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unbiased estimator of the expected overall discrepancy. Further, we
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capabilities of the new criterion in selecting the optimal order in
autoregressive processes and in general in a time series context.
The new criterion shows remarkably good results by choosing the
correct model more frequently than traditional Information Criteria.
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RESPONSE TO THE REVIEWER’S COMMENTS

We would like to express our appreciation to the reviewer because his/hers careful reading
resulted in identifying a typo in our GAUSS program that was oversighted. When in the
original report, the reviewer raised concerns about the simulations, we looked into the
programming of HQ, assuming that the error was there. The reviewer’s persistence made us
look more closely and we have now identified a typo in the programming not of HQ but of
SIC. The error, which has partially affected the SIC powers, has been corrected and the
correct rates of success for SIC are reported in the present revision (Tables 1-6). Note that all
other values stay intact. Due to the new values for SIC, some minor changes were made into
the text on pages 11-13 (all the changes are highlighted in yellow) which though do not effect
in any way our original conclusions. On the contrary, a new special feature of MDIC has
been revealed and decided to be included in the present revision:

First note that we included in this revision a brief discussion about MDIC with a equal to
that value in [0, 0.50] which maximizes the power (see p. 11, lines 6-9). However, due to
insignificant differences between MDIC and MDIC with max power, the powers of the latter
for Models 3-6 are suppressed from the Tables (p. 11, lines -5 to -4). Our simulations
revealed that especially for small and medium sample sizes, MDIC with a =0.25 provides an
ideal model identification technique for both small and large lag models. As a result, we have
chosen to include in the discussion about the choice of a (p. 13, middle paragraph), a
statement about the small and medium sample performance of MDIC (p.13, lines -8 to -6). A
similar statement appears also on p. 14, lines 9-13. In these statements, we explicitly state
that for small and medium sample sizes, the choice a =0.25is highly recommended since it
clearly serves as a fair balance between small and large lag models.

Finally note that throughout the manuscript, the index a has been properly referred to.
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An Improved Divergence Information Criterion for

the Determination of the Order of an AR Process
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Sweden Cyprus
Abstract

In this paper we propose a modification of the recently introduced Divergence Information
Criterion (DIC, Mattheou et. al, 2009) for the determination of the order of an autoregressive
process and show that it is an asymptotically unbiased estimator of the expected overall
discrepancy, a nonnegative quantity which measures the distance between the true unknown
model and a fitted approximating model. Further, we use Monte Carlo methods and various Data
Generating Processes for small, medium and large sample sizes in order to explore the capabilities
of the new criterion in selecting the optimal order in autoregressive processes and in general
in a time series context. The new criterion shows remarkable good results by choosing the correct

model more frequently than traditional Information Criteria.
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1. Introduction

Consider a discrete-time stationary AR(p) process of the form

X :aXt_ +a Xt—

;=9 179 +---+apXt +e (1)

2 -p

where {e, } is a sequence of uncorrelated N (0, 02) random variables and all the roots of the

autoregressive polynomial are outside the unit circle, that is, A(z) =1- az== apzp =0

for all z elJ such that |z| <1.

One of the crucial problems in time series modeling is selecting the optimal model order and
specifying a parsimonious model for the data generating process (DGP). Many techniques
have been developed for the order selection of linear models, namely a) graphical methods
with representative the Box and Jenkins methods (1970) and b) hypothesis test procedures

with the pioneering work of Whittle (1952) as representative.

Akaike (1974) viewed the problem of model fitting in the context of time series analysis as a
multiple decision procedure rather than a hypothesis testing problem. However the same
author (Akaike, 1973) initiated the research on automatic model selection techniques by
developing the popular Akaike Information Criterion (AIC) which is considered as a
significant contribution to statistical modelling where the focus is on the selection of a
satisfactory model for a given set of observations. It might appear at first sight that the higher
the order of the selected process (model) chosen, the better the fitted model will be. Such a
thought may be true for fitting purposes but not for predicting ones. Indeed, the fit may be
perfect for the given data but the use of the selected model for predictive purposes may result
in gross errors. Numerous selection criteria have been developed over the last 30 years which

attempt to prevent overfitting by assigning a penalty to the introduction of an unnecessary
2
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large order and consequently to an unnecessary number of parameters. Schwarz (1978),
Hannan and Quinn (1979), Seghouane et. al (2005), Bengtsson and Cavanaugh (2006) and
others followed the pioneering work of Akaike. Most of the criteria proposed in the literature
consist in minimizing, with respect to the model order, a function of the given observations
plus a penalty term for the introduction of additional parameters, which generally depends on
the model order and sample size. Thus, according to automatic criteria, the parameters of a
variety of competing models are estimated and the model chosen is the one with the smallest

criterion value.

In this work we propose a modification of the recently introduced Divergence Information
Criterion (DIC) (Mattheou (2007); Mattheou, et. al (2009)) and show that it is an
asymptotically unbiased estimator of the expected overall discrepancy, a nonnegative quantity
which measures the distance between the true unknown model and a fitted approximating
model. Furthermore, we explore the capabilities of the new criterion in selecting the optimal
order in autoregressive processes and in general in a time series context. The paper is
organised as follows. In Section 2, we first briefly discuss various Information Criteria and
their association with measures of divergence and then introduce the Modified Divergence
Information Criterion (MDIC) and provide for practical purposes, an optimum choice for the
index a which the new criterion depends on. In Section 3 in order to explore the capabilities
of the new MDIC criterion, we perform a comparative study of various Information Criteria
for different time series examples by using a Monte Carlo method. Finally in Section 4 we

summarize our results. For the simulations we make use of the Gauss 8 program.
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2. The New Modified Divergence Information Criterion

2.1. Measures of Divergence and Selection Criteria

The measures of divergence are used as indices of similarity or dissimilarity between
populations and for measuring mutual information concerning two variables and as such they
can be used for the construction of model selection criteria. The distance between a candidate
model and the true but unknown model could be measured by a measure of divergence. The
candidate model for which the measure of divergence is minimized will be selected. The well
known Kullback-Leibler measure of divergence (Kullback and Leibler, 1951) was the one
used by Akaike (1973) to develop the Akaike Information Criterion (AIC). Akaike proposed
the evaluation of the fit of the candidate model using minus twice the mean expected
loglikelihood (also known as expected overall discrepancy). Furthermore, he provided an

unbiased estimator of the expected loglikelihood so that the resulting criterion is given by
AIC(p) = nlog(&i) +2p,

where n the sample size, p the order of the candidate model and o”'; the estimator of the
variance of the pth-order candidate model.

For fitting autoregressive processes, Jones (1975) suggested that AIC has a tendency to
overestimate the order of the process and Shibata (1976) showed that the probability of

overestimation for a large sample size is nonzero. To correct this tendency, the SIC criterion

was proposed independently by Akaike (1978) and Schwarz (1978):

SIC(p) =nlog(6';)+plogn.

The above two criteria can be considered as members of the General Information Criterion

given by GIC(p) = nlog(&f,)+cn pwherec, a quantity that may depend on n. For ¢, =2 the

4
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criterion reduces to AIC, while for ¢, =logn to SIC. The case c, =cloglogn with ¢>2

corresponds to the Hannan and Quinn criterion (HQ, Hannan and Quinn, 1979) which has

been found to be equivalent to SIC in the sense that they are both consistent (Hannan, 1980).

The problem of avoiding overfitting especially for purely autoregressive processes can also be
dealt with the minimization of the final prediction error criterion (FPE) of Akaike (1969). The
FPE is an estimate of the one-step ahead prediction mean squared error for a realization of the
process independent of the one observed. If we fit AR processes of steadily increasing order p
the maximum likelihood estimator (MLE) of the white noise variance will usually decrease
with p. However, FPE will decrease to a minimum value and then increase as p will increase.
According to FPE, we choose the order of the candidate process to be the value of p for which

FPE is minimized. The FPE is given by

n+p

FPE(p) = &;

In all the above cases, any parameter estimation is handled through the maximum likelihood
method. A general class of criteria has been introduced by Konishi and Kitagawa (1996)
which also estimates the Kullback-Leibler measure where the estimation is not necessarily

based on maximum likelihood.
2.2. The Development of the MDIC Criterion

One of the most recently proposed measures of divergence is the Basu-Harris-Hjort-Jones

power divergence between the candidate model f,(.) and the true model g (Basu et. al, 1998)

which is denoted by BHHJ, indexed by a positive parameter a, and defined as:

Ia(g,fe)=j{fé*“<z)—(Hé)g(z)fg(z){éjgl*%)}dz.
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This family of measures was proposed by Basu et al. (1998) for the development of a
minimum divergence estimating method for robust parameter estimation. The index a controls
the trade-off between robustness and asymptotic efficiency of the parameter estimators which
are the values of # that minimize the measure over a parametric space® . It should be also
noted that the BHHJ family reduces to the Kullback-Leibler measure of divergence for
a{ 0(see Mattheou, 2007) and as it can be easily seen, to the square of the standard L,
distance between the candidate and the true model for a=1. Mattheou et al. (2008) applying
the same methodology used for AIC to the BHHJ divergence developed a new criterion, the

Divergence Information Criterion (DIC) which for a set of observations x;,...,x,1s given by

DIC(p) =nQ, + Qr)“*(A+a)*" p,

1

where Q. = I fé”" (z)dz—(1+—jlz f;(x) and 0 a consistent and asymptotically normal
a/n o

estimator of &. Preliminary simulation studies for regression models (Mattheou, 2007)

showed a very good medium sample size performance for DIC for values of a close to zero.

Although the DIC criterion was constructed so that it will be an asymptotically unbiased

estimator of the BHHJ divergence measure between the candidate and the true model, the

I+a
1

calculation of the first part of Q,, namely the integral J (z)dz is not computationally

attractive for practitioners. Furthermore, the simulation study shows that the difference in the
calculations of the above integrals, for the different candidate models is negligible compared

with the difference in the calculation for the entire quantity O,. In other words the integral

term does not affect the selection of the correct model and therefore the criterion can be

properly revised. In fact the criterion can be modified without affecting neither its small
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sample nor its asymptotic performance. As a result, we propose now a modified new criterion,

the Modified Divergence Information Criterion (MDIC) which is given by

MDIC(p) =n*MQ, Q4 2142t P2,

where MQ, = —{(lwta‘l)%if;(xi)]

Note that a model selection criterion can be considered as an approximately unbiased
estimator of the expected overall discrepancy, a nonnegative quantity which measures the
distance between the true unknown model and a fitted approximating model. Observe also
that, as it was mentioned in the introduction, a criterion consists of two terms, the first of
which is a biased estimator of the expected overall discrepancy. As a result, if we choose the
model with the smallest estimator of the expected overall discrepancy we may end up with a
selection with an unnecessarily large order. The estimator becomes asymptotically unbiased
by introducing the appropriate correction term. The expected overall discrepancy in the

present setting is defined by

EW,)=EW,/0=0) with W, =—[ {[1 +lj g/ (z)}dz
a

and @ a consistent and asymptotically normal estimator of 6. Observe that W,is the targeted
divergence 1%(g, f 9) without the first and the last terms. Notice that the last term remains

constant irrespectively of the candidate model f P while the first term, as stated earlier, is

approximately constant for the various candidate models. In that sense, the expected overall

discrepancy E(W,)represents the average distance between the true model g and the

candidate model f 0P to a constant. The relevant theorem for MDIC is stated below. The

proof is omitted since it follows the lines of the proof of Theorem 2.4 (Mattheou et.al, 2009)

where the unbiasedness of the original DIC criterion was established.
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Theorem 1. An asymptotically unbiased estimator of n--times the expected overall

discrepancy evaluated at@is given by

MDIC(p) = n*MQé +(27r)_a/2(1+a)2+p/2p

where 0 is a consistent and asymptotically normal estimator of 0.

Note that although the discussion in Mattheou et. al (2009) is limited to iid random variables,
by following the approach by Akaike (1973 and 1974) and Billingsley (1961), the same line
of discussion can be extended to cover autoregressive models. Recall that in time series
models, even under the Gaussian assumption, the evaluation of the log-likelihood cannot be
expressed as the sum of the logarithms of the density function of each observation. However,
the log-likelihood can generally be expressed by conditional distributions, so that in relatively
simple models, like the autoregressive models, we use as an approximation the mean
conditional log-likelihood which multiplied by the number of observations is used in place of

the log-likelihood in model selection.

In addition to the above, numerous other techniques have been introduced over the years some
of which are associated with the order determination and the forecasting performance in time
series. Such techniques include approaches based on bootstrapping (Shang and Cavanaugh,
2008), approaches for high dimensional medical data (Koukouvinos et al., 2008),
supersaturated designs (Koukouvinos and Mylona, 2008), variations of AIC (Cavanaugh and
Johnson, 1999; Bengtsson and Cavanaugh, 2006; Seghouane, 2006; Seghouane et. al, 2005)

and time series models (Lee, 1998).

2.3 Optimal Choice for the Index a
For practical purposes one has to decide the optimal choice of the positive indexa . For this

purpose, we simulate a 100 observation series for 5 different models with a between 0.01 and
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0.5 and we provide in Figure 1, the power of the selection, namely the proportion of times the

correct model is selected as a function ofa .

In Figure 1, [Dot dash] line is the AR(1) model defined as Model 1 in section 3.2; [Whole]
line shows the AR(2) appearing as Model 5 in section 3.2; [Dot close] line refers to the AR(3)
process: x, =1+0.2x,_, +0.5x, , —0.35x, , +e,; [Dash] line is the AR(4) process:

x, =14+0.2x,_,+0.5x,, -0.35x, , —0.22x, , +e,; finally [Dot] is the AR(5) process defined as

Model 6 in section 3.2.

Figure 1 shows that for small lags (models AR(1) and AR(2)) the power increases as the value
of «aincreases. In all the other cases the power increases up to a value of « and then
decreases. More specifically, for the complete AR(3) and AR(4) processes the power stays
high approximately up to the value a=0.25. For the AR(5) process the power decreases
after the value @ =0.10.

Although an optimum value of « for all types of autoregressive models may be considered to

be the value of 0.10, in the Monte Carlo study of section 3.2 we choose the value of 0.25 since

it appears to serve as a fair balance between small and large lag models.

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca
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Figure 1: Optimal choice of the index a (AR(1) — ¢ — AR(2) — AR(3) e« AR(4)——— AR(5) - - )
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33 3. Simulations

36 3.1 The Monte Carlo Experiment

In this section we provide the characteristics of the Monte Carlo experiment undertaken. We
41 calculate the estimated “percent” by simply observing how many times the correct AR(p)
43 model is selected in repeated samples. By varying factors such as the number of observations
45 50 (small sample) 75, 100 (medium sample) and 200, 500 (large sample); and the order of
AR(p) model we obtain a succession of estimated percent of the correct selection model under
48 different conditions.

50 The Monte Carlo experiment has been performed by generating data according to the

52 following Data generating processes:

55 Model 1:  x, =1+0.65x, , +e,
57 Model 2:  x, =1+0.65x, , +e,

59 Model 3:  x, =1+0.5x, , —0.85x, , +e,

10
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Model 4:  x, =1+0.5x, , —0.35x, , +e,
Model 5:  x, =1+1.5x,_,-0.5x, , +e,

Model 6:  x, =1+0.23x, , —0.22x, , —0.45x, ; +e,

where {e, } is a sequence of uncorrelated N (O, 0'2) random variables.

The criteria used in this experiment are the ones defined in Section 2, namely AIC, SIC, HQ
with ¢=2, FPE, and MDIC with a=0.25. We also obtain the results of MDIC with the
index a taken to be equal to that value in [0, 0.50] which maximizes the power. According to
the analysis in Section 2.3, the maximum powers are obtained for a =0.50 (Models 1-5) and

a =0.10 (Model 6). For the implementation of the criteria we use

3 1 (> -x)
j‘é ('xi) - (27[6-2) CXP{ 26_2 } 5

where )AC,. the predicted value of X, and 6 the estimated variance.

For each time series 20 presample values are generated with zero initial conditions, taking net
sample sizes of n = 50,75,100,200,500 in order to cover small, medium and large samples.
The number of replications per model used is 10000. The calculations were performed using

GAUSS 8.

3.2 Simulation Results

In this section we present the results of the Monte Carlo experiment concerning the percent of
correct selected model. Due to insignificant differences between MDIC and MDIC with max
power, the powers of the latter for Models 3-6 are suppressed from the Tables.

Table 1 shows the results for Model 1. It is not difficult to see the good performance of the
MDIC criterion for all sample sizes. The rate of success of MDIC is almost 98% for the small

sample with 50 observations, while the other criteria have a rate of success between 76.9%

11
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and 90.9%. We also observe the sample effect. Indeed, by increasing the number of
observations, the only criterion for which the percent of correct model selection increases
significantly is the Hannan and Quinn criterion (HQ). A smaller increase is observed for the
SIC criterion. For large sample sizes SIC and MDIC come first with a rate of success of
approximately 98% and HQ close second with a success rate almost equal to 92%. At the
same time, as the sample size increases, the difference between the MDIC and the remaining
Information Criteria decreases, although it is still in favor of MDIC. The good performance of
MDIC is evident from the high percent of selecting the correct AR(1) model in repeated

samples.

While in Table 1 MDIC performs quite well with though some competition from the SIC
criterion, in the case of the second model, as seen in Table 2, the MDIC is superior to all other
criteria for all sample sizes. Observe that MDIC is the best criterion among the competing
criteria with the SIC coming second. The worst performance was observed by AIC. The
sample effect shows the tendency of the best 2 criteria, namely MDIC and SIC, to approach
each other in terms of their rate of success as n increases. Observe the impressive success rate
of MDIC even for small sample sizes where for n=75 reaches a remarkable success rate of at
least 95%. Our attempt to see if the incomplete AR(2) process misleads the Information
criteria does not seem to work since the rate of success is not significantly affected by the

particular form of the underlying process.

In case of Models 3 and 5 as Tables 3 and 5 show the results are not different from the
previous cases. Indeed, MDIC is superior to all other criteria with success rate as high as 95%

for small and medium sample sizes and stays slightly behind SIC for large sample sizes.

In case of Model 4 as Table 4 shows all criteria for small sample sizes (n=50) have a high

tendency of selecting the simplest model (AR(1)) which is due to the fact that the coefficient
12
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of lag2 is relatively close to zero (0.35). As the sample size increases the rate of success
improves. MDIC is the best criterion in conjunction with HQ, for small sample sizes, and with

SIC, for large sample sizes.

Finally for Model 6, Table 6 shows that for small sample sizes the rate of success is less than

50% with AIC being the best, MDIC being the worse and SIC coming second to last. As the

sample size increases, MDIC and SIC have the higher improvement so that for 7 > 100 they
become again the best models with MDIC reaching an impressive success rate of 98.5% for

n=200 and 99.1% for n=500.

It should be pointed out that the choice of the index a plays an important role in model
selection and controls the rate of success of MDIC. As indicated in Section 2.3 for small lag
models, values of a in the interval [0.21, 0.50] appear to maximize the rate. On the other
hand, values of a in the interval [0.05, 0.25] produce the best results for large lag models.
Note though that the maximum powers are obtained for values of ain the upper end of the
former interval, for small lag models and the lower end of the latter, for large lag models. The
value of 0.25 proposed in this work, appears to offer a good balance irrespectively of the type
of the underlying AR model. If the candidate set consists exclusively of AR models of one
type, we suggest a larger value of a, around 0.35, for small lag models and a smaller one,
around 0.10, for large lag models. In reference to the sample size, our simulations clearly
show that especially for small and medium sample sizes, the MDIC criterion with a =0.25

provides an ideal model identification technique for both small and large lag models.

To summarize the findings we could safely conclude that the MDIC criterion performs much
better than the other selection criteria for AR processes and for various sample sizes. In
particular, the magnitude of the superiority of MDIC is extremely high for AIC and FPE and
relatively high for HQ, for all sample sizes. In reference to the SIC criterion, the superiority of

MDIC is of much lesser magnitude as compared to the other criteria.

13

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca



Page 15 of 47 Communications in Statistics - Simulation and Computation

©CoO~NOUTA,WNPE

4. Concluding Remarks

In this paper we have proposed the Modified Divergence Information Criterion (MDIC) for
the determination of the order of an autoregressive process and proved its asymptotic
unbiasedness. Furthermore, we performed a comparative study of model selection criteria for
autoregressive processes for small, medium, and large sample sizes in order to investigate the
practical implications of the new criterion. Based on the results of our simulation study we
conclude that for regular AR models, the performance of MDIC is excellent with very high
rate of success, for all sample sizes. The rate of success of MDIC increases with sample size
but usually not as much as the HQ and SIC criteria which is expected though since they are
both consistent. It is important to point out that in almost all cases MDIC with a =0.25
performs extremely well with a high rate of success (approx. equal to 90%) for both small and
medium sample sizes and for all types of models. As a result and especially for small and
medium sample sizes, the choice a =0.25 is highly recommended since it serves as a fair

balance between small and large lag models.

For irregular models (like Model 6), MDIC needs a sufficient number of observations for
performing well. More specifically, a medium sample size of order 75 or 100 seems to be

enough in order to pick up high rates of success.

Finally observe that MDIC is the only criterion that never selects too large models. In fact, in
all cases the probability of overestimation is at most 8% and for lags at most 2 or 3 higher
than the true lag while other criteria may select lags as large as 7 lags higher than the true one.

A similar behaviour but to a lesser extend is observed by SIC.

Based on the above observations we can conclude that MDIC chooses, at least for regular
models, the correct model quite easily even with sample sizes as small as n=50. At the same
time, the rate of success appears to plateau as the sample size increases. As it is known,
consistency is an attractive asymptotic property. In particular, as n tends to infinity we have
that P[correct selection] > 1. For MDIC, our results indicate that the probability of correct

14
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selection is significantly close to 1 even for very small values of n but stays below 1 even for
very large sample sizes. This behaviour may not be the best one from the asymptotic
(theoretical) point of view but it is ideal from the finite one due to desirable practical
implications. It that sense, MDIC may not possess the characteristics of a consistent criterion
but the fact that it is superior to all other criteria for finite sample sizes, makes it an excellent
selection criterion for practical purposes. Furthermore, another attractive feature of MDIC is

the one related to overfitting, where the criterion never selects very large models. Indeed, if k*
is the true order of the model and k the order selected by MDIC, we observe that
forn =50, P[l€ =k"+L,L>2]<0.005. In most cases, the probability drops to 0 even for L=3.

Acknowledgements: The authors would like to express their appreciation to the Editor and an
anonymous referee for valuable comments and suggestions that greatly improved both the
quality and the presentation of the manuscript. We especially thank the referee whose careful
and thorough reading helped in identifying and correcting a typo in our GAUSS program that

was oversighted.
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Table nr 1: Model 1

Lagl Lag?2 Lag3 Lag4 Lag5 Lag6b Lag7 Lag8

50 obs
AlC 0,769 | 0,108 | 0,049 | 0,022 | 0,018 | 0,012 | 0,013 | 0,009
SIC 0,909 | 0,068 | 0,015 | 0,003 | 0,004 | 0,001 o o
HQ 0,836 | 0,097 | 0,028 | 0,015 | 0,009 | 0,008 | 0,005 | 0,002
FPE 0,769 | 0,11 | 0,049 | 0,021 | 0,017 | 0,012 | 0,013 | 0,009
MDIC 0.25| 0,889 | 0,095 | 0,014 | 0,002 0 0 0 0

max | 0,974 | 0,026 o 0
75 obs
AlIC 0,775 | 0,124 | 0,04 | 0,025 | 0,016 | 0,009 | 0,005 | 0,006
SIC 0,936 | 0,050 | 0,011 | 0,001 | 0,001 | 0,001 o o
HQ 0,873 | 0,085 | 0,024 | 0,008 | 0,004 | 0,002 | 0,001 | 0,003
FPE 0,777 | 0,124 | 0,04 | 0,025 | 0,017 | 0,008 | 0,003 | 0,006
MDIC 0.25| 0,894 | 0,086 | 0,018 | 0,001 | 0,001 0 0 0

max | 0,976 | 0,024 0 o 0
100 obs
AlC 0,774 | 0,107 | 0,057 | 0,023 | 0,019 | 0,01 | 0,004 | 0,006
SIC 0,954 | 0,034 | 0,008 | 0,003 | 0,001 o o o
HQ 0,881 | 0,071 | 0,027 | 0,009 | 0,009 | 0,002 | 0,001 0
FPE 0,774 | 0,107 | 0,057 | 0,023 | 0,019 | 0,01 | 0,005 | 0,005
MDIC 0.25| 0,896 | 0,082 | 0,017 | 0,004 | 0,001 0 0 0

max | 0,982 | 0,018 o o 0
200 obs
AlIC 0,797 | 0,116 | 0,038 | 0,023 | 0,012 | 0,007 | 0,005 | 0,002
SIC 0,966 | 0,032 | 0,001 | 0,001 o o o o
HQ 0,916 | 0,062 | 0,013 | 0,005 | 0,001 | 0,003 o ]
FPE 0,797 | 0,116 | 0,038 | 0,023 | 0,012 | 0,007 | 0,005 | 0,002
MDIC 0.25| 0,896 | 0,088 | 0,012 | 0,002 | 0,002 0 0 0

max | 0,981 | 0,019 o o 0
500 obs
AlIC 0,776 | 0,117 | 0,049 | 0,019 | 0,016 | 0,013 | 0,008 | 0,002
SIC 0,977 | 0,022 | 0,001 0 o o o o
HQ 0,918 | 0,07 0,01 | 0,001 | 0,001 ] 0 0
FPE 0,776 | 0,117 | 0,049 | 0,019 | 0,016 | 0,013 | 0,008 | 0,002

0.25| 0,893 | 0,098 | 0,009
MDIC o 0 0 0 0

max | 0,977 | 0,022 | 0,010

The shading indicates best performance Information Criterion.

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca

16



©CoO~NOUTA,WNPE

Communications in Statistics - Simulation and Computation

Table nr 2: Model 2

Lagl |Lag2 Lag3 Lag4 Lag5 Lag6 Lag7 Lag8

50 obs

AIC 0,018| 0,748 | 0,103 | 0,05 | 0,026 | 0,02 | 0,015 0,02

SIC 0,047| 0,865 | 0,063 | 0,014 | 0,006 | 0,003 | 0,001 | 0,001

HQ 0,034 | 0,805 0,08 | 0,034 | 0,02 | 0,014 | 0,006 | 0,007

FPE 0,018| 0,751 | 0,103 | 0,047 | 0,026 | 0,02 | 0,015 0,02

MDIC 0.25 {0,037 | 0,894 0,06 | 0,008 | 0,001 0 0 0
max | 0,095| 0,902 | 0,003 0 0

75 obs

AIC 0,001| 0,777 | 0,104 | 0,051 | 0,028 | 0,017 | 0,009 | 0,013

SIC 0,005| 0,947 | 0,039 | 0,008 | 0,001 0 0 0

HQ 0,002| 0,878 | 0,076 | 0,024 | 0,01 | 0,006 | 0,001 | 0,003

FPE 0,001| 0,777 | 0,104 | 0,051 | 0,028 | 0,017 | 0,009 | 0,013

MDIC 0.25 |0,003| 0,948 | 0,041 | 0,007 | 0,001 0 0 0
max ' 0,013| 0,985 | 0,002 0 0

100 obs

AIC 0,001| 0,775 0,12 | 0,042 {0,031 | 0,011 | 0,009 | 0,011

SIC 0,001| 0,944 | 0,046 | 0,004 | 0,005 0 0 0

HQ 0,001| 0,874 | 0,086 | 0,019 | 0,013 | 0,004 | 0,003 0

FPE 0,001| 0,776 0,12 | 0,042 | 0,031 | 0,011 | 0,008 | 0,011

MDIC 0.25 |0,001| 0,932 | 0,063 | 0,004 0 0 0 0
max | 0,001| 0,993 | 0,006 0

200 obs

AIC 0,001| 0,814 | 0,104 | 0,027 | 0,032 | 0,007 | 0,004 | 0,011

SIC 0,001| 0,974 | 0,022 | 0,003 0 0] 0] 0

HQ 0,001| 0,915 | 0,061 | 0,013 | 0,007 | 0,002 | 0,001 0

FPE 0,001| 0,814 | 0,104 | 0,027 | 0,032 | 0,007 | 0,004 | 0,011
0.25 |0,001| 0,945 | 0,051 | 0,003

MDIC o 0] 0 0
max ' 0,001| 0,996 | 0,003 0

500 obs

AIC 0,001| 0,793 | 0,114 | 0,042 | 0,024 | 0,008 | 0,011 | 0,007

SIC 0,001| 0,987 | 0,012 0 o 0 0] 0

HQ 0,001| 0,915 | 0,066 | 0,012 | 0,005 | 0,001 0 0

FPE 0,001| 0,793 | 0,114 | 0,042 | 0,024 | 0,008 | 0,011 | 0,007
0.25 |0,001| 0,939 | 0,057 | 0,003

MDIC o 0] ] o
max | 0,001| 0,996 | 0,003 0

The shading indicates best performance Information Criterion.
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Table nr 3: Model 3

Lagl Lag2 Lag3 Lag4 Lag5 Lagb Lag7 Lag8
50 obs
AlIC 0,001 | 0,749 | 0,121 | 0,052 | 0,024 | 0,027 | 0,015 | 0,011
SIC 0,001 | 0,903 | 0,072 | 0,017 | 0,003 | 0,004 | 0,001 | 0,001
HQ 0,001 | 0,825 | 0,106 | 0,031 | 0,011 | 0,02 | 0,004 | 0,002
FPE 0,001 | 0,749 | 0,122 | 0,052 | 0,024 | 0,027 | 0,015 | 0,01
MDIC 0,001 | 0,920 | 0,072 | 0,007 ] ] 0 0
75 obs
AIC 0,001 | 0,78 | 0,094 | 0,059 | 0,034 | 0,012 | 0,01 0,01
SIC 0,001 | 0,944 | 0,039 | 0,008 | 0,001 ] 0 0
HQ 0,001 | 0,882 | 0,068 | 0,024 | 0,016 | 0,003 | 0,003 | 0,003
FPE 0,001 | 0,781 | 0,094 | 0,058 | 0,034 | 0,012 | 0,01 0,01
MDIC 0,001 | 0,944 | 0,048 | 0,007 0 o 0 ]
100 obs
AlC 0,001 | 0,764 | 0,121 | 0,046 | 0,027 | 0,022 | 0,013 | 0,006
SIC 0,001 | 0,931 | 0,049 | 0,007 | 0,002 o 0 0
HQ 0,001 | 0,879 | 0,08 | 0,019 | 0,014 | 0,005 | 0,002 0
FPE 0,001 | 0,765 | 0,121 | 0,046 | 0,027 | 0,022 | 0,012 | 0,006
MDIC 0,001 | 0,933 | 0,061 | 0,005 o o o o
200 obs
AlIC 0,001 | 0,776 | 0,116 | 0,042 | 0,031 | 0,018 | 0,009 | 0,007
SIC 0,001 | 0,968 | 0,029 | 0,002 0 0 0 0
HQ 0,001 | 0,913 | 0,066 | 0,009 | 0,009 | 0,002 o 0
FPE 0,001 | 0,777 | 0,116 | 0,042 | 0,03 | 0,018 | 0,009 | 0,007
MDIC 0,001 | 0,949 | 0,047 | 0,003 0 o 0 0
500 obs
AIC 0,001 | 0,795 | 0,095 | 0,058 | 0,025 | 0,012 | 0,011 | 0,003
SIC 0,001 | 0,983 | 0,014 | 0,002 ] ] 0 0
HQ 0,001 | 0,931 | 0,046 | 0,018 | 0,004 0 0 0
FPE 0,001 | 0,795 | 0,095 | 0,058 | 0,025 | 0,012 | 0,011 | 0,003
MDIC 0,001 | 0,945 | 0,048 | 0,006 0 0 ] 0

The shading indicates best performance Information Criterion.
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Table nr 4: Model 4

Lagl Lag2 Lag3 Lag4 Lag5 Lagb Lag7 Lag8
50 obs
AIC 0,159 | 0,607 | 0,111 | 0,046 | 0,026 | 0,026 | 0,013 | 0,012
SIC 0,306 | 0,622 | 0,045 | 0,019 | 0,005 | 0,002 | 0,001 | 0,001
HQ 0,214 | 0,643 | 0,078 | 0,036 | 0,009 | 0,013 | 0,002 | 0,005
FPE 0,161 | 0,61 | 0,109 | 0,045 | 0,026 | 0,025 | 0,012 | 0,012
MDIC 0,268 | 0,673 | 0,052 | 0,007 o o o o
75 obs
AlIC 0,075 | oOo,71 | 0,112 | 0,045 | 0,03 | 0,015 | 0,007 | 0,006
SIC 0,200 | 0,751 | 0,037 | 0,009 | 0,001 o o o
HQ 0,123 | 0,756 | 0,074 | 0,024 | 0,014 | 0,003 | 0,002 | 0,004
FPE 0,077 | 0,71 | 0,112 | 0,045 | 0,029 | 0,014 | 0,008 | 0,005
MDIC 0,144 | 0,800 | 0,049 | 0,007 0 0 0 0
100 obs
AlIC 0,033 | 0,739 | 0,11 | 0,054 | 0,021 | 0,024 | 0,01 | 0,009
SIC 0,102 | 0,846 | 0,038 | 0,010 | 0,002 0 0 o
HQ 0,059 | 0,818 | 0,072 | 0,033 | 0,009 | 0,006 | 0,002 | 0,001
FPE 0,033 | 0,739 | 0,11 | 0,054 | 0,021 | 0,024 | 0,01 | 0,009
MDIC 0,072 | 0,863 | 0,051 | 0,013 | 0,001 0 ] ]
200 obs
AIC 0,001 | 0,779 | 0,114 | 0,047 | 0,033 | 0,014 | 0,005 | 0,007
SIC 0,007 | 0,965 | 0,019 | 0,007 | 0,002 o 0 ]
HQ 0,002 | 0,909 | 0,06 | 0,016 | 0,007 | 0,005 | 0,001 0
FPE 0,001 | 0,779 | 0,114 | 0,047 | 0,033 | 0,014 | 0,005 | 0,007
MDIC 0,003 | 0,938 | 0,048 | 0,009 | 0,002 0] 0 o
500 obs
AlIC 0,001 | 0,795 | 0,106 | 0,053 | 0,022 | 0,013 | 0,008 | 0,002
SIC 0,001 | 0,980 | 0,016 | 0,003 o o o o
HQ 0,001 | 0,917 | 0,061 | 0,018 | 0,003 ] 0] 0
FPE 0,001 | 0,795 | 0,106 | 0,053 | 0,022 | 0,013 | 0,008 | 0,002
MDIC 0,001 | 0,933 | 0,059 | 0,007 o o o o

The shading indicates best performance Information Criterion.
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Table nr 5: Model 5

Lagl Lag2 Lag3 Lag4 Lag5 Lag6b Lag7 Lag8
50 obs
AIC 0,025 | 0,712 | 0,137 | 0,045 | 0,027 | 0,027 | 0,013 | 0,014
SIC 0,203 | 0,699 | 0,069 | 0,014 | 0,010 | 0,003 | 0,001 | 0,001
HQ 0,042 | 0,782 | 0,106 | 0,031 | 0,012 | 0,016 | 0,004 | 0,007
FPE 0,026 | 0,716 | 0,136 | 0,045 | 0,026 | 0,027 | 0,012 | 0,012
MDIC 0,058 | 0,861 | 0,073 | 0,007 | 0,001 0] 0] 0]
75 obs
AIC 0,005 | 0,763 | 0,127 | 0,046 | 0,028 | 0,014 | 0,008 | 0,009
SIC 0,058 | 0,869 | 0,062 | 0,010 | 0,001 0] o o
HQ 0,009 | 0,861 | 0,086 | 0,027 | 0,011 | 0,003 | 0,001 | 0,002
FPE 0,005 | 0,764 | 0,127 | 0,046 | 0,028 | 0,014 | 0,007 | 0,009
MDIC 0,011 | 0,927 | 0,053 | 0,008 | 0,001 o 0 0
100 obs
AIC 0,001 | 0,759 | 0,119 | 0,055 | 0,024 | 0,025 | 0,009 | 0,008
SIC 0,019 | 0,918 | 0,050 | 0,006 | 0,006 | 0,001 0 0
HQ 0,002 | 0,859 | 0,089 | 0,027 | 0,013 | 0,009 | 0,001 o
FPE 0,001 | 0,76 | 0,118 | 0,055 | 0,024 | 0,025 | 0,009 | 0,008
MDIC 0,002 | 0,927 | 0,062 | 0,007 | 0,002 0 0] 0]
200 obs
AIC 0,001 | 0,775 | 0,12 | 0,044 | 0,033 | 0,013 | 0,009 | 0,005
SIC 0,001 | 0,966 | 0,029 | 0,003 | 0,001 0 0] 0
HQ 0,001 | 0,898 | 0,071 | 0,019 | 0,004 | 0,004 | 0,003 0
FPE 0,001 | 0,775 | 0,12 | 0,044 | 0,033 | 0,013 | 0,009 | 0,005
MDIC 0,001 | 0,941 | 0,05 | 0,008 0] 0] 0 0
500 obs
AIC 0,001 | 0,789 | 0,107 | 0,052 | 0,026 | 0,011 | 0,01 | 0,004
SIC 0,001 | 0,979 | 0,019 | 0,001 0] 0] 0] 0]
HQ 0,001 | 0,917 | 0,055 | 0,018 | 0,007 | 0,002 0 0
FPE 0,001 | 0,789 | 0,107 | 0,052 | 0,026 | 0,011 | 0,01 | 0,004
MDIC 0,001 | 0,936 | 0,056 | 0,007 0 0 o 0

The shading indicates best performance Information Criterion.
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Table nr 6: Model 6

Lagl Lag?2 Lag3 Lag4 Lag5 Lag6b Lag7 Lag8
50 obs
AIC 0,149 | 0,02 | 0,096 | 0,033 | 0,498 | 0,114 | 0,049 | 0,041
SIC 0,423 | 0,025 | 0,113 | 0,026 | 0,358 | 0,040 | 0,011 | 0,004
HQ 0,237 | 0,022 | 0,113 | 0,033 | 0,466 | 0,08 | 0,029 | 0,02
FPE 0,15 0,02 | 0,097 | 0,033 | 0,497 | 0,114 | 0,048 | 0,041
MDIC 0,495 | 0,051 | 0,205 | 0,026 | 0,22 | 0,003 o o
75 obs
AlIC 0,059 | 0,001 | 0,031 | 0,014 | 0,702 | 0,12 | 0,047 | 0,026
SIC 0,238 | 0,007 | 0,075 | 0,015 | 0,627 | 0,024 | 0,011 | 0,003
HQ 0,121 | 0,008 | 0,051 | 0,013 | 0,701 | 0,068 | 0,026 | 0,012
FPE 0,059 | 0,001 | 0,031 | 0,014 | 0,704 | 0,119 | 0,046 | 0,026
MDIC 0,284 | 0,026 | 0,146 | 0,016 | 0,524 | 0,004 0 0
100 obs
AlIC 0,012 | 0,001 | 0,008 | 0,004 | 0,751 | 0,139 | 0,05 | 0,035
SIC 0,121 | 0,006 | 0,035 | 0,004 | 0,787 | 0,036 | 0,004 | 0,007
HQ 0,038 | 0,004 | 0,013 | 0,005 | 0,813 | 0,087 | 0,025 | 0,015
FPE 0,012 | 0,001 | 0,008 | 0,004 | 0,752 | 0,139 | 0,049 | 0,035
MDIC 0,128 | 0,015 | 0,08 | 0,011 | 0,758 | 0,008 0 0
200 obs
AIC 0,001 | 0,001 | 0,001 | 0,001 | 0,801 | 0,111 | 0,047 | 0,037
SIC 0,001 | 0,001 | 0,001 | 0,001 | 0,961 | 0,032 | 0,003 | 0,001
HQ 0,001 | 0,001 | 0,001 | 0,001 | 0,901 | 0,078 | 0,015 | 0,002
FPE 0,001 | 0,001 | 0,001 | 0,001 | 0,801 | 0,111 | 0,047 | 0,037
MDIC 0,002 | 0,001 | 0,001 | 0,001 | 0,985 | 0,01 o 0
500 obs
AlIC 0,001 | 0,001 | 0,001 | 0,001 | 0,813 | 0,117 | 0,034 | 0,032
SIC 0,001 | 0,001 | 0,001 | 0,001 | 0,973 | 0,020 | 0,002 | 0,001
HQ 0,001 | 0,001 | 0,001 | 0,001 | 0,922 | 0,067 | 0,005 | 0,002
FPE 0,001 | 0,001 | 0,001 | 0,001 | 0,813 | 0,117 | 0,035 | 0,031
MDIC 0,001 | 0,001 | 0,001 | 0,001 | 0,991 | 0,005 o o

The shading indicates best performance Information Criterion.
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1. Introduction

Consider a discrete-time stationary AR(p) process of the form

X =a

¢ =X

+a2X +-~-+apXt +e (1)

1 t—2 -p t

where { e, } is a sequence of uncorrelated N (0, 02) random variables and all the roots of the

autoregressive polynomial are outside the unit circle, thatis, A(z)=1-a

z——a 7P %0
1 p

for all z elJ such that |z| <1.

One of the crucial problems in time series modeling is selecting the optimal model order and
specifying a parsimonious model for the data generating process (DGP). Many techniques
have been developed for the order selection of linear models, namely a) graphical methods
with representative the Box and Jenkins methods (1970) and b) hypothesis test procedures

with the pioneering work of Whittle (1952) as representative.

Akaike (1974) viewed the problem of model fitting in the context of time series analysis as a
multiple decision procedure rather than a hypothesis testing problem. However the same
author (Akaike, 1973) initiated the research on automatic model selection techniques by
developing the popular Akaike Information Criterion (AIC) which is considered as a
significant contribution to statistical modelling where the focus is on the selection of a
satisfactory model for a given set of observations. It might appear at first sight that the higher
the order of the selected process (model) chosen, the better the fitted model will be. Such a
thought may be true for fitting purposes but not for predicting ones. Indeed, the fit may be
perfect for the given data but the use of the selected model for predictive purposes may result
in gross errors. Numerous selection criteria have been developed over the last 30 years which

attempt to prevent overfitting by assigning a penalty to the introduction of an unnecessary
2
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large order and consequently to an unnecessary number of parameters. Schwarz (1978),
Hannan and Quinn (1979), Seghouane et. al (2005), Bengtsson and Cavanaugh (2006) and
others followed the pioneering work of Akaike. Most of the criteria proposed in the literature
consist in minimizing, with respect to the model order, a function of the given observations
plus a penalty term for the introduction of additional parameters, which generally depends on
the model order and sample size. Thus, according to automatic criteria, the parameters of a
variety of competing models are estimated and the model chosen is the one with the smallest

criterion value.

In this work we propose a modification of the recently introduced Divergence Information
Criterion (DIC) (Mattheou (2007); Mattheou, et. al (2009)) and show that it is an
asymptotically unbiased estimator of the expected overall discrepancy, a nonnegative quantity
which measures the distance between the true unknown model and a fitted approximating
model. Furthermore, we explore the capabilities of the new criterion in selecting the optimal
order in autoregressive processes and in general in a time series context. The paper is
organised as follows. In Section 2, we first briefly discuss various Information Criteria and
their association with measures of divergence and then introduce the Modified Divergence
Information Criterion (MDIC) and provide for practical purposes, an optimum choice for the
index a which the new criterion depends on. In Section 3 in order to explore the capabilities
of the new MDIC criterion, we perform a comparative study of various Information Criteria
for different time series examples by using a Monte Carlo method. Finally in Section 4 we

summarize our results. For the simulations we make use of the Gauss 8 program.
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2. The New Modified Divergence Information Criterion

2.1. Measures of Divergence and Selection Criteria

The measures of divergence are used as indices of similarity or dissimilarity between
populations and for measuring mutual information concerning two variables and as such they
can be used for the construction of model selection criteria. The distance between a candidate
model and the true but unknown model could be measured by a measure of divergence. The
candidate model for which the measure of divergence is minimized will be selected. The well
known Kullback-Leibler measure of divergence (Kullback and Leibler, 1951) was the one
used by Akaike (1973) to develop the Akaike Information Criterion (AIC). Akaike proposed
the evaluation of the fit of the candidate model using minus twice the mean expected
loglikelihood (also known as expected overall discrepancy). Furthermore, he provided an

unbiased estimator of the expected loglikelihood so that the resulting criterion is given by
AIC(p) =nlog(62)+2p,

where n the sample size, p the order of the candidate model and 6'12) the estimator of the

variance of the pth—order candidate model.

For fitting autoregressive processes, Jones (1975) suggested that AIC has a tendency to
overestimate the order of the process and Shibata (1976) showed that the probability of
overestimation for a large sample size is nonzero. To correct this tendency, the SIC criterion

was proposed independently by Akaike (1978) and Schwarz (1978):

SIC(p) :nlog(6i)+plogn.

The above two criteria can be considered as members of the General Information Criterion

given by GIC(p) = nlog(&;)+cn pwherec, a quantity that may depend on n. For ¢, =2 the

4
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criterion reduces to AIC, while for ¢, =logn to SIC. The case ¢, =cloglogn with ¢>?2

corresponds to the Hannan and Quinn criterion (HQ, Hannan and Quinn, 1979) which has

been found to be equivalent to SIC in the sense that they are both consistent (Hannan, 1980).

The problem of avoiding overfitting especially for purely autoregressive processes can also be
dealt with the minimization of the final prediction error criterion (FPE) of Akaike (1969). The
FPE is an estimate of the one-step ahead prediction mean squared error for a realization of the
process independent of the one observed. If we fit AR processes of steadily increasing order p
the maximum likelihood estimator (MLE) of the white noise variance will usually decrease
with p. However, FPE will decrease to a minimum value and then increase as p will increase.
According to FPE, we choose the order of the candidate process to be the value of p for which

FPE is minimized. The FPE is given by

FPE(p)=62"*P

In all the above cases, any parameter estimation is handled through the maximum likelihood
method. A general class of criteria has been introduced by Konishi and Kitagawa (1996)
which also estimates the Kullback-Leibler measure where the estimation is not necessarily

based on maximum likelihood.
2.2. The Development of the MDIC Criterion

One of the most recently proposed measures of divergence is the Basu-Harris-Hjort-Jones

power divergence between the candidate model f,(.) and the true model g (Basu et. al, 1998)

which is denoted by BHHJ, indexed by a positive parameter a, and defined as:

1 1
1. S =] {fgl”(z)—(1+zjg(z)fga(z)+(;jg1+a(z)}dz-
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This family of measures was proposed by Basu et al. (1998) for the development of a
minimum divergence estimating method for robust parameter estimation. The index a controls
the trade-off between robustness and asymptotic efficiency of the parameter estimators which
are the values of @ that minimize the measure over a parametric space ® . It should be also
noted that the BHHJ family reduces to the Kullback-Leibler measure of divergence for
a4 0(see Mattheou, 2007) and as it can be easily seen, to the square of the standard L,
distance between the candidate and the true model for a=1. Mattheou et al. (2008) applying

the same methodology used for AIC to the BHHJ divergence developed a new criterion, the

Divergence Information Criterion (DIC) which for a set of observations x;,...,x, 1s given by

DIC(p)=nQ,+Q2x) “*(+a)""" p,

where Q. = I fé”"(z)dz—(lJr%j%Z f;(x,) and 6 a consistent and asymptotically normal
i=1

estimator of @. Preliminary simulation studies for regression models (Mattheou, 2007)

showed a very good medium sample size performance for DIC for values of a close to zero.

Although the DIC criterion was constructed so that it will be an asymptotically unbiased

estimator of the BHHJ divergence measure between the candidate and the true model, the

calculation of the first part of Q,, namely the integral .[ fé”“(z)dz is not computationally

attractive for practitioners. Furthermore, the simulation study shows that the difference in the
calculations of the above integrals, for the different candidate models is negligible compared
with the difference in the calculation for the entire quantity Q.. In other words the integral

term does not affect the selection of the correct model and therefore the criterion can be

properly revised. In fact the criterion can be modified without affecting neither its small
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sample nor its asymptotic performance. As a result, we propose now a modified new criterion,

the Modified Divergence Information Criterion (MDIC) which is given by

- 2+pl2
al? p p

MDIC(p):n*MQé+(27z) (1+a)

where MQ, = —{(1"‘“1)%2](;(%)]

Note that a model selection criterion can be considered as an approximately unbiased
estimator of the expected overall discrepancy, a nonnegative quantity which measures the
distance between the true unknown model and a fitted approximating model. Observe also
that, as it was mentioned in the introduction, a criterion consists of two terms, the first of
which is a biased estimator of the expected overall discrepancy. As a result, if we choose the
model with the smallest estimator of the expected overall discrepancy we may end up with a
selection with an unnecessarily large order. The estimator becomes asymptotically unbiased
by introducing the appropriate correction term. The expected overall discrepancy in the

present setting is defined by

EW,)=EW,/0=0) with W, = —j {(Héj g(z)fg (Z)}dz

and @ a consistent and asymptotically normal estimator of 6. Observe that W,is the targeted
divergence I Qg f 0) without the first and the last terms. Notice that the last term remains

constant irrespectively of the candidate model f P while the first term, as stated earlier, is

approximately constant for the various candidate models. In that sense, the expected overall

discrepancy E(W;)represents the average distance between the true model g and the

candidate model f 0P to a constant. The relevant theorem for MDIC is stated below. The

proof is omitted since it follows the lines of the proof of Theorem 2.4 (Mattheou et.al, 2009)

where the unbiasedness of the original DIC criterion was established.
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Theorem 1. An asymptotically unbiased estimator of n--times the expected overall

discrepancy evaluated atOis given by

2+pl2
al? p p

MDIC(p):n*MQé+(27z)_ (1+a)

where 0 is a consistent and asymptotically normal estimator of 6.

Note that although the discussion in Mattheou et. al (2009) is limited to iid random variables,
by following the approach by Akaike (1973 and 1974) and Billingsley (1961), the same line
of discussion can be extended to cover autoregressive models. Recall that in time series
models, even under the Gaussian assumption, the evaluation of the log-likelihood cannot be
expressed as the sum of the logarithms of the density function of each observation. However,
the log-likelihood can generally be expressed by conditional distributions, so that in relatively
simple models, like the autoregressive models, we use as an approximation the mean
conditional log-likelihood which multiplied by the number of observations is used in place of

the log-likelihood in model selection.

In addition to the above, numerous other techniques have been introduced over the years some
of which are associated with the order determination and the forecasting performance in time
series. Such techniques include approaches based on bootstrapping (Shang and Cavanaugh,
2008), approaches for high dimensional medical data (Koukouvinos et al., 2008),
supersaturated designs (Koukouvinos and Mylona, 2008), variations of AIC (Cavanaugh and
Johnson, 1999; Bengtsson and Cavanaugh, 2006; Seghouane, 2006; Seghouane et. al, 2005)

and time series models (Lee, 1998).

2.3 Optimal Choice for the Index a
For practical purposes one has to decide the optimal choice of the positive index a . For this

purpose, we simulate a 100 observation series for 5 different models with a between 0.01 and
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0.5 and we provide in Figure 1, the power of the selection, namely the proportion of times the

correct model is selected as a function of a.

In Figure 1, [Dot dash] line is the AR(1) model defined as Model 1 in section 3.2; [Whole]
line shows the AR(2) appearing as Model 5 in section 3.2; [Dot close] line refers to the AR(3)
process: x,=1+0.2x,_, +0.5x,_,-0.35x, ,+e; [Dash] line is the AR(4) process:

x, =1+0.2x,_,+0.5x,_,-0.35x,_,-0.22x,_, +e¢,; finally [Dot] is the AR(S) process defined as

Model 6 in section 3.2.

Figure 1 shows that for small lags (models AR(1) and AR(2)) the power increases as the value
of aincreases. In all the other cases the power increases up to a value of « and then
decreases. More specifically, for the complete AR(3) and AR(4) processes the power stays
high approximately up to the value a=0.25. For the AR(5) process the power decreases

after the value a =0.10.
Although an optimum value of a for all types of autoregressive models may be considered to

be the value of 0.10, in the Monte Carlo study of section 3.2 we choose the value of 0.25 since

it appears to serve as a fair balance between small and large lag models.

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca



©CoO~NOUTA,WNPE

Communications in Statistics - Simulation and Computation Page 34 of 47

Figure 1: Optimal choice of the index a (AR(1) —* — AR(2) — AR(3) seeee AR(4)——— AR(5) )
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3. Simulations

3.1 The Monte Carlo Experiment

In this section we provide the characteristics of the Monte Carlo experiment undertaken. We
calculate the estimated “percent” by simply observing how many times the correct AR(p)
model is selected in repeated samples. By varying factors such as the number of observations
50 (small sample) 75, 100 (medium sample) and 200, 500 (large sample); and the order of
AR(p) model we obtain a succession of estimated percent of the correct selection model under
different conditions.

The Monte Carlo experiment has been performed by generating data according to the

following Data generating processes:

Model 1:  x, =1+0.65x,_, +e,
Model 2:  x, =1+0.65x, , +e,

Model 3:  x, =1+0.5x,_, -0.85x, , +e,

10
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Model 4:  x, =1+0.5x, , —0.35x, , +e,
Model 5:  x, =1+1.5x, , —0.5x, , +e,

Model 6:  x, =1+0.23x,_, —0.22x, ; —0.45x,_; +e,

where { ¢, } is a sequence of uncorrelated N (0, 0'2) random variables.

The criteria used in this experiment are the ones defined in Section 2, namely AIC, SIC, HQ
with ¢=2, FPE, and MDIC with a=0.25. We also obtain the results of MDIC with the
index a taken to be equal to that value in [0, 0.50] which maximizes the power. According to
the analysis in Section 2.3, the maximum powers are obtained for a =0.50 (Models 1-5) and

a =0.10 (Model 6). For the implementation of the criteria we use

B 1 _()cl.—fcl.)2
Jo )= (2n&2)eXP{ 26° }

where )ACI. the predicted value of X, and 6 the estimated variance.

For each time series 20 presample values are generated with zero initial conditions, taking net
sample sizes of n = 50,75,100,200,500 in order to cover small, medium and large samples.
The number of replications per model used is 10000. The calculations were performed using

GAUSS 8.

3.2 Simulation Results

In this section we present the results of the Monte Carlo experiment concerning the percent of
correct selected model. Due to insignificant differences between MDIC and MDIC with max
power, the powers of the latter for Models 3-6 are suppressed from the Tables.

Table 1 shows the results for Model 1. It is not difficult to see the good performance of the
MDIC criterion for all sample sizes. The rate of success of MDIC is almost 98% for the small

sample with 50 observations, while the other criteria have a rate of success between 76.9%

11
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and 90.9%. We also observe the sample effect. Indeed, by increasing the number of
observations, the only criterion for which the percent of correct model selection increases
significantly is the Hannan and Quinn criterion (HQ). A smaller increase is observed for the
SIC criterion. For large sample sizes SIC and MDIC come first with a rate of success of
approximately 98% and HQ close second with a success rate almost equal to 92%. At the
same time, as the sample size increases, the difference between the MDIC and the remaining
Information Criteria decreases, although it is still in favor of MDIC. The good performance of
MDIC is evident from the high percent of selecting the correct AR(1) model in repeated

samples.

While in Table 1 MDIC performs quite well with though some competition from the SIC
criterion, in the case of the second model, as seen in Table 2, the MDIC is superior to all other
criteria for all sample sizes. Observe that MDIC is the best criterion among the competing
criteria with the SIC coming second. The worst performance was observed by AIC. The
sample effect shows the tendency of the best 2 criteria, namely MDIC and SIC, to approach
each other in terms of their rate of success as n increases. Observe the impressive success rate
of MDIC even for small sample sizes where for n=75 reaches a remarkable success rate of at
least 95%. Our attempt to see if the incomplete AR(2) process misleads the Information
criteria does not seem to work since the rate of success is not significantly affected by the

particular form of the underlying process.

In case of Models 3 and 5 as Tables 3 and 5 show the results are not different from the
previous cases. Indeed, MDIC is superior to all other criteria with success rate as high as 95%

for small and medium sample sizes and stays slightly behind SIC for large sample sizes.

In case of Model 4 as Table 4 shows all criteria for small sample sizes (n=50) have a high

tendency of selecting the simplest model (AR(1)) which is due to the fact that the coefficient
12
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of lag2 is relatively close to zero (0.35). As the sample size increases the rate of success
improves. MDIC is the best criterion in conjunction with HQ, for small sample sizes, and with

SIC, for large sample sizes.

Finally for Model 6, Table 6 shows that for small sample sizes the rate of success is less than

50% with AIC being the best, MDIC being the worse and SIC coming second to last. As the

sample size increases, MDIC and SIC have the higher improvement so that for 7 > 100 they
become again the best models with MDIC reaching an impressive success rate of 98.5% for

n=200 and 99.1% for n=500.

It should be pointed out that the choice of the index a plays an important role in model
selection and controls the rate of success of MDIC. As indicated in Section 2.3 for small lag
models, values of a in the interval [0.21, 0.50] appear to maximize the rate. On the other
hand, values of a in the interval [0.05, 0.25] produce the best results for large lag models.
Note though that the maximum powers are obtained for values of ain the upper end of the
former interval, for small lag models and the lower end of the latter, for large lag models. The
value of 0.25 proposed in this work, appears to offer a good balance irrespectively of the type
of the underlying AR model. If the candidate set consists exclusively of AR models of one
type, we suggest a larger value of a, around 0.35, for small lag models and a smaller one,
around 0.10, for large lag models. In reference to the sample size, our simulations clearly
show that especially for small and medium sample sizes, the MDIC criterion with a = 0.25

provides an ideal model identification technique for both small and large lag models.

To summarize the findings we could safely conclude that the MDIC criterion performs much
better than the other selection criteria for AR processes and for various sample sizes. In
particular, the magnitude of the superiority of MDIC is extremely high for AIC and FPE and
relatively high for HQ, for all sample sizes. In reference to the SIC criterion, the superiority of

MDIC is of much lesser magnitude as compared to the other criteria.

13
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4. Concluding Remarks

In this paper we have proposed the Modified Divergence Information Criterion (MDIC) for
the determination of the order of an autoregressive process and proved its asymptotic
unbiasedness. Furthermore, we performed a comparative study of model selection criteria for
autoregressive processes for small, medium, and large sample sizes in order to investigate the
practical implications of the new criterion. Based on the results of our simulation study we
conclude that for regular AR models, the performance of MDIC is excellent with very high
rate of success, for all sample sizes. The rate of success of MDIC increases with sample size
but usually not as much as the HQ and SIC criteria which is expected though since they are
both consistent. It is important to point out that in almost all cases MDIC with a =0.25
performs extremely well with a high rate of success (approx. equal to 90%) for both small and
medium sample sizes and for all types of models. As a result and especially for small and
medium sample sizes, the choice a =0.25 is highly recommended since it serves as a fair

balance between small and large lag models.

For irregular models (like Model 6), MDIC needs a sufficient number of observations for
performing well. More specifically, a medium sample size of order 75 or 100 seems to be

enough in order to pick up high rates of success.

Finally observe that MDIC is the only criterion that never selects too large models. In fact, in
all cases the probability of overestimation is at most 8% and for lags at most 2 or 3 higher
than the true lag while other criteria may select lags as large as 7 lags higher than the true one.

A similar behaviour but to a lesser extend is observed by SIC.

Based on the above observations we can conclude that MDIC chooses, at least for regular
models, the correct model quite easily even with sample sizes as small as n=50. At the same
time, the rate of success appears to plateau as the sample size increases. As it is known,
consistency is an attractive asymptotic property. In particular, as n tends to infinity we have
that P[correct selection] 1. For MDIC, our results indicate that the probability of correct

14
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selection is significantly close to 1 even for very small values of n but stays below 1 even for
very large sample sizes. This behaviour may not be the best one from the asymptotic
(theoretical) point of view but it is ideal from the finite one due to desirable practical
implications. It that sense, MDIC may not possess the characteristics of a consistent criterion
but the fact that it is superior to all other criteria for finite sample sizes, makes it an excellent
selection criterion for practical purposes. Furthermore, another attractive feature of MDIC is

the one related to overfitting, where the criterion never selects very large models. Indeed, if K
is the true order of the model and k the order selected by MDIC, we observe that

forn =50, P[Ig =k"+L,L>2]<0.005. In most cases, the probability drops to 0 even for L=3.
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Lagl Lag?2 Lag3 Lag4 Lag5 Lag6b Lag7 Lag8

50 obs
AIC 0,769 | 0,108 | 0,049 | 0,022 | 0,018 | 0,012 | 0,013 | 0,009
SIC 0,909 | 0,068 | 0,015 | 0,003 | 0,004 | 0,001 0 0
HQ 0,836 | 0,097 | 0,028 | 0,015 | 0,009 | 0,008 | 0,005 | 0,002
FPE 0,769 | 0,11 0,049 | 0,021 | 0,017 | 0,012 | 0,013 | 0,009
MDIC 0.25| 0,889 | 0,095 | 0,014 | 0,002 0 0 0 0

max | 0,974 | 0,026 0 0
75 obs
AIC 0,775 | 0,124 | 0,04 | 0,025 | 0,016 | 0,009 | 0,005 | 0,006
SIC 0,936 | 0,050 | 0,011 | 0,001 | 0,001 | 0,001 0 0
HQ 0,873 | 0,085 | 0,024 | 0,008 | 0,004 | 0,002 0,001 | 0,003
FPE 0,777 | 0,124 | 0,04 | 0,025 | 0,017 | 0,008 | 0,003 | 0,006
MDIC 0.25| 0,894 | 0,086 | 0,018 | 0,001 | 0,001 0 0 0

max | 0,976 | 0,024 o 0 0
100 obs
AIC 0,774 | 0,107 | 0,057 | 0,023 | 0,019 | 0,01 0,004 | 0,006
SIC 0,954 | 0,034 | 0,008 | 0,003 | 0,001 0 0 0
HQ o,881 | 0,071 | 0,027 | 0,009 | 0,009 | 0,002 | 0,001 0
FPE 0,774 | 0,107 | 0,057 | 0,023 | 0,019 | 0,01 0,005 | 0,005
MDIC 0.25| 0,896 | 0,082 | 0,017 | 0,004 | 0,001 0 0 0

max | 0,982 | 0,018 0 0 0
200 obs
AIC 0,797 | 0,116 | 0,038 | 0,023 | 0,012 | 0,007 | 0,005 | 0,002
SIC 0,966 | 0,032 | 0,001 | 0,001 0 0 0 0
HQ 0,916 | 0,062 | 0,013 | 0,005 | 0,001 | 0,003 0 0
FPE 0,797 | 0,116 | 0,038 | 0,023 | 0,012 | 0,007 | 0,005 | 0,002
MDIC 0.25| 0,896 | 0,088 | 0,012 | 0,002 | 0,002 0 0 0

max | 0,981 | 0,019 0 0 0
500 obs
AIC 0,776 | 0,117 | 0,049 | 0,019 | 0,016 | 0,013 | 0,008 | 0,002
SIC 0,977 | 0,022 | 0,001 0 0 0 o 0
HQ 0,918 | 0,07 0,01 0,001 | 0,001 0 0 0
FPE 0,776 | 0,117 | 0,049 | 0,019 | 0,016 | 0,013 | 0,008 | 0,002

0.25| 0,893 | 0,098 | 0,009
MpiIc max | 0,977 | 0,022 | 0,010 0 0 0 0 0

The shading indicates best performance Information Criterion.
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Table nr 2: Model 2

Lagl |[Lag2 Lag3 Lag4 Lag5 Lagb Lag7 Lag8
50 obs
AIC 0,018 0,748 | 0,103 | 0,05 | 0,026 | 0,02 | 0,015 0,02
SIC 0,047 0,865 | 0,063 | 0,014 A 0,006 | 0,003 | 0,001 | 0,001
HQ 0,034 | 0,805 0,08 | 0,034 0,02 | 0,014 | 0,006 | 0,007
FPE 0,018 0,751 | 0,103 | 0,047 | 0,026 | 0,02 | 0,015 0,02
MDIC 0.25 | 0,037 | 0,894 0,06 | 0,008 | 0,001 0 0 0
max | 0,095| 0,902 | 0,003 0 0
75 obs
AIC o,001,| o,777 | 0,104 | 0,051 | 0,028 | 0,017 | 0,009 A 0,013
SIC 0,005 0,947 | 0,039 | 0,008 | 0,001 0 0 0
HQ 0,002, o,878 | 0,076 | 0,024 0,01 | 0,006 | 0,001 | 0,003
FPE o,001,| o,777 | 0,104 | 0,051 0,028 | 0,017 | 0,009 @ 0,013
MDIC 0.25 |0,003| 0,948 | 0,041 | 0,007 | 0,001 0 0 0
max 0,013 | 0,985 | 0,002 0 0
100 obs
AIC 0,001 | 0,775 0,12 | 0,042 | 0,031 | 0,011 | 0,009 | 0,011
SIC 0,001 | 0,944 | 0,046 | 0,004 0,005 0 0 0
HQ o,001| o,874 | 0,086 | 0,019 | 0,013 | 0,004 | 0,003 o
FPE 0,001 | 0,776 0,12 | 0,042 | 0,031 | 0,011 | 0,008 | 0,011
MDIC 0.25 |0,001| 0,932 | 0,063 | 0,004 0 0 0 0
max (0,001 | 0,993 | 0,006 0
200 obs
AIC o,001| o,814 | 0,104 | 0,027 A 0,032 | 0,007 | 0,004 A 0,011
SIC 0,001 | 0,974 | 0,022 | 0,003 0 0 0 0
HQ 0,001 0,915 | 0,061 | 0,013 | 0,007 | 0,002 | 0,001 o
FPE o,001| o,814 | 0,104 | 0,027 A 0,032 | 0,007 | 0,004 | 0,011
MDIC 0.25 |0,001| 0,945 | 0,051 | 0,003 0 0 0 0
max 0,001 | 0,996 | 0,003 0
500 obs
AIC 0,001 0,793 | 0,114 | 0,042 0,024 | 0,008 | 0,011 | 0,007
SIC 0,001 | 0,987 | 0,012 o 0 0 0 0
HQ 0,001 0,915 | 0,066 | 0,012 | 0,005 | 0,001 0 o
FPE 0,001 0,793 | 0,114 | 0,042 H 0,024 | 0,008 | 0,011 | 0,007
MDIC 0.25 |0,001| 0,939 | 0,057 | 0,003 0 0 0 0
max 0,001 | 0,996 | 0,003 0

The shading indicates best performance Information Criterion.
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Table nr 3: Model 3

Lagl Lag2 Lag3 Lag4 Lag5 Lagb Lag7 Lag8
50 obs
AIC 0,001 | 0,749 | 0,121 | 0,052 | 0,024 | 0,027 | 0,015 | 0,011
SIC 0,001 | 0,903 | 0,072 | 0,017 | 0,003 | 0,004 | 0,001 | 0,001
HQ 0,001 | 0,825 | 0,106 | 0,031 | 0,011 0,02 | 0,004 | 0,002
FPE 0,001 | 0,749 | 0,122 | 0,052 | 0,024 | 0,027 | 0,015 | 0,01
MDIC 0,001 | 0,920 | 0,072 | 0,007 o 0 0 0
75 obs
AIC 0,001 0,78 | 0,094 | 0,059 | 0,034 0,012 | 0,01 0,01
SIC 0,001 | 0,944 | 0,039 | 0,008 | 0,001 0 0 0
HQ 0,001 | 0,882 | 0,068 | 0,024 | 0,016 | 0,003 | 0,003 | 0,003
FPE 0,001 | 0,781 | 0,094 | 0,058 | 0,034 | 0,012 | 0,01 0,01
MDIC 0,001 | 0,944 | 0,048 | 0,007 0 0 0 0
100 obs
AIC 0,001 | 0,764 | 0,121 | 0,046 | 0,027 | 0,022 | 0,013 | 0,006
SIC 0,001 | 0,931 | 0,049 | 0,007 | 0,002 0 0 0
HQ 0,001 | 0,879 | 0,08 | 0,019 | 0,014 | 0,005 | 0,002 o
FPE 0,001 | 0,765 | 0,121 | 0,046 | 0,027 | 0,022 | 0,012 | 0,006
MDIC 0,001 | 0,933 | 0,061 | 0,005 0 0 0 0
200 obs
AIC o,001 | 0,776 | 0,116 | 0,042 | 0,031 | 0,018 | 0,009 | 0,007
SIC 0,001 | 0,968 | 0,029 | 0,002 o o o o
HQ 0,001 | 0,913 | 0,066 | 0,009 | 0,009 | 0,002 0 0
FPE o,001 | 0,777 | 0,116 | 0,042 | 0,03 | 0,018 | 0,009 | 0,007
MDIC 0,001 | 0,949 | 0,047 | 0,003 0 o o o
500 obs
AIC 0,001 | 0,795 | 0,095 | 0,058 | 0,025 | 0,012 | 0,011 | 0,003
SIC 0,001 | 0,983 | 0,014 | 0,002 0 0 0 0
HQ 0,001 | 0,931 | 0,046 | 0,018 | 0,004 o 0 0
FPE 0,001 | 0,795 | 0,095 | 0,058 | 0,025 | 0,012 | 0,011 | 0,003
MDIC 0,001 | 0,945 | 0,048 | 0,006 0 0 0 0

The shading indicates best performance Information Criterion.
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Table nr 4: Model 4

Lagl Lag?2 Lag3 Lag4 Lagh Lag6 Lag7 Lag8
50 obs
AlC 0,159 | 0,607 | 0,111 | 0,046 | 0,026 | 0,026 | 0,013 | 0,012
SIC 0,306 | 0,622 | 0,045 | 0,019 | 0,005 | 0,002 A 0,001 | 0,001
HQ 0,214 | 0,643 | 0,078 | 0,036 | 0,009 | 0,013 | 0,002 | 0,005
FPE 0,161 0,61 0,109 | 0,045 | 0,026 | 0,025 | 0,012 | 0,012
MDIC 0,268 | 0,673 | 0,052 | 0,007 0 o 0 0
75 obs
AlC 0,075 | 0,71 0,112 | 0,045 | 0,03 | 0,015 | 0,007 | 0,006
SIC 0,200 | 0,751 | 0,037 | 0,009 | 0,001 o 0 0
HQ 0,123 | 0,756 | 0,074 | 0,024 | 0,014 | 0,003 | 0,002 | 0,004
FPE 0,077 | 0,71 0,112 | 0,045 | 0,029 | 0,014 | 0,008 | 0,005
MDIC 0,144 | 0,800 | 0,049 | 0,007 o o 0 0
100 obs
AIC 0,033 | 0,739 | 0,11 0,054 | 0,021 | 0,024 | 0,01 0,009
SIC 0,102 | 0,846 | 0,038 | 0,010 | 0,002 0 o 0
HQ 0,059 | o,818 | 0,072 | 0,033 | 0,009 | 0,006 A 0,002 | 0,001
FPE 0,033 | 0,739 | 0,11 0,054 | 0,021 | 0,024 | 0,01 0,009
MDIC 0,072 | 0,863 | 0,051 | 0,013 | 0,001 o o o
200 obs
AlC o,001 | 0,779 | 0,114 | 0,047 | 0,033 | 0,014 | 0,005 | 0,007
SIC 0,007 | 0,965 | 0,019 | 0,007 | 0,002 0 0 0
HQ 0,002 | 0,909 ¥ 0,06 | 0,016 | 0,007 | 0,005 | 0,001 0
FPE o,001 | 0,779 | 0,114 | 0,047 | 0,033 | 0,014 | 0,005 | 0,007
MDIC 0,003 | 0,938 | 0,048 | 0,009 | 0,002 o o 0
500 obs
AlC 0,001 | 0,795 | 0,106 | 0,053 | 0,022 A 0,013 | 0,008 | 0,002
SIC 0,001 | 0,980 | 0,016 | 0,003 o 0 o 0
HQ 0,001 | 0,917 | 0,061 | 0,018 | 0,003 o o o
FPE 0,001 | 0,795 | 0,106 | 0,053 | 0,022 A 0,013 | 0,008 | 0,002
MDIC 0,001 | 0,933 | 0,059 | 0,007 o o 0 0

The shading indicates best performance Information Criterion.
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Table nr 5: Model 5

Lagl Lag? Lag3 Lag4 Lag5h Lagb Lag7 Lag8
50 obs
AIC 0,025 | 0,712 | 0,137 | 0,045 | 0,027 | 0,027 | 0,013 | 0,014
SIC 0,203 | 0,699 | 0,069 | 0,014 | 0,010 | 0,003 | 0,001 | 0,001
HQ 0,042 | 0,782 | 0,106 | 0,031 | 0,012 | 0,016 | 0,004 | 0,007
FPE 0,026 | 0,716 | 0,136 | 0,045 | 0,026 | 0,027 | 0,012 | 0,012
MDIC 0,058 | 0,861 | 0,073 | 0,007 | 0,001 0 0 0
75 obs
AIC 0,005 | 0,763 | 0,127 | 0,046 | 0,028 | 0,014 | 0,008 | 0,009
SIC 0,058 | 0,869 | 0,062 | 0,010 | 0,001 0 0 o
HQ 0,009 | 0,861 | 0,086 | 0,027 |l 0,011 | 0,003 | 0,001 | 0,002
FPE 0,005 | 0,764 | 0,127 | 0,046 | 0,028 | 0,014 | 0,007 | 0,009
MDIC 0,011 | 0,927 | 0,053 | 0,008 | 0,001 0 0 0
100 obs
AIC 0,001 | 0,759 | 0,119 | 0,055 | 0,024 | 0,025 | 0,009 | 0,008
SIC 0,019 | 0,918 | 0,050 | 0,006 | 0,006 | 0,001 0 0
HQ 0,002 | 0,859 | 0,089 | 0,027 | 0,013 | 0,009 | 0,001 0
FPE 0,001 o,76 | 0,118 | 0,055 | 0,024 | 0,025 | 0,009 | 0,008
MDIC 0,002 | 0,927 | 0,062 | 0,007 | 0,002 0 0 0
200 obs
AlC o,001 | 0,775 | 0,12 | 0,044 | 0,033 | 0,013 | 0,009 | 0,005
SIC 0,001 | 0,966 | 0,029 | 0,003 | 0,001 o o o
HQ o,001 | 0,898 | 0,071 | 0,019 | 0,004 | 0,004 | 0,003 o
FPE o,001 | 0,775 | 0,12 | 0,044 | 0,033 | 0,013 | 0,009 | 0,005
MDIC 0,001 | 0,941 0,05 | 0,008 o o o o
500 obs
AIC 0,001 | 0,789 | 0,107 | 0,052 | 0,026 | 0,011 0,01 0,004
SIC 0,001 | 0,979 | 0,019 | 0,001 0 o o o
HQ 0,001 | 0,917 | 0,055 | 0,018 | 0,007 | 0,002 o o
FPE 0,001 | 0,789 | 0,107 | 0,052 | 0,026 | 0,011 0,01 0,004
MDIC 0,001 | 0,936 | 0,056 | 0,007 0 0 0 0

The shading indicates best performance Information Criterion.
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Table nr 6: Model 6

Lagl Lag?2 Lag3 Lag4 Lagh Lag6 Lag7 Lag8
50 obs
AlC 0,149 | 0,02 | 0,096 | 0,033 | 0,498 | 0,114 | 0,049 | 0,041
SIC 0,423 | 0,025 | 0,113 | 0,026 | 0,358 | 0,040 | 0,011 | 0,004
HQ 0,237 | 0,022 | 0,113 | 0,033 | 0,466 | 0,08 | 0,029 | 0,02
FPE 0,15 0,02 | 0,097 | 0,033 | 0,497 | 0,114 | 0,048 | 0,041
MDIC 0,495 | 0,051 | 0,205 | 0,026 | 0,22 | 0,003 0 o
75 obs
AlC 0,059 | o,001 | 0,031 | 0,014 | 0,702 A 0,12 | 0,047 | 0,026
SIC 0,238 | 0,007 | 0,075 | 0,015 | 0,627 | 0,024 | 0,011 | 0,003
HQ 0,121 | 0,008 | 0,051 | 0,013 | 0,701 | 0,068 | 0,026 | 0,012
FPE 0,059 | 0,001 | 0,031 | 0,014 | 0,704 | 0,119 | 0,046 | 0,026
MDIC 0,284 | 0,026 | 0,146 | 0,016 | 0,524 | 0,004 o 0
100 obs
AIC 0,012 | 0,001 | 0,008 | 0,004 | 0,751 | 0,139 | 0,05 | 0,035
SIC 0,121 | 0,006 | 0,035 | 0,004 | 0,787 | 0,036 | 0,004 | 0,007
HQ 0,038 | 0,004 | 0,013 | 0,005 | 0,813 | 0,087 | 0,025 | 0,015
FPE 0,012 | 0,001 | 0,008 | 0,004 | 0,752 | 0,139 | 0,049 | 0,035
MDIC 0,128 | 0,015 | 0,08 | 0,011 | 0,758 | 0,008 o o
200 obs
AlC o,001 | o,001 | 0,001 | 0,001 | 0,801 | 0,111 | 0,047 | 0,037
SIC 0,001 | 0,001 | 0,001 | 0,001 | 0,961 | 0,032 A 0,003 | 0,001
HQ 0,001 | o,001 | 0,001 | 0,001 | 0,901 | 0,078 | 0,015 | 0,002
FPE o,001 | o,001 | 0,001 | 0,001 | 0,801 | 0,111 | 0,047 | 0,037
MDIC 0,002 | 0,001 | 0,001 | 0,001 | 0,985 | 0,01 o o
500 obs
AlC o,001 | o,001 | 0,001 | 0,001 | 0,813 | 0,117 | 0,034 | 0,032
SIC o,001 | o,001 | 0,001 | 0,001 | 0,973 | 0,020 A 0,002 | 0,001
HQ 0,001 | 0,001 | 0,001 | 0,001 | 0,922 | 0,067 | 0,005 | 0,002
FPE o,001 | o,001 | o,001 | 0,001 | 0,813 | 0,117 | 0,035 | 0,031
MDIC 0,001 | 0,001 | 0,001 | 0,001 | 0,991 | 0,005 0 o

The shading indicates best performance Information Criterion.
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