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HIGH-DIMENSIONAL INSTRUMENTAL VARIABLES REGRESSION AND

CONFIDENCE SETS

ERIC GAUTIER AND ALEXANDRE B. TSYBAKOV

Abstract. We propose an instrumental variables method for inference in high-dimensional structural

equations with endogenous regressors. The number of regressors K can be much larger than the

sample size. A key ingredient is sparsity, i.e., the vector of coefficients has many zeros, or approximate

sparsity, i.e., it is well approximated by a vector with many zeros. We can have less instruments than

regressors and allow for partial identification. Our procedure, called STIV (Self Tuning Instrumental

Variables) estimator, is realized as a solution of a conic program. The joint confidence sets can be

obtained by solving K convex programs. We provide rates of convergence, model selection results and

propose three types of joint confidence sets relying each on different assumptions on the parameter

space. Under the stronger assumption they are adaptive. The results are uniform over a wide classes

of distributions of the data and can have finite sample validity. When the number of instruments is too

large or when one only has instruments for an endogenous regressor which are too weak, the confidence

sets can have infinite volume with positive probability. This provides a simple one-stage procedure

for inference robust to weak instruments which could also be used for low dimensional models. In

our IV regression setting, the standard tools from the literature on sparsity, such as the restricted

eigenvalue assumption are inapplicable. Therefore we develop new sharper sensitivity characteristics,

as well as easy to compute data-driven bounds. All results apply to the particular case of the usual

high-dimensional regression. We also present extensions to the high-dimensional framework of the

two-stage least squares method and method to detect endogenous instruments given a set of exogenous

instruments.
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1. Introduction

We consider a structural model of the form

(1.1) yi = xTi β + ui, i = 1, . . . , n,

where xi are random vectors of regressors of dimension K and ui is a zero-mean random error possibly

correlated with some or many regressors, called endogenous - as opposed to exogenous - regressors.

Endogeneity occurs when a regressor is determined simultaneously with the response variable yi,

when the error term ui absorbs an unobserved variable which is partially correlated with yi, in the

errors-in-variables model when the measurement error is independent of the underlying variable. This

paper provides a computationaly efficient method based on convex optimization for (robust) inference

under the sparsity scenario when K is large, possibly much larger than n, and one of the following

assumptions is satisfied:

(i) only few coefficients βk are non-zero (β is sparse),

(ii) β can be well approximated by a sparse vector (β is approximately sparse).

We rely on instrumental variables (instruments), i.e. random vectors zi of dimension L which satisfy

(1.2) ∀i = 1, . . . , n, E[ziui] = 0,

where E[ · ] denotes the expectation. We assume that we have n independent, not necessarily identically

distributed, realizations (yi, x
T
i , z

T
i ), i = 1, . . . , n drawn from a probability P. We consider the problem

of inference on the set of vectors compatible with (1.1) and (1.2)

(1.3) Ident ,
{
β : ∀i = 1, . . . , n, E[zi(yi − xTi β)] = 0

}
.

When this affine space is reduced to a point the model is point identified. It is possible to impose

some restrictions like known signs, prior upper bounds on the size of the coefficients or, as we study in

more details, the number of non-zero coefficients. One typically considers as instrument the regressor

which is identically equal to 1, which gives rise to a constant in (1.1), and all regressors which we know

are exogenous. For each endogenous regressor, one should find instruments which are exogenous while

correlated with the endogenous regressor. Usually such instruments are excluded from the right-hand

side of (1.1) and one is in a situation where L ≥ K. We do not assume this. We allow the last type

of instruments that we described to have a direct affect and appear on the right-hand side of (1.1).

There, sparsity corresponds to exclusion restrictions which are not known in advance. The large K

relative to n problem is a very natural framework in many empirical applications.
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Example 1. Economic theory is not explicit enough about which variables belong to

the true model. Sala-i-Martin (1997) and Belloni and Chernozhukov (2001b) give examples from

development economics where it is unclear which growth determinant should be included in the model.

More than 140 growth determinants have been proposed in the litterature and we are typically faced

with the situation where n is smaller than K and endogeneity. Searching among 2140 (a tredecillion)

submodels, for example if one wants to implement BIC, is simply impossible.

Example 2. Rich heterogeneity. When there is a rich heterogeneity one usually wants to control

for many variables and possibly interactions, or to carry out a stratified analysis where models are

estimated in small population sub-groups (e.g., groups defined by the value of an exogenous discrete

variable). In both cases K can be large relative to n.

Example 3. Many nonlinear functions of an endogenous regressor. This occurs when one

considers a structural equation of the form

yi =

K∑

k=1

αkfk(xend,i) + ui

where xend,i is a low dimensional vector of endogenous regressor and (fk)
K
k=1 are many functions to

capture a wide variety of nonlinearities. Exogenous regressors could also be included. Belloni and

Chernozhukov (2011b) give an example of a wage equation with many transformations of education.

In Engle curves models it is important to include nonlinearities in the total budget (see, e.g., Blundell,

Chen and Kristensen (2007)). When one estimates Engle curves using aggregate data, n is usually

small. Education in a wage equation and total budget in Engle curves are endogenous.

Example 4. Many exogenous regressors due to nonlinearities. Similarly, one can have to

estimate a model of the form

yi = xTend,iβend +
Kc∑

k=1

αkfk(xex,i) + ui

where xex,i and xend,i are respectively vectors of exogenous and endogenous regressors.

Example 5. Many control variables to justify the use of an instrument. Suppose that we

are interested in the parameter β in

(1.4) yi = xTi β + vi,

where some of the variables in xi are endogenous and we want to use as an instrument a variable zi

that does not satisfy E[zivi] = 0. Suppose that we also have observations of vectors of controls wi
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such that E[vi|wi, zi] = E[vi|wi]. Then we can rewrite (1.4) as

yi = xTi β + f(wi) + ui

where f(wi) = E[vi|wi] and ui = vi − E[vi|wi, zi] is such that E [ziui] = 0. If for a sufficiently large

and good set of functions f =
∑Kc

k=1 αkfk we get back to our original model.

Statistical inference under the sparsity scenario when the dimension is larger than the sample

size is now an active and challenging field. The most studied techniques are the Lasso, the Dantzig

selector (see, e.g., Candès and Tao (2007), Bickel, Ritov and Tsybakov (2009); more references can

be found in the recent book by Bühlmann and van de Geer (2011), as well as in the lecture notes by

Koltchinskii (2011))and aggregation methods (see Dalalyan and Tsybakov (2008), Rigollet and Tsy-

bakov (2011) and the papers cited therein). This literature proposes methods that are computationally

feasible in high-dimensional setting. For example, the Lasso is a convex program as opposed to the

ℓ0-penalized least squares method, which is NP -hard and thus impossible to solve in practice when K

is very small. The Dantzig selector is solution of a simple linear program. Some important extensions

to model from econometrics have been obtained by Belloni and Chernozhukov (2011a) who study the

ℓ1-penalized quantile regression and by Belloni, Chen, Chernozhukov et al. (2012) who use Lasso

type methods to estimate the so-called optimal instruments and obtain optimal confidence for low di-

mensional structural equations. Caner (2009) studies a Lasso-type GMM estimator. Rosenbaum and

Tsybakov (2010) deal with the high-dimensional errors-in-variables problem. The high-dimensional

setting in a structural model with endogenous regressors that we are considering here has not yet

been analyzed. This paper presents an infererence procedure based on a new estimator that we call

the STIV estimator (Self Tuning Instrumental Variables estimator).

The STIV estimator is an extension of the Dantzig selector of Candès and Tao (2007). It

can obviously also be applied in the high-dimensional regression model without endogeneity simply

using zi = xi. The results of this paper extend those on the Dantzig selector (see Candès and

Tao (2007), Bickel, Ritov and Tsybakov (2009)) in several ways: By allowing for endogenous regressors

when instruments are available, by working under weaker sensitivity assumptions than the restricted

eigenvalue assumption of Bickel, Ritov and Tsybakov (2009), which in turns yields tighter bounds,

by imposing weak distributional assumptions, by introducing a procedure independent of the noise

level and by providing uniform joint confidence sets. The STIV estimator is also related to the

Square-root Lasso of Belloni, Chernozhukov and Wang (2011). The Square-root Lasso is a method

independent of the variance of the errors.The STIV estimator adds extra linear constraints coming
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from the restrictions (1.2) which allows to deal with endogenous regressors. The implementation of

the STIV estimator also corresponds to solving a conic program.

The theoretical results of this paper include rates of convergence, variable selection and joint

confidence sets for sparse vectors. The first and second classes of confidence sets are based on an

the estimation of the set of the non-zero coefficients. Excluding from the high-dimensional parameter

space models which are too close to the true model, we obtain an upper estimate Ĵ2 on the set of

non-zero coefficients. Based on this set, one can obtain a conservative confidence set. Assuming

both an upper bound on the number of non-zero coefficients and that the non-zero coefficients are

large enough, we obtain a smaller set Ĵ1. It corresponds to the true set of non-zero coordinates with

probability close to 1. The confidence sets which are based on the set Ĵ1 are adaptive in a sense that

will be clear in Section 8.3.1. The corresponding confidence sets are obtained by solving |Ĵ |(2K + 2)

simple convex programs where Ĵ = Ĵ2 or Ĵ = Ĵ1. The third class of confidence sets requires an upper

bound on the number of non-zero coefficients but these coefficients can be arbitrarily close to 0. A

base solution to obtain these joint confidence sets requires to solve K convex programs. It is possible

to obtain sharper confidence sets by solving 2K programs for each coefficient of interest. So, our

method is easy and fast to implement in practice. This is an attractive feature even when K ≪ n.

We also present tighter confidence sets that can be obtained in specific situations such as when the

number of non-zero coefficients and/or endogenous regressors is small. Similar confidence sets can be

obtained for approximately sparse models. For example, for the third type of confidence sets, one uses

an upper bound on the size of the best aproximating sparse model.

The core of our analysis is non-asymptotic. We do not make any restriction on the number of

regressors nor on the number of instruments relative to the number of potential regressors. We provide

a partially identified analysis to allow for the situation where K > L. For example, among the large

number of regressors, only L are known to be exogenous and used as their own instruments while the

number of non-zero coefficients is possibly smaller than L. The results are uniform among wide classes

of data generating processes that allow for non-Gaussian errors and sometimes heteroscedasticity. We

consider several scenarii on the data generating process under which the confidence sets can have finite

sample validity. In the presence of weak instruments the finite sample distribution of the two-stage

least squares can be highly non normal and even bimodal (see, e.g., Nelson and Startz (1990a,b)) and

inference usually relies on non-standard asymptotics (see, e.g., Stock, Wright and Yogo (2002) and

Andrews and Stock (2007) for a review and the references cited therein). We do not need assumptions

on the strength of the instruments, and no preliminary test for weak instruments is required. The size
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of the confidence sets depends on the best instrument. If all the instruments are individually weak

or when the number of instruments is too large the method yields infinite volume confidence sets.

We also show that the STIV estimator can be used for low dimensional structural equations when

there is no uncertainty on the relevance of the regressors and provides confidence sets that are easy

to calculate, robust to weak instruments, and do not require a pretest. We present an extension to

the high-dimensional framework of the two-stage least squares method where both the structural and

reduced form models are high-dimensional. Though in the literature there are no results on optimal

joint confidence sets for high-dimensional regression or high-dimensional structural equations, this is

a natural procedure to look at. Unlike for low dimensional structural equations, we observe that if one

accounts for the uncertainty coming for the estimation of the first stage equation then the two-stage

method usually gives larger joint confidence sets than the easy one-stage method. Optimal confidence

sets for low dimensional parameters in high-dimensional structural equations will appear in a different

paper and uses the STIV estimator and the joint confidence sets as a core ingredient. We also present

a two-stage method to detect endogenous instruments given a preliminary set of valid instruments.

Again, the second stage confidence sets heavily rely on the availibility of joint confidence sets for the

first stage. Finally, we conclude with a simulation study. All proofs are given in the appendix.

2. Basic Definitions and Notation

We set Y = (y1, . . . , yn)
T , zl = (zl1, . . . , zln)

T for l = 1, . . . , L, U = (u1, . . . , un)
T , and we

denote by X and Z the matrices of dimension n × K and n × L respectively with rows xTi and zTi ,

i = 1, . . . , n. The sample mean is denoted by En[ · ]. We use the notation

En[X
a
kU

b] ,
1

n

n∑

i=1

xakiu
b
i , En[Z

a
l U

b] ,
1

n

n∑

i=1

zaliu
b
i ,

where xki is the kth component of vector xi, and zli is the lth component of zi for some k ∈ {1, . . . ,K},
l ∈ {1, . . . , L}, a ≥ 0, b ≥ 0. Similarly, we define the sample mean for vectors; for example, En[UX] is

a row vector with components En[UXk]. We also define the corresponding population means:

E[Xa
kU

b] ,
1

n

n∑

i=1

E[xakiu
b
i ], E[Za

l U
b] ,

1

n

n∑

i=1

E[zaliu
b
i ] .

We use the normalization matrices for DX and DZ to rescale X and Z. They are diagonal K ×K,

respectively L× L, matrices. The diagonal entries of DX are (DX)kk = En[X
2
k ]

−1/2 for k = 1, . . . ,K.

The diagonal entries of DZ are (DZ)ll = En[Z
2
l ]

−1/2 for l = 1, . . . , L.

For a vector β ∈ RK , let J(β) = {k ∈ {1, . . . ,K} : βk 6= 0} be its support. We denote by |J | the
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cardinality of a set J ⊆ {1, . . . ,K} and by Jc its complement: Jc = {1, . . . ,K} \J . We denote by Jex

the subset of {1, . . . ,K} corresponding to the indices of the regressors that we know to be exogenous.

It can be a subset of all the exogenous regressors. The regressors whose index is in Jex are used as their

own instruments. The ℓp norm of a vector ∆ is denoted by |∆|p, 1 ≤ p ≤ ∞. For ∆ = (∆1, . . .∆K)T ∈
RK and a set of indices J ⊆ {1, . . . ,K}, we define ∆J , (∆11l{1∈J}, . . . ,∆K1l{K∈J})

T , where 1l{·} is

the indicator function. For a vector β ∈ RK , we set
−−−−→
sign(β) , (sign(β1), . . . , sign(βK)) where

sign(t) ,





1 if t > 0

0 if t = 0

−1 if t < 0

For a ∈ R, we set a+ , max(0, a). We use the convention inf ∅ , ∞.

We will sometimes restrict the class of models to sparse models and make inference on the

sparse identifiable parameters:

Bs = Ident
⋂

{β : |J(β)| ≤ s}

for some upper bound s in {1, . . . ,K} on the sparsity. This is the set of vectors of coefficients

compatible with (1) the moments restrictions and (2) a prior upper bound on the number of non-zero

coefficients. These sets satisfy

∀s ≤ s′ ≤ K, Bs ⊆ Bs′ ⊆ BK = Ident .

3. The STIV Estimator

The sample counterpart of the moment conditions (1.2) can be written in the form

(3.1)
1

n
ZT (Y −Xβ) = 0.

This is a system of L equations with K unknown parameters. If L > K, it is overdetermined. In

general rank(ZTX) ≤ min(K,L, n), thus when L ≤ K or when n < K the matrix does not have full

column rank. Furthermore, replacing the population equations (1.2) by (3.1) induces a huge error

when L, K or both are larger that n. So, looking for the exact solution of (3.1) in high-dimensional

settings makes no sense. However, we can stabilize the problem by restricting our attention to a

suitable “small” candidate set of vectors β, for example, to those satisfying the constraint

(3.2)

∣∣∣∣
1

n
ZT (Y −Xβ)

∣∣∣∣
∞

≤ τ,

where τ > 0 is chosen such that (3.2) holds for β in Ident with high probability. We can then refine

the search of the estimator in this “small” random set of vectors β by minimizing an appropriate
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criterion such as, for example, the ℓ1 norm of β, which leads to a simple optimization problem. It is

possible to consider different small sets in (3.2), however the use of the sup-norm makes the inference

robust to the presence many weak or irrelevant instruments as explained in Section 6.

In what follows, we use this idea with suitable modifications. First, notice that it makes sense

to normalize the matrix Z. This is quite intuitive because, otherwise, the larger the instrumental

variable, the more influential it is on the estimation of the vector of coefficients. The constraint (3.2)

is modified as follows:

(3.3)

∣∣∣∣
1

n
DZZ

T (Y −Xβ)

∣∣∣∣
∞

≤ τ.

Along with the constraint of the form (3.3), we include more constraints to account for the

unknown level σ of En[U
2]. Specifically, we say that a pair (β, σ) ∈ RK×R+ satisfies the IV-constraint

if it belongs to the set

(3.4) Î ,

{
(β, σ) : β ∈ RK , σ > 0,

∣∣∣∣
1

n
DZZ

T (Y −Xβ)

∣∣∣∣
∞

≤ σr, Q̂(β) ≤ σ2

}

for some r > 0, where the function Q̂(β) is defined as

Q̂(β) ,
1

n

n∑

i=1

(yi − xTi β)
2.

The choice of r depends on the class of distributions for the data generating process, the number of

instruments, the sample size and the confidence level 1 − α. We give the details in the next section.

A typical (“reference”) behavior is

(3.5) r ∼
√

logL

n
.

The additional constraint Q̂(β) ≤ σ2 is introduced in (3.4) because E[U2] is not identified without

instruments. For example, (1.1) allows the variance of ui to be greater than the variance of yi. This

constraint is crucial to obtain uniform, possibly finite sample, confidence sets under various classes of

data generating processes.

Definition 3.1. We call the STIV estimator any solution (β̂, σ̂) of the following minimization problem:

(3.6) min
(β,σ)∈Î

( ∣∣D−1
X

β
∣∣
1
+ cσ

)
,

where c is a constant in (0, r−1).
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The summand cσ is included in the criterion to prevent from choosing σ arbitrarily large;

indeed, the IV-constraint does not prevent from this.

We use β̂ as an estimator of β in Ident and use both β̂ and σ̂ to construct confidence sets.

Finding a solution (β̂, σ̂) of the minimization problem (3.6) reduces to the following conic program.

Algorithm 3.1. Find β ∈ RK and t > 0 (σ = t/
√
n), which achieve the minimum

(3.7) min
(β,t,v,w)∈V

(
K∑

k=1

wk + c
t√
n

)

where V is the set of (β, t, v, w), with satisfying:

v = Y −Xβ, −rt1 ≤ 1√
n
DZZ

T (Y −Xβ) ≤ rt1,

−w ≤ D−1
X

β ≤ w, w ≥ 0, (t, v) ∈ C.

Here 0 and 1 are vectors of zeros and ones respectively, the inequality between vectors is understood

in the componentwise sense, and C is a cone: C , {(t, v) ∈ R× Rn : t ≥ |v|2}.

Conic programming is a standard tool in optimization and open source toolboxes are available

to implement it (see, e.g., Grant and Boyd (2013)). Computationally, conic programming starts to

be difficult when K is of the order of several thousands. In a forthcoming paper, we will show that,

under some conditions, is possible to replace the conic program (3.7) by a linear program as it is done

in Gautier and Tsybakov (2013) for the usual regression setting without instruments.

Note that the STIV estimator is not necessarily unique. Minimizing the ℓ1 criterion
∣∣D−1

X
β
∣∣
1

is a convex relaxation of minimizing the ℓ0 norm, i.e., the number of non-zero components of β. This

usually ensures that the resulting solution is sparse.

Remark 3.1. If one knows in advance that some components of β are non-zero, they can be excluded

from the ℓ1 norm in (3.6). The special case where the model is low dimensional and there is no

uncertainty on which variable belongs to the model is treated in Section 9.1. This is important because

it provides easily computable confidence sets which are robust to weak instruments.

For the particular case Z = X, the STIV estimator provides an extension of the Dantzig selector

to the setting with unknown variance of the noise. In this particular case, the STIV estimator can

be related to the Square-root Lasso of Belloni, Chernozhukov and Wang (2011). The definition of the

STIV estimator contains the additional constraint (3.3), which is not present in the conic program for

the Square-root Lasso. This is due to the fact that we need to handle the endogeneity.
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Our main findings about the STIV estimator can be sketched as follows. First, we obtain

rates of convergence for
∣∣∣D−1

X
(β̂ − β)

∣∣∣
p
for 1 ≤ p ≤ ∞ of the order O(c

1/p
J(β)r) for sufficiently sparse

vectors. Here, r is essentially as in (3.5). The constant cJ(β) is given in Table 7. It is of the order of

|J(β)| without endogeneity or when 0 < c < 1. When the dimension is large relative to n, one uses

1 ≤ c < r−1. The rates then start to be influenced by the number of regressors that are not used

as their own instruments. We also analyse the estimation of approximately sparse vectors. Second,

we show that based on the STIV estimator, we can efficiently construct joint confidence sets for the

components of sparse vectors β. We propose two approaches to address this issue. The first, that we

call the sparsity certificate approach, is applicable when one knows an upper bound on the sparsity s.

In the second approach, we use instead an estimator Ĵ of the support J(β), for example, the support

of the STIV estimator or a thresholded STIV estimator. Both approaches are based on the bounds

of Theorem 6.1 that can be stated as follows (here we only display the coordinate-wise bounds):

(3.8) |β̂k − βk| ≤
2σ̂rAk(|J(β)|)
En[X

2
k ]

1/2
, k = 1, . . . ,K.

Here, Ak(t) are some explicitly defined coefficients, such that Ak(t) is monotone increasing in t. This

motivates the sparsity certificate approach: replace |J(β)| in (3.8) by a known upper bound s or

display nested confidence sets for various values of s. We provide a base solution where the values

Ak(s) can be then computed by solving K simple convex programs. For the second approach, the

joint confidence sets are of the form

(3.9) |β̂k − βk| ≤
2σ̂rĀk(Ĵ)

En[X
2
k ]

1/2
, k = 1, . . . ,K.

where the explicitly defined constant Āk(Ĵ) is sharper than Ak(s) when |Ĵ | ≤ s. In the general case,

the computation of Āk(Ĵ) reduces to solving |Ĵ |(2K + 2) simple convex programs. We also present

refinements which are possible in various cases, for example, when there are few endogenous regressors.

4. Sensitivity Characteristics

In the usual linear regression in low dimension, when Z = X and the Gram matrix XTX/n is

positive definite, the sensitivity is given by the minimal eigenvalue of this matrix. In high-dimensional

regression, the theory of the Lasso and the Dantzig selector comes up with a more sophisticated

sensitivity analysis; there the Gram matrix cannot be positive definite and the eigenvalue conditions

are imposed on its sufficiently small submatrices. This is typically expressed via the restricted isometry

property of Candès and Tao (2007) or the more general restricted eigenvalue condition of Bickel,
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Ritov and Tsybakov (2009). In our structural model with endogenous regressors, these sensitivity

characteristics cannot be used, since instead of a symmetric Gram matrix we have a rectangular

matrix ZTX/n involving the instruments. Since we include normalizations, we need to deal with the

normalized version of this matrix,

Ψn ,
1

n
DZZ

TXDX.

In general, Ψn is not a square matrix. For L = K, it is a square matrix but, in the presence of at

least one endogenous regressor, Ψn is not symmetric.

We now introduce some scalar sensitivity characteristics related to the action of the matrix Ψn

on vectors in the cone

(4.1) CJ ,
{
∆ ∈ RK : |∆Jc |1 ≤ |∆J |1 + cr|∆Jex |1 + c|∆Jc

ex
|1
}

where c is the constant in the definition of the STIV estimator, J is any subset of {1, . . . ,K}.

Remark 4.1. When there are no endogenous regressors the cone can be written as

(4.2) CJ =
{
∆ ∈ RK : (1− cr)|∆Jc |1 ≤ (1 + cr)|∆J |1

}
.

The use of such cones to define sensitivity characteristics is standard in the literature on Lasso and

Dantzig selector (cf. Bickel, Ritov and Tsybakov (2009)).

If the cardinality of J is small, the vectors ∆ in the cone CJ have a substantial part of their

mass concentrated on a set of small cardinality. This is why CJ in (4.2) is sometimes called the cone

of dominant coordinates. The set J that will be used later is the set J(β), which is small if β is sparse.

Given a subset J0 ⊆ {1, . . . ,K} and p ∈ [1,∞], we define the ℓp-J0 block sensitivity as

(4.3) κp,J0,J , inf
∆∈CJ : |∆J0

|p=1
|Ψn∆|∞ .

By convention, we set κp,∅,J = ∞. The sensitivities (4.3) depend both on c and Jex (recall that Jex

is the set of potential regressors which are known in advance to be exogenous and used as their own

instruments and not necessarily the actual set of exogenous potential regressors) but for brevity we

do not make the dependence explicit. Similar but different quantities have been introduced in Ye and

Zhang (2010) under the name of cone invertibility factors. They differ from the sensitivities in several

respects, in particular, in the definition of the cone CJ and of the matrix Ψn. Moreover, unlike the

cone invertibility factors, the sensitivities do not involve scaling by |J(β)|1/p in the definition. Indeed,

by Proposition 4.1 below, the dependence of the sensitivities on J(β) is more complex in the presence

of endogenous regressors and we do not include any specific scaling for full generality.
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Coordinate-wise sensitivities κ∗k,J , κp,{k},J correspond to singletons J0 = {k}. Since (4.3) is

invariant to replacing ∆ by −∆, we also have

κ∗k,J , inf
∆∈CJ : ∆k=1

|Ψn∆|∞ .

For the other extreme, J0 = {1, . . . ,K} we use the shorthand notation κp,J , namely:

κp,J , inf
∆∈CJ : |∆|p=1

|Ψn∆|∞ .

To explain the role of sensitivity characteristics, let us sketch here some elements of our

argument. It will be clear from the proofs that we adjust r in the definition of Î such that for

∆ = D−1
X

(β̂ − β) where β ∈ Ident, with probability at least 1− α we have:

(4.4) |Ψn∆|∞ ≤ r(2σ̂ + r |∆Jex |1 +
∣∣∆Jc

ex

∣∣
1
), and ∆ ∈ CJ(β).

The inequality in (4.4) includes terms of different nature: |Ψn∆|∞ on one side, and the ℓ1-norms on

the other. The sensitivities allow one to relate them to each other, since for any J0 ⊆ {1, . . . ,K},
1 ≤ p ≤ ∞,

(4.5) |∆J0 |p ≤
|Ψn∆|∞
κp,J0,J(β)

.

Inequality (4.5) is trivial if ∆J0 = 0 and otherwise immediately follows from

|Ψn∆|∞
|∆J0 |p

≥ inf
∆̃: ∆̃ 6=0, ∆̃∈CJ(β)

|Ψn∆̃|∞
|∆̃J0 |p

.

From (4.4) and (4.5) with p = 1, J0 = Jex and J0 = Jc
ex we obtain, with probability at least 1− α,

|Ψn∆|∞ ≤ r

(
2σ̂ + r

|Ψn∆|∞
κ1,Jex,J(β)

+
|Ψn∆|∞
κ1,Jc

ex,J(β)

)

and thus

(4.6) |Ψn∆|∞ ≤ 2rσ̂

(
1− r2

κ1,Jex,J(β)
− r

κ1,Jc
ex,J(β)

)−1

+

.

Together (4.5) and (4.6) yield for any p in [1,∞], J0 ⊆ {1, . . . ,K}, with probability at least 1− α,

(4.7) |∆J0 |p ≤ 2rσ̂

κp,J0,J(β)

(
1− r2

κ1,Jex,J(β)
− r

κ1,Jc
ex,J(β)

)−1

+

which yields the desired upper bound on the accuracy of the STIV estimator, cf. Theorem 6.1 below.

The coordinate-wise sensitivities can also be written as

(4.8) κ∗k,J = inf
∆∈Âk

(DX)kk max
l=1,...,L

(DZ)ll

∣∣∣∣∣∣
1

n

n∑

i=1

zli


xki −

∑

m6=k

xmi∆m



∣∣∣∣∣∣
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for some restricted set Âk of admissible vectors ∆ in RK−1 that is derived from the cone CJ . As

an example, when there is only one endogenous regressor which is the regressor with index 1 and it

belongs to the true model, the set Â1 is defined as

Â1 ,

{
∆ ∈ RK−1 :

∣∣∣
(
D−1

X
∆
)
J(β)c

∣∣∣
1
≤ (1 + c)(DX)−1

11 +
∣∣∣
(
D−1

X
∆
)
J(β)\{1}

∣∣∣
1
+ cr

∣∣∣
(
D−1

X
∆
)
{2,...,K}

∣∣∣
1

}
.

The coordinate-wise sensitivities are measures of the strength of the instruments. They are also

restricted partial empirical correlations. When an exogenous variable (xki)
n
i=1 serves as its own in-

strument, unless it is almost colinear to other relevant regressors in the structural model, κ∗k,J(β) is

bounded away from zero. When (xki)
n
i=1 is endogenous then it is not used as an instruments and

κ∗k,J(β) can be small. Because of the sup-norm, one good instrument is enough to ensure that κ∗k,J(β)

is bounded away from zero. Because of the sup-norm it is small only if all instruments are weak.

The sensitivities also provide sharper results for the analysis of Dantzig selector and of the

Lasso in classical high-dimensional regression. We show in Section A.1 that the assumption that

the sensitivities κp,J are positive is weaker and more flexible than the restricted eigenvalue (RE)

assumption of Bickel, Ritov and Tsybakov (2009). Unlike the RE assumption, it is applicable to

non-square non-symmetric matrices.

We explain in Section A.2 how to compute exactly the sensitivities of interest when J is given

(in practice, estimated) and |J | is small. The following result is a core ingredient to obtain the lower

bounds on the sensitivities in Section 8.1.

Proposition 4.1. (i) Let J, Ĵ be two subsets of {1, . . . ,K} such that J ⊆ Ĵ . Then, for all J0 ⊆
{1, . . . ,K}, and all p ∈ [1,∞] we have κp,J0,J ≥ κp,J0,Ĵ .

(ii) For all J0 ⊆ {1, . . . ,K} and all p ∈ [1,∞] we have κp,J0,J ≥ κp,J .

(iii) For all p ∈ [1,∞],

(4.9) c
−1/p
J κ∞,J ≤ κp,J ≤ κ∞,J

and for all J0 ⊆ {1, . . . ,K},

(4.10) |J0|−1/pκ∞,J0,J ≤ κp,J0,J ≤ κ∞,J0,J .

(iv) For all J0 ⊆ {1, . . . ,K} we have κ∞,J0,J = mink∈J0 κ
∗
k,J = mink∈J0 min∆∈CJ , ∆k=1, |∆|∞≤1 |Ψn∆|∞.

(v) κ1,Jex,J ≥ max
(
c−1
Jex,J

κ∞,J∪Jc
ex,J , |Jex|−1κ∞,Jex,J

)
.

(vi) κ1,Jc
ex,J ≥ max

(
c−1
Jc
ex,J

κ∞,J,J , |Jc
ex|−1κ∞,Jc

ex,J

)
.
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(vii) κ1,J ≥
(

2
κ1,J,J

+ cr
κ1,Jex,J

+ c
κ1,Jc

ex,J

)−1
≥ c−1

J κ∞,J∪Jc
ex,J .

The constants cJ , cJex,J and cJc
ex,J

are given in Table 7.

Remark 4.2. The bound in Proposition 4.1 (vii) is tighter than (4.9) for p = 1 due to the fact that

we replace κ∞,J by κ∞,J∪Jc
ex,J .

Remark 4.3. The bounds become simpler when Jc
ex = ∅. For example, if 0 < c < r−1, we get

κp,J ≥
(

2|J |
1− cr

)−1/p

min
k=1,...,K

κ∗k,J , κ1,J ≥ 1− cr

2
κ1,J,J .

The next proposition gives a a sufficient condition to obtain a lower bound on the ℓ∞-sensitivity.

Proposition 4.1 shows that this is a key element to bound from below all the sensitivities.

Proposition 4.2. Assume that there exist random variables η1 and η2 such that, on an event E,
η1 > 0, 0 < η2 < 1 and

(4.11) ∀k ∈ {1, . . . ,K}, ∃l(k) ∈ {1, . . . , L} :





|(Ψn)l(k)k| ≥ η1 ,

maxk′ 6=k |(Ψn)l(k)k′ | ≤ (1− η2)c
−1
J |(Ψn)l(k)k|

,

then, on E, κ∞,J ≥ η1η2.

Assumption (4.11) is similar to the coherence condition in Donoho, Elad and Temlyakov (2006)

for symmetric matrices, but it is more general because it deals with rectangular matrices. It means

that there exists one sufficiently strong instrument. Indeed, if the regressors and instruments where

centered, |(Ψn)l(k)k| measures the empirical partial correlation of the l(k)th instrument for the kth

variable. It should be sufficiently large relative maxk′ 6=k |(Ψn)l(k)k′ |.

Remark 4.4. This paper focuses on sparsity but one can easily incorporate in Algorithm 3.1 con-

straints of the form Aβ ∈ R where R is a rectangle in Rp and A is a known p×K matrix, for example

known signs or prior upper bounds on the size of the coefficients. This is important for inference in a

partially identified setup where the identified set would otherwise be an affine space. One works with

the following larger sensitivities

κp,J0,J , inf
∆∈CJ : ∆ 6=0, ADX(D−1

X
β̂−∆)∈R

|Ψn∆|∞
|∆J0 |p

.
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5. Distributional Assumptions and Choice of r

In this section, we discuss different choices of the parameter r in the definition of Î. They rely

on a choice of the confidence level 1−α, and on a choice among five scenarii regarding the distribution

P(β) of ziui for i = 1, . . . , n where ui = yi − xTi β and β ∈ Ident. These scenarii are described below.

Our main analysis will be carried out on the event

G ,



 max

l=1,...,L

|En[ZlU ]|√
En[Z2

l ]En[U2]
≤ r



 ,

and r is chosen such that the probability of this event is ≥ 1− α. To achieve this, we first note that

G contains the intersection of two events,



 max

l=1,...,L

|En[ZlU ]|√
En[Z

2
l U

2]
≤ r0




⋂
{

max
l=1,...,L

√
En[Z2

l U
2]

En[Z2
l ]En[U2]

≤ M

}

where r0 > 0 and M > 0 satisfy r = r0M . The constant M can be chosen as an upper bound of

max
l=1,...,L

√
En[Z

2
l U

2]

En[Z
2
l ]En[U2]

on an event of probability close to 1. The simplest choice is to use M = maxl=1,...,L,
i=1,...,n

|zli|/
√

En[Z2
l ]

1/2.

Another option that we do not discuss here in detail is to strengthen the distributional assumptions

- for example M can be close to 1 if zi and ui are independent.

Following this argument, in the first four scenarii below the parameter r is of the form r = r0M .

The constant r0 is adjusted using a union bound and the fact that En[ZlU ]√
En[Z2

l U
2]

are self-normlized sums.

We use results on moderate deviations of self-normalized sums due to Pinelis (1994), Bertail, Gauthérat

and Harari-Kermadec (2009), Efron (1969), and Jing, Shao and Wang (2003). For completeness, they

are stated in Section A.4.

Scenario 1. For every l = 1, . . . , L, zliui are i.i.d. and symmetric,
∏n

i=1 zliui is almost surely not

equal to 0, and L is such that

L <
9α

4e3Φ(−√
n)

where Φ is the CDF of the standard normal distribution. We choose

r0 = − 1√
n
Φ−1

(
9α

4Le3

)
.
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Scenario 2. For some γ4 > 0, for every l = 1, . . . , L, zliui are i.i.d., E[(ZlU)4] < ∞,
∏n

i=1 zliui is

almost surely not equal to 0, and

max
l=1,...,L

E[(ZlU)4]

(E[(ZlU)2])2
≤ γ4, L <

α

2e+ 1
exp

(
n

γ4

)
.

We choose

r0 =

√
2 log(L(2e+ 1)/α)

n− γ4 log(L(2e + 1)/α)
.

Scenario 3. For every i = 1, . . . , n and l = 1, . . . , L, zliui are symmetric and
∏n

i=1 zliui is almost

surely not equal to 0.

We choose

r0 =

√
2 log(L/2α)

n
.

Scenario 4. For some δ > 0 and γ2+δ > 0, for all n, l = 1, . . . , L,
∏n

i=1 zliui is almost surely not

equal to 0, and

max
l=1,...,L

E[|ZlU |2+δ]

(E[Z2
l U

2])(2+δ)/2
≤ γ2+δ, L ≤ α

2Φ(−nδ/(4+2δ)γ
−1/(2+δ)
2+δ )

(
1 +A0

(
1 + n−δ/(4+2δ)γ

1/(2+δ)
2+δ

)2+δ
)

where A0 > 0 is the constant in Theorem A.3.

We choose

r0 = − 1√
n
Φ−1

( α

2L

)
.

Scenarii 1 and 3 rely on symmetry which is realistic if (1.1) is a first difference between two

time periods in a panel data model. Scenario 2 relaxes symmetry but requires fourth moments and

the upper bound γ4. When it is reasonable to assume that n − γ4 log(L(2e + 1)/α) ≥ n/2 one can

take r0 = 2
√

log(L(2e+ 1)/α)/n. A two-stage approach is used in Bertail, Gauthérat and Harari-

Kermadec (2005) to obtain finite sample confidence sets for inference in quasi-empirical likelihood

methods. One starts by choosing r0 with a rough upper bound on γ4. Then one constructs the

upper bound from a confidence interval for γ4 and computes refined confidence sets. Scenarii 3 and 4

allow for heteroscedasticity. Scenario 4 relies on an upper bound γ2+δ. The proposed choice of r0 is

asymptotic because the moderate deviations result depends on A0 which is not explicit. Scenarii 1, 2

and 4 require that the number of instruments does not exceed a power of n.

Remark 5.1. An alternative approach which does not involve a maximum over l is to use (DZ)ll =

(maxi=1,...,n |zli|)−1 and (DX)kk = (maxi=1,...,n |xki|)−1 as in Gautier and Tsybakov (2011). Using

(DX)kk = (maxi=1,...,n |xki|)−1 is useful when 1 ≤ c < r−1 but for 0 < c < 1 one can take (DX)kk =

En[X
2
k ]

−1/2.
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Because relying on a union bound can be conservative when there is correlation between the

instruments we present another scenario from Chernozhukov, Chetverikov and Kato (2013).

Scenario 5. The errors ui are i.i.d. and independent from the zi. There exist constants c, C,

Bn such that: (i) ∀i = 1, . . . , n, l = 1, . . . , L we have |zli| ≤ Bn (a.s.); (ii) E[U4] ≤ C; (iii)

B4
n(log(Ln))

7/n ≤ Cn−c.

Under this scenario, r is not chosen as the product r0M but rather is taken as the 1 − α quantile of

maxl=1,...,L
|En[ZlV ]|
En[Z2

l ]
1/2 conditional on zi for i = 1, . . . , n where vi’s are i.i.d. standard normal random

variables independent from zi’s. These quantiles can be computed by Monte-Carlo techniques. The

corresponding choice of r yields an asymptotic 1 − α confidence. It follows from Corollary 2.1 in

Chernozhukov, Chetverikov and Kato (2013) and the fact that En[U
2] is a consistent estimator of E[U2]

in view of condition (ii). We present in Section A.8 in the Appendix a two-stage method to obtain

confidence sets relaxing the assumption that ui are homoscedastic. It is similar to Proposition 4.2 in

Chernozhukov, Chetverikov and Kato (2013) but we deal with a model with endogenous regressors.

For each j ∈ {1, . . . , 5}, we denote by Pj the class of all distributions P(β) satisfying the

assumptions of Scenario j. Then, for the event G we have

inf
P∈Pj

P(G) ≥ 1− α, j = 1, 2, 3,

lim
n→∞, Φ−1( α

2L)n
− δ

4+2δ γ
1

2+δ
2+δ →0

inf
P∈P4

P(G) ≥ 1− α

limn→∞: B4
n(log(Ln))

7/n≤Cn−c inf
P∈P5

P(G) ≥ 1− α.

The confidence sets are obtained by working on the event G. This yields sets C which are

functions of the observed data and are uniform confidence sets for identifiable parameters (see Romano

and Shaikh (2008)). For example, under Scenarii 1, 2, and 3, we obtain uniform confidence sets for

sparse identifiable parameters with finite sample validity such that

inf
β,P: β∈Bs, P(β)∈Pj

P (β ∈ C) ≥ 1− α , j = 1, 2, 3,

while under the asymptotic Scenario 5,

limn→∞, B4
n(log(Ln))

7/n≤Cn−c inf
β,P: β∈Bs, P(β)∈Pj

P (β ∈ C) ≥ 1− α.

Since the event G is independent of the parameter c, confidence sets can be defined as measurable

intersections for different values of c. Thus not a single tuning parameter has to be specified. Any

feasible intersection contains this set and provides a valid 1−α confidence set. For example, we obtain

an 1−α confidence set by intersecting sets for various values of c on a grid. Uniformity for confidence
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sets with asymptotic confidence level garantees that for a given ǫ > 0, there exists n0 large enough

such that for any sample size n larger than n0, uniformly on the distribution of the observed data, the

confidence level is at least 1−α− ǫ. The fact that each proposed confidence set is uniform only upon

a class of distributions of the observed data is related to the Bahadur and Savage (1956) impossibility

result, see also Romano and Wolf (2000).

6. Basic Bounds

In this section, we provide some basic bounds, from which we will deduce in Sections 7 and 8

the rates of convergence and confidence sets for the STIV estimator. In what follows, we write for

brevity: “For every β in Ident, on the event G...” instead of: “For every Scenario j with j = 1, . . . , 5,

and with the corresponding choice of r, and for every distribution P of the observed data such that β

belongs to Ident and P(β) ∈ Pj , on the event G...”.

6.1. Upper Bounds for Sparse Vectors.

Theorem 6.1. For every β in Ident, on the event G, for any solution (β̂, σ̂) of the minimization

problem (3.6) we have, for every J0 ⊆ {1, . . . ,K}, 0 < c < r−1, p ≥ 1,

(6.1)

∣∣∣∣
(
D−1

X
(β̂ − β)

)
J0

∣∣∣∣
p

≤ 2σ̂r

κp,J0,J(β)

(
1− r2

κ1,Jex,J(β)
− r

κ1,Jc
ex,J(β)

)−1

+

and

(6.2) σ̂ ≤
√
Q̂(β)

(
1 +

r

cκ1,J(β),J(β)

)(
1− r

cκ1,J(β),J(β)

)−1

+

.

In the model without endogeneity, we have κ1,Jc
ex,J(β)

= ∞ and

(6.3)

√√√√ 1

n

n∑

i=1

(
xTi (β̂ − β)

)2
≤ 2σ̂r

√
κ1,J(β)

(
1− r2

κ1,J(β)

)−1

+

.

In particular this theorem implies that, on the event G, for every 0 < c < r−1 and k = 1, . . . ,K,

(6.4) |β̂k − βk| ≤
2σ̂r

En[X2
k ]

1/2 κ∗k,J(β)

(
1− r2

κ1,Jex,J(β)
− r

κ1,Jc
ex,J(β)

)−1

+

.

When τ1 ,

(
1− r2

κ1,Jex,J(β)
− r

κ1,Jc
ex,J(β)

)−1

+
is close to 1 and the sensitivities are bounded away

from zero, the upper bounds in (6.1) and thus (6.4) is of the order O(r) = O(
√

log(L)/n). Thus, we

have an extra
√

log(L) factor as compared to the usual root-n rate. It is a modest price for using

a large number L of instruments. Also, adding instruments and thus rows to matrix Ψn increases

the sup-norm |Ψn∆|∞, and thus potentially increases the sensitivities κp,J0,J(β) and their computable
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data-driven lower bounds that we present in Section 8. This has a positive effect in view of the form

of our bounds, cf. , e.g., (6.4). As we will see later, the inverse of the sensitivities drive the rates of

convergence and the width of the confidence sets. Thus, adding instruments potentially improves the

confidence set. On the other hand, the price for adding instruments in terms of the rate of convergence

appears in the constant r and is only logarithmic in the number of instruments.

The upper bounds are infinite on the event r2

κ1,Jex,J(β)
+ r

κ1,Jc
ex,J(β)

≥ 1. This occurs either when

r is not small enough or when κ1,Jex,J(β) or κ1,Jc
ex,J(β)

are too small. In scenarii 2-5, r is of the order
√

log(L)/n, which allows the number of instruments to be of any order smaller than an exponential

in n. Proposition 4.1 (v) and (vi) yield that

r2

κ1,Jex,J(β)
+

r

κ1,Jc
ex,J(β)

≤
r cb,J(β)

κ∞,J(β)∪Jc
ex,J(β)

(6.5)

where cb,J , rcJex,J + cJc
ex,J

.

When 1 ≤ c < r−1, one can check that cb,J ≤ (2r |Jex ∩ J |+(1+r) |Jc
ex ∩ J |+(1−r) |Jc

ex ∩ Jc|)/(1−
cr). Thus, two conditions |Jex ∩ J(β)| ≤ C1r

−2 = O(n/ log(L)), and |Jc
ex| ≤ C2r

−1 with appropriate

constants C1, C2 > 0, are sufficient to ensure that r2

κ1,Jex,J(β)
+ r

κ1,Jc
ex,J(β)

< 1. The first condition is

implied by a mild and quite standard assumption on the sparsity |J(β)|, while the second one limits

the number of endogenous regressors.

When 0 < c < 1, one obtains easily the upper bound cb,J ≤ 2|J |(r + 1)/(1 − c). Thus, the

condition |J(β)| ≤ C3r = O(
√

n/ log(L)) for some C3 > 0 is sufficient to obtain r2

κ1,Jex,J(β)
+ r

κ1,Jc
ex,J(β)

<

1. No restriction on the number of endogenous regressors is needed in this case.

Remark 6.1. When there is no endogenity, cb,J ≤ 2r |J | (1− cr)−1 .

Due to the upper bound in (4.10) and Proposition 4.1 (iv), we have

r|Jc
ex|

mink∈Jc
ex
κ∗k,J(β)

≤ r2

κ1,Jex,J(β)
+

r

κ1,Jc
ex,J(β)

.

Thus, in the model with only one endogenous regressor, the condition mink∈Jc
ex
κ∗k,J(β) ≤ r, implies

that r2

κ1,Jex,J(β)
+ r

κ1,Jc
ex,J(β)

≥ 1. In other words, if the coordinate-wise sensitivity for the endogenous

regressor is too small, we obtain confidence sets of infinite volume. This is in agreement with Dufour

(1997) who show that confidence sets of infinite volume cannot be avoided for procedures that are

robust to weak instruments.

The case where instruments can have a direct effect on the outcome is studied in Kolesár,

Chetty, Friedman, et al. (2011). This can create situations where L < K and identification fails
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without further assumptions. The situation can be quite different under sparsity. The set Bs is the

union of the sets of vectors β such that




βJc = 0

E[Z(Y −XT
J βJ )] = 0

for all subsets J of {1, . . . ,K} of size s. When s < L, the system of equations E[ZXT
J ]βJ = E[ZY ]

usually has no solution because it is overdetermined. The condition s < L means that there are

exogenous variables that do not have a direct effect on the outcome but one does not know which

one in advance. Because the cone constraint restricts the minimization to vectors with s dominant

coordinates, the sensitivities on the right-hand side of (6.1) and (6.4) can be different from 0. This is

a situation that we study in Section 10.

6.2. Upper Bounds for Approximately Sparse Vectors. Define the enlarged cone

C̃J ,
{
∆ ∈ RK : |∆Jc |1 ≤ 2

(
|∆J |1 + cr|∆Jex |1 + c|∆Jc

ex
|1
)}

and define, for p ∈ [1,∞] and J0 ⊆ {1, . . . ,K}

κ̃p,J0,J , inf
∆∈RK : |∆J0

|p=1, ∆∈C̃J

|Ψn∆|∞ .

We denote for brevity by κ̃p,J and κ̃∗k,J the special cases of κ̃p,J0,J when J0 = {1, . . . ,K} and J0 = {k}
respectively.

Theorem 6.2. For every β in Ident, on the event G, for any solution (β̂, σ̂) of the minimization

problem (3.6) we have, for every J0 ⊆ {1, . . . ,K}, 0 < c < r−1, p ≥ 1,

(6.6)∣∣∣∣
(
D−1

X

(
β̂ − β

))
J0

∣∣∣∣
p

≤ min
J⊆{1,...,K}

max

(
2σ̂r

κ̃p,J0,J

(
1− r2

κ̃1,Jex,J
− r

κ̃1,Jc
ex,J

)−1

+

, 6
∣∣(D−1

X
β
)
Jc

∣∣
1

)
.

In addition, in the model without endogeneity, we have κ̃1,Jc
ex,J = ∞ and

√
1
n

∑n
i=1

(
xTi (β̂ − β)

)2
is

less than

(6.7) min
J⊆{1,...,K}

max

(
2σ̂r√
κ̃1,J(β)

(
1− r2

κ̃1,J(β)

)−1

+

, 2

√
3
∣∣(D−1

X
β
)
Jc

∣∣
1

(
rσ̂ +

r

c

∣∣(D−1
X

β
)
Jc

∣∣
1

))
.

Applying this theorem with J0 = {k} we obtain that, on the event G, for every 0 < c < r−1

and k = 1, . . . ,K,

(6.8) |β̂k − βk| ≤
1

En[X2
k ]

1/2
min

J⊂{1,...,K}
max

(
2σ̂r

κ̃∗k,J

(
1− r2

κ̃1,Jex,J
− r

κ̃1,Jc
ex,J

)−1

+

, 6
∣∣(D−1

X
β
)
Jc

∣∣
1

)
.
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Remark 6.2. To garantee that the right-hand side is small one often assumes that there is C > 0,

α > 1 and sets J such that |J | ≤ s and
∣∣(D−1

X
β
)
Jc

∣∣
1
≤ Cs−α+1. This holds if there exists a permutation

τ of the indices of the coefficients such that, for every k in {1, . . . ,K}, |βτ(k)| ≤ Ck−α.

Inequality (6.6) implies that our estimator adapts to the unknown β, i.e., it performs as well

as if we knew β and the optimal set J for all values of the parameters J0, c and k. For example, for

given c, p = 1 and J0 = {1, . . . ,K}, there exists an optimal set J = J∗ such that

(6.9)
∣∣∣D−1

X

(
β̂ − β

)∣∣∣
1
≤ 2σ̂r

κ̃1,J∗

(
1− r2

κ̃1,Jex,J∗
− r

κ̃1,Jc
ex,J

∗

)−1

+

.

7. Rates of Convergence

In this section, we derive the rates of convergence of the STIV estimator. The argument is

based on replacing the random right-hand sides of (6.1) and (6.2) by their deterministic upper bounds.

To do this, we will need the following assumptions.

Assumption 7.1. For every β ∈ Bs and γ1 ∈ (0, 1), there exist σ∗ > 0 and κ∗ > 0 such that with

probability at least 1− γ1,

max
l∈I

(DZ)
2
llEn[Z

2
l (Y −XTβ)2] ≤ σ2

∗ ,(7.1)

κ∞,J(β) ≥ κ∗,(7.2)

(
1− r2

κ1,Jex,J(β)
− r

κ1,Jc
ex,J(β)

)−1

+

≤ θ∗.(7.3)

Due to Proposition 4.1, on the same event,

κ∗k,J(β) ≥ κ∗, ∀k = 1, . . . ,K,

κp,J(β) ≥ κ∗c
−1/p
J(β) , ∀p ∈ [1,∞],

κ1,J(β),J(β) ≥ κ∗|J(β)|−1

and θ∗ ≤
(
1− r cb,J(β)

κ∗

)−1

+
.

Assumption 7.2. For every γ2 ∈ (0, 1) and k ∈ {1, . . . ,K}, there exist constants vk > 0 such that

P
(
En[X

2
k ]

1/2 ≥ vk, ∀ k ∈ {1, . . . ,K}
)
≥ 1− γ2.

Let G1 and G2 be the events from Assumptions 7.1 and 7.2 and set γ = α+ γ1 + γ2 and

τ∗ ,

(
1 +

r|J(β)|
cκ∗

)(
1− r|J(β)|

cκ∗

)−1

+

θ∗
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where the last term corresponds to (6.5) using κ∗ as a lower bound for κ∞,J(β)∪Jc
ex,J(β)

.

Theorem 7.1. For every β in Bs, under the assumptions of Theorem 6.1 and Assumption 7.1, the

following holds.

(i) On the event G ∩ G1 for any solution (β̂, σ̂) of (3.6), we have

(7.4)
∣∣∣D−1

X

(
β̂ − β

)∣∣∣
p
≤

2σ∗rc
1/p
J(β)τ∗

κ∗
, ∀ p ∈ [1,∞],

and

σ̂ ≤ σ∗

(
1 +

r|J(β)|
cκ∗

)(
1− r|J(β)|

cκ∗

)−1

+

.

In addition, in the model without endogeneity, on the same event,

(7.5)

√√√√ 1

n

n∑

i=1

(
xTi (β̂ − β)

)2
≤ 2σ̂rθ∗

√
2|J(β)|

(1− cr)κ∗
.

(ii) Let, in addition, Assumption 7.2 hold. Then on the event G ∩ G1 ∩ G2, for any solution β̂ of

(3.6), we have

(7.6) |β̂k − βk| ≤
2σ∗rτ∗
κ∗vk

, ∀ k = 1, . . . ,K.

(iii) Let the assumptions of (ii) hold, and

(7.7) |βk| >
2σ∗rτ∗
κ∗vk

for all k ∈ J(β).

Then, on the event G ∩ G1 ∩ G2, for any solution β̂ of (3.6), we have

J(β) ⊆ J(β̂).

For reasonably large sample size (n ≫ log(L)), the value r is small, and τ∗ is approaching 1 as

r → 0. From the discussion that follows Proposition 4.1, we see that when there is no endogeneity

(Jc
ex = ∅), the bounds (7.4) and (7.6) are of the order of magnitude O(r|J(β)|1/p) and O(r) respectively.

These are the same rates, in terms of the sparsity |J(β)|, the dimension L, and the sample size n,

that were proved for the Lasso and Dantzig selector in high-dimensional regression with Gaussian

errors, fixed regressors, and without endogenous variables in Candès and Tao (2007), Bickel, Ritov

and Tsybakov (2009) and Lounici (2008). In this context, L = K is the dimension of β. Interestingly,

under endogeneity we still obtain the O(r|J(β)|1/p) bound in (7.4) provided that 0 < c < 1. However,

for larger values of the tuning parameter c, we obtain the rate O(r(|J(β) ∩ Jex|+ c|Jc
ex|)1/p).
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8. Variable Selection and Uniform Joint Confidence Sets

The only unknown ingredient in inequality (6.1) is the set J(β) that determines the sensitivities.

We propose various strategies to turn these inequalities into valid confidence sets: some relying on an

estimator Ĵ of J(β) and some relying on an upper bound on |J(β)| that we call a sparsity certificate.

8.1. Computationally Efficient Lower Bounds on the Sensitivities. Let us start by stating

preliminary lower bounds obtained by minimizing over a set that contains the cone. As a consequence

we show that we can bound from below all sensitivities of interest by solvingK simple convex programs.

They can also be used to obtain sharper bounds which are easy to compute in certain situations.

Proposition 8.1. When |J | ≤ s and 0 < c < r−1, we have

κ∞,J ≥ κ∞(J, s)(8.1)

κ∗k,J ≥ κ∗k(J, s)(8.2)

κp,J0,J ≥ κp,J0(J, s) ∀p ∈ [1,∞]

κ1,Jex,J ≥ κ1,Jex(J, s)(8.3)

κ1,Jc
ex,J ≥ κ1,Jc

ex
(J, s)(8.4)

(
1− r2

κ1,Jex,J
− r

κ1,Jc
ex,J

)−1

+

≤ θ(J, s)

with the constants κ∞(J, s), κ∗k(J, s), κp,J0(J, s), κ1,Jex(J, s), κ1,Jc
ex
(J, s) and θ(J, s) of Table 7.

These preliminary bounds can be used to obtain easily computable lower bounds by mimizing

over larger sets. We shall use the same notation for the lower bounds of Table 7 and the computable

bounds that we now present.

The constants κ∞(J, s) and κ∗k(J, s) from Table 7 involve the constraint (1− cr)|∆Jex |1 + (1−
c)|∆Jc

ex
|1 ≤ 2s∆j. For 0 < c < 1, the function ∆ → (1 − cr)|∆Jex |1 + (1 − c)|∆Jc

ex
|1 is convex. For

c > 1, ∆ → (1 − c)|∆Jc
ex
|1 is not convex but one can handle cases where Jc

ex has small cardinality

by considering different values of the signs of the coordinates of ∆Jc
ex
. For example, if only the first

regressor is endogenous, the term in curly brackets in the definition of κ∗k(J, s) (cf. Table 7) can be

written as

(8.5) min





min
∆k=±1, ∆j≥0, |∆J |∞≤∆j , ∆1≥0
(1−cr)|∆Jex |1+(1−c)∆1≤2s∆j

|Ψn∆|∞ , min
∆k=±1, ∆j≤0, |∆J |∞≤−∆j , ∆1≤0

(1−cr)|∆Jex |1−(1−c)∆1≤2s∆j

|Ψn∆|∞





.
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The constraints |∆Jex |1 = 1 in the definition of κ1,Jex(J, s), and |∆Jc
ex
|1 = 1 in the definition of

κ1,Jc
ex
(J, s) can be handled in a similar way when respectively |Jex| or |Jc

ex| are not too large. Otherwise,

one can minimize on the larger set replacing |∆Jex |1 = 1 by the convex constraint |∆Jex |1 ≤ 1, or

respectively, |∆Jc
ex
|1 = 1 by |∆Jc

ex
|1 ≤ 1.

When 1 ≤ c < r−1 and |Jc
ex| is large we can bound from below these preliminary lower bounds

by minimizing over larger sets defined by convex constraints. For example, a lower bound of the term

in curly brackets in the definition of κ∞(J, s) (cf. Table 7) is obtained by solving the following convex

program.

Algorithm 8.1. Find v > 0 which achieves the minimum

min
ǫ=±1

min
(w,∆,v)∈Vk,j

v

where Vk,j is the set of (w,∆, v) with w ∈ RK , ∆ ∈ RK , v ∈ R satisfying:

v ≥ 0, −v1 ≤ Ψn∆ ≤ v1, 0 ≤ w ≤ 1, −w1 ≤ ∆ ≤ w1,

ǫ∆k = 1, −∆j1 ≤ wJ ≤ ∆j1, (1− cr)|∆Jex |1 ≤ 2s∆j + (c− 1)
∑

i∈Jc
ex

wi .

This leads to an easily computable lower bound for κ∞(J, s). A similar bound holds for κ∗k(J, s).

As a consequence it is possible to obtain lower bounds for all coordinate-wise sensitivities by solving

2K|J | convex programs.

The set J that matters for our analysis is the set J(β). Due to Proposition 4.1 (i), we can get

data-driven lower bounds for sensitivities provided we have an estimator Ĵ such that of Ĵ ⊇ J(β).

When using the sparsity certificate approach, then lower bounds are obtained by taking J = {1, . . . ,K}
in (8.2), (8.3) and (8.4). In this case, cJ , cJex,J , cJc

ex,J are replaced by the upper bounds c(s), cJex(s),

cJc
ex
(s) that only depend on s, cf. Table 7. We also use an upper bound cb(s) on rmax(c−1

Jex,J
, |Jex|−1)+

max(c−1
Jc
ex,J

, |Jc
ex|−1). The lower bounds κ∞(s), κ∗k(s), κp,J0(s), κ1,Jex(s), κ1,Jc

ex
(s) and θ(s) on the

constants κ∞(J, s), κ∗k(J, s), κp,J0(J, s), κ1,Jex(J, s), κ1,Jc
ex
(J, s) and θ(J, s) respectively are given in

Table 7. As explained after Proposition 8.1, these constants can be further bounded from below by

easily computable values. For example, if 1 < c < r−1 and |Jc
ex| is large enough, a lower bound for

the term in curly brackets in the definition of κ∞(s) can be obtained by solving the following convex

program.

Algorithm 8.2. Find v > 0 which achieves the minimum

min
(w,∆,v)∈Vk

v
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where Vk is the set of (w,∆, v) with w ∈ RK , ∆ ∈ RK , v ∈ R satisfying:

v ≥ 0, −v1 ≤ Ψn∆ ≤ v1, 0 ≤ w ≤ 1, −w ≤ ∆ ≤ w, ∆k = 1,

(1− cr)|∆Jex |1 ≤ 2s+ (c− 1)
∑

i∈Jc
ex

wi .

The constant κ∞(s) can be used as a lower bound for all the coordinate-wise sensitivities. Its

computation requires to solve K convex programs. This leads to easily computable joint confidence

sets. The direct bounds κ∗k(s) are sharper but their computation requires to solve 2K convex programs

for each coordinate k. Thus one has to solve 2K|J0| convex programs if one wishes to obtain tight

bounds for a subvector βJ0 .

8.2. Selection of Variables. Theorem 7.1 (iii) provides an upper estimate on the set of non-zero

components of β. Exact selection of variables can be performed as well. For this purpose, we use the

thresholded STIV estimator β̃ whose coordinates are defined by

(8.6) β̃k ,





β̂k if |β̂k| > ωk,

0 otherwise,

where ωk > 0, k = 1, . . . ,K, are thresholds specified below. The thresholds depend on s and they

can be used if we have a sparsity certificate s. To provide garantees for the thresholding rule, we

strengthen Assumption 7.1 as follows.

Assumption 8.1. There exists positive constants κ∗(s) and θ∗(s) such that, on an event of probability

at least 1− γ1, we have: κ∞(s) ≥ κ∗(s), θ(s) ≤ θ∗(s), and inequalities (7.1) and (7.2) hold.

Denote by G1 and G2 the events of Assumptions 8.1 and 7.2 respectively, and set

τ∗(s) ,

(
1 +

r|J(β)|
cκ∗

)(
1− r|J(β)|

cκ∗

)−1

+

θ(s) .

The following theorem shows that, based on thresholding of the STIV estimator, we recover

the set of non-zero coefficients J(β) with probability close to 1. Even more, we achieve the sign

consistency, i.e., we recover the vector of signs of the coefficients of β with probability close to 1.

Theorem 8.1. For every β in Bs, let the assumptions of Theorem 6.1 and Assumptions 8.1 and 7.2

be satisfied. Assume that

(8.7) |βk| >
4σ∗rτ∗(s)
κ∗(s)vk

for all k ∈ J(β).
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If the thresholds are takes as

ωk ,
2σ̂r

κ∗k(s)En[X
2
k ]

1/2
θ(s),

then, on the event G ∩ G1 ∩ G2, we have J(β̃) = J(β) and

(8.8)
−−−−→
sign(β̃) =

−−−−→
sign(β) .

Conditions (7.7) and (8.7) will be referred to as the beta-min assumptions.

8.3. Joint Confidence Sets. We propose three types of confidence sets under different assumptions.

8.3.1. Adaptive Confidence Sets Under the Stronger Beta-min Assumption. The only unknown in the

bounds of Theorem 6.1 is the set J(β). However, by Theorem 8.1, under the beta-min assumption

(8.7) we have J(β̃) = J(β) with probablity close to 1, and thus we can plug in a data-driven J(β̃)

instead of J(β). This leads to the confidence sets that we refer to as adaptive confidence sets.

Theorem 8.2. Let 0 < c < r−1, and let the assumptions of Theorem 8.1 hold. Set Ĵ = J(β̃) where

β̃ is defined in (8.6). Then, for any β in Bs, on the event G ∩ G1 ∩ G2, for any solution (β̂, σ̂) of the

minimization problem (3.6) and any J0 ⊆ {1, . . . ,K}, p ≥ 1, we have

(8.9)

∣∣∣∣
(
D−1

X
(β̂ − β)

)
J0

∣∣∣∣
p

≤ 2σ̂rθ(Ĵ , |Ĵ |)
κp,J0(Ĵ , |Ĵ |)

.

In addition, in the model without endogeneity, on the same event,

(8.10)

√√√√ 1

n

n∑

i=1

(
xTi (β̂ − β)

)2
≤ 2σ̂rθ(Ĵ , |Ĵ |)√

κ1(Ĵ , |Ĵ |)
.

Since the set J0 can be any singleton, we obtain as a corollary that (3.8) holds on the event

G ∩ G1 ∩ G2; the expression for Ak(·) appearing in (3.8) can be deduced from (8.9). The constant

γ1 + γ2 in the confidence level of Theorem 8.2 can be much smaller than α for large enough σ∗ and

small enough κ∗ and vk, k = 1, . . . ,K.

Remark 8.1. Posterior to this paper, Nickl and Van de Geer (2013) considered asymptotic joint con-

fidence sets based on the ℓ2-norm in high-dimensional regression with Gaussian errors independent of

the regressors. Restricting the parameter space to s-sparse vectors and assuming specific distributions

of the regressors and non-degeneracy of matrix E[Ψn] (in our notation), they propose a confidence set

which, for every k ≤ s, has a diameter bounded in probability by

√
log(K)k

n + n−1/4 uniformly over

vectors β such that |J(β)| ≤ k. Its construction is based on the minimal eigenvalue of E[Ψn] which

is unknown in our paper. They also present necessary and sufficient conditions for the existence of
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confidence sets of diameter bounded in probability by

√
log(K)k

n when

√
log(K)k

n ≫ n−1/4. This requires

to remove from the parameter space vectors that are too close to k-sparse vectors in the Euclidean

distance. The beta-min assumption can be viewed as a sup-norm analogue of this.

8.3.2. Non-adaptive Confidence Sets Under the Weaker Beta-min Assumption. Replacing in Theorem

8.2, Assumption 8.1 by Assumption 7.1, denoting again by G2 the corresponding event, and replacing

the beta-min assumption (8.7) from Theorem 8.1 by the weaker assumption (7.7) from Theorem 7.1,

we obtain the same result as in Theorem 8.2 with Ĵ = J(β̂). The confidence sets are no longer

adaptive because J(β̂) can be larger than J(β).

Remark 8.2. It is possible to obtain an upper bound on |J(β̂)| for the Lasso (see, e.g., Bickel, Ritov

and Tsybakov (2009)) using the equalities in the Karush-Kuhn-Tucker condition for the non-zero

components of β̂. This is not possible here because we only have inequalities.

For the part of the parameter space where the stronger beta-min assumption (8.7) does not

hold but the weaker assumption (7.7) holds the thresholded estimator β̃ can miss some of the relevant

regressors. In Section A.3 in the Appendix we present error bounds in the case where one uses an

estimated set Ĵ such that Ĵ = J(β̂) or Ĵ = J(β̃) but the beta-min assumption needed in Section 8.3.1,

respectively Section 8.3.2, is not satisfied.

8.3.3. Non-adaptive Confidence Sets Under a Sparsity Certificate. The next result presents uniform

joint confidence sets with confidence level at least 1− α without beta-min assumptions.

Theorem 8.3. For any β in Bs, on the event G, for any solution (β̂, σ̂) of the minimization problem

(3.6), and any c in (0, r−1), J0 ⊆ {1, . . . ,K}, p ≥ 1, we have

(8.11)

∣∣∣∣
(
D−1

X
(β̂ − β)

)
J0

∣∣∣∣
p

≤ 2σ̂rθ(s)

κp,J0(s)
.

In addition, in the model without endogeneity, on the same event,

(8.12)

√√√√ 1

n

n∑

i=1

(
xTi (β̂ − β)

)2
≤ 2σ̂rθ(s)√

κ1(s)
.

Replacing the sensitivities by sensitivities for enlarged cones yields confidence sets for non-

sparse models. There, s is an upper bound on the dimension of the best approximating sparse model

(see Theorem 6.2). This approach is similar to undersmoothing in nonparametric statistics.

The parameter c appears in the definitions of the STIV estimator and of the sensitivities.

Choosing smaller c leads to smaller cone CJ(β) and thus to larger sensitivity. This contributes to
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improving the bounds. On the other hand, with smaller c we penalize less for σ in (3.6), which tends

to increase the resulting σ̂ and thus the bounds. Overall, there might be some optimal c. However,

the dependency of the bounds on c does not have a tractable form, which makes the optimization

problematic. Importantly, the result of Theorem 8.3 is uniform in c ∈ (0, r−1). Since the procedure

is fast to implement, it is possible to vary c on a grid, intersect the obtained sets, and still obtain a

valid confidence region of level 1− α.

The sparsity certificate approach is an alternative to the beta-min assumption. We propose

to draw nested sets for increasing values of s in order to obtain honest inference statements for the

whole vector of regressors when one is not willing to assume that the non-zero coefficients are large

enough and there is uncertainty about the number of non-zero coordinates in the true model. This

analysis can be then complemented by the confidence sets of Sections 8.3.1 and 8.3.2. This approach

is analyzed numerically in Section 10.4.

9. Further Results on the STIV estimator

9.1. Low Dimensional Models and Many Weak Instruments. In this section we suppose that

K < n and that we know that all K coefficients are non-zero. We propose the following modification

of the STIV estimator which is a simple one stage method that can handle many instruments (L can

be much greater than n) and where the strength of the instruments can be arbitrary.

Definition 9.1. We call the STIV-R estimator any solution (β̂, σ̂) of the minimization problem:

(9.1) min
(β,σ)∈Î

σ.

To study this estimator, we modify the definitions of the sensitivities by dropping the cone

constraints. Accordingly, we drop the index J(β) in the notation of the sensitivities. Unlike in the

setup of the previous sections (which allows for high dimensionality), these new sensitivities can be

directly computed from the data and no lower bounds are required. For example, the coordinate-wise

sensitivities without the cone constraint can be written as

κ∗k = inf
∆∈RK−1

(DX)kk max
l=1,...,L

(DZ)ll

∣∣∣∣∣∣
1

n

n∑

i=1

zli


xki −

∑

m6=k

xmi∆m



∣∣∣∣∣∣
.

Obtaining joint confidence sets is much more direct and easy.
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Theorem 9.1. For every β in Ident, on the event G, for any solution (β̂, σ̂) of the minimization

problem (9.1), and any p in [1,∞], J0 ⊆ {1, . . . ,K}, we have

∣∣∣∣
(
DX

−1(β̂ − β)
)
J0

∣∣∣∣
p

≤ 2σ̂r

κp,J0

(
1− r2

κ1,Jex
− r

κ1,Jc
ex

)−1

+

,(9.2)

σ̂ ≤
√

Q̂(β).(9.3)

In the model without endogeneity, we have κ1,Jc
ex

= ∞, and

(9.4)

√√√√ 1

n

n∑

i=1

(
xTi (β̂ − β)

)2
≤ 2σ̂r√

κ1

(
1− r2

κ1

)−1

+

.

As for high-dimensional structural equations, the factor
(
1− r2

κ1,Jex
− r

κ1,Jc
ex

)−1

+
in the upper

bound of (9.2) can lead to infinite volume confidence sets.

9.2. The STIV Estimator with Linear Projection Instrument. In this section, we consider the

case where L > K but we look for a smaller set of instruments of size K. The two-stage least squares

is a leading method when the structural equation is low-dimensional. Under the zero conditional mean

assumption which is a stronger exogeneity condition than (1.2), optimal instruments provide a semi-

parametric efficiency bound (see Amemiya (1974), Chamberlain (1987) and Newey (1990)). In the

homoscedastic case, the optimal instruments correspond to the projection of the endogenous variables

on the space of variables measurable with respect to all the instruments. These optimal instruments

are thus regression functions. Belloni, Chen, Chernozhukov et al. (2012) proposes to use the Lasso or

post-Lasso to estimate the optimal instrument and use as a second stage the heteroscedastic robust

IV estimator to obtain confidence sets for the parameters of the low dimensional structural equation.

There are no results yet on optimality of joint confidence sets for high-dimensional regression, nor for

high-dimensional structural equations. However, it is a natural question to investigate a version of

the classical two-stage least squares for high-dimensional structural equations when L > K. In this

section, we present some theory for such a two-stage inference. We illustrate it in a simulation study

in Section 10.

For simplicity assume that there is only one endogenous regressor (x1i)
n
i=1 in (1.1). We write

the first stage reduced form equation as

(9.5) x1i =
L∑

l=1

zliζl + vi, i = 1, . . . , n,
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where
∑L

l=1 zliζl is the linear projection instrument, ζl are unknown coefficients and

(9.6) E[zlivi] = 0 .

The first stage consists in estimating the unknown coefficients ζl. If L ≥ K > n and if the

reduced form model (9.5) is sparse or approximately sparse, it is natural to use a high-dimensional

procedure, such as the Lasso, the Dantzig selector or the Square-root Lasso to find estimators ζ̂l of

the coefficients. It is easy to check, that the STIV estimator is, up to the normalization, equivalent to

the Square-root Lasso when all the regressors are exogenous. Denote by (ζ̂ , σ̂1) the STIV estimator

with parameter c = c1 ∈ (0, r−1) for the reduced form equation model. Our analysis is now carried

out on the event

(9.7) G ,



max


 max

l=1,...,L

|En[ZlV ]|√
En[Z2

l ]En[V 2]
, max
k=1,...,K

∣∣∣En[Z̃kU ]
∣∣∣

√
En[Z̃2

k ]En[U2]


 ≤ r





where Z̃k are the exogenous regressors in the structural equation, the linear projection instrument

V stands for a generic variable corresponding to the vi’s from the reduced form equation, and r is

adjusted so that P(G) ≥ 1−α. Since there is no access to the theoretical linear projection instrument,

we adjust r as usual, excluding the linear projection instrument from the maximum, and setting

α = 0.5(L+K − 1)/(L +K). This is the usual union bound scaling (see, e.g., Scenarii 1-4).

Remark 9.1. One could alternatively choose a parameter p ∈ (0, 1) and work on the event

G ,



 max

l=1,...,L

|En[ZlV ]|√
En[Z2

l ]En[V 2]
≤ r1




⋂


 max

k=1,...,K

∣∣∣En[Z̃kU ]
∣∣∣

√
En[Z̃2

k ]En[U2]
≤ r2





where r1 and r2 are such that the probability of each event in the above maximum are respectively

1− pα and 1− (1− p)α. This can be easily achieved under Scenarii 1-4. However, adjusting r based

on Scenario 5 allows to properly account for the dependence between the coordinates, indeed many

instruments appearing in the two terms in the above maximium are the same.

We can construct the confidence sets for the parameters ζ and β under all three cases discussed

in Section 8.3. We present the case where we have a sparsity certificate s1 for ζ . We obtain,

analogously to Theorem 8.3, that for any c1 ∈ (0, r−1),

∣∣∣D−1
Z

(ζ̂ − ζ)
∣∣∣
1
≤ 2σ̂1rθ(s1)

κ
(1)
1 (s1)

, C1(s1)(9.8)
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√√√√ 1

n

n∑

i=1

(
zTi (ζ̂ − ζ)

)2
≤ 2σ̂1rθ(s1)√

κ
(1)
1 (s1)

, C2(s1)(9.9)

where κ
(1)
1 (s1) denotes a lower bound on the sensitivity corresponding to the estimation of the high-

dimensional reduced form equation.

The second stage makes use of the estimated instrument (zTi ζ̂)
n
i=1 to obtain confidence sets for

the vector of coefficients in the structural equation. We use a modified STIV estimator which differs

from the original one in that we replace Î by the enlarged set

(9.10) Î(2) ,

{
(β, σ) : β ∈ RK , σ > 0,

∣∣∣∣
1

n
D

(2)
Z

(
Z(2)

)T
(Y −Xβ)

∣∣∣∣
∞

≤ σr, Q̂(β) ≤ σ2

}

where D
(2)
Z

is a K × K diagonal matrix such that (D
(2)
Z

)11 =
(
C1(s1) + C2(s1) + En[(ζ̂

TZ)2]1/2
)−1

,

(D
(2)
Z

)kk = (DX)kk for k = 2, . . . ,K, and the matrix Z(2) is the stacked matrix of the estimated linear

projection instrument (zTi ζ̂)
n
i=1 and the exogenous regressors. We enlarge the IV-constraint set to

account for the estimation error in the linear projection instrument. We now define a new Ψn, which

differs from the original one in that we replace Z by Z(2) and DZ by D
(2)
Z

. We assign the upper index

(2) to the sensitivities corresponding to this new matrix Ψn, for example, κ
(2)
1,J(β),J(β). Then we have

the following theorem.

Theorem 9.2. For any β in Ident, on the event G, for any solution (β̂, σ̂) of the minimization problem

(3.6) where we replace Î by Î(2) and c by c2, for any c2 ∈ (0, r−1), p in [1,∞], and J0 ⊆ {1, . . . ,K},
we have

(9.11)

∣∣∣∣
(
D−1

X
(β̂ − β)

)
J0

∣∣∣∣
p

≤ 2σ̂r

κ
(2)
p,J0,J(β)


1− r

κ
(2)
1,J(β)

− r2

κ
(2)
1,{2,...,K},J(β)




−1

+

and

(9.12) σ̂ ≤
√
Q̂(β)


1 +

r

cκ
(2)
1,J(β),J(β)




1− r

cκ
(2)
1,J(β),J(β)




−1

+

.

In addition, for any β in Bs, on the event G, for any solution (β̂, σ̂) of the minimization problem (3.6)

where we replace Î by Î(2) and c by c2, for any c2 in (0, r−1), p in [1,∞], and J0 ⊆ {1, . . . ,K}, we
have

(9.13)

∣∣∣∣
(
D−1

X
(β̂ − β)

)
J0

∣∣∣∣
p

≤ 2σ̂rθ(2)(s2)

κ
(2)
p,J0

(s)
.



32 GAUTIER AND TSYBAKOV

Inequality (9.13) yields uniform joint confidence sets for all k = 1, . . . ,K, c2 in (0, r−1):

(9.14) |β̂k − βk| ≤
2σ̂rθ(2)(s2)

En[X2
k ]

1/2 κ
(2)∗
k

with finite sample validity under Scenarii 1-3. One can also obtain adaptive confidence sets under a

beta-min assumption, using the plug-in strategy where we replace J(β) by an estimate Ĵ , as well as

rates of convergence and model selection results similar to those of Section 7.

9.3. Models with Possibly Non-valid Instruments. We now study the problem of checking

instrument exogeneity when there is overidentification. This is a classical problem studied in Sargan

(1958) and Basmann (1960) for the linear IV model, and in Hansen (1982) for GMM (see also Andrews

(1999), Andrews and Lu (2001) and Liao (2013) and the references therein). We propose a two-stage

method based on the STIV estimator. The main purpose of the suggested method is to construct

confidence sets for non-validity indicators, and to detect non-valid (i.e., endogenous) instruments in

the high-dimensional framework. The model can be written in the form: for every i = 1, . . . , n,

yi = xTi β + ui, ,(9.15)

E [ziui] = 0,(9.16)

E [ziui] = θ,(9.17)

where xi, zi, and zi are vectors of dimensions K, L and L, respectively. We observe realizations of

independent random vectors (yi, x
T
i , z

T
i , z

T
i ), i = 1, . . . , n. For simplicity assume that (9.15)-(9.16) is

point identified. The instruments are decomposed in two parts, zi and zi, where z
T
i = (z1i, . . . , zLi) is

a vector of possibly non-valid instruments. A component of the unknown vector θ ∈ RL is zero when

the corresponding instrument is indeed valid. The component θl of θ will be called the non-validity

indicator of the instrument zli. Our study covers the models with dimensions K, L and L that can

be much larger than the sample size. We denote by Z the matrix of dimension n × L with rows zTi ,

i = 1, . . . , n and by D
Z

the normalization matrix such that (D
Z
)ll = En[Z

2
l ]
−1/2 for l = 1, . . . , L.

We set Ψn = 1
nDZ

Z
T

XDX and z∗ = maxl=1,...,L,
i=1,...,n

|zli|/
√

En[Z
2
l ]. We assume that we have a pilot

estimator β̂ and two statistics b̂ and b̂1 such that, on the event G of Section 5,

(9.18)
∣∣∣ΨnD

−1
X

(β̂ − β)
∣∣∣
∞

≤ b̂,
∣∣∣D−1

X
(β̂ − β)

∣∣∣
1
≤ b̂1 .
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For example, β̂ can be the STIV estimator based on the vectors of instruments zi that are known to

be valid, with constants c and r. The sensitivity associated to the first bound in (9.18) is defined as

(9.19) κJ , inf
∆∈CJ : |Ψn∆|

∞
=1

|Ψn∆|∞ .

A lower bound for κJ can be obtained using the inclusion Ĵ ⊇ J(β) for an estimator Ĵ or using the

sparsity certificate approach and working with the lower bound κ(s) of Table 7, which reduces to

solving 2KL simple convex programs. This yields the explicit expressions

(9.20) b̂ =
2σ̂rθ(s)

κ(s)
, b̂1 =

2σ̂rθ(s)

κ1(s)
.

In the case of non-sparse structural equations we use the expressions for the enlarged cone. According

Theorem 7.1, if Assumptions 7.1 and 7.2 hold and if κJ(β) ≥ κ∗ on the event G1, then there exist

non-random constants b∗ and b1∗ such that on the event G ∩ G1 ∩ G2,

(9.21) b̂ ≤ 2σ∗rτ∗
κ∗

, b∗, b̂1 ≤
2σ∗rτ∗cJ(β)

κ∗
, b1∗ .

We define the STIV-NV estimator (θ̂, σ̂) as any solution of the problem

(9.22) min
(θ,σ)∈Î1

( ∣∣D
Z
θ
∣∣
1
+ c σ

)
,

where 0 < c < r−1 and

Î ,

{
(θ, σ) : θ ∈ RL, σ > 0,

∣∣∣∣DZ

(
1

n
Z
T
(Y −Xβ̂)− θ

)∣∣∣∣
∞

≤ σ r + b̂, F (θ, β̂) ≤ σ + b̂1z∗

}

for some r > 0 (to be specified below), where for all θ = (θ1, . . . , θL) ∈ RL, β ∈ RK ,

F (θ, β) , max
l=1,...,L

√
Q̂l(θ, β)

with

Q̂l(θ, β) ,
En[
(
Zl(Y −XTβ)− θl

)2
]

En[Z
2
l ]

.

It is not hard to see that the optimization problem (9.22) can be re-written as a conic program.

The following theorem provides a basis for constructing confidence sets for the non-validity

indicators. Define the random event

G′ =



 max

l=1,...,L

∣∣En

[
Z lU − θl

]∣∣
√

En

[
(Z lU − θl)2

] ≤ r





where r is the analogue of constant r0 in Scenarios 1-4. For simplicity we do not consider Scenario 5

in this section.
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Theorem 9.3. On the event G ∩ G′, for any estimator β̂ satisfying (9.18) on G, any solution (θ̂, σ̂)

of the minimization problem (9.22), and any c in (0, r−1), we have

∣∣∣D
Z

(
θ̂ − θ

)∣∣∣
∞

≤ 2

(
1− 2r2|J(θ)|

1− c r

)−1

+

(
σ̂ r + b̂+

(
1 +

c

1− c r

)
b̂1z∗r

)
, V (σ̂, b̂, b̂1, |J(θ)|)(9.23)

∣∣∣D
Z

(
θ̂ − θ

)∣∣∣
1
≤ 2

1− c r

(
1− 2r2|J(θ)|

1− c r

)−1

+

(
2
(
σ̂ r + b̂1z∗r + b̂

)
|J(θ)|+ cb̂1z∗

)
.(9.24)

This theorem gives a meaningful result when r is small, i.e., n ≫ log(L). In addition, we need

small b̂ and b̂1, which is guaranteed by the results of Section 6 under the condition n ≫ log(L) if the

pilot estimator β̂ is the STIV estimator. Note also that the bounds (9.23) and (9.24) are meaningful

if their denominators are positive, which is roughly equivalent to the following bound on the sparsity

of θ: |J(θ)| = O
(
1/r2

)
= O

(
n/ log(L)

)
. Bounds for all ℓp norms follow immediately from (9.23) and

(9.24) by the standard interpolation argument.

To turn (9.23) and (9.24) into valid confidence bounds, we use a sparsity certificate s or replace

there |J(θ)| by |J(θ̃)| or |J(θ̂)|, as justified by Theorem 9.4 below. To state the theorem, we need an

extra assumption that the random variable F (θ, β) is bounded in probability by a constant σ∗ > 0.

Assumption 9.1. There exist constants σ∗ > 0, vl > 0 for l = 1, . . . , L and 0 < ε < 1 such that,

with probability at least 1− ε,

(9.25) max
l=1,...,L

En[
(
ZlU − θl

)2
]

En[Z
2
l ]

≤ σ2
∗, ∀l = 1, . . . , L, En[Z

2
l ] ≤ vl .

Denote by G3 the corresponding event. As in (8.6), we define a thresholded estimator

(9.26) θ̃l ,





θ̂l if |θ̂l| > ωl,

0 otherwise,

where ωl > 0 for l = 1, . . . , L, are some thresholds.

Theorem 9.4. Let Assumptions 7.1, 7.2, and 9.1 be satisfied, and let κJ(β) ≥ κ∗ on the event G1.

Assume that |J(θ)| ≤ s and consider the solutions (β̂, σ̂) and (θ̂, σ̂) of the minimization problems (3.6)

and (9.22) respectively.

(i) On the event G ∩ G1 ∩ G2 ∩ G′ ∩ G3 we have

(9.27) σ̂ ≤ σ∗ +
|J(θ)|

c
V (σ̂, b̂, b̂1, |J(θ)|) ≤ σ∗ +

|J(θ)|
c

V (σ∗, b∗, b1∗, |J(θ)|),

(9.28)
∣∣∣D

Z

(
θ̂ − θ

)∣∣∣
∞

≤
(
1− 2s r

c(1− c r)

)−1

+

(
1− 2s c r2

c(1− c r)

)
V (σ∗, b∗, b1∗, s) .
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(ii) Assume, in addition, that |θl| > vl

(
1− 2s r

c(1−c r)

)−1

+

(
1− 2s c r2

c(1−c r)

)
V (σ∗, b∗, b1∗, s) for all l ∈

J(θ). Then, on the event G ∩ G1 ∩ G2 ∩ G′ ∩ G3 we have

(9.29) J(θ) ⊆ J(θ̂).

(iii) Let |J(β)| ≤ s and replace Assumption 7.1 by Assumption 8.1, assuming in addition that

κJ(β) ≥ κ∗(s) on the event G1. Define

(9.30) b∗(s) =
2σ∗rτ∗(s)
κ∗(s)

, b1∗(s) =
2σ∗rτ∗(s)c(s)

κ∗(s)
.

Assume that |θl| > 2vl

(
1− 2s r

c(1−c r)

)−1

+

(
1− 2s c r2

c(1−c r)

)
V (σ∗, b∗(s), b1∗(s), s) for all l ∈ J(θ) .

Let θ̃ be the thresholded estimator defined in (9.26) where θ̂ is any solution of the minimization

problem (9.22), and ωl = En[Z
2
l ]
1/2
(
1− 2s r

c(1−c r)

)−1

+

(
1− 2s c r2

c(1−c r)

)
V (σ̂, b̂, b̂1, s). Then, on the

event G ∩ G1 ∩ G2 ∩ G′ ∩ G3, we have J(θ̃) = J(θ) and

(9.31)
−−−−→
sign(θ̃) =

−−−−→
sign(θ) .

Remark 9.2. We presented here the approach based on working on the two events G and G′ and using

the union bound. One could alternatively use the approach of Section 9.2.

10. Simulation Study

In this section, we discuss the performance of the STIV estimator on simulated data. We

consider the following model:

yi = x1iβ1 +

K∑

k=2

xkiβk + ui,

x1i =
L∑

l=1

zliζl + vi,

where (yi, x
T
i , z

T
i , ui, vi) are i.i.d., (ui, vi) have the normal distributionN


0,


 σ2

struct ρσstructσend

ρσstructσend σ2
end




 .

We set ρ = 0.3, σstruct = σend = 1, β = (1,−2,−0.5, 0.25,−1, 0, . . . , 0)T and α = 0.05. We adjust

r everywhere based on Scenario 5 and use the CVX package (see Grant and Boyd (2013)) for the

optimization routines. We simulate the estimators both for K > n and K < n. For the confidence

sets, we will deal only with K < n but we take K so big that the BIC type techniques are not com-

putationally feasible (see, e.g., Andrews and Lu 2001). We use the results of Section A.2 to calculate

the lower bounds on the sensitivities when they are based on an estimated support Ĵ .
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10.1. Estimation when K > n, K ≫ L. Take n = 500, L = 30 and K = 600. Thus, we are under

the high-dimensional scenario. There are much more regressors than variables known to be exogenous

and used as instruments. To complete the description of the data generating process we set

xl′i = zli for l′ = l + 1 and l ∈ {1, . . . , L}

and take (x2i, . . . , xKi)
T to be a vector of independent standard normal random variables truncated

to the interval [−5, 5] and independent of (ui, vi). We take ζ = (0.3, . . . , 0.3)T . We choose c very

close to the uper bound r−1 allowed by the theory of this paper. This corresponds to the smallest

shrinkage to zero. The results are summarized in Table 1. In agreement with what is explained at

the end of Section 6.1, sparsity provides exclusion restrictions, and for each possible submodel there

is overidentification.

Table 1. Monte-Carlo study, 1000 replications

5th percentile Median 95th percentile 5th percentile Median 95th percentile

β̂1 1.058 1.131 1.202 β̂8 -1.32 10−8 -4.18 10−10 9.60 10−9

β̂2 -1.939 -1.869 -1.794 β9 -1.36 10−8 -3.53 10−10 1.07 10−8

β̂3 -0.446 -0.368 -0.289
...

...
...

...

β̂4 0.026 0.105 0.187 β̂598 -1.25 10−8 3.25 10−11 1.21 10−8

β̂5 -0.946 -0.869 -0.796 β̂599 -1.28 10−8 2.16 10−10 1.31 10−8

β̂6 -1.39 10−8 -5.84 10−10 8.91 10−9 β̂600 -1.13 10−8 -3.21 10−12 1.19 10−8

β̂7 -1.37 10−8 -3.83 10−10 9.95 10−9 σ̂ 0.947 1.000 1.051

We used: c = 1/(r ∗ 1.001).

In the simulation design, the coefficients of the reduiced form equation ζ as well as β3 and β4

are at least 10 times smaller than the detection level (see Theorem 8.1). Indeed, not even accounting

for the sensitivities, we have 4σendr
En[X2

k ]
1/2 > 0.5 for all k. We would expect from Theorem 7.1 that β3

and β4 should be impossible to distinguish from 0. The results highlighted in the grey box correspond

to the non-zero coefficients of the estimator. All coefficients outside the grey box are at most of the

order of 10−8. This is much below the level of accuracy we can expect and can be considered to be

0. The non-zero coefficients of the estimator are the true non-zero coefficients in all cases reported in

Table 1.

10.2. Choice of c for Confidence Sets. In this simulation study, we did not intersect the sets

based on the sparsity certificate approach for different values of c. So, the confidence sets are more

conservative than they could have been. We rather started by estimating each model with c = r−1
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and compared the point estimators obtained for decreasing c. For sufficiently large sample size, the

estimators remain almost unchanged when c decreases, until the point where β̂ becomes almost zero

and σ̂ starts to increase. We chose c around that value.

10.3. Confidence Sets: Less Instruments than Potential Regressors. Under the simulation

design of Section 10.1, the confidence sets are infinite. We now change only two parameters and

take n = 8000 and K = 50. We have still K ≫ L. The simulations show that the 5 true non-zero

coefficients are clearly detected to be non-zero based on the value of the STIV estimator. Out of

the 45 other estimated coefficients, 9 are of the order of 10−2, all others are of the order of 10−3 or

below. These larger coefficients correspond to the exogenous variables used as instruments. They

also have the larger coordinate-wise sensitivities which are about 0.3. The estimated coefficients for

the exogenous regressors that are not used as instruments are at most of the order of 10−5 but their

sensitivities are as small as 0.07, which is roughly the same as for the endogenous regressors. This leads

to wider confidence intervals for them, roughly twice as large as for the endogenous regressors, due to

the weights DX. The confidence sets based on sparsity certificate with s = 5 are infinite. However,

those based on the estimated support Ĵ = {1, . . . , 5} are finite. They are presented in Table 2.

Table 2. Less instruments than potential regressors, estimated support

β̂l β̂ β̂u κ∗
k β̂l β̂ β̂u κ∗

k

β1 -0.47 0.99 2.44 0.07 β6 -0.59 0.02 0.62 0.34

β2 -2.62 -2.01 -1.39 0.33 β7 -0.6 -0.01 0.58 0.34

β3 -1.13 -0.48 0.17 0.31
...

...
...

...
...

β4 -0.39 0.27 0.92 0.31 β49 -2.97 0 2.97 0.07

β5 -1.6 -0.99 -0.38 0.33 β50 -2.95 0 2.95 0.07

Here: r = 0.035, c = 0.1792 and σ̂ = 1.014.

10.4. Confidence Sets: One Strong Instrument and Many Weak Instruments. We set K =

150, L = 152, n = 4000,

xl′i = zli for l′ = l + 1 and l ∈ {1, . . . ,K − 1}

and we take (z1i, . . . , zLi)
T as a vector of independent standard normal random variables truncated

to the interval [−5, 5] and independent of (ui, vi). We take ζ = (1, a, . . . , a)T where a = 0.1. This

model cannot be estimated using the BIC since this would require solving more than 1045 least squares

problems.
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The results are presented in Table 3. We use the notation β̂l,s and β̂u,s for the lower and

upper bounds computed using the sparsity certificate for various degrees of sparsity s. The confidence

sets are nested. The column “Selection” shows under which sparsity certificate s the variable is

selected based on Theorem 8.1. We see from Table 3 that using the thresholding rule for s = 8 yields

Ĵ1 , J(β̃) = {1, 2, 3, 5}. The choice s = 8 is conservative. Indeed we have |J(β̂)| = 5. Recall that

under the premise of Theorem 7.1 we have J(β) ⊆ Ĵ2 , J(β̂) = {1, 2, 3, 4, 5}. We present in Table 4

the confidence sets obtained using (8.9) with Ĵ1 and Ĵ2.

Table 3. One strong instrument and all others equally weak, sparsity certificate

β̂l,10 β̂l,9 β̂l,8 β̂l,7 β̂l,6 β̂l,5 β̂l,4 β̂ Selection β̂u,4 β̂u,5 β̂u,6 β̂u,7 β̂u,8 β̂u,9 β̂u,10

β1 0.3 0.36 0.42 0.49 0.55 0.62 0.67 0.94 ≥ 10 1.2 1.26 1.32 1.39 1.45 1.51 1.57

β2 -2.46 -2.41 -2.36 -2.32 -2.27 -2.23 -2.19 -1.95 ≥ 10 -1.71 -1.67 -1.63 -1.58 -1.54 -1.49 -1.44

β3 -0.94 -0.89 -0.84 -0.79 -0.75 -0.7 -0.66 -0.43 ≤ 8 -0.2 -0.16 -0.11 -0.07 -0.02 0.03 0.08

β4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.11 -0.06 0.18 < 4 0.43 0.47 0.52 0.56 0.61 0.67 0.72

β5 -1.51 -1.46 -1.42 -1.37 -1.32 -1.27 -1.23 -0.98 ≥ 10 -0.73 -0.68 -0.64 -0.59 -0.54 -0.49 -0.45

β6 -0.52 -0.47 -0.43 -0.38 -0.34 -0.29 -0.25 0 0 0.25 0.29 0.34 0.38 0.43 0.47 0.52

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

β150 -0.54 -0.49 -0.43 -0.39 -0.34 -0.29 -0.25 0 0 0.25 0.29 0.34 0.39 0.43 0.49 0.54

Here: r = 0.057 and c = 0.353 and σ̂ = 1.010

Table 4. One strong instrument and all others equally weak, estimated support

β̂l,Ĵ2
β̂l,Ĵ1

β̂ β̂u,Ĵ1
β̂u,Ĵ2

β1 0.75 0.76 0.94 1.11 1.13

β2 -2.15 -2.14 -1.95 -1.76 -1.74

β3 -0.63 -0.62 -0.43 -0.24 -0.23

β4 -0.02 0 0.18 0.36 0.38

β5 -1.19 -1.17 -0.98 -0.78 -0.77

β6 -0.2 -0.19 0 0.19 0.2

...
...

...
...

...
...

β150 -0.2 -0.19 0 0.19 0.2

10.5. Confidence Sets: Sparse Reduced Form. Consider now the two-stage method from Section

9.2 based on an estimated linear projection instrument, akin to the two-stage least squares. Let

n = 8000, K = 70 and L = 100. We take ζ3 = −0.5, ζ4 = 1, ζ98 = −1, ζ99 = 1, ζ100 = 0.5,

and we set all other coefficients in the reduced form equation equal to zero. Tables 5 and 6 present
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the simulation results for the one-stage and the two-stage STIV estimator with estimated linear

projection instrument. Lower bounds on the sensitivities based on the sparsity certificate for s = 5

yield: C1(5) = 1.125, C2(5) = 0.308, and C∞(5) = 2σ̂1rθ1(5)/κ
(1)
∞ (5) = 0.112. Using the estimated

support Ĵ = J(ζ̂) = {3, 4, 98, 99, 100} yields (with obvious meaning of the notation) C1(Ĵ) = 0.923,

C2(Ĵ) = 0.279. We present in Table 6 the results based on the two approaches for the first stage. We

set α = 0.05(L+K − 1)/(L+K) = 0.0471. The value r for the two-stage approach is computed with

this α by excluding the linear projection instrument from the maximum in (9.7).

Table 5. Sparse reduced form, sparsity certificate, one stage

β̂l,10 β̂l,9 β̂l,8 β̂l,7 β̂l,6 β̂l,5 β̂l,4 β̂ Selection β̂u,4 β̂u,5 β̂u,6 β̂u,7 β̂u,8 β̂u,9 β̂u,10

β1 0.83 0.83 0.84 0.84 0.84 0.85 0.86 0.97 ≥ 10 1.08 1.08 1.09 1.09 1.1 1.1 1.1

β2 -2.12 -2.11 -2.11 -2.11 -2.1 -2.09 -2.09 -1.97 ≥ 10 -1.85 -1.84 -1.83 -1.83 -1.82 -1.82 -1.82

β3 -0.61 -0.6 -0.6 -0.6 -0.59 -0.58 -0.58 -0.46 ≥ 10 -0.33 -0.33 -0.32 -0.32 -0.31 -0.31 -0.3

β4 -0.02 -0.01 -0.01 0 0 0.01 0.02 0.19 ≤ 6 0.35 0.36 0.37 0.38 0.38 0.39 0.39

β5 -1.19 -1.19 -1.18 -1.18 -1.17 -1.16 -1.14 -0.93 ≥ 10 -0.72 -0.71 -0.69 -0.68 -0.68 -0.67 -0.67

β6 -0.14 -0.14 -0.14 -0.13 -0.13 -0.12 -0.11 0 0 0.11 0.12 0.13 0.13 0.14 0.14 0.14

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

β70 -0.14 -0.14 -0.14 -0.13 -0.13 -0.12 -0.12 0 0 0.12 0.12 0.13 0.13 0.14 0.14 0.14

Here: r = 0.0388, c = 0.298 and σ̂ = 1.014.

The two-stage method gives wider confidence sets than the one-stage method. For brevity,

we do not display the sensitivities. Noteworthy, the two-stage method yields smaller sensitivities for

all regressors. Since the constants C1(s), C2(s), C1(Ĵ) and C2(Ĵ) can be too large, we construct

the confidence sets for the overly optimistic case where C1 = C2 = 0. These sets are obviously not

valid because they ignore the estimation error from the first stage. Still we find that they are larger

than those of the one-stage method. Finding optimal joint confidence sets in high-dimensional linear

regression and structural equations is an open problem that requires further study.
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Table 6. Sparse reduced form, sparsity certificate, two stage

First stage:

ζ̂1 ζ̂2 ζ̂3 ζ̂4 ζ̂5 ζ̂97 ζ̂98 ζ̂99 ζ̂100 σ̂1 c1

0 0 -0.48 0.97 0 0 -0.98 1.00 0.47 1.02 0.188

Second stage based on C1(5) and C2(5), with c = 0.479 and σ̂ = 1.042:

β̂l,10 β̂l,9 β̂l,8 β̂l,7 β̂l,6 β̂l,5 β̂l,4 β̂ Selection β̂u,4 β̂u,5 β̂u,6 β̂u,7 β̂u,8 β̂u,9 β̂u,10

β1 0.56 0.57 0.58 0.59 0.6 0.61 0.63 0.91 ≥ 10 1.2 1.21 1.22 1.23 1.24 1.25 1.26

β2 -2.2 -2.19 -2.18 -2.17 -2.16 -2.15 -2.13 -1.96 ≥ 10 -1.8 -1.78 -1.77 -1.76 -1.75 -1.74 -1.73

β3 -0.68 -0.67 -0.66 -0.66 -0.64 -0.63 -0.62 -0.45 ≥ 10 -0.29 -0.27 -0.26 -0.25 -0.24 -0.23 -0.22

β4 -0.22 -0.21 -0.2 -0.19 -0.18 -0.16 -0.14 0.15 ≤ 5 0.45 0.47 0.49 0.5 0.51 0.52 0.53

β5 -1.41 -1.39 -1.38 -1.36 -1.34 -1.32 -1.29 -0.87 ≥ 10 -0.46 -0.43 -0.41 -0.39 -0.37 -0.35 -0.34

β6 -0.22 -0.21 -0.2 -0.19 -0.18 -0.17 -0.16 0 0 0.16 0.17 0.18 0.19 0.2 0.21 0.22

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

β70 -0.22 -0.21 -0.2 -0.2 -0.19 -0.18 -0.16 0 0 0.16 0.18 0.19 0.2 0.2 0.21 0.22

Second stage based on C1(Ĵ) and C2(Ĵ) with c = 0.444 and σ̂ = 1.010:

β̂l,10 β̂l,9 β̂l,8 β̂l,7 β̂l,6 β̂l,5 β̂l,4 β̂ Selection β̂u,4 β̂u,5 β̂u,6 β̂u,7 β̂u,8 β̂u,9 β̂u,10

β1 0.68 0.69 0.69 0.7 0.71 0.72 0.74 0.99 ≥ 10 1.25 1.26 1.28 1.28 1.29 1.3 1.31

β2 -2.22 -2.22 -2.21 -2.2 -2.19 -2.18 -2.17 -2.01 ≥ 10 -1.85 -1.83 -1.82 -1.81 -1.8 -1.8 -1.79

β3 -0.71 -0.7 -0.7 -0.69 -0.68 -0.66 -0.65 -0.5 ≥ 10 -0.34 -0.33 -0.31 -0.3 -0.29 -0.29 -0.28

β4 -0.11 -0.1 -0.09 -0.08 -0.07 -0.06 -0.04 0.24 ≤ 5 0.51 0.53 0.54 0.55 0.56 0.57 0.58

β5 -1.48 -1.47 -1.45 -1.44 -1.42 -1.4 -1.37 -0.99 ≥ 10 -0.61 -0.58 -0.56 -0.54 -0.53 -0.51 -0.5

β6 -0.19 -0.19 -0.18 -0.17 -0.16 -0.15 -0.13 0.01 0 0.16 0.17 0.18 0.19 0.2 0.21 0.22

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

β70 -0.2 -0.19 -0.19 -0.18 -0.17 -0.16 -0.15 0 0 0.16 0.17 0.18 0.19 0.19 0.2 0.21

Second stage based on the too optimistic choice C1 = 0 and C2 = 0 with c = 0.376 and σ̂ = 1.001:

β̂l,10 β̂l,9 β̂l,8 β̂l,7 β̂l,6 β̂l,5 β̂l,4 β̂ Selection β̂u,4 β̂u,5 β̂u,6 β̂u,7 β̂u,8 β̂u,9 β̂u,10

β1 0.79 0.79 0.79 0.8 0.81 0.81 0.82 1 ≥ 10 1.17 1.18 1.18 1.19 1.2 1.2 1.2

β2 -2.18 -2.18 -2.17 -2.17 -2.16 -2.15 -2.14 -2.01 ≥ 10 -1.87 -1.86 -1.85 -1.84 -1.84 -1.83 -1.83

β3 -0.68 -0.67 -0.67 -0.66 -0.65 -0.64 -0.63 -0.5 ≥ 10 -0.36 -0.35 -0.34 -0.33 -0.32 -0.32 -0.31

β4 -0.03 -0.03 -0.02 -0.01 0 0.01 0.02 0.24 ≤ 5 0.45 0.46 0.47 0.48 0.49 0.5 0.5

β5 -1.35 -1.35 -1.34 -1.33 -1.31 -1.3 -1.28 -0.99 ≥ 10 -0.71 -0.69 -0.67 -0.66 -0.65 -0.64 -0.64

β6 -0.16 -0.16 -0.15 -0.14 -0.13 -0.13 -0.12 0.01 0 0.14 0.15 0.16 0.17 0.18 0.18 0.19

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

β70 -0.17 -0.17 -0.16 -0.16 -0.15 -0.14 -0.13 0 0 0.13 0.14 0.15 0.16 0.17 0.17 0.17

Everywhere: r = 0.041.
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Table 7. Table of constants

cJ , min
(

2|J |
(1−c)+

, 2|Jex∩J |+(2+c(1−r))|Jc
ex∩J |+c(1−r)|Jc

ex∩Jc|
(1−cr)+

)

cJex,J , min
(

2|J |
(1−c)+

, 2|Jex∩J |+(1+c)|Jc
ex∩J |+(c−1)|Jc

ex∩Jc|
(1−cr)+

)

cJc
ex,J

,
2|Jc

ex∩J |+(1+cr)|Jex∩J |
(1−c)+

c(s) , min
(

2s
(1−c)+

, 2s+c(1−r)|Jc
ex|

1−cr

)

cJex(s) , min
(

2s
(1−c)+

, max(2,1+c)s+(c−1)+|Jc
ex|

(1−cr)+
, 2s+2c|Jc

ex|
(1−cr)+

)

cJc
ex
(s) ,

min(max(2,1+cr)s,(1+cr)s+|Jc
ex|)

(1−c)+

κ∞(J, s) , min j∈J
k=1,...,K

{
min ∆k=±1, |∆J |∞≤∆j , |∆|∞≤1,

(1−cr)|∆Jex |1+(1−c)|∆Jc
ex

|1≤2s∆j

|Ψn∆|∞

}

κ∗k(J, s) , minj∈J

{
min ∆k=±1, |∆J |∞≤∆j

(1−cr)|∆Jex |1+(1−c)|∆Jc
ex

|1≤2s∆j

|Ψn∆|∞

}

κ∞,J0(J, s) , mink∈J0 κ
∗
k(J, s)

κp,J0(J, s) , max

(
κ∞,J0

(J,s)

|J0|1/p , κ∞(J,s)

c
1/p
J

)

κ1,Jex(J, s) , max

(
minj∈J

{
min |∆J |∞≤∆j , |∆Jex |1=1,

(1−cr)+(1−c)|∆Jc
ex

|1≤2s∆j

|Ψn∆|∞

}
,
κ∞,J∪Jc

ex
(J,s)

cJex,J
,
κ∞,Jex(J,s)

|Jex|

)

κ1,Jc
ex
(J, s) , max

(
minj∈J

{
min |∆J |∞≤∆j , |∆Jc

ex
|1=1,

(1−cr)|∆Jex |1+1−c≤2s∆j

|Ψn∆|∞

}
,
κ∞,J(J,s)
cJc

ex,J
,
κ∞,Jc

ex
(J,s)

|Jc
ex|

)

θ(J, s) ,

(
1− r2

κ1,Jex(J,s)
− r

κ1,Jc
ex

(J,s)

)−1

+

κ∞(s) , mink=1,...,K

{
min ∆k=1, |∆|∞≤1,

(1−cr)|∆Jex |1+(1−c)|∆Jc
ex

|1≤2s

|Ψn∆|∞

}

κ∗k(s) , minj=1,...,K

{
min ∆k=±1,

(1−cr)|∆Jex |1+(1−c)|∆Jc
ex

|1≤2s∆j

|Ψn∆|∞

}

κ∞,J0(s) , mink∈J0 κ
∗
k(s)

κp,J0(s) , max

(
κ∞,J0

(s)

|J0|1/p , κ∞(s)

c
1/p
J

)

κ1,Jex(s) , max

(
minj=1,...,K

{
min |∆|∞≤∆j , |∆Jex |1=1,

(1−cr)+(1−c)|∆Jc
ex

|1≤2s∆j

|Ψn∆|∞

}
, κ∞(s)
cJex (s)

,
κ∞,Jex(s)

|Jex|

)

κ1,Jc
ex
(s) , max

(
minj=1,...,K

{
min |∆|∞≤∆j , |∆Jc

ex
|1=1,

(1−cr)|∆Jex |1+1−c≤2s∆j

|Ψn∆|∞

}
, κ∞(s)
cJc

ex
(s) ,

κ∞,Jc
ex
(s)

|Jc
ex|

)

θ(s) , min
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1− r2

κ1,Jex (s)
− r

κ1,Jc
ex

(s)

)−1

+
,
(
1− r cb(s)

κ∞(s)
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+

)
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

min|∆|∞≤∆k, (Ψn∆)l=±1, |Ψn∆|∞≤1,
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SUPPLEMENTAL APPENDIX FOR “HIGH-DIMENSIONAL INSTRUMENTAL

VARIABLES AND CONFIDENCE SETS”

ERIC GAUTIER AND ALEXANDRE TSYBAKOV

A.1. Lower Bounds on κp,J for Square Matrices Ψn. The following propositions establish lower

bounds on κp,J when there are no endogenous regressors and Ψn is a square K ×K matrix. Recall

that in that case the cone CJ takes the the simple form (4.2). For any J ⊆ {1, . . . ,K} we define the

following restricted eigenvalue (RE) constants

κRE,J , inf
∆∈RK\{0}: ∆∈CJ

|∆TΨn∆|
|∆J |22

, κ′RE,J , inf
∆∈RK\{0}: ∆∈CJ

|J | |∆TΨn∆|
|∆J |21

.

Proposition A.1. For any J ⊆ {1, . . . ,K} we have

κ1,J ≥ 1− cr

2
κ1,J,J ≥ (1− cr)2

4|J | κ′RE,J ≥ (1− cr)2

4|J | κRE,J .

Proof. For ∆ such that |∆Jc |1 ≤ 1+cr
1−cr |∆J |1 we have |∆|1 ≤ 2

1−cr |∆J |1. Thus, one obtains

|∆TΨn∆|
|∆J |21

≤ |∆|1|Ψn∆|∞
|∆J |21

≤ 2

1− cr

|Ψn∆|∞
|∆J |1

≤ 4

(1− cr)2
|Ψn∆|∞
|∆|1

.

Taking the infimum over ∆’s proves the first two inequalities of the proposition. The second inequality

uses the fact that from Hölder’s inequality |∆|21 ≤ |J ||∆J |22. �

We now obtain bounds for sensitivities κp,J with 1 < p ≤ 2. For any s ≤ K, we consider a

uniform version of the restricted eigenvalue constant: κRE(s) , min|J |≤s κRE,J .

Proposition A.2. For any s ≤ K/2 and 1 < p ≤ 2, we have

κp,J ≥ C(p)s−1/pκRE(2s), ∀ J : |J | ≤ s,

where C(p) = 2−1/p−1/2(1− cr)
(
1 + 1+cr

1−cr (p− 1)−1/p
)−1

.

Proof. For ∆ ∈ RK and a set J ⊆ {1, . . . ,K}, let J1 = J1(∆, J) be the subset of indices in {1, . . . ,K}
corresponding to the s largest in absolute value components of ∆ outside of J . Define J+ = J ∪ J1.

If |J | ≤ s we have |J+| ≤ 2s. It is easy to see that the kth largest absolute value of elements of ∆Jc

satisfies |∆Jc |(k) ≤ |∆Jc |1/k. Thus,

|∆Jc
+
|pp =

∑

j∈Jc
+

|∆j|p =
∑

k≥s+1

|∆Jc |p(k) ≤ |∆Jc |p1
∑

k≥s+1

1

kp
≤ |∆Jc |p1

(p− 1)sp−1
.
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For ∆ ∈ CJ , this implies

|∆Jc
+
|p ≤

|∆Jc |1
(p− 1)1/ps1−1/p

≤ c0|∆J |1
(p − 1)1/ps1−1/p

≤ c0|∆J |p
(p− 1)1/p

,

where c0 =
1+cr
1−cr . Therefore, using that |∆J |p ≤ |∆J+ |p we get, for ∆ ∈ CJ ,

(A.1) |∆|p ≤ |∆J+|p + |∆Jc
+
|p ≤ (1 + c0(p− 1)−1/p)|∆J+ |p ≤ (1 + c0(p − 1)−1/p)(2s)1/p−1/2|∆J+|2

where the last inequality follows from the bound

|∆J+|p ≤ |J+|1/p−1/2|∆J+|2 ≤ (2s)1/p−1/2|∆J+|2.

Using (A.1) and the fact that |∆|1 ≤ 2
1−cr |∆J |1 ≤ 2

√
|J |

1−cr |∆J |2 ≤ 2
√
s

1−cr |∆J |2 ≤ 2
√
s

1−cr |∆J+|2
for ∆ ∈ CJ , we get

|∆TΨn∆|
|∆J+ |22

≤ |∆|1|Ψn∆|∞
|∆J+|22

≤ 2
√
s|Ψn∆|∞

(1− cr)|∆J+ |2

≤ s1/p|Ψn∆|∞
C(p)|∆|p

.

Since |J+| ≤ 2s, this proves the proposition. �

A.2. Exact Computations of the Sensitivities when |J | is small. The coordinate-wise sensi-

tivities κ∗k,J is obtained by minimizing on the set

{
∆ ∈ RK : ∆k = 1, (1− cr)|∆Jc∩Jex |1 + (1 − c)|∆Jc∩Jc

ex
|1 ≤ (1 + cr)|∆J∩Jex |1 + (1 + c)|∆J∩Jc

ex
|1
}

and can be computed as follows.

Algorithm A.1. When 0 < c < 1 solve

min
(ǫj)j∈J∈{−1,1}|J|

min
(∆,v)∈Uk,J

v

where Uk,J is the set of (∆, v) with ∆ ∈ RK , v ∈ R satisfying:

v ≥ 0, −v1 ≤ Ψn∆ ≤ v1, ∆k = 1,

(1− cr)|∆Jc∩Jex |1 + (1− c)|∆Jc∩Jc
ex
|1 ≤ (1 + cr)

∑

j∈J∩Jex
ǫj∆j + (1 + c)

∑

j∈J∩Jc
ex

ǫj∆j .

When 1 ≤ c < r−1 solve

min
(ǫj)j∈J∪(Jc∩Jc

ex)
∈{−1,1}|J∪(Jc∩Jc

ex)|
min

(∆,v)∈UJ

v
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where UJ is the set of (∆, v) with ∆ ∈ RK , v ∈ R satisfying:

v ≥ 0, −v1 ≤ Ψn∆ ≤ v1, ∆k = 1,

(1− cr)|∆Jc∩Jex |1 ≤ (1 + cr)
∑

j∈J∩Jex
ǫj∆j + (1 + c)

∑

j∈J∩Jc
ex

ǫj∆j + (c− 1)
∑

j∈Jc∩Jc
ex

ǫj∆j .

When the endogenous regressors are in J , Jc ∩ Jc
ex = ∅ and there are no cases to distinguish.

One can calculate in a similar manner κ1,Jc
ex,J .

Algorithm A.2. When 0 < c < r−1, solve

min
(ǫj)J∪(Jc∩Jc

ex)
∈{−1,1}|J∪(Jc∩Jc

ex)|
min

(∆,v)∈UJc
ex ,J

v

where UJc
ex,J is the set of (∆, v) with ∆ ∈ RK , v ∈ R satisfying:

v ≥ 0, −v1 ≤ Ψn∆ ≤ v1,
∑

j∈Jc
ex

ǫj∆j = 1,

(1− cr)|∆Jc∩Jex |1 ≤ (1 + cr)
∑

j∈J∩Jex
ǫj∆j +

∑

j∈J∩Jc
ex

ǫj∆j −
∑

j∈Jc∩Jc
ex

ǫj∆j + c .

A.3. Error Bounds When J(β) ( Ĵ. Belloni and Chernozhukov (2011a,2013) give bounds on the

error made by a post-model selection procedure when we do not have J(β) ⊆ Ĵ , where Ĵ is obtained

by a selection procedure. Belloni and Chernozhukov (2011a) considers the high-dimensional quantile

regression model and the case of the ℓ2 loss. Belloni and Chernozhukov (2013) considers the high-

dimensional linear model and prediction loss. Theorem 6.2 gives the following bound for the STIV

estimator, for arbitrary estimated support Ĵ : For every β in Ident, on the event G, for any solution

(β̂, σ̂) of the minimization problem (3.6) we have, for every J0 ⊆ {1, . . . ,K}, 0 < c < r−1, p ≥ 1,

(A.2)

∣∣∣∣
(
DX

−1
(
β̂ − β

))
J0

∣∣∣∣
p

≤ max

(
2σ̂rθ(Ĵ , |Ĵ |)
κ̃p,J0(Ĵ , |Ĵ |)

, 6|(D−1
X

β)Ĵc |1
)

.

If one takes as Ĵ = J(β̂), due to Theorem 7.1 (iii), under the assumptions of (ii), the non-zero

coordinates that could be missed in J(β̂) are smaller in absolute value than 2σ∗rτ∗
κ∗vk

on G ∩ G1 ∩ G2.

This yields, in the special case of the ℓ1 norm and for fixed I ⊆ {1, . . . , L} and 0 < c < r−1:

For every β in Ident, on the event G ∩ G1 ∩ G2, for any solution (β̂, σ̂) of the minimization problem

(3.6) and for Ĵ = J(β̂), we have

(A.3)
∣∣∣DX

−1
(
β̂ − β

)∣∣∣
1
≤ max

(
2σ̂rθ(Ĵ , |Ĵ |)
κ̃p,J0(Ĵ , |Ĵ |)

,
12σ∗r
κ∗

τ∗
∣∣∣J(β) \ Ĵ

∣∣∣
)

.

A similar inequality can be obtained using Ĵ = J(β̃) and makes the assumptions of Theorem 8.1.
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These error bounds are are not confidence sets due to the presence of the term 12σ∗r
κ∗

τ∗
∣∣∣J(β) \ Ĵ

∣∣∣
which depends on the unknown. Unlike equations (A.2) and (A.3), we obtain valid confidence sets in

Section 8.3.1 and Section 8.3.2 because, there, we assume sufficient beta-min assumptions.

A.4. Moderate Deviations for Self-normalized Sums. Throughout this section x1, . . . , xn are

independent random variables such that, for every i, E[X] = 0. The following result is due to

Efron (1969).

Theorem A.1. If xi for i = 1, . . . , n are symmetric, then for every r positive,

P



∣∣ 1
n

∑n
i=1 xi

∣∣
√

1
n

∑n
i=1 x

2
i

≥ r


 ≤ 2 exp

(
−nr2

2

)
.

This upper bound is refined in Pinelis (1994) for i.i.d. random variables.

Theorem A.2. If xi for i = 1, . . . , n are symmetric and identically distributed, then for every r in

[0, 1),

P



∣∣ 1
n

∑n
i=1 xi

∣∣
√

1
n

∑n
i=1 x

2
i

≥ r


 ≤ 4e3

9
Φ(−√

nr).

The following result is from Jing, Shao and Wang (2003).

Theorem A.3. Assume that 0 < E[|X|2+δ ] < ∞ for some 0 < δ ≤ 1 and set

B2
n = E[X2], Ln,δ = E

[
|X|2+δ

]
, dn,δ = Bn/L

1/(2+δ)
n,δ .

Then

∀0 ≤ r ≤ dn,δ√
n
, P



∣∣ 1
n

∑n
i=1 xi

∣∣
√

1
n

∑n
i=1 x

2
i

≥ r


 ≤ 2Φ(−√

nr)

(
1 +A0

(
1 +

√
nr

dn,δ

)2+δ
)

where A0 > 0 is an absolute constant.

Despite of its great interest to understand the large deviations behavior of self-normalized sums,

the bound has limited practical use because A0 is not an explicit constant.

The following result is a corollary of Theorem 1 in Bertail, Gauthérat and Harari-Kermadec (2009).

Theorem A.4. Assume that xi for i = 1, . . . , n are identically distributed and 0 < E[X4] < ∞. Then

(A.4) ∀r ≥ 0, P



∣∣ 1
n

∑n
i=1 xi

∣∣
√

1
n

∑n
i=1 x

2
i

≥ r


 ≤ (2e+ 1) exp

(
− nr2

2 + γ4r2

)
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where γ4 =
E[X4]
E[X2]2

, while

∀r ≥ √
n, P



∣∣ 1
n

∑n
i=1 xi

∣∣
√

1
n

∑n
i=1 x

2
i

≥ r


 = 0.

Proof. Bertail, Gauthérat and Harari-Kermadec (2009) obtain the upper bound for r ≥ √
n and that

for 0 ≤ r <
√
n

P



∣∣ 1
n

∑n
i=1 xi

∣∣
√

1
n

∑n
i=1 x

2
i

≥ r


 ≤ inf

a>1

{
2e exp

(
− nr2

2(1 + a)

)
+ exp

(
− n

2γ4

(
1− 1

a

)2
)}

.

Because
1

1 + a
=

1

a

1

1 + 1
a

≥ 1

a

(
1− 1

a

)

we obtain

− r2

1 + a
≤ −r2

a

(
1− 1

a

)
.

This yields (A.4) by choosing a to equate the two exponential terms. �

A.5. Some Facts From Convex Analysis. We will use the following properties of convex functions

that can be found, for example, in Polyak (1987), Section 5.1.4. Let f be a convex function on RK .

Denote by ∂f its subdifferential, i.e., the set of all a ∈ RK such that f(x+ y)− f(x) ≥ 〈a, y〉, ∀ x, y ∈
RK , where 〈·, ·〉 is the standard inner product in RK .

Lemma A.1. Let f(x) = maxl=1,...,m fl(x) where the finctions fl are convex. Then f is convex and

its subdifferential is contained in the convex hull of the union of the subdifferentials ∂fl:

(A.5) ∂f ⊆ Conv

(
m⋃

l=1

∂fl

)
.

A.6. Proofs. Proof of Proposition 4.1. Parts (i) and (ii) are straightforward. We now prove (4.9)

with the constant

cJ = min

(
2|J |

(1− c)+
,
2 |Jex ∩ J |+ (2 + c(1− r)) |Jc

ex ∩ J |+ c(1 − r) |Jc
ex ∩ Jc|

(1− cr)+

)
.

The upper bound in (4.9) follows from the fact that |∆|p ≥ |∆|∞. We obtain the lower bound as

follows. Because |∆|p ≤ |∆|1/p1 |∆|1−1/p
∞ , we get that, for ∆ 6= 0,

(A.6)
|Ψn∆|∞
|∆|p

≥ |Ψn∆|∞
|∆|∞

( |∆|∞
|∆|1

)1/p

.

Furthermore, for ∆ ∈ CJ , by the definition of the cone, we have

(A.7) |∆Jc |1 ≤ |∆J |1 + cr|∆Jex∩J |1 + cr|∆Jex∩Jc |1 + c|∆Jc
ex∩J |1 + c|∆Jc

ex∩Jc |1
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which implies that

(1− cr)|∆Jex∩Jc |1 ≤ (1 + cr)|∆Jex∩J |1 + (1 + c)|∆Jc
ex∩J |1 + (c− 1)|∆Jc

ex∩Jc |1

and thus

(A.8) |∆Jex∩Jc |1 ≤
1 + cr

1− cr
|∆Jex∩J |1 +

1 + c

1− cr
|∆Jc

ex∩J |1 +
c− 1

1− cr
|∆Jc

ex∩Jc |1 .

Adding |∆J |1 on both sides of (A.7) and injecting (A.8) into (A.7) yields that

|∆|1 ≤ 2|∆J |1 + cr|∆Jex∩J |1 + cr|∆Jex∩Jc |1 + c|∆Jc
ex∩J |1 + c|∆Jc

ex∩Jc |1

≤
(
2 + cr + cr

1 + cr

1 − cr

)
|∆Jex∩J |1 +

(
2 + c+ cr

1 + c

1 − cr

)
|∆Jc

ex∩J |1 +
(
c+ cr

c− 1

1− cr

)
|∆Jc

ex∩Jc |1

≤ 2

1− cr
|∆Jex∩J |1 +

2 + c(1− r)

1− cr
|∆Jc

ex∩J |1 +
c(1− r)

1− cr
|∆Jc

ex∩Jc |1

≤
(

2

1− cr
|Jex ∩ J |+ 2 + c(1− r)

1− cr
|Jc

ex ∩ J |+ c(1− r)

1− cr
|Jc

ex ∩ Jc|
)
|∆(Jc

ex∩Jc)∪J |∞

We obtain the first lower bound using the fact that |∆(Jc
ex∩Jc)∪J |∞ ≤ |∆|∞ and (A.6). This lower

bound holds for any 0 < c < r−1. Let us obtain an alternative lower bound for the case where

0 < c < 1. We can deduce from (A.7) that

|∆Jc |1 ≤
1 + c

1− c
|∆J |1

and thus

|∆|1 = |∆Jc |1 + |∆J |1 ≤
2

1− c
|∆J |1 ≤

2|J |
1− c

|∆J |∞ ≤ 2|J |
1− c

|∆|∞ .

Inequality (4.10) can be proved in a similar manner. The lower bounds follows from the fact that

|Ψn∆|∞
|∆J0 |p

≥ |Ψn∆|∞
|∆J0 |∞

( |∆J0 |∞
|∆J0 |1

)1/p

and |∆J0 |1 ≤ |J0||∆J0 |∞. While the upper bound holds because |∆J0 |p ≥ |∆J0 |∞.

Let us now prove (iv). Because for every k in J0, |∆J0 |∞ ≥ |∆k|, one obtains that for every k in J0,

κ∞,J0,J = inf
∆∈CJ

|Ψn∆|∞
|∆J0 |∞

≤ inf
∆∈CJ

|Ψn∆|∞
|∆k|

= κ∗k,J .

Thus

κ∞,J0,J ≤ min
k∈J0

κ∗k,J .

But one also has

(A.9) κ∞,J0,J = min
k∈J0

inf
∆∈CJ : |∆k|=|∆J0

|∞=1
|Ψn∆|∞ ≥ min

k∈J0
inf

∆∈CJ : |∆k|=1
|Ψn∆|∞.
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The bounds (v) and (vi) with constants with

cJex,J = min

(
2|J |

(1− c)+
,
2 |Jex ∩ J |+ (1 + c) |Jc

ex ∩ J |+ (c− 1) |Jc
ex ∩ Jc|

(1− cr)+

)
,

and

cJc
ex,J =

2 |Jc
ex ∩ J |+ (1 + cr) |Jex ∩ J |

(1− c)+

are obtained by rewritting the cone condition as

(1− cr)|∆Jex∩Jc |1 + (1− c)|∆Jc
ex∩Jc |1 ≤ (1 + cr)|∆Jex∩J |1 + (1 + c)|∆Jc

ex∩J |1

and using |∆Jex |1 = |∆Jex∩Jc |1 + |∆Jex∩J |1 and |∆Jc
ex
|1 = |∆Jc

ex∩Jc |1 + |∆Jc
ex∩J |1.

To prove (vii) it suffices to note that, because |∆|1 ≤ 2|∆J |1 + cr |∆Jex |1 + c
∣∣∆Jc

ex

∣∣
1
,

|∆|1 ≤
(

2

κ1,J,J
+

cr

κ1,Jex,J
+

c

κ1,Jc
ex,J

)
|Ψn∆|∞ .

This implies that

κ1,J ≥
(

2

κ1,J,J
+

cr

κ1,Jex,J
+

c

κ1,Jc
ex,J

)−1.

and we conclude using (4.10), (v) and (vi). �

Proof of Proposition 4.2. Take 1 ≤ k ≤ K and 1 ≤ l ≤ L,

|(Ψn∆)l − (Ψn)lk∆k| ≤ |∆|1 max
k′ 6=k

|(Ψn)lk′ |,

which yields

|(Ψn)lk| |∆k| ≤ |∆|1 max
k′ 6=k

|(Ψn)lk′ |+ |(Ψn∆)l| .

The two inequalities of the assumption yield

∣∣(Ψn)l(k)k
∣∣ |∆k| ≤ |∆|1

1− η2
cJ

|(Ψn)l(k)k|+
1

η1

∣∣∣(Ψn∆)l(k)

∣∣∣
∣∣(Ψn)l(k)k

∣∣ .

This inequality, together with the fact that
∣∣∣(Ψn∆)l(k)

∣∣∣ ≤ |Ψn∆|∞ and the upper bounds from the

proof of the upper bound (4.9) of Proposition 4.1, yield

|∆k| ≤ (1− η2)|∆|∞ +
|Ψn∆|∞

η1

and thus

η2η1|∆|∞ ≤ |Ψn∆|∞ .

One concludes using the definition of the ℓ∞-sensitivity. �
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Proof of Theorem 6.1. Consider here a fixed β ∈ Ident and denote by ui = yi − xTi β.

Because
∣∣ 1
nDZZ

T (Y −Xβ)
∣∣
∞ =

∣∣ 1
nDZZ

TU
∣∣
∞ and Q̂(β) = En[U

2], on the event G,
(
β,

√
Q̂(β)

)

belongs to Î.
Set ∆ , D−1

X
(β̂ − β). On the event G, we have:

|Ψn∆|∞ ≤
∣∣∣∣
1

n
DZZ

T (Y −Xβ̂)

∣∣∣∣
∞

+

∣∣∣∣
1

n
DZZ

T (Y −Xβ)

∣∣∣∣
∞

(A.10)

≤ r

(
σ̂ +

√
Q̂(β)

)
.(A.11)

On the other hand, (β̂, σ̂) minimizes the criterion
∣∣D−1

X
β
∣∣
1
+ cσ on the set Î. Thus, on the event G,

(A.12)
∣∣∣D−1

X
β̂
∣∣∣
1
+ cσ̂ ≤ |D−1

X
β|1 + c

√
Q̂(β).

This implies, again on the event G,
∣∣∆J(β)c

∣∣
1
=

∑

k∈J(β)c

∣∣∣En[X
2
k ]

1/2β̂k

∣∣∣(A.13)

≤
∑

k∈J(β)

(∣∣∣En[X
2
k ]

1/2βk

∣∣∣−
∣∣∣En[X

2
k ]

1/2β̂k

∣∣∣
)
+ c

(√
Q̂(β)−

√
Q̂(β̂).

)
.

The last inequality holds because by construction

√
Q̂(β̂) ≤ σ̂.

For γ such that Q̂(γ) 6= 0, γ →
√
Q̂(γ) is differentiable and its gradient ∇

√
Q̂(γ) is a vector

with components
(
∇
√
Q̂(γ)

)

k

= −
1
n

∑n
i=1 xki(yi − xTi γ)√

1
n

∑n
i=1(yi − xTi γ)

2
, k = 1, . . . ,K.

In each scenario we only allowed the denominator to be 0 at β with 0 probability. Therefore the

subgradient of

√
Q̂ at β is a gradient and we have

∇
√

Q̂(β) =
1
nX

TU√
Q̂(β)

that we denote for brevity w. This and the fact that the function γ →
√

Q̂(γ) is convex imply that

√
Q̂(β)−

√
Q̂(β̂) ≤ 〈w, β − β̂〉

= 〈DXw,D−1
X

(β − β̂)〉 = −〈DXw,∆〉 .
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Now for any row of index k in the set Jex, |(DXw)k| ≤ r on the event G. This is because these

regressors serve as their own instrument and, on the event G,
(
β,

√
Q̂(β)

)
belongs to Î. On the

other hand, for any row of index k in the set Jc
ex, the Cauchy-Schwarz inequality yields that

|(DXw)k| ≤
|En[XkU ]|√
En[X2

k ]En[U2]
≤ 1 .

Finally we obtain

√
Q̂(β̂)−

√
Q̂(β) ≤ r|∆Jex |1 + |∆Jc

ex
|1 .(A.14)

Combining this inequality with (A.13) we find that ∆ ∈ CJ(β) on the event G. Using (A.10)

and arguing as in (A.13) we find

|Ψn∆|∞ ≤ r

(
2σ̂ +

√
Q̂(β)− σ̂

)
(A.15)

≤ r

(
2σ̂ +

√
Q̂(β)−

√
Q̂(β̂)

)

≤ r
(
2σ̂ + r|∆Jex|1 + |∆Jc

ex
|1
)
.(A.16)

Using the definition of the sensitivities we get that, on the event G,

|Ψn∆|∞ ≤ r

(
2σ̂ + r

|Ψn∆|∞
κ1,Jex,J(β)

+
|Ψn∆|∞
κ1,Jc

ex,J(β)

)
,

which implies

(A.17) |Ψn∆|∞ ≤ 2σ̂r

(
1− r2

κ1,Jex,J(β)
− r

κ1,Jc
ex,J(β)

)−1

+

.

This inequality and the definition of the sensitivities yield (6.1).

In the case without endogeneity where L = K and Z = X,

1

n

n∑

i=1

(xTi DX∆)2 ≤ |∆|1 |Ψn∆|∞ ,

(6.1) and (A.17) yield (6.3).

To prove (6.2), it suffices to note that, by (A.12) and by the definition of κ1,J(β),J(β),

cσ̂ ≤ |∆J(β)|1 + c

√
Q̂(β)

≤ |Ψn∆|∞
κ1,J(β),J(β)

+ c

√
Q̂(β),

and to combine this inequality with (A.10). �
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Proof of Theorem 6.2. Take β in Ident. Fix an arbitrary subset J of {1, . . . ,K}. Acting as in

(A.13) with J instead of J(β), we get:

∑

k∈Jc

∣∣∣En[X
2
k ]

1/2β̂k

∣∣∣+
∑

k∈Jc

∣∣∣En[X
2
k ]

1/2βk

∣∣∣ ≤
∑

k∈J

(∣∣∣En[X
2
k ]

1/2βk

∣∣∣−
∣∣∣En[X

2
k ]

1/2β̂k

∣∣∣
)
+ 2

∑

k∈Jc

∣∣∣En[X
2
k ]

1/2βk

∣∣∣

+ c

(√
Q̂(β)−

√
Q̂(β̂)

)

≤ |∆J |1 + 2
∣∣(D−1

X
β
)
Jc

∣∣
1
+ cr |∆Jex |1 + c

∣∣∆Jc
ex

∣∣
1
.

This yields

(A.18) |∆Jc |1 ≤ |∆J |1 + 2
∣∣(D−1

X
β
)
Jc

∣∣
1
+ cr |∆Jex|1 + c

∣∣∆Jc
ex

∣∣
1
.

Assume now that we are on the event G. Consider the two possible cases. First, if 2
∣∣(D−1

X
β
)
Jc

∣∣
1
≤

|∆J |1 + cr |∆Jex |1 + c
∣∣∆Jc

ex

∣∣
1
, then ∆ ∈ C̃J . From this, using the definition of the sensitivity κ̃p,J0,J ,

we get that |∆J0 |p is bounded from above by the first term of the maximum in (6.6). Second, if

2
∣∣(D−1

X
β
)
Jc

∣∣
1
> |∆J |1 + cr |∆Jex |1 + c

∣∣∆Jc
ex

∣∣
1
, then for any p ∈ [1,∞] we have a simple bound

|∆J0 |p ≤ |∆|1 = |∆Jc |1 + |∆J |1 ≤ 6
∣∣(D−1

X
β
)
Jc

∣∣
1
.

In conclusion, |∆J0 |p is smaller than the maximum of the two bounds. The bound for the prediction

loss under exogeneity combines this inequality with (A.16) and (A.17) for enlarged cones, distingishing

the two cases. �

Proof of Theorem 7.1. Part (i) of the theorem follows from (6.1) and (6.2) and Assumptions 7.1

together with (6.5). Part (ii) follows immediately from (6.4), and Assumptions 7.1. To prove part

(iii), note that (7.6) and the assumption on |βk| imply: β̂k 6= 0 for k ∈ J(β). �

Proof of Proposition 8.1. Any ∆ in the cone CJ is such that

|∆Jc |1 ≤ |∆J |1 + cr|∆Jex |1 + c|∆Jc
ex
|1 .

Adding |∆J |1 to both sides yields

|∆|1 ≤ 2|∆J |1 + cr|∆Jex |1 + c|∆Jc
ex
|1

or equivalently

(1− cr)|∆Jex |1 + (1− c)|∆Jc
ex
|1 ≤ 2|∆J |1 .

Because if |J | ≤ s, one gets

(A.19) |∆|1 ≤ 2s|∆J |∞ + cr|∆Jex |1 + c|∆Jc
ex
|1 .
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This set of vectors ∆ contains the cone and the lower bounds are obtained by minimizing on this

larger set. One can assume everywhere that ∆j ≥ 0 because the objective function in the sensitivities

involves a sup-norm so that changing ∆ in −∆ does not change the sensitivities.

Note that we have included the constraint |∆|∞ ≤ 1 in (8.1) because of (A.9). The rest follows

from Proposition 4.1. �

Proof of Theorem 8.1. Fix β in Bs. Let Gj be the events of probabilities at least 1−γj respectively

appearing in Assumptions 7.2 and 8.1. Assume that all these events hold, as well as the event G.
Then, using Theorem 7.1 (i),

ωk(s) ≤
2σ∗r

κ∗(s)vk

(
1 +

r|J(β)|
cκ∗

)(
1− r|J(β)|

cκ∗

)−1

+

θ(s) , ω∗
k.

By assumption, |βk| > 2ω∗
k for k ∈ J(β). Note that the following two cases can occur. First, if

k ∈ J(β)c (so that βk = 0) then, using (6.4) and Assumption 8.1, we obtain |β̂k| ≤ ω∗
k, which implies

β̃k = 0. Second, if k ∈ J(β), then using again (6.4) we get ||βk| − |β̂k|| ≤ |βk − β̂k| ≤ ωk(s) ≤ ω∗
k.

Since |βk| > 2ω∗
k for k ∈ J(β), we obtain that |β̂k| > ω∗

k thus |β̂k| > ωk(s), so that β̃k = β̂k and the

signs of βk and β̂k coincide. This yields the result. �

Proof of Theorem 9.1. The only difference with the proof of Theorem 6.1 is that, because we

do not have the ℓ1 norm in the objective function (9.1), we drop the discussion leading to the cone

constraint. �

Proof of Theorem 9.2. Take β in Bs, we have on G, where G is defined in Section 5 adding the

extra instrument ζT zi for i = 1, . . . , n .

1

n
|ζ̂TZTU| ≤ |D−1

Z
(ζ̂ − ζ)|1

√
Q̂(β)r +

1

n
|(ζTZ)TU|

≤
(
C1(r, s1) + En[(ζ

TZ)2]1/2
)√

Q̂(β)r

≤
(
C1(r, s1) + C2(r, s1) + En[(ζ̂

TZ)2]1/2
)√

Q̂(β)r .

The rest of the proof is the same as for Theorem 6.1. Equation (9.13) is a consequence of Theorem

8.3 calculating the value of cb(s) when Jc
ex = {1}. �

Proof of Theorem 9.3. Throughout the proof, we assume that we are on the event G ∩ G′ where G
is the event where (9.18) holds and G′ is the event such that

max
l=1,...,L

∣∣En

[
ZlU − θl

]∣∣
√

En

[
(Z lU − θl)2

] ≤ r.



A-12 GAUTIER AND TSYBAKOV

One has that on the event G′

(A.20)

∣∣∣∣DZ

(
1

n
Z
T
U− θ

)∣∣∣∣
∞

≤ r max
l=1,...,L

√
En[(Z lU − θl)2]

En[Z
2
l ]

= rF (θ, β) .

We now use the properties of F (θ, β) stated in the next lemma that we prove in Section A.7.

Lemma A.2. We have

F (θ, β)− F (θ̂, β) ≤ r
∣∣∣D

Z

(
θ̂ − θ

)∣∣∣
1
,(A.21)

|F (θ, β̂)− F (θ, β)| ≤ z∗
∣∣∣DX

−1(β̂ − β∗)
∣∣∣
1
≤ b̂1z∗(A.22)

F (θ̂, β)− F (θ̂, β̂) ≤ z∗
∣∣∣DX

−1(β̂ − β∗)
∣∣∣
1
≤ b̂1z∗.(A.23)

We proceed now to the proof of Theorem 9.3. First, we show that the pair (θ, σ) = (θ, F (θ, β))

belongs to the set Î. Indeed, from (A.20) we get
∣∣∣∣DZ

(
1

n
Z
T
(Y −Xβ̂)− θ

)∣∣∣∣
∞

≤
∣∣∣∣DZ

(
1

n
Z
T
U− θ

)∣∣∣∣
∞

+

∣∣∣∣
1

n
D

Z
Z
T
X(β̂ − β)

∣∣∣∣
∞

≤ rF (θ, β) + b̂ .

Thus, the pair (θ, σ) = (θ, F (θ, β)) satisfies the first constraint in the definition of Î. It satisfies the

second constraint as well, since F (θ, β̂) ≤ F (θ, β) + b̂1z∗ by (A.22).

Now, as (θ, F (θ, β)) ∈ Î and (θ̂, σ̂) minimizes |θ|1 + c σ over Î, we have

(A.24)
∣∣∣D

Z
θ̂
∣∣∣
1
+ c σ̂ ≤

∣∣D
Z
θ
∣∣
1
+ c F (θ, β),

which implies

(A.25) |∆J(θ)c |1 ≤ |∆J(θ)|1 + c(F (θ, β)− σ̂),

where ∆ = D
Z

(
θ̂ − θ

)
. Using the fact that F (θ̂, β̂) ≤ σ̂ + b̂z∗ (by the definition of the estimator),

(A.21), and (A.22) we obtain

F (θ, β)− σ̂ ≤ F (θ, β)− F (θ̂, β̂) + b̂1z∗(A.26)

= (F (θ, β)− F (θ̂, β)) + (F (θ̂, β)− F (θ̂, β̂)) + b̂1z∗

≤ r
∣∣∣D

Z

(
θ̂ − θ

)∣∣∣
1
+ 2b̂1z∗.

This inequality and (A.25) yield

|∆J(θ)c |1 ≤ |∆J(θ)|1 + c r
∣∣∣D

Z

(
θ̂ − θ

)∣∣∣
1
+ 2cb̂1z∗,
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or equivalently,

(A.27) |∆J(θ)c |1 ≤
1 + c r

1− c r
|∆J(θ)|1 +

2c

1− c r
b̂1z∗.

Next, using (A.20) and the second constraint in the definition of (θ̂, σ̂), we find

∣∣∣D
Z

(
θ̂ − θ

)∣∣∣
∞

≤
∣∣∣∣DZ

(
1

n
Z
T
(Y −Xβ̂)− θ̂

) ∣∣∣∣
∞

+

∣∣∣∣DZ

(
1

n
Z
T
U− θ

)∣∣∣∣
∞

+

∣∣∣∣DZ

(
1

n
Z
T
X(β̂ − β)

)∣∣∣∣
∞

≤ r(σ̂ + F (θ, β)) + 2b̂.

This and (A.26) yield

∣∣∣D
Z

(
θ̂ − θ

)∣∣∣
∞

≤ r
(
2σ̂ + r

∣∣∣D
Z

(
θ̂ − θ

)∣∣∣
1

)
+ 2rb̂1z∗ + 2b̂.(A.28)

On the other hand, (A.27) implies

∣∣∣D
Z

(
θ̂ − θ

)∣∣∣
1

= |∆|1 = |∆J(θ)|1 + |∆J(θ)c |1(A.29)

≤ 2

1− c r
|∆J(θ)|1 +

2c

1− c r
b̂1z∗

≤ 2|J(θ)|
1− c r

∣∣∣D
Z

(
θ̂ − θ

)∣∣∣
∞

+
2c

1− c r
b̂1z∗.

Inequalities (9.23) and (9.24) follow from solving (A.28) and (A.29) with respect to
∣∣∣D

Z

(
θ̂ − θ

)∣∣∣
∞

and
∣∣∣D

Z

(
θ̂ − θ

)∣∣∣
1
respectively. �

Proof of Theorem 9.4. We assume everywhere that we are on the event G ∩G1 ∩G2 ∩G′ ∩G3 where

(A.20), (9.25), and (9.21) are simultaneously satisfied.

We first prove part (i). From (A.24) and the fact that (9.25) can be written as F (θ, β) ≤ σ∗ we obtain

σ̂ ≤
|∆J(θ)|1

c
+ σ∗ ≤

|J(θ)|
∣∣∣D

Z

(
θ̂ − θ

)∣∣∣
∞

c
+ σ∗.(A.30)

Item (i) and (ii) now follow easily using the fact that V is increasing in all of its arguments.

To prove part (iii), note that the thresholds ωl satisfies

ωl , En[Z
2
l ]
1/2

(
1− 2s r

c(1− c r)

)−1

+

(
1− 2s c r2

c(1− c r)

)
V (σ̂, b̂, b̂1, J(θ̂))

≤ vl

(
1− 2s r

c(1− c r)

)−1

+

(
1− 2s c r2

c(1− c r)

)
V (σ∗, b∗, b1∗, s) , ω∗

l
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on the event. On the other hand, (9.23) guarantees that |θ̂l − θ∗l | ≤ ωl and, by assumption, |θ∗l | >
2ω∗

l > 2ωl for all l ∈ J(θ∗). In addition, by (6.1) and (9.23) for all l ∈ J(θ∗)c we have |θ∗l | < ωl, which

implies θ̃l = 0. We finish the proof in the same way as the proof of Theorem 7.1. �

A.7. Proof of Lemma A.2. We set fl(θ) ,

√
Q̂l(θ, β), and f(θ) , maxl=1,...,L fl(θ) ≡ F (θ, β). Each

function fl is convex and

(∇fl(θ))l = − En

[
Z l(Y −XTβ)− θl

]
√

En[Z
2
l ]En

[(
Z l(Y −XTβ)− θl

)2]

is such that |(∇fl(θ))l| ≤ r

En[Z
2
l ]

1/2
while (∇fl(θ))m = 0 for m 6= l. This implies, in view of Lemma A.1,

that ∂f(θ) ⊆
{
w ∈ RL :

∣∣∣D−1
Z

w
∣∣∣
∞

≤ r
}
. Thus

f(θ)− f(θ̂) ≤ 〈w, θ∗ − θ̂〉 =
〈
D−1

Z
w,D

Z

(
θ∗ − θ̂

)〉
≤ r

∣∣∣D
Z

(
θ̂ − θ∗

)∣∣∣
1
, ∀ w ∈ ∂f(θ∗),

where 〈·, ·〉 denotes the standard inner product in RL. Thus (A.21) follows. The proof of (A.22)

and (A.23) are based on similar arguments. Let us prove for example (A.22). Instead of fl, we now

introduce the functions gl defined by gl(β) ,

√
Q̂l(θ, β), and set g(β) , maxl=1,...,L gl(β) ≡ F (θ, β).

Each function gl is convex and their gradient ∇gl(β) is

∇gl(β) = − En

[
Z lX

(
Z l(Y −XTβ)− θl

)]
√

En[Z
2
l ]En

[(
Zl(Y −XTβ)− θl

)2]
.

Using the Cauchy-Schwarz inequality for all k = 1, . . . ,K, we get

|(∇gl(β))k| ≤ z∗
√
En[X

2
k ] = z∗(DX)−1

kk .

Because the functions gl are convex, Lemma A.1 yields that the subdifferential of the function g(·) =
maxl=1,...,L gl(·) is included in the same hyperrectangle: ∂g(β) ⊆ {w ∈ RK : |wk| ≤ z∗(DX)

−1
kk } for all

β ∈ RK . Hence, for any w ∈ ∂g(β) we have |DXw|∞ ≤ z∗. This and the definition of subdifferential

imply that, for any β, β′ ∈ RK and any w ∈ ∂g(β),

g(β) − g(β′) ≤ 〈w, β − β′〉 ≤ |DXw|∞
∣∣DX

−1(β − β′)
∣∣
1
≤ z∗

∣∣DX
−1(β − β′)

∣∣
1
,

which immediately implies (A.22). �
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A.8. Extending Scenario 5 to Heteroscedastic Errors. For the extension to heteroscedastic

errors we make the following assumption.

The errors ui are independent from the zi’s, (zi, ui) are independent, there exists constants c, C, Bn

such that: (i) ∀i = 1, . . . , n, l = 1, . . . , L |zli| ≤ Bn a.s.; (ii) E[U4] ≤ C; (iii) B4
n(log(Ln))

7/n ≤ Cn−c.

We make use of a first stage STIV estimator (β̂1, σ̂1) obtained for some constant c1 and r1 which is

associated to a confidence level 1− α1 under a scenario 4, the associated confidence set with sparsity

certificate s and the following statistic

W , max
l=1,...,L

∣∣∣∣∣En

[
Zl(Y −XT β̂1)V

En[Z
2
l ]

1/2

]∣∣∣∣∣

where vi are independent standard normal random variables independent of zi, yi and xi. For a

confidence level 1− α one adjusts r, α1, r1 and η so that

P (W ≥ r − η|yi, xi, zi, i = 1, . . . , n) + P

(
2σ̂1r1θ(s)

κ1(s)

∣∣DZEn[ZXTV ]DX

∣∣
∞ ≥ η

∣∣∣∣ yi, xi, zi, i = 1, . . . , n

)

≤ α− α1

where both probabilities can be approximated by Monte-Carlo. Then one uses as a second stage the

non-pivotal STIV estimator from Gautier and Tsybakov (2011) with σ = 1.

Proof of the validity of the procedure. Define

T0 , max
l=1,...,L

∣∣∣∣En

[
ZlU

En[Z2
l ]

1/2

]∣∣∣∣

W0 , max
l=1,...,L

∣∣∣∣En

[
ZlUV

En[Z2
l ]

1/2

]∣∣∣∣ .

We need to prove that

limn→∞, B4
n(log(Ln))

7/n≤Cn−c P(T0 ≥ r) ≤ α .

By Corollary 2.1 of Chernozhukov, Chetverikov and Kato (2013), one obtains that for some positive

constants c2 and C2 and B4
n(log(Ln))

7/n ≤ Cn−c

sup
t∈R

|P (T0 ≤ t|zli, i = 1, . . . , n, l = 1, . . . , L)− P (W0 ≤ t|zli, i = 1, . . . , n, l = 1, . . . , L)| ≤ C2n
−c2 .

So one has to prove that

limn→∞, B4
n(log(Ln))

7/n≤Cn−c P(W0 ≥ r) ≤ α .

One can conclude using the pigeonhole principle and the fact that

W0 −W ≤ max
l=1,...,L

∣∣∣∣∣En

[
ZlX

T (β − β̂)V

En[Z2
l ]

1/2

]∣∣∣∣∣ ≤
∣∣∣D−1

X
(β − β̂)

∣∣∣
1

∣∣DZEn[ZXTV ]DX

∣∣
∞ �
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