β) = 0, we take v̂g = 0 and can derive the same results as for the STIV
estimator, including the confidence sets. The confidence bands of Section 4 are easily adapted. For

the equation g confidence band ĈΦ,g, we use E-STIV for β̂ and replace Φ̂β by Φ̂β·,g in equation (32).

Assumption A.3 uses maxg∈[dG] |D−1
X (β̂−β)·,g|1 ≤ vβn and replaces quantities on the right-hand side

which are specific to equation g by the maximum over g ∈ [dG]. Theorem 4.1 is modified to replace

P(Φβ ∈ ĈΦ) ≥ 1 − α − αA2
n by P(Φβ·,g + V g(β) ∈ ĈΦ,g) ≥ 1 − α − αA2

n ∀g ∈ [dG]. The term
Φβ·,g + V g(β) for V g(β) ∈ RdΦ is the equation g approximately linear function (see the proof of
Theorem 4.1). The proof of Theorem 4.1 allows for approximation error and extension to systems is
straightforward. Proposition O.5 considers losses useful for a system of nonparametric IV equations
and rates of estimation of σWg(β) for the confidence bands under conditional homoskedasticity in
Section O.1.5.

A.2. Proofs of the Results in the Main Text. Proof of Proposition 3.1. First prove the

first inequality. Take β ∈ I and set ∆̂ , D−1
X (β̂ − β). By definition of Î and σ̂(β) = En[U(β)2],

on G, we have β ∈ Î (r̂, σ̂(β)). Also, on G,∣∣∣Ψ̂∆̂
∣∣∣
∞
≤
∣∣∣DZEn[ZU(β̂)]

∣∣∣
∞

+ |DZEn[ZU(β)]|∞ ≤ r̂ (σ̂ + σ̂(β)) . (A.14)

Also, (β̂, σ̂) minimizes the criterion
∣∣D−1

X β
∣∣
1

+ cσ. Thus, on G, we have∣∣∣D−1
X β̂SQ

∣∣∣
1

+ cσ̂ ≤ |D−1
X βSQ|1 + cσ̂(β). (A.15)

This implies, on G,∣∣∣∆̂S(β)c∩SQ

∣∣∣
1

=
∑

k∈S(β)c∩SQ

∣∣∣En[X2
k ]1/2β̂k

∣∣∣ (A.16)

≤
∑

k∈S(β)∩SQ

(∣∣En[X2
k ]1/2βk

∣∣− ∣∣∣En[X2
k ]1/2β̂k

∣∣∣)+ c (σ̂(β)− σ̂)

≤
∣∣∣∆̂S(β)∩SQ

∣∣∣
1

+ c
(
σ̂(β)− σ̂

(
β̂
))

.

The last inequality holds because by construction σ̂(β̂) ≤ σ̂. Since b→
√
σ̂(b) is convex and

w∗ , −En[XU(β)]En[U(β)2]−1/21l
{
En[U(β)2] 6= 0

}
∈ ∂σ̂(·)(β).
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we have σ̂(β)− σ̂
(
β̂
)
≤ w>∗

(
β − β̂

)
= (DXw∗)

>D−1
X

(
β − β̂

)
= − (DXw∗)

> ∆̂.

Now, for all k ∈ SI , we have |(DXw∗)k| ≤ r̂ on G. This is because these regressors serve as their

own IV and, on G, β ∈ Î (rn, σ̂(β)). Also, for all rows of index k in the set ScI ,

|(DXw∗)k| ≤ |En[XkU(β)]|En[X2
k ]−1/2En[U(β)2]−1/2 ≤ 1

due to the Cauchy-Schwarz inequality. Finally, we obtain

σ̂(β)− σ̂
(
β̂
)
≤ r̂

∣∣∣∆̂SI

∣∣∣
1

+
∣∣∣∆̂ScI

∣∣∣
1
. (A.17)

Combining (A.17) with (A.16), on G we have ∆̂ ∈ K̂S(β). Using (A.14) and (A.17), we find∣∣∣Ψ̂∆̂
∣∣∣
∞
≤ r̂

(
σ̂ + σ̂

(
β̂
)

+ σ̂(β)− σ̂
(
β̂
))
≤ r̂

(
2σ + r̂

∣∣∣∆̂SI

∣∣∣
1

+
∣∣∣∆̂ScI

∣∣∣
1

)
. (A.18)

The definition of the sensitivities yield, on G,
∣∣∣Ψ̂∆̂

∣∣∣
∞
≤ r̂

(
2σ + r̂

|Ψ̂∆̂|∞
κ̂ĝ,S(β)

)
, hence∣∣∣Ψ̂∆̂

∣∣∣
∞
≤ 2r̂σγ

(
r̂/κ̂ĝ,S(β)

)
. (A.19)

(A.19) and the definition of the sensitivities yield the first upper bound. For the second, we use
(A.14) and item (i) in Lemma O.1. We now prove the second inequality. Take β ∈ I and S ⊆ [dX ].
Acting as in (A.16), on G,∑

k∈Sc∩SQ

∣∣∣En[X2
k ]1/2β̂k

∣∣∣+
∑

k∈Sc∩SQ

∣∣En[X2
k ]1/2βk

∣∣
≤

∑
k∈S∩SQ

(∣∣En[X2
k ]1/2βk

∣∣− ∣∣∣En[X2
k ]1/2β̂k

∣∣∣)+ 2
∑

k∈Sc∩SQ

∣∣En[X2
k ]1/2βk

∣∣+ c
(
σ̂(β)− σ̂

(
β̂
))

≤
∣∣∣∆̂S∩SQ

∣∣∣
1

+ 2
∣∣D−1

X βSc∩SQ
∣∣
1

+ cr̂
∣∣∣∆̂SI

∣∣∣
1

+ c
∣∣∣∆̂ScI

∣∣∣
1
.

This yields |∆̂Sc∩SQ|1 ≤ |∆̂S∩SQ|1 +2|D−1
X βSc∩SQ |1 +cr̂|∆̂SI |1 +c|∆̂ScI

|1. We show the first inequality
by considering two cases.

Case 1: 2|D̂−1
X βSc∩SQ|1 ≤ |∆̂S∩SQ|1 + cr̂|∆̂SI |1 + c|∆̂ScI

|1 + |∆̂ScQ
|1, then ∆̂ ∈ K̂S. From this and the

definition of κ̂`qS0
,S, we get the upper bound corresponding to the first term in the minimum. To

obtain the second term we use the first upper bound in item (ii) in Lemma O.1.

Case 2: 2|D̂−1
X βSc∩SQ |1 > |∆̂S∩SQ|1 + cr̂|∆̂SI |1 + c|∆̂ScI

|1 + |∆̂ScQ
|1, so |∆̂|1 = |∆̂Sc∩SQ|1 + |∆̂S∩SQ |1 +

|∆̂ScQ
|1 ≤ 6|D̂−1

X βSc∩SQ|1.

In conclusion, |∆̂S0|q is smaller than the maximum of the two bounds. �

Proof of Proposition 3.2. We use |∆S∩SQ |1 ≤ min(s, |Ŝ ∩ SQ|)|∆Ŝ∩SQ |∞. The last constraint

gives rise to the union of sets involving the linear constraint |∆S∩SQ|1 ≤ min(s, |Ŝ∩SQ|)|∆S|, hence

the second minimum. We conclude from the definition of the sensitivities, the cones K̂Ŝ, and the
fact that minimizing on a larger set yields lower bounds on the sensitivities. �

Proof of Theorem 3.1. (i) and (iii) follow from the second bounds in Proposition 3.1 and Lemma
A.2. Part (ii) follows from (i) and (iii) with `k(∆) and the fact that the assumption on |βk| implies:

β̂k 6= 0 for k ∈ S(β) (resp., S∗ as defined at the end of Section 3.3.1). �
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Proof of Theorem 3.2. Fix s and β in Is and work on G ∩ GA1. Using lemmas A.2, ??, and O.2
(i), we obtain ω̂k(s) ≤ ωk(s). The following two cases can occur.
First, if k ∈ S(β)c (so that βk = 0) then, using the bound in (11) for ` defined by `(∆) = |∆k| we

obtain En[X2
k ]1/2|β̂k| ≤ ω̂k(s), which implies β̂ω̂k = 0.

Second, if k ∈ S(β), then again by (11), we get ||β̂k|− |βk|| ≤ |β̂k−βk| ≤ ω̂k(s)/
√

(1− τn)E[X2
k ] ≤

ωk(s)/
√

(1− τn)E[X2
k ]. Since |βk| > 2ωk(s)/

√
(1− τn)E[X2

k ] for k ∈ S(β), we obtain |β̂k| >
ωk(s)/

√
(1− τn)E[X2

k ] ≥ ω̂k(s)/En[X2
k ]1/2, so that β̂ω̂k = β̂k. �

Proof of Theorem 4.1. The elements relative to assumptions and estimation of Λ are in Appendix
A.1.2, some of which are used below. Take (β,Λ) ∈ IΦ and let

E2,E ,
{
∀l ∈ [dZ ], |En[Gl(β)E]| > rEnEn[(Gl(β)E)2]1/2, |En[ZlV (β)E]| > rEnEn[(ZlV (β)E)2]1/2

}
.

We use max
(√

1 + τn − 1, 1−
√

1− τn
)

= 1−
√

1− τn ≤ τn and, for all a ∈ RdZ , b ∈ RdX ,

En
[(
a>ZX>b

)2
]

=
(
D−1
Z a
)> En [DZZX

>bb>XZ>DZ

]
D−1
Z a ≤

∣∣D−1
Z a
∣∣2
1

∣∣D−1
X b
∣∣2
1

(ρZX)2,

√
nDF(β̂)Λ̂>

(
Φ̂β − Φβ − V (β)

)
= R +

√
nDF(β̂)Λ̂>Λ̂En[G(β)],

R =
√
nDF(β̂)Λ̂>

(
Φ− Λ̂En[ZX>]DX

)
∆̂−

√
nDF(β̂)Λ̂>V (β) +

√
nDF(β̂)Λ̂>Λ̂En [ZV (β)] ,

TΦ ,
∣∣∣√nDF(β̂)Λ̂>Λ̂En [G(β)]

∣∣∣
∞
, TΦ1 ,

∣∣∣√nDΛG(β)Λ̂En [G(β)]
∣∣∣
∞
,

TΦ0 ,
∣∣√nDΛG(β)ΛEn [G(β)]

∣∣
∞ , GΦ1 ,

∣∣∣√nDΛG(β)Λ̂En
[
F (β̂)E

]∣∣∣
∞
,

GΦ0 ,
∣∣√nDΛG(β)ΛEn [G(β)E]

∣∣
∞ .

We now work on G ∩ E of probability at least 1− αSn − αBCn . For all f ∈ [dΦ], we have(
DΛG(β)

)
f,f

∣∣∣∣En [(Λ̂f,·F (β̂))2
]1/2

− E
[
(Λf,·G(β))2

]1/2∣∣∣∣
≤ En

[((
DΛG(β)

)
f,f

(
Λ̂f,·Z(X>(β̂ − β) + V (β) +W (β))− Λf,·ZW (β)

))2
]1/2

+ τn

≤ En
[((

DΛG(β)

)
f,f

(Λ̂f,· − Λf,·)ZW (β)
)2
]1/2

+ En
[((

DΛG(β)

)
f,f

(Λ̂f,· − Λf,· + Λf,·)Z(X>(β − β̂) + V (β))
)2
]1/2

+ τn ≤ vDn .

We have obtained
∣∣∣DF(β̂)Λ̂>D

−1
ΛG(β)

∣∣∣
∞
≤ 1/(1 − vDn ). On G ∩ E , |R|∞ ≤ vRn and |TΦ − TΦ1| ≤

TΦ1v
D
n /(1− vDn ), |TΦ1 − TΦ0| ≤ vTn , so |TΦ − TΦ0| ≤ (TΦ0 + vTn )vDn /(1− vDn ) + vTn .

Also, on G ∩E ∩{|E|∞ ≤ 2 log (2n/αn)}∩Ec2,E ∩EcEZX> of probability at least 1−αSn−αBCn −2αn−
αn(EZX>), |GΦ −GΦ1| ≤ GΦ1v

D
n /(1− vDn ) and by convexity

|GΦ1 −GΦ0| ≤
∣∣∣√nDΛG(β)

(
Λ̂− Λ

)
En [ZW (β)E]

∣∣∣
∞

+
∣∣∣√nDΛG(β)

(
Λ̂− Λ + Λ

)(
En
[
ZX>

]
(β − β̂) + En [V (β)E]

)∣∣∣
∞
≤ vGn ,
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hence |GΦ −GΦ0| ≤ (GΦ0 + vGn )vDn /(1− vDn ) + vGn . By Assumption A.3 (ii), we have (ζn − vTn )(1−
vDn )/vDn − vTn ≥ ζn(1− 2vDn )/(2vDn ) and the same replacing vTn by vGn .
Using (ii) and 2 log (2dΦ/αn) ≥ qNΦ0

(1−αn) where NΦ0 ,
∣∣DΛG(β)ΛEG(β)

∣∣
∞ and EG(β) is a Gaussian

vector of covariance E[G(β)G(β)>], by (O.4) (which hold with obvious modifications), we get

P (|TΦ − TΦ0| > ζn) ≤ ζ ′′n and P
(
P
(
|GΦ −GΦ0| > ζn|ZΛ̂>

)
> ζ ′n

)
< ζ ′n. The second inequality

uses the Markov inequality and the law of iterated expectations. We conclude like in Section O.1.5
and the proof of Class 4 (see Section O.1.1). �

Proof of Theorem 5.1. It is given together with the proof of Theorem A.1. �
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Online Appendix

O.1. Complements.

O.1.1. Complements on Section A.1.1. The following propositions establish lower bounds on κ̂`q ,S
when Z = X, dQ = dX , B = RdX . Let S ⊆ [dX ] and c < 1/r̂. We have

K̂S ⊆ CS ,
{

∆ ∈ RdX : (1− cr̂)|∆Sc |1 ≤ (1 + cr̂)|∆S|1
}
.

We define the following generalizations of the restricted eigenvalue (RE) constants

κRE,S , inf
∆∈RdX \{0}: ∆∈CS

|∆>Ψ̂∆|
|∆S|22

, κ′RE,S , inf
∆∈RK\{0}: ∆∈CS

|S| |∆>Ψ̂∆|
|∆S|21

.

Proposition O.1. For any S ⊆ [dX ], we have

κ`1,S ≥
1− cr̂

2
κ`1S ,S ≥

(1− cr̂)2

4|S|
κ′RE,S ≥

(1− cr̂)2

4|S|
κRE,S.

Proof. For ∆ such that |∆Sc|1 ≤ 1+cr̂
1−cr̂ |∆S|1 we have |∆|1 ≤ 2

1−cr̂ |∆S|1. Thus, one obtains

|∆>Ψ̂∆|
|∆S|21

≤ |∆|1|Ψ̂∆|∞
|∆S|21

≤ 2

1− cr̂
|Ψ̂∆|∞
|∆S|1

≤ 4

(1− cr̂)2

|Ψ̂∆|∞
|∆|1

.

Taking the infimum over ∆’s proves the first two inequalities of the proposition. The second
inequality uses the fact that from Hölder’s inequality |∆|21 ≤ |S||∆S|22. �

We now obtain bounds for sensitivities κ`q ,S with 1 < q ≤ 2. For any s ∈ [dX ], we consider

the restricted eigenvalue constant: κRE(s) , min|S|≤s κRE,S.

Proposition O.2. For any s,m ∈ [dX ] such that s+m ≤ dX and q ∈ (1, 2], we have

κ`q ,S ≥ C(q)
(

1 +
m

s

)1/2−1/q

s−1/qκRE(s+m), ∀ S : |S| ≤ s,

where C(q) = 1−cr̂
2

(
1 + 1+cr̂

1−cr̂ (q − 1)−1/q
)−1

.

Proof. For ∆ ∈ RdX and a set S ⊆ [dX ], let S1 be the subset of indices in [dX ] corresponding to
the m largest in absolute value components of ∆ outside of S. Define S+ = S ∪ S1. If |S| ≤ s we
have |S+| ≤ s+m. It is easy to see that the kth largest absolute value of elements of ∆Sc satisfies
|∆Sc|(k) ≤ |∆Sc |1/k. Thus,

|∆Sc+
|qq =

∑
j∈Sc+

|∆j|q =
∑
k≥s+1

|∆Sc |q(k) ≤ |∆Sc|q1
∑
k≥s+1

1

kq
≤ |∆Sc |q1

(q − 1)sq−1
.

For ∆ ∈ CS, this implies

|∆Sc+
|q ≤

|∆Sc |1
(q − 1)1/qs1−1/q

≤ c0|∆S|1
(q − 1)1/qs1−1/q

≤ c0|∆S|q
(q − 1)1/q

,

where c0 = 1+cr̂
1−cr̂ . Therefore, using that |∆S|q ≤ |∆S+|q we get, for ∆ ∈ CS,

|∆|q ≤ |∆S+|q + |∆Sc+
|q ≤ (1 + c0(q − 1)−1/q)|∆S+ |q

so
|∆|q ≤ (1 + c0(q − 1)−1/q)(s+m)1/q−1/2|∆S+|2. (O.1)
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Using (O.1) and |∆|1 ≤ 2
1−cr̂ |∆S|1 ≤ 2

√
s

1−cr̂ |∆S|2 ≤ 2
√
s

1−cr̂ |∆S+ |2 for ∆ ∈ CS, we get

|∆>Ψ̂∆|
|∆S+|22

≤ |∆|1|Ψ̂∆|∞
|∆S+ |22

≤ 2
√
s|Ψ̂∆|∞

(1− cr̂)|∆S+|2
≤
(

1 +
m

s

)1/q−1/2 s1/q|Ψ̂∆|∞
C(q)|∆|q

.

Using |S+| ≤ s+m we have proved the result. �

We conclude this section by mentioning that, without endogeneity, the sensitivity κ̂`q ,S shares
similarities with the characteristic introduced independently in [10]. It differs in the definitions of

K̂S and Ψ̂ and in that it does not involve scaling by |S|1/q. Moreover [7] shows that previously
introduced measures are computationally infeasible to verify but that the sensitivities that we
introduce in this paper have desirable average-case perspective relative to NP-hardness in addition
to them being weaker and more general than the others.

To tighten the bounds in Table 1, one can specify a small set U ⊆ [dX ] and include the
additional constraint µj = ηj∆j, ∀j ∈ U in the LPs of Table 1, where ηj = ±1 is the sign of
∆j. Since the signs are unknown, one replaces mink∈[dX ] by mink∈[dX ],ηj=±1∀j∈U in Table 1. This

augments the number of LPs by a factor of 2|U |. In our simulations we take U = ScI to construct
lower bounds based on a sparsity certificate. The design is such that |U | = 2. If constructing lower

bounds using Ŝ of small cardinality, we use U = Ŝ.
Other bounds can be derived from Proposition A.1 and the following Proposition. Similar

bounds can be obtained for the sensitivities based on K̂S (see [8]).

Proposition O.3. Let S ∈ [dX ], c > 0, and r̂ ≤ 1. We have

κ̂`1,S ≥ max

 2

κ̂`1S∩SQ ,S
+

1

κ̂`1
Sc
Q
,S

+
c

κ̂ĝ,S

−1

,

γ(cr̂)

 2

κ̂`1S∩SQ ,S
+

1

κ̂`1
Sc
Q
,S

+
c(1− r̂)
κ̂`1

Sc
I
,S

−1

,

γ(c)

 2

κ̂`1S∩SQ ,S
+

1

κ̂`1
Sc
Q
,S

−1 ; (O.2)

κ̂ĝ,S ≥ max

γ(cr̂)

 2r̂

κ̂`1S∩SQ ,S
+

r̂

κ̂`1
Sc
Q
,S

+
1− r̂
κ̂`1

Sc
I
,S

−1

,

 r̂

κ̂`1SI ,S
+

1

κ̂`1
Sc
I
,S

−1

, κ̂`1,S

 (O.3)

In the cases where S ⊆ Ŝ ⊆ S(β̂) which we consider, we can use ĉκ(S, S(β̂)) ≤ ĉκ(Ŝ, S(β̂))

and Ŝ(S, S(β̂)) ⊆ (Ŝ ∩ SQ) ∪ ((ScQ ∪ ScI) ∩ S(β̂)), when 1 ≤ c < min(r̂, 1)−1, and Ŝ(S, S(β̂)) ⊆
(Ŝ ∩ SQ) ∪ (ScQ ∩ S(β̂)), when c < 1.

When |S ∩ SQ| ≤ s, we have ĉκ(S, S(β̂)) ≤ ĉκ(s) , min(ĉ>,κ(s), c<,κ(s)), where

ĉ>,κ(s) , γ(cr̂)
(

2s+
∣∣ScQ∣∣+ c(1− r̂)

(∣∣ScI ∩ ScQ∣∣+ min
(
|ScI ∩ SQ| , s+

∣∣∣ScI ∩ SQ ∩ S(β̂)
∣∣∣)))

and c<,κ(s) , (2s + |ScQ|)γ(c) and Ŝ(S, S(β̂)) ⊆ S. To compute a lower bound on κ̂`1(Ŝ), one
can rely on (iv) in Proposition A.1 to obtain a lower bound on κ̂`∞

Ŝ(Ŝ,S(β̂))
,Ŝ and multiply it by

ĉκ(Ŝ, S(β̂))−1. To compute a lower bound on κ̂`1(s), one can use ĉκ(s)
−1κ̂`∞(s).

The lower bounds in Proposition 3.2 can be adapted to the sensitivities κ̂ using sets B̂
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instead of B̂ involving the restrictions −µ ≤ ∆ ≤ µ,−ν1 ≤ Ψ̂∆ ≤ ν1 and (1−2cr̂)
∑

k∈SI µk+(1−
2c)
∑

k∈ScI
µk ≤ 3

∑
k∈Ŝ∩SQ µk + 2

∑
k∈ScQ

µk for B̂(Ŝ) and (1− 2cr̂)
∑

k∈SI µk + (1− 2c)
∑

k∈ScI
µk ≤

3sµj + 2
∑

k∈ScQ
µk for B̂(j).

We now present the adjustments for classes 1-3 with assumptions A.1 and O.1 under inde-
pendence between IVs and structural errors.

Assumption O.1. Let dX , dZ ≥ 3, MZU> ≥ 0. For all (β,P) such that β ∈ I, (N.i) holds for
U(β) and MU and (N.iii) holds for Z and M ′

Z, we have Z and U(β) are independent, and

E
[∣∣∣((Fl(β))2 /

(
E
[
Z2
l

]
E
[
U(β)2

])
− 1
)
l∈[dZ ]

∣∣∣2
∞

]
≤MZU> .

This is a condition of type (N.i). Assumption O.1 permits to work with r̂ = rn
√

1 + τn/(1−
τn), which is smaller than r̂ = rn

∣∣DZZ>
∣∣
∞ as in the main text, and have

inf
(β,P): β∈I

P (G) ≥ inf
(β,P): β∈I

P (G)− αCn ,

where αCn , αn(U) + αn(Z)′ + αn(ZU>), because

G ∩
{

max
l∈[dZ ]

En
[
(Fl(β))2] / (En[Z2

l ]En[U(β)2]
)
≤ (1 + τn)/(1− τn)2

}
⊆ G.

Combining Assumption O.1 with any of classes 1-3 yields an upper bound on the coverage error,
also denoted by αBn , which is the one above plus αCn .
We now present Class 4.
Class 4: dZ ≥ 3, MU ,MZ ,M

′
Z , q2 > 0, and a sequence (Bn)n∈N such that Bn ≥ 1. For all (β,P):

β ∈ I and q1 ∈ [2],

(C4.i) E [U(β)2|Z] = σ2
U(β);

(C4.ii) (N.i) holds for U(β), Z and MU , MZ;

(C4.iii)

∣∣∣∣∣
(

max

(
E
[(

(DZ)l,l Fl(β)/σU(β)

)2+q1
]
,E
[(

(DZ)l,l ZlE
)2+q1

]))dZ
l=1

∣∣∣∣∣
∞

≤ Bq1
n ;

(C4.iv) max
(
E
[(
|DZF (β)|∞ /(BnσU(β))

)q2] ,E [(|DZZE|∞ /Bn)q2 ]
)
≤ 2;

where E is standard normal independent of Z.
For the corresponding r̂, for all n, we have P (G) ≥ 1−α−αBn , where αBn , 2ζ ′n+(ζ ′n)2 +ϕ(dZ , τn)+
ι(dZ , n) + αn(Z) + αn(U) and (ζ ′n)2 , αn + ι(dZ , n) + αn(Z). Also P(r̂ ≤ rn) ≥ 1 − αCn , where
rn , (2 log(2dZ/(α− ζ ′n − ϕ(dZ , τn))) + 3ζn) /

√
n and αCn , αn(Z)+ζ ′n. Proof. Let β ∈ I. Define

T ,

∣∣∣∣ √nσ̂(β)
DZEn[F (β)]

∣∣∣∣
∞
, T0 ,

∣∣∣∣ √nσU(β)

DZEn[F (β)]

∣∣∣∣
∞
, G0 ,

∣∣√nDZEn[ZE]
∣∣
∞ .

T0, G0, and N0 , |DZEZ |∞, where EZ is a Gaussian vector of covariance E[ZZ>], have same
covariance matrix, indeed

E

[
DZZZ

>DZ
U(β)2

σ2
U(β)

]
= E

[
DZZZ

>DZE

[
U(β)2

σ2
U(β)

∣∣∣∣∣Z
]]

= E[DZZZ
>DZ ].
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Let us show that, for all α ∈ (0, 1),
∣∣P (T ≤ qG|Z(α)

)
− α

∣∣ ≤ αBn . Using (C4.iii), (C4.iv) and
Proposition 2.1 in [6], we obtain

sup
t∈R

max (|P (T0 ≤ t)− P (N0 ≤ t)| , |P (G0 ≤ t)− P (N0 ≤ t)|) ≤ ι(dZ , n). (O.4)

Indeed, by (C4.i), the law of iterated expectations, and independence between E and Z, for all

∀l ∈ [dZ ], E
[(

(DZ)l,l Fl(β)/σU(β)

)2
]

= E
[(

(DZ)l,l ZlE
)2
]

= 1, so Condition M1 in [6] holds.

By the arguments in the proof of lemmas A.2, and Lemma 3.2 in [5], denoting by qG0|Z(α) the α
quantile of G0 given Z,

min
(
P
(
qG0|Z(α) ≤ qN0(α + ϕ(dZ , τn))

)
,P
(
qN0(α) ≤ qG0|Z(α + ϕ(dZ , τn))

))
≥ 1− αn(Z). (O.5)

For all α ∈ (0, 1), we have, by (O.4)-(O.5),

α− ϕ(dZ , τn)− α− ι(dZ , n)− αn(Z) ≤ P
(
T0 ≤ qG0|Z(α)

)
− α,

P
(
T0 ≤ qG0|Z(α)

)
− α ≤ α + ϕ(dZ , τn)− α + ι(dZ , n) + αn(Z)

so ∣∣P (T0 ≤ qG0|Z(α)
)
− α

∣∣ ≤ ϕ(dZ , τn) + ι(dZ , n) + αn(Z). (O.6)

On E ′cZ , we have |G − G0| ≤
(
1/
√

1− τn − 1
)
G0, hence, by the Markov inequality, the law of

iterated expectations, and the second bound in (O.4),

P (P ( |G−G0| > ζn|Z) > ζ ′n) < ζ ′n. (O.7)

On E ′cZ ∩ EcU , we have |T − T0| ≤ τnT0/(1− τn), hence, by the first bound in (O.4),

P (|T − T0| > ζn) ≤ (ζ ′n)2 + αn(U). (O.8)

Using Lemma 3.3 in [5] and (O.7) in the first display, and (O.8) and (O.6) in the second,

P
(
T − 2ζn ≥ qG|Z(1− α)

)
< P

(
T − ζn ≥ qG0|Z(1− α− ζ ′n)

)
+ ζ ′n

≤ α + 2ζ ′n + (ζ ′n)2 + ϕ(dZ , τn) + ι(dZ , n) + αn(Z) + αn(U).

The bound rn on r̂ follows from Lemma 3.3 in [5], (O.5), and for all α ∈ (0, 1), qN0(α) ≤
2 log (2dZ/α). �

Other classes can also be used. To account for dependent data one can use [4] and [11] for
results involving respectively self-normalization and the bootstrap (see also the references therein).

O.1.2. Additional Material for Section 3.3. Hermite polynomials are orthonormal in L2(µ) , {f :∫
R f(x)2 exp(−x2/2)dx < ∞} equipped with (f, g)L2(µ) ,

(∫
R f(x)g(x) exp(−x2/2)dx

)
/
√

2π de-
fined for f, g ∈ L2(µ), hence DX = DZ = I. Basic properties of these polynomials yield for l ∈ [dZ ]
and k ∈ [dZ ]

Ψl,k = E[hl−1(Z̃)hk−1(X̃/
√
π2 + σ2)] = E[hl−1(Z̃)E[hk−1(X̃/

√
π2 + σ2)|Z̃]]

= E

[
hl−1(Z̃)

(
π√

π2 + σ2

)k−1

hl−1(Z̃)

]
=

(
π√

π2 + σ2

)k−1

1l(l = k).

We now comment Assumption SV(q) and the results (Theorem 1 and 2 and Corollary 1

and 2) in [3]. [3] introduce the sparse singular values for the matrix Ψ̂ and the bounds are for the
sensitivities rather than for the population ones as in this paper to obtain deterministic bounds.
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Assumption SV(q, (δn)n∈N, (δn)n∈N, (ln)n∈N, η0) (i) is from Theorem 1. Choosing ln = 4δ
2

nu
2
κ/δ

2
n

(resp. ln = log(n) and δn and δn constant, in which case, for n large enough, ln ≥ 4δ
2

nu
2
κ/δ

2
n)

corresponds to the choice made in Corollary 1 (resp. Corollary 2). As is apparent in Theorem 1
and Corollary 1, an unpleasant feature of Assumption SV(q, (δn)n∈N, (δn)n∈N, (ln)n∈N, η0) (i) is that
δn, δn depend on ln which depends on δn, δn. Theorem 2 gives yet another bound on the C-STIV
(see Section O.1.4), however it is neither a rate nor a result that can be used to form a confidence
set. It has a high-level assumption that a random counterpart of (21) (a more complicated one due
to a maximum) is an event of probability converging to 1 while we use the function γ. In contrast
with G ∩ GΨ, the probability of the event depends on the dependence between X and Z, and can
be close to zero. Condition IC is used because C-STIV does not allow c > 1.

Using ideas in the proofs of Proposition O.2 and Theorem 1 in [3], and the notations in-
troduced for Assumption SV(q, (δn)n∈N, (δn)n∈N, (ln)n∈N, η0), Proposition O.4 below gives a lower
bound on κ`1,S which is tighter than (but in the same spirit as) the one derived from SV(1, (δn)n∈N, (δn)n∈N, (ln)n∈N, η0)
(i). From it we can easily derived results on rates of convergence as in Corollary 3.2. The lower
bound depends explicitly on S beyond its cardinality. We can bound the other sensitivities from
it using (19). It yields

κ`1,S ≥ sup
η∈(0,1)

η

uκ|S|
max

m∈M(η)

1√
1 +m/|S|

min
S1⊆Sc
|S1|=m

σmin(S, S1), (O.9)

where, for all S, S1 ∈ [dX ] such that S1 ⊆ Sc,

σmin(S, S1) = max
R⊆[dZ ]

|R|=|S|+|S1|

σmin(ΨR,S∪S1),

σmax(S, S1) = min
R(S,S1)∈R(S,S1)

max
S2⊆(S∪S1)c

|S2|=|S1|

σmax(ΨR(S,S1),S2),

R(S, S1) is the collection of sets R ⊆ [dZ ] which achieve the maximum in σmin(S, S1), and for all
η ∈ (0, 1),M(η) ⊆ [dX − |S|] is the set of m, such that, for all S1 ⊆ Sc with |S1| = m, there exists
R(S, S1) ∈ R(S, S1) such that

(uκ − 1)

√
|S|
m

max
S2⊆(S∪S1)c

|S2|=|S1|

σmax(ΨR(S,S1),S2) ≤ (1− η)σmin(S, S1).

Proposition O.4. Under Condition IC, we have

κ`1,S ≥
1

uκ|S|
max

m∈[dX−|S|]

1√
1 +m/|S|

min
S1⊆Sc
|S1|=m

(
σmin(S, S1)− (uκ − 1)

√
|S|
m
σmax(S, S1)

)
.

Proof. Take ∆ ∈ KS, S1 the set of m largest entries of ∆ of index in Sc, S2 the subsequent m
largest in Sc, and so forth, U(S, S1) (resp. V (S, S1)) the matrix formed by stacking the left-singular
vectors (resp. the right-singular vectors), and λ ∈ R|S|+m such that U(S, S1)>λ = V (S, S1)>δS∪S1 ,
where δS∪S1 is the restriction of ∆ to S∪S1. Let R(S, S1) ∈ R(S, S1) which minimizes the expression
in the definition of σmax(S, S1). By the inverse triangle inequality,

σmin(S, S1)|∆S∪S1|22 ≤
∣∣λ>ΨR(S,S1),S∪S1δS∪S1

∣∣
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≤
∑
j≥2

|λ>ΨR(S,S1),SjδSj |+ |λ|1 |Ψ∆|∞

≤
∑
j≥2

|λ>ΨR(S,S1),SjδSj |+
√
|S|+m|∆S∪S1|2 |Ψ∆|∞ .

For j ≥ 2, we have

|λ>ΨR(S,S1),SjδSj | ≤ |λ>ΨR(S,S1),Sj |2|∆Sj |2

≤ 1√
m
|λ>ΨR(S,S1),Sj |2|∆Sj−1

|1 ≤
1√
m
σmax(S, S1)|∆Sj−1

|1|∆S∪S1|2,

so, using ∆ ∈ KS in the last inequality,∑
j≥2

|λ>ΨR(S,S1),SjδSj | ≤
uκ − 1√

m
σmax(S, S1)|∆S|1|∆S∪S1|2.

This yields

σmin(S, S1)|∆S∪S1|2 −
uκ − 1√

m
σmax(S, S1)|∆S|1 ≤

√
|S|+m |Ψ∆|∞

and by |∆S|1/
√
|S| ≤ |∆S|2 ≤ |∆S∪S1|2 and |∆|1 ≤ uκ|∆S|1,

1

uκ|S|
√

1 +m/|S|

(
σmin(S, S1)− (uκ − 1)

√
|S|
m
σmax(S, S1)

)
≤ |Ψ∆|∞
|∆|1

.

We obtain the result because in the above expression S1 depends on ∆ and m is arbitrary. �

O.1.3. Bounds for σ̂(β), σ̂(β̂) and σ̂ and Nonparametric IV. We use Lemma O.1 to prove Propo-
sition 3.1 and Lemma O.2 to prove Theorem 3.1.

Lemma O.1. For all (β,P) such that β ∈ I, any STIV estimator and c > 0, we have, on G,

(i) for sparse vectors

σ̂ + σ̂(β) ≤ 2σ̂(β)γ

 r̂

cκ̂`1
S(β)∩SQ

,S(β)

 ,

(ii) for arbitrary vectors

σ̂ + σ̂(β) ≤ 2 min
S⊆[dX ]

max

(
σ̂(β)γ

(
r̂

cκ̂ĥ,S

)
, σ̂(β) +

3

2c

∣∣D−1
X βSc∩SQ

∣∣
1

)
.

Proof. By (A.15) and the definition of κ̂`1
S(β)∩SQ

,S(β),

cσ̂ ≤ |∆̂S(β)∩SQ |1 + cσ̂(β) ≤ |Ψ̂∆̂|∞/κ̂`1
S(β)∩SQ

,S(β) + cσ̂(β), (O.10)

and, by adding cσ̂(β) to both sides and (A.14), we obtain the first term in the minimum.
To deal with approximately sparse vectors, we use that in Case 1 in Proposition 3.1

σ̂ ≤ 1

c

(∣∣D−1
X βSQ

∣∣
1
−
∣∣∣D−1

X β̂SQ

∣∣∣
1

)
+ σ̂(β)

≤ 1

c
min

(∣∣∣∆̂SQ

∣∣∣
1
,
∣∣∣∆̂S∩SQ

∣∣∣
1

+
∣∣D−1

X βSc∩SQ
∣∣
1

)
+ σ̂(β) (O.11)
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≤ 1

c
min

(∣∣∣∆̂SQ

∣∣∣
1
,
1

2

(
3
∣∣∣∆̂S∩SQ

∣∣∣
1

+ cr̂
∣∣∣∆̂SI

∣∣∣
1

+ c
∣∣∣∆̂ScI

∣∣∣
1

+
∣∣∣∆̂ScQ

∣∣∣
1

))
+ σ̂(β) (O.12)

≤

∣∣∣Ψ̂∆̂
∣∣∣
∞

cκ̂ĥ,S
+ σ̂(β), (O.13)

which, with (A.14) yields the first upper bound. We obtain the second one using the inequality in
Case 2 in Proposition 3.1 and (O.11). �

Lemma O.2. We have σ̂(β̂) ≤ σ̂ and, under the assumptions of Theorem 3.1, on G ∩ GA1,

(i) for sparse vectors

√
1− τnσU(β)

(
1− 2rnΓκ(S(β))

κg,S(β)

)
≤ σ̂(β̂) ≤ σ̂ ≤

√
1 + τnσU(β)

1 +
2rnΓκ(S(β))

cκ`1
S(β)∩SQ

,S(β)

 ,

(ii) for arbitrary vectors

√
1− τn

(
σU(β) − min

S⊆[dX ]
max

(
σU(β)

2rnΓκ(S)

κg,S
,

2

c1n

∣∣D−1
X βSc∩SQ

∣∣
1

))
≤ σ̂(β̂)

σ̂ ≤
√

1 + τn

(
σU(β) +

1

c
min
S⊆[dX ]

max

(
σU(β)

2rnΓκ(S)

κh,S
, 3
∣∣D−1

X βSc∩SQ

∣∣
1

))
.

Proof. The first upper bound in (i) comes from (A.17) and Lemma A.2. The last one comes from
the first inequality in (O.10) and Lemma A.2.
Similarly, the first upper bound in (ii) comes from (A.17), Lemma A.2, and the fact that in Case

2 (see the proof of Proposition 3.1) ĝ(∆̂) ≤ 2|(D̂−1
X β)Sc∩SQ|1/c. The last one comes from the first

inequality in (O.10), (O.11)-(O.12), and Lemma A.2.
We now present the following complement to Proposition A.4. We use ΨX = DXE[XX>]DX .

Proposition O.5. For all (β,P) such that β ∈ I, assuming as well En[v2
g,dX

] ≤ v̂2
g on GA1 and all

solution
(
β̂, σ̂

)
of (A.13), the following hold on G ∩GA1 (on G ∩GA1∩E ′cX for the second inequality

of (ii))

(i) For a sparse matrix β, for all ` ∈ L, we have

En
[(
X>

(
β̂·,g − β·,g

))2
]
≤ 2rn

1n
√
κ`1,S(β)

(
dG∑
g=1

σWg(β) + (rn + 2) vg,dX

)
Γκ(S(β));

(ii) En
[(
X>

(
β̂·,g − β·,g

))2
]1/2

≤
∣∣∣D−1

X

(
β̂·,g − β·,g

)∣∣∣
1

√
|ΨX |∞ + τn.

In all cases, we have

|σ̂g(β̂)− σWg(β)| ≤ En
[(
X>

(
β̂·,g − β·,g

))2
]1/2

+ σWg(β)τn +
√

1 + τnvg,dX . (O.14)
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O.1.4. C-STIV. The C-STIV estimator applies the self-tuning for every moment like the NV-
STIV estimator, but estimates θ and β simultaneously using all dZ moments. This results in a
conic program with multiple conic constraints. The model, restrictions, and sets of s, s̃-identifiable
parameters considered in this section are defined in Section 5. We simply use I for I[dQ],[dZ−d⊥].

We maintain either of class 1-3 replacing F (β) by T (β, θ) , F (β)− θ.

Definition O.1. For c ∈ (0, 1), a C-STIV estimator (β̂, θ̂, σ̂) is any solution of

min
(b,t)∈ÎC(rn,σ),σ≥0

∣∣D−1
X bSQ

∣∣
1

+
∣∣DZtSc⊥

∣∣
1

+ cσ,

where, for r, σ > 0,

ÎC(r, σ) ,
{

(b, t) ∈ B ×Θ : |DZ (En[ZU(b)]− t)|∞ ≤ rσ, Σ̂ (b, t) ≤ σ
}
,

Σ̂(b, t) , max
l∈[dZ ]

σ̂l(b, t), σ̂l(b, t)
2 , (DZ)2

l,lEn[(ZlU(b)− tl)2].

When d⊥ = dZ , C-STIV is an alternative to STIV, and its analysis is similar. The main
difference is that there are dZ second-order conic constraints, whereas STIV has one. This makes
C-STIV harder to compute, especially when dZ is large. However, we use a smoothing approach to
approximate it which make its computation faster, as explained in Section O.1.4. We use the same
procedure to compute the BC-STIV estimator defined in (31), which is a C-STIV estimator for a
system of dΦ equations, and involves dΦdX second-order cones. The C-STIV in the formulation of
this paper imposes c < 1.

To obtain rates of convergence, the class is restricted similarly to Assumption A.1, replacing
P
(∣∣DZZ>

∣∣
∞ > BZ

)
≤ αn by P

(
ρ̂ZX > ρZXn

)
≤ αn, where ρZXn depends on n via dZ and dX , and

(N.i) holds for U(β) and MU by (N.iii) for T (β, θ) and M ′
T . The event GA1 is modified accordingly.

For simplicity, we continue to refer to these as Assumption A.1 and GA1 and use

αCn = αn + αn(T )′ + αn(Z)′, αA1
n = αn(X)′ + αn(ZX>) + αBn + αCn .

By Assumption A.1, for all n ∈ N, P(GA1) ≥ 1 − αA1
n → 1. Table O.1 provides the C-STIV

analogues of STIV objects. The cones become K̂S,S̃ and K̂S,S̃, where S ⊆ [dX ] and S̃ ⊆ [dZ ]. The

population sensitivities κ and κ are obtained by replacing Ψ̂, K̂S,S̃, K̂S,S̃ by Ψ, KS,S̃, and KS,S̃ in

the definition of the κ̂ and κ̂. The sensitivities, their population counterparts, and lower bounds

depend either on two sets S and S̃ or on two sparsity certificates s and s̃. Computable lower

bounds on the sensitivities are obtained by LP using the sets B̂(k, l) and B̂(S, S̃), and bounds on
the population sensitivities are obtained identically but replacing ρ̂ZX by ρZXn .

Proposition O.6. On the event GA1, we have, for all c > 0,

(DZ)l,lσTl(β,θ)1n ≤ σ̂l(b, t) ≤ (DZ)l,lσTl(β,θ)/1n, ∀l ∈ [dZ ];

∀ (b, t) ∈ RdX+dZ , ` ∈ L,
√

1− τn`
(
D−1
X b,DZt

)
≤ `

(
D−1

X b,DZt
)
≤ `

(
D−1
X b,DZt

)
/
√

1− τn;

∀S ⊆ [dX ], S̃ ⊆ [dZ ], l ∈ [dZ ], κ̂`,S,S̃ ≥ κ`,S,S̃

1− τn
κ`1

[dX ],∅,S,S̃

 1n;
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κ̂`,S,S̃ ≥ κ`,S,S̃

1− τn
κ`1

[dX ],∅,S,S̃

 1n;

if |S ∩ SQ| ≤ s, |S̃| ≤ s̃, ∀` ∈ L, κ̂`(s, s̃) ≥ κ`(s, s̃) , κ0
`(s, s̃) min

S:|S∩SQ|≤s
S̃:|S̃|≤s̃

1− τn
κ`1

[dX ],∅,S,S̃

 1n.

The results for C-STIV are the same as those for STIV using Table O.1 for correspondance.

Proof. Take (β, θ) ∈ I. Set ∆̂ , D−1
X (β̂ − β) and ∆̃ , DZ(θ̂ − θ). We now work on G. Clearly

(β, θ) belongs to ÎC(rn, Σ̂ (β, θ)) and by the arguments in the proof of Proposition 3.1∣∣∣Ψ̂∆̂ + ∆̃
∣∣∣
∞
≤ rn

(
σ̂ + Σ̂ (β, θ)

)
(O.15)∣∣∣∆̂S(β)c∩SQ

∣∣∣
1

+
∣∣∣∆̃S(θ)c

∣∣∣
1
≤
∣∣∣∆̂S(β)∩SQ

∣∣∣
1

+
∣∣∣∆̃S(θ)

∣∣∣
1

+ c
(

Σ̂ (β, θ)− Σ̂
(
β̂, θ̂
))

.

Each function σ̂l is convex and

wl∗ , −
(
wl
w̃l

)
1l
{
En
[
Tl(β, θ)

2
]
6= 0
}
∈ ∂σ̂l (β, θ) ,

where

wl ,
En [XZlTl(β, θ)]

En [Z2
l ]

1/2 En [Tl(β, θ)2]1/2
, w̃l ,

 0
En[Tl(β,θ)]

En[Z2
l ]

1/2
En[Tl(β,θ)2]1/2

0

 .

By the Cauchy-Schwarz inequality, for all k ∈ [dX ], (DX)k,k |(wl)k| ≤ ρ̂ZX . Taking w∗ =

(w>, w̃>)> as one of the wl∗ for which σ̂l (β, θ) = Σ̂ (β, θ) yields an element of ∂Σ̂ (β, θ). By

definition of the subdifferential ∂Σ̂ (β, θ), we have

Σ̂ (β, θ)− Σ̂
(
β̂, θ̂
)
≤ w>∗

(
β − β̂
θ − θ̂

)
≤ |DXw|∞

∣∣∣∆̂∣∣∣
1

+
∣∣D−1

Z w̃
∣∣
∞

∣∣∣∆̃Sc⊥

∣∣∣
1

≤ ρ̂ZX
∣∣∣∆̂∣∣∣

1
+ rn

∣∣∣∆̃Sc⊥

∣∣∣
1
. (O.16)

As a result, we have (∆̂, ∆̃) ∈ K̂S(β),S(θ). Using (O.15) and (O.16), we find∣∣∣Ψ̂∆̂ + ∆̃
∣∣∣
∞
≤ rn

(
2σ + ρ̂ZX

∣∣∣∆̂∣∣∣
1

+ rn

∣∣∣∆̃Sc⊥

∣∣∣
1

)
. (O.17)

Using the definition of the sensitivities, we obtain

∣∣∣Ψ̂∆̂ + ∆̃
∣∣∣
∞
≤ rn

2σ +

∣∣∣Ψ̂∆̂ + ∆̃
∣∣∣
∞

κ̂ĝ,S(β),S(θ)

 ≤ 2rnσγ

(
rn

κ̂ĝ,S(β),S(θ)

)
,

cσ̂ ≤ |∆̂S(β)∩SQ |1 +
∣∣∣∆̃S(θ)

∣∣∣
1

+ cΣ̂ (β, θ) ≤

∣∣∣Ψ̂∆̂ + ∆̃
∣∣∣
∞

κ̂`1
S(β)∩SQ,S(θ)

,S(β),S(θ)

+ cΣ̂ (β, θ) .
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For nonsparse vectors, S ⊆ [dX ] and S̃ ⊆ [dZ ], we obtain∣∣∣∆̂Sc∩SQ

∣∣∣
1

+
∣∣∣∆̃S̃c

∣∣∣
1
≤
∣∣∣∆̂S∩SQ

∣∣∣
1

+
∣∣∣∆̃S̃

∣∣∣
1

+ c
(
ρ̂ZX

∣∣∣∆̂∣∣∣
1

+ rn

∣∣∣∆̃Sc⊥

∣∣∣
1

)
+ 2

∣∣D−1
X βSc∩SQ

∣∣
1

+ 2
∣∣DZθS̃c

∣∣
1
.

We again consider two cases.

First, if 2|D−1
X βSc∩SQ|1 + 2|DZθS̃c |1 ≤ |∆̂S∩SQ |1 + |∆̃S̃|1 + c(ρ̂ZX |∆̂|1 + rn|∆̃Sc⊥

|1) + |∆̂ScQ
|1, then

(∆̂, ∆̃) ∈ K̂S,S̃. Also, we have

σ̂ ≤ 1

c

(∣∣D−1
X βSQ

∣∣
1
−
∣∣∣D−1

X β̂SQ

∣∣∣
1

+
∣∣DZθSc⊥

∣∣
1
−
∣∣∣DZθ̂Sc⊥

∣∣∣
1

)
+ Σ̂ (β, θ)

≤

∣∣∣Ψ̂∆̂ + ∆̃
∣∣∣
∞

cκ̂ĥ,S,S̃
+ Σ̂ (β, θ) .

Second, if 2|D−1
X βSc∩SQ|1 + 2|DZθS̃c|1 > |∆̂S∩SQ|1 + |∆̃S̃|1 + c(ρ̂ZX |∆̂|1 + rn|∆̃Sc⊥

|1) + |∆̂ScQ
|1, then

we have ∣∣∣∆̂∣∣∣
1

+
∣∣∣∆̃Sc⊥

∣∣∣
1

=
∣∣∣∆̂Sc∩SQ

∣∣∣
1

+
∣∣∣∆̂S∩SQ

∣∣∣
1

+
∣∣∣∆̂ScQ

∣∣∣
1

+
∣∣∣∆̃S̃c

∣∣∣
1

+
∣∣∣∆̃S̃

∣∣∣
1

≤ 6
(∣∣D−1

X βSc∩SQ
∣∣
1

+
∣∣DZθS̃c

∣∣
1

)
.

For the deterministic lower bounds on the sensitivities we use that, on GA1, denoting by ∆ =

D−1
X DX∆̂ and ∆̃ = DZD−1

Z ∆̃, we have∣∣∣Ψ̂∆̂ + ∆̃
∣∣∣
∞
≥ min

l∈[dZ ]

(
DZD

−1
Z

)
l,l

∣∣∣DZEn
[
ZX>

]
DX∆ + ∆̃

∣∣∣
∞

≥ 1√
1 + τn

(∣∣∣DZE
[
ZX>

]
DX∆ + ∆̃

∣∣∣
∞
−
∣∣DZ(En − E)

[
ZX>

]
DX∆

∣∣
∞

)
≥ 1√

1 + τn

(∣∣∣Ψ∆̂ + ∆̃
∣∣∣
∞
− τn

∣∣∆∣∣
1

)
.

The remaining arguments are similar to those already seen. �
FISTA with Partial Smoothing. The C-STIV estimator (β̂, θ̂, σ̂) is a solution to a conic program

with dZ cones, and the BC-STIV estimator (Λ̂, υ̂) in (31) is a solution of a conic program with dΦdZ
cones. If dZ is large, conic programs are not computationally tractable, so we apply an iterative
procedure based on partial smoothing. We present the algorithm for C-STIV, though it can be
applied to BC-STIV with minor modifications. Start by noting

(β̂, θ̂) ∈ argmin(b,t)∈B×Θ

(
1

c

(
|D−1

X bSQ |1 + |DZtSc⊥ |1
)

+O(b, t)

)
, σ̂ = O(b, t),

where O(b, t)2 , maxl∈[dZ ] (DZ)2
l,l max

(
σ̂l(b, t)

2, (En [ZlU(b)]− tl)2 /r2
n

)
. We now use ideas from [9]

and [12]. Because 2u = minσ>0 {σ + u2/σ}, (β̂, θ̂) can be obtained by solving

(β̂, θ̂, σ̂) ∈ argmin(b,t,σ)∈B×Θ×(0,∞)

(
2

c

(
|D−1

X bSQ |1 + |DZtSc⊥ |1
)

+ σ +
O(b, t)2

σ

)
.

The objective function is convex because f(x, y) = x2/y is convex on R × (0,∞). Hence, when
B ×Θ is a product, a solution of C-STIV can be obtained by the following iterations
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Table O.1. Table of correspondence for the results on the C-STIV

STIV C-STIV

σ, r̂, rn σ = (σ̂ + Σ̂(β̂, θ̂))/2, rn, rn

K̂S K̂S,S̃ ,
{

(∆, ∆̃) : ∆Sc∩S(β̂)c = 0, ∆̃S̃c∩S(θ̂)c = 0, |∆Sc∩SQ
|1 + |∆̃S̃c |1 ≤ |∆S∩SQ

|1 + |∆̃S̃ |1 + cĝ(∆, ∆̃)
}

K̂S K̂S,S̃ ,
{

(∆, ∆̃) : |∆Sc∩SQ
|1 + |∆̃S̃c |1 ≤ 2(|∆S∩SQ

|1 + |∆̃S̃ |1 + cĝ(∆, ∆̃)) + |∆Sc
Q
|1
}

KS KS,S̃ ,
{

(∆, ∆̃) : (1− τn − cρZXn )|∆|1 + (1− τn − rn)|∆̃Sc
⊥
|1 ≤ 2|∆S∩SQ

|1 + |∆Sc
Q
|1 + 2|∆̃S̃ |1

}
KS KS,S̃ ,

{
(∆, ∆̃) : (1− τn − 2cρZXn )|∆|1 + (1− τn − rn)|∆̃Sc

⊥
|1 ≤ 3|∆S∩SQ

|1 + 2|∆Sc
Q
|1 + 3|∆̃S̃ |1

}
|Ψ̂∆|∞ |Ψ̂∆ + ∆̃|∞

|D−1
X βSc∩SQ

|1 |D−1
X βSc∩SQ

|1 + |DZθS̃c |1
|D−1

X βSc∩SQ
|1/1n (|D−1

X βSc∩SQ
|1 + |DZθS̃c |1)/(1− τn)

ĝ(∆) ĝ(∆, ∆̃) , ρ̂ZX |∆|1 + rn|∆̃Sc
⊥
|1

ĥ(∆) ĥ(∆, ∆̃) , min(|∆SQ
|1 + |∆̃Sc

⊥
|1, (3|∆S∩SQ

|1 + 3|∆̃S̃ |1 + cĝ(∆, ∆̃) + |∆Sc
Q
|1)/2)

`qS0
`q
S0,S̃0

(∆) , |∆S0
|q + |∆̃S̃0

|q
κ̂`k,S κ̂`k,0,S,S̃ , min

(∆,∆̃)∈K̂S,S̃ : |∆k|=1
|Ψ̂∆ + ∆̃|∞, κ̂0,`l,S,S̃

, min
(∆,∆̃)∈K̂S,S̃ : |∆̃l|=1

|Ψ̂∆ + ∆̃|∞

B̂(Ŝ) B̂(Ŝ,
̂̃
S) ,

{
−µ ≤ ∆ ≤ µ, −µ̃ ≤ ∆̃ ≤ µ̃, µŜc∩S(β̂)c = 0, µ̂̃

S
c

∩S(θ̂)c
= 0, −ν1 ≤ Ψ̂∆ + ∆̃ ≤ ν1

(1− cρ̂ZX)(
∑
j∈SI

c µj) + (1− crn)(
∑
l∈Sc
⊥
µ̃l) ≤ 2(

∑
j∈Ŝ∩SQ

µj +
∑
l∈̂̃S µ̃l) +

∑
j∈Sc

Q
µj

}

B̂(k) B̂(k, l) ,


−µ ≤ ∆ ≤ µ, −µ̃ ≤ ∆̃ ≤ µ̃, −ν1 ≤ Ψ̂∆ + ∆̃ ≤ ν1
(1− c)(

∑
j∈SI

µj) + (1− cρ̂ZX)(
∑
j∈Sc

I
µj) + (1− crn)(

∑
l∈Sc
⊥
µ̃l)

≤ 2(sµk + s̃µ̃l) +
∑
j∈Sc

Q
µj


Γκ(S) Γκ(S, S̃) , γ(τn/κ`1

[dX ],∅,S,S̃
+ rn/(c1nκ`1

S∩SQ,S̃
,S,S̃))/(1n

√
1− τn)

Γκ(S) Γκ(S, S̃) , γ(τn/κ`1
[dX ],∅,S,S̃

+ rn/(c1nκh,S,S̃))/(1n
√

1− τn)

σU(β) Σ(β, θ) , max
l∈[dZ ]

(DZ)l,lσTl(β,θ)

β̂ω̂ β̂ω̂k , β̂k1l
{
|β̂k| > ω̂k(s, s̃)/En[X2

k ]1/2
}
, θ̂ω̂l , θ̂l1l

{
|θ̂l| > ̂̃ωl(s, s̃)En[Z2

l ]1/2
}

ω̂k(s) ω̂k(s, s̃) , 2rnσγ(rn/κ̂ĝ(s, s̃))/κ̂`k,0(s, s̃), ̂̃ωl(s, s̃) , 2rnσγ(rn/κ̂ĝ(s, s̃)/κ̂0,`l(s, s̃)

ωk(s) ωk(s, s̃) ,
2rnΣ(b, t)γ(rn/κg(s, s̃))

1nκ`k,0(s, s̃)

1 +
2rnΓκ(S(b), S(t))

cκ`1
S(b)∩SQ,S(t)

,S(b),S(t)


ω̃l(s, s̃) obtained by replacing κ`k,0(s, s̃) by κ0,`l(s, s̃)

Algorithm O.1. Initialize at (β̂(0), θ̂(0), σ̂(0)). At iteration m, solve

(β̂(m), θ̂(m)) ∈ argmin(b,t)∈B

(
2σ̂(m−1)

c

(∣∣D−1
X bSQ

∣∣
1

+
∣∣DZtSc⊥

∣∣
1

)
+O(b, t)2

)
,

σ̂(m) = O
(
β̂(m), θ̂(m)

)
,

then replace m by m+ 1, and iterate until convergence.

Step 1 can be computationally intensive, whereas Step 2 is trivial. To solve Step 1, we use
FISTA with partial smoothing ([1, 2]). Both terms in the minimization problem are convex but
nonsmooth; the first involves an `1-norm, and the second a maximum. The smoothing is partial
because, following [2], we smooth only the maximum, for which we use log-sum-exp smoothing,
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Table O.2. 0.95 C-STIV confidence sets for detection of endogenous IVs

dZ = 50, dX = 6, n = 2000, π = 0.8
C-STIV SC 4,1 SC 4,2 SC 4,3 SC 4,4 SC 4,5 ES

p2.5 p50 p97.5 Median width/2

θ∗5(= 0.8) 0.66 0.71 0.77 0.69 0.71 0.73 0.76 0.78 0.25
θ∗6(= 0) 0 0 0 0.69 0.71 0.74 0.76 0.78 0

S(θ̂) ⊇ S(θ∗) 1 Power .74 .51 .26 .11 .04 1

S(θ̂) = S(θ) 1 (.71,.77) (.48,.54) (.23,.29) (.09,.13) (.03,.05) (.996,1)
Notes: 1000 replications. ‘SC s, s̃’ use sparsity certificates s, s̃. ‘ES’ use estimated
support. SC/ES use one grid point for c. rn = 0.07. ‘C-STIV’ uses c = 0.99. ‘Power’
is the frequency with which the confidence sets do not include θ5 = 0.

replacing it by

gµ(b, t) , µ log

∑
l∈[dZ ]

exp

(
σ̂2
l (b, t)

µ

)
+ exp

(
1

µr2
n

(
(DZ)l,l (En[ZlU(b)]− tl)

)2
) .

Based on Proposition 4.1 and Theorem 3.1 of [2], in practice we take µ = ε/(2 log 2dZ) and ε = 0.1.
Smaller values of ε improve the approximation of the maximum but increase the computational
burden. After smoothing we are left with the sum of an `1-norm and a smooth function, to which
we apply FISTA.
Monte-Carlo for C-STIV.. We modify the design in Section 6.1 to allow for endogenous IVs and
apply C-STIV. We take n = 2000, dX = 6, ScI = {1, 5} and dZ = 50. We consider a problem
with smaller dimensions than for the NV-STIV experiment for computational reasons. Though
it is possible to use FISTA to compute C-STIV in applications, in our experiment we need to
compute the estimator hundreds of times. The 45 IVs with indices Sc⊥ = {5, 6, ..., 49} are possibly
endogenous. We modify the design by setting Z5 =

√
1− 0.82E+ 0.8U(β∗) with E an independent

standard Gaussian. This preserves the variance matrix of Z as the identity but implies that
E[ZU(β∗)] = θ∗ has one nonzero entry given by θ∗5 = 0.8. This is a challenging design since
there are fewer IVs known to be exogenous than there are regressors. Table O.2 reports C-STIV
confidence sets over 1000 replications. The C-STIV estimator detects the endogenous IV, though
is downwards biased due to the shrinkage. The confidence sets using a sparsity certificate correctly
detect the endogenous IV with frequency 0.74 for s̃ = 1, which decreases as s̃ increases. The
confidence sets based on estimated support detect the endogenous IV in every replication.

O.1.5. Confidence Bands under Conditional Homoskedasticity. Let us consider confidence bands
when we maintain (C4.i). We present these for a structural model with approximation errors, as

in the proof of Theorem 4.1. The confidence bands are ĈΦ ,
[
ĈΦ, ĈΦ

]
where

ĈΦ , Φ̂β − q̂, ĈΦ , Φ̂β + q̂, q̂ ,
qGΦ|ZΛ̂>(1− α) + 3ζn√

n
σ̂(β̂)D−1

ZΛ̂>
1,

GΦ =
√
n|DZΛ̂>Λ̂En[ZE]|∞, and E ∈ Rn is a standard Gaussian vector independent of ZΛ̂>. For

the analysis, we introduce the deterministic upper bound v
σW (β)
n such that on G∩GA1 of probability

at least 1 − αSn , |σ̂(β̂) − σW (β)| ≤ v
σW (β)
n , which is obtained from (O.14). We also replace (iii)-(vi)

in Assumption A.2 by (N.i) holds for Z and MZ , and
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(iv’) (N.i) holds for ΛZ and MΛZ ;

(v’)

∣∣∣∣∣
(
max

(
E
[(

(DΛZΛ)f,·G(β)/σW (β)

)2+q1
]
,E
[(

(DΛZΛ)f,·G(β)E/σW (β)

)2+q1
]))dΦ

f=1

∣∣∣∣∣
∞

≤ Bq1
n ;

(vi’)max
(
E
[(
|DΛZΛG(β)|∞/(BnσW (β))

)q2] ,E [(|DΛZΛG(β)E|∞/(BnσW (β)

)q2])≤2.

The loss |DΛG(β) · |∞,∞ is replaced by |DΛZ · |∞,∞.

The coverage is guaranteed, with coverage error αA2
n , 2ζ ′n + ζ ′′n + ϕ(dΦ, τn) + ι(dΦ, n) +

αn(ΛZ)+αSn+αBCn , where (ζ ′n)2 , 3αn+αn(ZE)′+αBCn +ι(dΦ, n) and ζ ′′n , αn+αBCn +αSn+ι(dΦ, n),
if we assume:

Assumption O.2. For all (β,Λ) ∈ IΦ, we have

(i) max(vΛ,β
n BZ + τn, v

σW (β)
n , 2vDn ) < 1;

(ii) ζn ≥ max
(
2
√
nvΛ,β

n rEn , 2
√
nvΛ,β

n rn/1n, 4v
D
n log (2dΦ/αn) /(1− 2vDn ), vRn

)
;

where

vDn , (vΛ,β
n BZ + τn)(1− vσW (β)

n ) + v
σW (β)
n ,

vRn ,
√
n
(∣∣DΛG(β)

∣∣
∞

(
r′nv

Σ(Λ)
n vβn + |V (β)|∞

)
+ vdX

√
1 + τn

)
/(σW (β)(1− vDn )),

rEn , rEn 2 log (2n/αn)
√

1 + τn,

and rEn is obtained like rn for Class 1 replacing α by αn.

The main arguments of the proof are detailed for Class 4 later in this appendix. The specific
elements are the following. On E , G ′ ∩ GA1 ∩ E ′cT ∩ EcZ of probability 1− αBCn , we have

(DΛZ)f,f

∣∣∣∣∣En
[(

Λ̂f,·Z
)2
]1/2

− E
[
(Λf,·Z)2

]1/2∣∣∣∣∣
≤ (DΛZ)f,f

(
En
[((

Λ̂f,· − Λf,·

)
Z
)2
]1/2

+
∣∣∣En [(Λf,·Z)2

]1/2 − E
[
(Λf,·Z)2

]1/2∣∣∣)
≤ vΛ,β

n BZ + τn ≤ vDn ,

so
∣∣DZΛ̂>D

−1
ΛZ

∣∣
∞ ≤ 1/(1− vDn ) and, on E ∩ G,

∣∣DZΛ̂>D
−1
ΛZ

∣∣
∞ σW (β)/σ̂(β̂) ≤ 1/(1− vDn ). We now use

√
n

σ̂(β̂)
DZΛ̂>

(
Φ̂β − Φβ − V (β)

)
= R +

√
n

σ̂(β̂)
DZΛ̂>Λ̂En[G(β)],

R ,

√
n

σ̂(β̂)
DZΛ̂>

(
Φ− Λ̂En[ZX>]

)
DX∆̂−

√
n

σ̂(β̂)
DZΛ̂>V (β) +

√
n

σ̂(β̂)
DZΛ̂>Λ̂En[ZV (β)].

On E ∩ G of probability 1− (αSn + αBCn ), we have |R|∞ ≤ vRn . Define

TΦ ,

∣∣∣∣∣
√
n

σ̂(β̂)
DZΛ̂>Λ̂En[G(β)]

∣∣∣∣∣
∞

, TΦ1 =

∣∣∣∣ √nσW (β)

DΛZΛ̂En[G(β)]

∣∣∣∣
∞
, TΦ0 ,

∣∣∣∣ √nσW (β)

DΛZΛEn[G(β)]

∣∣∣∣
∞
,

GΦ1 ,
∣∣∣√nDΛZΛ̂En[ZE]

∣∣∣
∞
, GΦ0 ,

∣∣√nDΛZΛEn[ZE]
∣∣
∞ .

On E ∩ G, |TΦ − TΦ1| ≤ TΦ1v
D
n /(1− vDn ) and |TΦ1 − TΦ0| ≤ vΛ,β

n

√
nrn/1n, so

|TΦ − TΦ0| ≤ (TΦ0 + vΛ,β
n

√
nrn/1n)vDn /(1− vDn ) + vΛ,β

n

√
nrn/1n.
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Let E2,E ,
{
∀l ∈ [dZ ], |En[ZlE]| > rEnEn[(ZlE)2]1/2

}
. On E ∩ E2,E ∩ E ′cZE ∩ {|E|∞ ≤ 2 log(2n/αn)},

|GΦ −GΦ1| ≤ GΦ1v
D
n /(1− vDn ) and |GΦ1 −GΦ0| ≤

√
nvΛ,β

n rEn , so

|GΦ −GΦ0| ≤ (GΦ0 +
√
nvΛ,β

n rEn )vDn /(1− vD,2n ) +
√
nvΛ,β

n rEn .

By Assumption O.2 (ii), we have

(ζn −
√
nvΛ,β

n rEn )(1− vDn )/vDn −
√
nvΛ,β

n rEn ≥ ζn(1− 2vDn )/(2vDn ),

(ζn −
√
nvΛ,β

n rn/1n)(1− vDn )/vDn −
√
nvΛ,β

n rn/1n ≥ ζn(1− 2vDn )/(2vDn ).

By (ii) and 2 log (2dΦ/αn) ≥ qNΦ0
(1− αn), where NΦ0 , |DΛZΛEZ |∞ and EZ is a Gaussian vector

of covariance E[ZZ>], we get

P (|TΦ − TΦ0| > ζn) ≤ ζ ′′n and P
(
P
(
|GΦ −GΦ0| > ζn|ZΛ̂>

)
> ζ ′n

)
< ζ ′n.

This yields, as in the proof of Class 4, P
(
TΦ ≥ qGΦ|ZΛ̂>(1− α) + 2ζn

)
< α+ 2ζ ′n + ζ ′′n +ϕ(dΦ, τn) +

ι(dΦ, n) + αn(ΛZ), hence the result.

O.1.6. Results in Previous Versions of this Paper: [8]. The interested reader can find results for
STIV confidence sets with a high-dimensional version of 2SLS and its failure in various situations.
There are results for other approaches than the one based on sparsity certificates for NV-STIV.
The C-STIV is a simple modification of the NV-STIV and was introduced to answer a referee’s
comment in 2011 on ways to avoid loosing

∣∣DZZ>
∣∣
∞ when setting r̂ = rn

∣∣DZZ>
∣∣
∞. It was the

STIV estimator in the revision of this paper between 2012 and 2014 (first revision (2012)). In
the previous versions we also propose an assumption which allows to obtain tighter bounds in
the same spirit as the treatment of the regressors in SI for the C-STIV. We propose confidence
bands with bias correction using sample splitting. We also study the combination of the confidence
bands with an upper bound on the bias obtained from the identification robust confidence sets
in case we suspect the ”bias” of the debiased estimator might not be negligible. An alternative
identification robust confidence set, also not involving test inversion, called SNIV set, relies on
semidefinite relaxations and can deliver tight sets when dZ < dX and when there are endogenous
IVs but S⊥ is not available.

O.2. Proofs of Results in the Appendix. Proof of Proposition A.1 and O.3. We prove

the bounds for the sensitivities based on K̂S, those for the sensitivities based on K̂S are obtained
similarly. Parts (i) and (ii) are easy.
The upper bound in the first display in (iii) follows from |∆S0|q ≥ |∆S0|∞. We obtain the lower

bound as follows. Because |∆S0|q ≤ |∆S0 |
1/q
1 |∆S0|

1−1/q
∞ , we get that, for ∆ 6= 0,∣∣∣Ψ̂∆

∣∣∣
∞

|∆S0|q
≥

∣∣∣Ψ̂∆
∣∣∣
∞

|∆S0 |∞

(
|∆S0|∞
|∆S0|1

)1/q

(O.18)

and use |∆S0|1 ≤ |S0||∆S0 |∞. Furthermore, for ∆ ∈ K̂S, by definition of the set, we have
|∆Sc∩SQ|1 ≤ |∆S∩SQ |1 + cr̂|∆|1 + c(1 − r̂)|∆ScI

|1, which, by adding |∆(S∩SQ)∪ScQ|1 on both sides,
gives

|∆|1 ≤ γ(cr̂)
(

2|∆S∩SQ |1 + |∆ScQ
|1 + c(1− r̂)|∆ScI

|1
)
. (O.19)

https://arxiv.org/pdf/1812.11330.pdf
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From (O.19) and the fact that ∆Sc∩S(β̂)c = 0, we deduce

|∆|1 ≤ γ(cr̂)
(

2|S ∩ SQ|+
∣∣∣ScQ ∩ (S ∪ S(β̂)

)∣∣∣+ c(1− r̂)
∣∣∣ScI ∩ (S ∪ S(β̂)

)∣∣∣) ∣∣∣∆Ŝ(S,S(β̂))

∣∣∣
∞
.

(O.20)

Let us obtain an alternative lower bound for the case c ∈ (0, 1). The condition ∆ ∈ K̂S can be
written as |∆Sc∩SQ|1 ≤ |∆S∩SQ|1 +c(r̂−1)|∆SI |1 +c|∆|1 which implies |∆Sc∩SQ|1 ≤ |∆S∩SQ|1 +c|∆|1
and, by adding |∆(S∩SQ)∪ScQ |1 on both sides, if c ∈ (0, 1), we have

|∆|1 ≤ γ(c)
(

2|∆S∩SQ|1 + |∆ScQ
|1
)
. (O.21)

Using ∆Sc∩S(β̂)c = 0, this yields

|∆|1 ≤ γ(c)
(

2|S ∩ SQ|+
∣∣∣ScQ ∩ (S ∪ S(β̂)

)∣∣∣) ∣∣∣∆Ŝ(S,S(β̂))

∣∣∣
∞
. (O.22)

Combining (O.20) and (O.22) yields

|∆|1 ≤ ĉκ(S)
∣∣∣∆Ŝ(S)

∣∣∣
∞
. (O.23)

This yields the second display in (iii). The first lower bound in the first display in (iii) uses∣∣∣Ψ̂∆
∣∣∣
∞

|∆S0|q
≥

∣∣∣Ψ̂∆
∣∣∣
∞∣∣∣∆S0∪Ŝ(S,S(β̂))

∣∣∣
q

≥

∣∣∣Ψ̂∆
∣∣∣
∞∣∣∣∆S0∪Ŝ(S,S(β̂))

∣∣∣
∞


∣∣∣∆S0∪Ŝ(S,S(β̂))

∣∣∣
∞∣∣∣∆S0∪Ŝ(S,S(β̂))

∣∣∣
1

1/q

and |∆S0∪Ŝ(S)|1 ≤ ĉκ(S)|∆S0∪Ŝ(S)|∞ which can be deduced from (O.23).

To prove (O.2) it suffices to note that, by definition of the set K̂S,

|∆|1 ≤

 2

κ̂`1S∩SQ ,S
+

1

κ̂`1
Sc
Q
,S

+
c

κ̂ĝ,S

∣∣∣Ψ̂∆
∣∣∣
∞
, (O.24)

by (O.19),

|∆|1 ≤ γ(cr̂)

 2

κ̂`1S∩SQ ,S
+

1

κ̂`1
Sc
Q
,S

+
c(1− r̂)
κ̂`1

Sc
I
,S

∣∣∣Ψ̂∆
∣∣∣
∞
,

and, by (O.21),

|∆|1 ≤ γ(c)

 2

κ̂`1S∩SQ ,S
+

1

κ̂`1
Sc
Q
,S

∣∣∣Ψ̂∆
∣∣∣
∞
.

The bound (O.3) is obtained by rewriting ∆ ∈ K̂S as (1− cr̂)|∆SI |1 + (1− c)|∆ScI
|1 ≤ 2|∆S∩SQ|1 +

|∆ScQ
|1, which yields

r̂|∆SI |1 + |∆ScI
|1 ≤ r̂γ(cr̂)

(
2|∆S∩SQ |1 + |∆ScQ

|1 +
1− r̂
r̂
|∆ScI
|1
)

(O.25)

≤
∣∣∣Ψ̂∆

∣∣∣
∞
r̂γ(cr̂)

 2

κ̂`1S∩SQ ,S
+

1

κ̂`1
Sc
Q
,S

+
1− r̂
r̂κ̂`1

Sc
I
,S

 .
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The second upper bound follows from noticing that, if κ̂ĝ,S > 0, we have

1

κ̂ĝ,S
= sup

∆∈K̂S : |Ψ̂∆|∞=1

(
r̂ |∆SI |1 +

∣∣∆ScI

∣∣
1

)
≤ sup

∆∈ŜS : |Ψ̂∆|∞=1

r̂ |∆SI |1 + sup
∆∈K̂S : |Ψ̂∆|∞=1

∣∣∆ScI

∣∣
1
.

Let us now prove (iv). Since for all k in S0, |∆S0|∞ ≥ |∆k|, for all k in S0,

κ̂`∞S0
,S = min

∆∈K̂S0

∣∣∣Ψ̂∆
∣∣∣
∞

|∆S0|∞
≤ min

∆∈K̂S

∣∣∣Ψ̂∆
∣∣∣
∞

|∆k|
= κ̂`k,S.

Thus κ̂`∞S0
,S ≤ mink∈S0 κ̂`k,S. But one also has

κ̂`∞S0
,S = min

k∈S0

min
∆∈K̂S : |∆k|=|∆S0

|∞=1

∣∣∣Ψ̂∆
∣∣∣
∞
≥ min

k∈S0

min
∆∈K̂S : |∆k|=1

∣∣∣Ψ̂∆
∣∣∣
∞
. �

Proof of Lemma A.1. We prove the middle statement:

P (E ′A) = P

(∣∣∣∣∣
(
En
[

A2
l

E [A2
l ]
− 1

])
l∈[dA]

∣∣∣∣∣ ≥ τn

)

≤ 1

τ 2
n

E

[
max
l∈[dA]

∣∣∣∣En [ A2
l

E [A2
l ]
− 1

]∣∣∣∣2
]

(by the Chebyshev inequality)

≤ CN(dA)

nτ 2
n

E

[
max
l∈[dA]

∣∣∣∣( A2
l

E [A2
l ]
− 1

)∣∣∣∣2
]

(by the Nemirovski inequality)

≤ αn(A)′.

The proof of the remaining statements is the same. �

Proof of lemmas A.2. Clearly, on E ′cX , the following holds

∀b ∈ RdX , ` ∈ L,
√

1− τn`
(
D−1
X b
)
≤ `

(
D−1

X b
)
≤
√

1 + τn`
(
D−1
X b
)
, . (O.26)

Assume now that we work on the event GA1. Let S ⊆ [dX ], ` ∈ L, and ∆ , D−1
X DX∆. Due to

(O.26), we have
√

1− τn`(∆) ≤ `(∆) ≤
√

1 + τn`(∆). This, the fact that r̂ ≤ r, and manipulations

on the `1-norm of subvectors used previously, yield ∆ ∈ KS if ∆ ∈ K̂S and ∆ ∈ KS if ∆ ∈ K̂S.
Now, because GA1 ⊆ E ′cZ ∩ EcZX> , we obtain∣∣∣Ψ̂∆

∣∣∣
∞
≥ min

l∈[dZ ]

(
DZD

−1
Z

)
l,l

∣∣DZEn
[
ZX>

]
DXD

−1
X DX∆

∣∣
∞

≥
(∣∣Ψ∆

∣∣
∞ − τn

∣∣∆∣∣
1

)
/
√

1 + τn. (O.27)

(A.4) is obtained from the definition of κ`1,S and κ`1,S and that, on GA1, `(∆) ≤
√

1 + τn`(∆).�

Proof of Proposition A.2. (i), the first identity in (ii), and (iv) are obtained like the similar
results in Proposition A.1. By Hölder’s inequality, Condition IC, for all ∆ ∈ KS and q ∈ [1,∞],

|∆|1 ≤ uκ|∆S|1 ≤ uκ|S|1−1/q|∆S|q,

from which we deduce (iii). A similar result also holds for the sensitivities (see [8]). We obtain
(A.6) by similar arguments as those used for (O.23). This yields the second identity in (ii). To
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prove (v), let λ ∈ RdZ such that |λ|1 ≤ 1, k ∈ [dX ], and ∆ ∈ KS. By the inverse triangle inequality∣∣λ>Ψ∆− λ>Ψ·,k∆k

∣∣ ≤ (∑
k′ 6=k

|∆k′ |

)
max
k′ 6=k

∣∣λ>Ψ·,k′
∣∣ ,

which yields
∣∣λ>Ψ·,k

∣∣ |∆k| ≤
(∑

k′ 6=k |∆k′ |
)

maxk′ 6=k
∣∣λ>Ψ·,k′

∣∣+
∣∣λ>Ψ∆

∣∣, hence(∣∣λ>Ψ·,k
∣∣+ max

k′ 6=k

∣∣λ>Ψ·,k′
∣∣) |∆k| ≤ |∆|1 max

k′ 6=k

∣∣λ>Ψ·,k′
∣∣+ |Ψ∆|∞ , (O.28)

≤ cκ(S) max
k′ 6=k

∣∣λ>Ψ·,k′
∣∣ ∣∣∆S∪S0

∣∣
∞ + |Ψ∆|∞ .

The last display uses |∆|1 ≤ cκ(S)|∆S|∞. For k such that |∆k| = |∆S∪S0
|∞,

max
λ∈RdZ : |λ|1≤1

(∣∣λ>Ψ·,k
∣∣− (cκ(S)− 1) max

k′ 6=k

∣∣λ>Ψ·,k′
∣∣) ∣∣∆S∪S0

∣∣
∞ ≤ |Ψ∆|∞ (O.29)

and we conclude by taking the minimum over k ∈ S ∪S0 and the definition of the `∞
S∪S0

sensitivity.

We can remove the first absolute value by changing λ in −λ. To prove (vi) we start from (O.28).
By definition of the `1 population sensitivity we have(∣∣λ>Ψ·,k

∣∣+ max
k′ 6=k

∣∣λ>Ψ·,k′
∣∣) |∆k| ≤

(
maxk′ 6=k

∣∣λ>Ψ·,k′
∣∣

κ`1,S
+ 1

)
|Ψ∆|∞ .

We conclude by setting ∆k = 1. The other items are proved similarly to Proposition A.1. �

Proof of Proposition A.3. Take (β,Λ) ∈ IΦ. Set ∆̂′ , (Λ̂ − Λ)D−1
Z , and ∆̂′ , ∆̂′DZD

−1
Z .

Clearly, on G ′, Λ belongs to ÎΦ
(
r′n, Σ̂(Λ

)
. We now work on the event in the statement of the

theorem. We start by proving (i). The arguments in the proof of Proposition 3.1 yield∣∣∣∆̂′Ψ̂>∣∣∣
∞
≤ r′n

(
ν̂ + Σ̂ (Λ)

)
(O.30)∣∣∣∆̂′S(Λ)c

∣∣∣
1
≤
∣∣∣∆̂′S(Λ)

∣∣∣
1

+
λ

ρ̂ZX

(
Σ̂ (Λ)− Σ̂

(
Λ̂
))

and, by those of the proof of Proposition O.6, Σ̂(Λ)− Σ̂(Λ̂) ≤ ρ̂ZX |∆̂′|1. As a result, ∆̂′ ∈ K ′S(Λ) ⊆
K̂ ′S(Λ) and, using the definition of κ̂′

`1
S(Λ)

,S(Λ)
and of the objective function in (31) in the first display

and (O.30) in the second display,

ν̂ ≤
ρ̂ZX

∣∣∣∆̂′Ψ̂>∣∣∣
∞

λκ̂′
`1
S(Λ)

,S(Λ)

+ Σ̂ (Λ) , ν̂ + Σ̂ (Λ) ≤ 2Σ̂ (Λ) γ

 r′nρ̂
ZX

λκ̂′
`1
S(Λ)

,S(Λ)

 ,

∣∣∣∆̂′Ψ̂>∣∣∣
∞
≤ 2r′nΣ̂ (Λ) γ

 r′nρ̂
ZX

λκ̂′
`1
S(Λ)

,S(Λ)

 .

Let us now show the results of item (ii). Take S ⊆ [dΦ]× [dZ ]. We have

|∆̂′Sc |1 ≤
∣∣∣∆̂′S∣∣∣

1
+ 2

∣∣ΛScD
−1
Z

∣∣
1

+ λ
∣∣∣∆̂′∣∣∣

1



O-18 GAUTIER AND ROSE

and distinguish the two cases

Case 1: 2|ΛScD
−1
Z |1 ≤ |∆̂′S|1 for which the rest is usual,

Case 2: 2|ΛScD
−1
Z |1 > |∆̂′S|1 for which we have∣∣∣∆̂′∣∣∣

1
=
∣∣∣∆̂′Sc∣∣∣

1
+
∣∣∣∆̂′S∣∣∣

1
≤ 2

3 + λ

1− λ
∣∣ΛScD

−1
Z

∣∣
1
,

hence ∣∣∣∆̂′∣∣∣
1
≤ 2

1n

3 + λ

1− λ
∣∣ΛScD

−1
Z

∣∣
1
. �

Proof of theorems 5.1 and A.1. We work on G⊥ ∩ G 6⊥ and denote by ∆̃ , DZ(θ̂ − θ).
First, we show that θ ∈ Î6⊥(r 6⊥n , Σ̂6⊥(β, θ)) by the following computations∣∣∣∣DZ

(
En[ZU(β̂)]− θ

)
Sc⊥

∣∣∣∣
∞
≤

∣∣∣DZ (En[ZU(β)]− θ)Sc⊥
∣∣∣
∞

+

∣∣∣∣(Ψ̂D−1
X

(
β̂ − β

))
Sc⊥

∣∣∣∣
∞

≤ r 6⊥n Σ̂6⊥ (β, θ) + δ̂.

The second constraint in the definition of Î 6⊥(r 6⊥n , Σ̂6⊥(β, θ)) is satisfied because, by convexity,

Σ̂ 6⊥(β̂, θ) ≤ Σ̂6⊥ (β, θ) + δ̂Σ. Now, because θ ∈ Î 6⊥(r 6⊥n , Σ̂ 6⊥(β, θ)) and (θ̂, ̂̃σ) minimizes (39),∣∣∣∆̃S(θ)c

∣∣∣
1
≤
∣∣∣∆̃S(θ)

∣∣∣
1

+ c̃
(

Σ̂ 6⊥ (β, θ)− ̂̃σ) . (O.31)

Similar to the proof of (O.16), using the second constraint in the definition of Î 6⊥(r 6⊥n ,
̂̃σ),

Σ̂6⊥ (β, θ)− ̂̃σ ≤ Σ̂ 6⊥ (β, θ)− Σ̂6⊥

(
β̂, θ̂
)

+ δ̂Σ ≤ 2δ̂Σ + r 6⊥n

∣∣∣∆̃Sc⊥

∣∣∣
1
. (O.32)

This and (O.31) yield ∣∣∣∆̃S(θ)c

∣∣∣
1
≤
∣∣∣∆̃S(θ)

∣∣∣
1

+ c̃r 6⊥n

∣∣∣∆̃Sc⊥

∣∣∣
1

+ 2c̃δ̂Σ

and, equivalently, ∣∣∣∆̃S(θ)c

∣∣∣
1
≤ 1 + c̃r 6⊥n

1− c̃r 6⊥n

∣∣∣∆̃S(θ)

∣∣∣
1

+
2c̃

1− c̃r 6⊥n
δ̂Σ. (O.33)

Next, using the first constraint in the definition of Î 6⊥(r 6⊥n ,
̂̃σ) and Î 6⊥(r 6⊥n , Σ̂6⊥(β, θ)), we find∣∣∣∣DZ

(
θ̂ − θ

)
Sc⊥

∣∣∣∣
∞
≤
∣∣∣∣DZ

(
En[ZU(β̂)]− θ̂

)
Sc⊥

∣∣∣∣
∞

+

∣∣∣∣DZ

(
En[ZU(β̂)]− θ

)
Sc⊥

∣∣∣∣
∞

≤ r 6⊥n

(̂̃σ + Σ̂6⊥ (β, θ)
)

+ 2δ̂. (O.34)

This and (O.32) yield ∣∣∣∆̃Sc⊥

∣∣∣
∞
≤ r 6⊥n

(
2σ̃ + r 6⊥n

∣∣∣∆̃Sc⊥

∣∣∣
1

+ δ̂Σ
)

+ 2δ̂. (O.35)

On the other hand, (O.33) implies∣∣∣∆̃Sc⊥

∣∣∣
1
≤ 2 |S (θ)|

1− c̃r 6⊥n

∣∣∣∆̃Sc⊥

∣∣∣
∞

+
2c̃δ̂Σ

1− c̃r 6⊥n
. (O.36)

(40) follows by simple manipulations of (O.35)-(O.36). As before, we obtain̂̃σ ≤ |∆̃S(θ)|1/c̃+ Σ̂6⊥ (β, θ) ≤ |S (θ)| |∆̃Sc⊥
|∞/c̃+ Σ̂ 6⊥ (β, θ) , (O.37)
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which, together with (O.34), yield the following bound used to obtain Theorem A.1∣∣∣∣DZ

(
θ̂ − θ

)
Sc⊥

∣∣∣∣
∞
≤ 2γ

(
r 6⊥n |S (θ)| /c̃

) (
r 6⊥n Σ̂6⊥(β, θ) + δ̂

)
.

The rest is as before. �

Proof of propositions A.4 and O.5. Take β in I, set ∆̂ , D−1
X (β̂−β), and work on G∩GA1. We

have, for g ∈ [dG], using the triangle inequality in the second and fourth display, and the definition
of G and the Cauchy-Schwartz inequality in the third,

|DZEn[ZUg(β)]|∞ ≤ |DZEn[ZWg(β)]|∞ + |DZEn[ZVg(β)]|∞
≤ rnEn[Wg(β)2]1/2 + En[Vg(β)2]1/2

≤ rnσ̂g(β) + (rn + 1)En[Vg(β)2]1/2 ≤ rnσ̂g(β) + (rn + 1)v̂g.

Hence, β ∈ ÎE (rn, σ̂(β)) and∣∣∣Ψ̂∆̂·,g

∣∣∣
∞
≤ rn (σ̂g + σ̂g(β)) + 2(rn + 1)

√
1 + τnvg,dX . (O.38)

Moreover, by the inverse triangle inequality, we have

σ̂g(β) ≥ En[Wg(β)2]1/2 − En[Vg(β)2]1/2 ≥
√

1− τnσWg(β) −
√

1 + τnvg,dX .

Hence, by convexity, we have

σ̂g(β)− σ̂g
(
β̂
)
≤ min

(
rn + (rn + 1)

√
1 + τnvg,dXγ

(√
1− τnσWg(β) −

√
1 + τnvg,dX

)
, 1
)
|∆̂SI |1

+
∣∣∣∆̂ScI

∣∣∣
1

≤ min

(
rn + (rn + 1) max

(
0, 1n

σWg(β)

vg,dX
− 1

)−1

, 1

)∣∣∣∣(∆̂SI

)
·,g

∣∣∣∣
1

+

∣∣∣∣(∆̂ScI

)
·,g

∣∣∣∣
1

≤ rn(β)

∣∣∣∣(∆̂SI

)
·,g

∣∣∣∣
1

+

∣∣∣∣(∆̂ScI

)
·,g

∣∣∣∣
1

. (O.39)

Hence we obtain the first inequality in (i). Denoting by Ψ̂X , DXEn[XX>]DX , the second

inequality comes from En[(X>(β̂·,g − β·,g))2] ≤ |Ψ̂X∆g|∞ |∆g|1 .
The third inequality comes from |σ̂g(β̂)− σWg(β)| ≤ En[(X>(β̂·,g − β·,g))2]1/2 + |σWg(β)− σ̂g(β)| and

max
(√

1 + τn − 1, 1−
√

1− τn
)
≤ τn. By definition of the estimator, we have∣∣∣∆̂Sc∩SQ

∣∣∣
1
≤
∣∣∣∆̂S∩SQ

∣∣∣
1

+ 2
∣∣D−1

X βSc∩SQ
∣∣
1

+ c
∑
g∈[dG]

(
min

(
rn + (rn + 1) max

(
0,

1nσWg(β)

vg,dX
− 1

)−1

, 1

)∣∣∣∣(∆̂SI

)
·,g

∣∣∣∣
1

+

∣∣∣∣(∆̂ScI

)
·,g

∣∣∣∣
1

)

≤
∣∣∣∆̂S∩SQ

∣∣∣
1

+ 2
∣∣D−1

X βSc∩SQ
∣∣
1

+ c
(
rn(β)

∣∣∣∆̂SI

∣∣∣
1

+
∣∣∣∆̂ScI

∣∣∣
1

)
dG∑
g=1

∣∣∣Ψ̂∆̂·,g

∣∣∣
∞
≤rn

dG∑
g=1

(σ̂g + σ̂g(β)) + 2(rn + 1)
√

1 + τn

dG∑
g=1

vg,dX
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≤rn
c

(∣∣D−1
X βSQ

∣∣
1
−
∣∣∣D−1

X β̂SQ

∣∣∣
1

)
+ 2rn

dG∑
g=1

σ̂g(β) + 2(rn + 1)
√

1 + τn

dG∑
g=1

vg,dX .

The second inequality from (ii) is obtained in a similar manner as in the proof of Proposition A.3.
The last statement is obtained using that, by similar arguments as those leading to (O.27),

En
[(
X>

(
β̂·,g − β·,g

))2
]
≤
∣∣∣D−1

X

(
β̂·,g − β·,g

)∣∣∣2
1
|Ψ̂X |∞. �
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