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Abstract

We study the validation of prediction rules such as regression models and classification

algorithms through two out-of-sample strategies, cross-validation and accumulated prediction

error. We use the framework of Efron (1983) where measures of prediction errors are defined

as sample averages of expected errors and show through exact finite sample calculations that

cross-validation and accumulated prediction error yield different smoothing parameter choices

in non-parametric regression. The difference in choice does not vanish as sample size increases.
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Smoothing parameter.

∗Corresponding address: Department of Statistics, Ume̊a University, , SE-90187 Ume̊a, Sweden. E-mail:
xavier.deluna@stat.umu.se Tel: +46 90 7865559. Fax: +46 90 7866614.

1

Page 2 of 27

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
1 Introduction

This paper is concerned with the validation of general prediction rules for a variable of interest y.

We consider situations where a prediction rule µ̂n for y is obtained using a sample of size n, y =

(y1, y2, . . . , yn)′. Typical examples of prediction rules are regression and classification applications.

As an illustration of the former, Figure 1 (left panel) displays 221 observations from a light detection

and ranging (LIDAR) experiment, where the horizontal axis is the distance, x, travelled by laser-

emitted light before it is reflected back to its source and the vertical axis is the logarithm of the

ratio, y, of received light from two laser sources, one of which had a frequency equal to the resonance

frequency of mercury. LIDAR experiments are used to detect such chemical compounds in the

atmosphere; see Ruppert et al. (2003, Sec. 2.7) for more details. Together with the data two

regression curves are displayed (plain and dashed line), which are prediction rules of y given x.

As Efron (2004) pointed out there are two main schools to approach the problem of assessing

the performance of different prediction rules for a given variable y: out-of-sample methods and

covariance penalty methods. The latter class of methods is model based, i.e. parametric statistical

models for the data generating mechanism are assumed, while the former is non-parametric and

allow for the comparison of prediction rules obtained with different inferential frameworks and/or

different modelling strategies. Although covariance penalty methods may be more efficient when the

assumptions made hold (e.g., Efron, 2004), we consider in this paper out-of-sample validation which

is more widely applicable. The evaluation of prediction rules is concerned with the question: “what

is the generalizability of a given prediction rule?” A common approach to validation arises from a

translation of this question to, here quoting Efron (2004): (Question 1) “We wonder how well [a

prediction rule] will predict a future dataset [of same size n] independently generated by the same

mechanism that produced y.” Under certain conditions (see Section 2), this statement justifies the

use of a cross-validation (CV, Stone, 1974) criterion

1

n

n
∑

i=1

L (yi, µ̃
n−1
i ), (1)

where L is a loss function and µ̃n−1
i is the prediction rule µ̂n obtained with a sample where obser-

vation yi has been omitted.

Another approach to measuring the generalizability of a prediction rule arises from asking: (Ques-

tion 2) How good is a prediction rule at predicting n observations arriving sequentially? As described

in Section 2, this question justifies the use of the accumulated prediction error criterion (APE) (due

2
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to Dawid (1984) and Rissanen (1986))

1

n − m

n
∑

i=m+1

L (yi, µ̆
i−1
i ), (2)

where µ̆i−1
i is the prediction rule µ̂n obtained with the sub-sample yi−1 = (y1, y2, . . . , yi−1)

′ and m

is the size of the sub-sample on which the first prediction rule is obtained.

CV is widely used, particularly in non-parametric applications, and the study of its properties has

received much attention in the literature. The application of APE methods is less spread, except for

time series situations (e.g., Sjöstedt, 2000, de Luna and Genton, 2005, Wagenmakers, Grünwald, and

Steyvers, 2006), where the time ordering of the observed units is used in accumulating prediction

errors in APE. However, APE is also applicable in situations where units are exchangeable (no

natural ordering exists) as was advocated by Dawid (1984) and later on by de Luna and Skouras

(2003), where APE is shown to be consistent in discriminating between model selection strategies.

In this paper we focus on the APE criterion and use the framework of Efron (1983) to make

comparisons with CV. This allows us to shed some new light on the properties of these criteria.

In particular, the APE criterion is an unbiased estimate of a measure of prediction error which is

different from the one used to justify CV. The use of CV and APE to select the smoothing parameter

in nonparametric regression is further studied and we show, for instance, that CV and APE yield

different choices of smoothing parameters, where the difference does not vanish as the sample size

increases.

The paper is organized as follows. The next section presents the two different measures of

prediction errors which can be used to justify the use of CV and APE respectively. Section 3 focuses

on linear prediction rules in regression situations, where out-of-sample methods are typically used to

select a smoothing parameter. We review some asymptotics on the use of CV for this purpose and

note that few results are available for APE. We then give finite sample expressions for the measures

of prediction errors estimated by CV and APE. These results allows us in Section 4 to present

numerical experiments to study and compare CV and APE. The paper is concluded in Section 5.

2 Measures of prediction error: new data versus sequential

principle

Validation methods can be justified as estimators of measures of prediction errors. In this respect,

a measure justified by Question 1 mentioned above is (e.g., Efron, 2004)

Errnew =
1

n

n
∑

i=1

E{L (y0
i , µ̂n

i )|y}, (3)

3
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Figure 1: Left hand panel: LIDAR data with two loess fit obtained with h = 0.23 (plain line, CV
choice) and with h = 0.31 (dashed line, APE choice). Right hand panel: Fitted first derivatives
corresponding to the curve fitted on the left hand panel.

where y0
1 , y

0
2 , . . . , y

0
n is a new independent sample generated by the same mechanism as y. For

instance, with a linear prediction rule (see Section 3.1 below) and squared error loss, L (y, µ) = (y−

µ)2, it can be shown (Hastie and Tibshirani, 1990) that the CV criterion (1) yields an approximately

unbiased estimate of Errnew , E( 1
n

∑n
i=1(yi − µ̃n−1

i )2) ≈ E(Errnew) .

A measure of prediction error based on Question 2 is:

Errseq =
1

n − m

n
∑

i=m+1

E{L (yi, µ̆
i−1
i )|yi−1}. (4)

An advantage of this prediction rule is that an unbiased estimator of E(Errseq) is readily

available in wide generality by using the APE criterion (2): by the law of iterated expectations

E{ 1
n−m

∑n
i=m+1 L (yi, µ̆

i−1
i )} = E(Errseq).

4
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3 CV and APE applied to nonparametric regression

3.1 Linear prediction rules

We consider situations where y is observed at fixed design points x = (x1, x2, . . . , xn)′. Then,

prediction rules are typically constructed by regressing y on x, for example with linear predictors of

the form

µ̂
n
z

= S(z)y,

where S(z) is an nz × n matrix with nz the dimension of the design vector z at which predictions

are made. For z = x, µ̂
n
x

contains fitted values (i.e. prediction of the response at the observed

design points). When parametric linear models are fitted with ordinary least squares we have

S(x) = X(X′X)−1X′, which is called the hat matrix, and where X = (1 x) with 1 an n-length

vector of 1:s.

Examples of nonparametric linear prediction rules include kernel smoothers, cubic smoothing

splines and local polynomial regression (see e.g., Schimek, 2000, and references therein). We focus

on the latter in this paper to illustrate the use of CV and APE. Local polynomial regression with

weights assigned by the tricube kernel, called loess in Cleveland and Devlin (1988), consists of fitting

a polynomial of degree p at a design point z using only the part of the data that is deemed to be

sufficiently close to the target. The fit, at z, is

µ̂n
z (h) = e′1(Z

′Wh,zZ)−1Z′Wh,zy

where e1 = (1, 0, . . . , 0)′, a (p + 1)-length vector,

Z =







1 (x1 − z) . . . (x1 − z)p

...
...

...
1 (xn − z) . . . (xn − z)p







and

Wh,z = diag(K
(

(x1 − z)/b1(h)
)

/b1(h), . . . , K
(

(xn − z)/bn(h)
)

/bn(h)).

The tricube kernel, K(·), is defined as

K(u) =

{

70
81 (1 − |u|3)3, if |u| < 1
0, if |u| ≥ 1

}

,

and, assuming no ties,

bj(h) = the (hn):th nearest (in Euclidean distance) to z among the xj :s for xj 6= z, h ∈ [1/n, 1].

The parameter h is typically called smoothing parameter and in this case is the proportion of

observations being used to produce the local fit. Thus, if h=1 all observations are used and the fit

5

Page 6 of 27

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
is global, while if h=0.2 then the 0.2n observations closest to z are used to produce µ̂n

z (h). This

implies that if h is held constant for i = 1, . . . , n a constant number of observations are used for the

local fits while bj(h), the size of the local neighborhood, varies with the data points xj .

An illustrative example is provided in Figure 1. On the left hand panel, the LIDAR data

described in the introduction is plotted together with two fitted curves with loess (p = 1) in R (R

Development Core Team, 2008), one obtained with h = 0.23 (dashed) and one with h = 0.31. The

difference between the two fit is most obvious by looking at the corresponding fitted first derivatives

(right hand panel). We can see that a larger value for h yields a less wiggly behaviour. Out-of-sample

validation is often used to select a relevant value for the smoothing parameter. The values used in

Figures 1 correspond to the choices made with CV and APE (m = 50). The larger value for h, and

hence the smoother curve, is obtained with APE. Note that the derivative is of main interest in this

application since its proportional to mercury concentration at distance x, see Ruppert et al. (1997).

3.2 Choice of smoothing parameter

While CV is routinely used to choose a relevant smoothing parameter, the use of APE is rare. As

a consequence there are many theoretical results available on the properties of CV as a method to

select smoothing parameters, while these are scarce for APE. We make a review of these results

(selective for CV and up to our knowledge exhaustive for APE).

3.2.1 Reviewing some asymptotics on the use of CV and APE

In the literature concerning smoothing parameter selection, the optimal smoothing parameter is

often defined (using the squared error loss) either as

ĥ0 = argmin
h

1

n

n
∑

i=1

(µi − µ̂n
i (h))2

or

h0 = argmin
h

1

n

n
∑

i=1

E[(µi − µ̂n
i (h))2],

where µi = E(yi), which is allowed to vary at different design points xi. Note that throughout the

design x is considered as non-random. Since Errnew(h) can be expressed as

σ2 +
1

n

n
∑

i=1

(µi − µ̂n
i (h))2,

where σ2 = V ar(yi), ĥ0 and h0 are the minimizers of Errnew(h) and E(Errnew(h)), respectively.

Consequently the asymptotic performance of smoothing parameter selectors is often measured in

6
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terms of the rate of convergence of the resulting ĥ to one of the optimal smoothing parameters

defined above. The relative asymptotic success of CV depends on if one considers ĥ as an estimator

of ĥ0 or h0. From Hall and Johnstone (1992), in a setting where the prediction rule is a kernel

estimator and the smoothing parameter representing a local neighborhood of constant size, we have

that
(

hCV − h0

h0

)

= Op(n
−1/10),

where hCV is the CV smoothing parameter, i.e. chosen by minimizing (1). This is a relatively slow

rate of convergence, since there exist plug-in selectors for which the relative error is of Op(n
−1/2)

(albeit requiring strong smoothness assumptions on f (Hall and Johnstone, 1992)). In the case of

approximating ĥ0 CV does perform somewhat better. The relative error is still of Op(n
−1/10) but in

this situation hCV is optimal in the sense that there is no empirical smoothing parameter for which

the relative error can be reduced below n−1/10; see Hall and Johnstone (1992). Similar results for

selection of a constant size neighborhood and selection of a smoothing parameter of the k nearest

neighbor type (i. e equivalent to h in Section 3.1) in local linear regression can be found in Li and

Racine (2004) and Ouyang, Li, and Li (2006), respectively.

For APE there are no results qualitatively comparable to those reviewed above. Modha and

Masry (1998) gave, however, rates of convergence for the integrated mean-squared errors in esti-

mating non-parametrically the regression functions, showing that CV and APE achieved the same

rates. Finally, de Luna and Skouras (2003) showed a consistency result for APE holding under weak

assumptions. Loosely, their results say that APE will eventually (as the sample size grows) choose

the prediction strategy that has lowest E(Errseq). This result is limited to the comparison of a finite

number of strategies and, therefore, it does not apply to the selection of a smoothing parameter. On

the other hand, APE could consistently choose between a collection of prediction strategies defined

by using different linear smoothers associated with different bandwidth selection criteria.

3.3 Finite sample properties

Explicit finite sample expressions for prediction errors can be obtained for linear prediction rules

allowing for direct comparison, without the need to use asymptotic approximations. Thus, assuming

independently distributed observations, a fixed design vector x and using the squared error loss, we

7
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have

Errnew(h) =
1

n

n
∑

i=1

E{(y0
i − µ̂n

i )2|y}

=
1

n

n
∑

i=1

E

{

(

y0
i −

n
∑

j=1

{Sh(x)}ijyj

)2∣
∣

∣y

}

=
1

n

n
∑

i=1

E

{

(

y0
i − µi + µi −

n
∑

j=1

{Sh(x)}ijyj

)2∣
∣

∣y

}

= σ2 +
1

n

n
∑

i=1

(

µi −
n

∑

j=1

{Sh(x)}ijyj

)2

,

E(Errnew(h)) = σ2 +
1

n

n
∑

i=1

E

{

(

µi −
n

∑

j=1

{Sh(x)}ijyj

)2
}

= σ2 +
1

n

n
∑

i=1

(

µ2
i − 2µi

n
∑

j=1

{Sh(x)}ijE(yj) + V ar({Sh(x)}ijyj) (5)

+

{

E
(

n
∑

j=1

{Sh(x)}ijyj

)

}2)

= σ2 +
σ2

n

n
∑

i=1

n
∑

j=1

{Sh(x)}2
ij +

1

n

n
∑

i=1

(

µi −
n

∑

j=1

{Sh(x)}ijµj

)2

(6)

(7)

where {Sh(x)}ij is the (ij):th entry in the n × n smoothing matrix. Analogous derivations yield

Errseq(h) = σ2 +
1

n − m

n
∑

i=m+1

(

µi −
i−1
∑

j=1

{Si−1
h (xi)}ijyj

)2

,

E(Errseq(h)) = σ2 +
σ2

n − m

n
∑

i=m+1

i−1
∑

j=1

{Si−1
h (xi)}2

ij (8)

+
1

n − m

n
∑

i=m+1

(

µi −
i−1
∑

j=1

{Si−1
h (xi)}ijµj

)2

, (9)

where {Si−1
h (xi)}ij is the (ij):th entry in the i × (i − 1) smoothing matrix based on the design for

sub-sample i = 1, 2, . . . , i − 1 with xi = (x1, x2, . . . , xi).

When the data generating mechanism is known (in particular µi and σ2) these prediction errors

can be computed for different values of h and compared. Such numerical illustrations are provided

in the next section giving some insights on how these two measures of prediction errors differ.

4 Numerical experiments

We have several objectives in this section. First we want to illustrate numerically that the min-

imization of E(Errnew) and E(Errseq) may yield different optimal smoothing parameters, where

8
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the difference does not vanish with increasing sample sizes, thereby showing that both measures of

prediction errors are not measuring the same thing. Secondly, we want to study the finite sample

properties of smoothing parameters obtained by estimating E(Errnew) and E(Errseq) with CV and

APE respectively.
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−
20
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60

x
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Figure 2: Regression functions and 100 generated observations: f1 and f2 from left to right in the
upper panel, f3 with xi ∼ U and f3 with xi ∼ N from left to right in the lower panel.

4.1 Design of the experiments

The following data generating mechanisms are considered:

yk,i = fk(xi) + ǫk,i, k = 1, 2, 3, i = 1, . . . , n, n = 100, 200, 500, 1000

where f1(xi) = 0.3 + 0.55xi, f2(xi) = sin(xi) + sin(2xi) and f3(xi) = 0.3 + 0.55xi + 2x2
i , either

xi ∼ U(0, 2π) or xi ∼ N (π, 1), xi is generated only once since it is considered fixed. ǫk,i ∼

N (0,Var(fk(xi))), thereby ensuring that the signal-to-noise ratio equals one. For xi ∼ U(0, 2π),

Var(f1(xi)) = (0.3025/3)π2 ≈ 0.9952, Var(f2(xi)) = 1 and Var(f3(xi)) = (0.3025/3)π2+(4.4/3)π3+

(256/45)π4 ≈ 600.6206. For xi ∼ N (π, 1), Var(f3(xi)) = (8.3025/3) + 4.4π + 16π2 ≈ 180.0392.

9
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We consider local linear regression (loess with p = 1 in R, (R Development Core Team, 2008))

and local quadratic regression (loess with p = 2) estimators. For (2), (4) and (9) we fix m = 50. In

order to investigate if the behavior of APE becomes more similar to CV if m is allowed

to increase with n, as suggested by Ing (2007), we also let m = n/2 for n = 200, 1000,

f1, f2, p = 1, 2 with xi ∼ U . We call this criterion APEδ. Moreover, an arbitrary ordering of

the observations is used to accumulate prediction errors. Using a non-random ordering should be

avoided when observations are exchangeable since, for instance, accumulating prediction errors for

observations ordered with increasing x value would imply that the predictions made are always

outside the support of the fitted regression function. We also include in the study the popular model

based covariance penalty criteria AIC (Akaike, 1974), 1
n

∑n
i=1(yi − µ̂n

i (h))2 + 2
n σ̂2

∑n
i=1{Sh(x)}ii,

and BIC (Schwarz, 1978), 1
n

∑n
i=1(yi − µ̂n

i (h))2 + log(n)
n σ̂2

∑n
i=1{Sh(x)}ii for comparison. σ̂2 =

P

n
i=1

(yi−µ̂n
i (h∗))2

n−
P

n
i=1

(2{Sh∗ (x)}ii−
P

n
j=1

{S2

h∗
(x)}ij)

with h∗ = 0.13. When looking for optimal h values we restrict

attention to the span [0.1, 1]. Figure 4 displays data simulated with the design described.

The design of this study is chosen to be able to distinguish two types of situations: cases where

the true regression function f(x) is a polynomial function of order smaller or equal to the order p

used in loess (correct specification case), and cases where f(x) is not a polynomial function or it is

a polynomial function of order larger than p (misspecification case).

4.2 Results

Results are based on 1000 replicates. For all the simulated situations we show results on the minimal

values obtained for the different measures of prediction errors and their estimates (Tables 1-2 and

Figures 2-3, 6-7; tables and Figures 6-7 in the appendix), as well as for the argument of these minima,

i.e. the h values selected (Tables 3-4 and Figures 4-5, 8-9; tables and Figure 8-9 in the appendix).

We first comment on the minima obtained for E(Errnew) and E(Errseq) and their respective

smoothing parameters. We can note that for designs with polynomial regression functions, the

minima of E(Errnew) and E(Errseq) obtained by using a value of p such that we are in the correct

specification case are smaller, for n large enough, than the minima obtained with lower value of p

(such that we are in the misspecification case, Table 2 f3) and the minima obtained with higher

values of p (Table 1, f1). Estimates of the minimum of E(Errnew) and E(Errseq) obtained with CV

and APE seem to be comparable with a slight systematic advantage for CV. This difference may be

due to minima of Errseq having a larger variability than the minima of Errnew.

We focus now on Table 3-4 summarized in Figures 4-5, 8-9. A striking result in Table 3 and 4 is

the fact that the difference between the values for h minimizing E(Errnew) and E(Errseq) increases

10
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with the sample size in all misspecification situations. This shows that there is an intrinsic difference

between the two measures of prediction errors. In the correct specification cases we observe that

the selected values of h approach one as the sample size grows, while they tend to zero in the

misspecification cases. It can be noted that APE yields h values closer to the ideal value one in the

former situations. On the other hand, CV is slightly less biased (as an estimator of h minimizer of

E(Errnew)) than APE (as an estimator of h minimizer of E(Errseq)). However, APE yields h values

which are less variable than those obtained with CV and this results in lower MSE for APE, in both

types of situations, when samples are large enough.

The discrepancy, in selected values of h, between APEδ and CV decreases with n.

This is in accordance with the theoretical results by Ing (2007) mentioned in Section

4.1.

Finally, while AIC behaves similarly to CV (note that they have been shown to be asymptotically

equivalent in parametric situations, (Stone (1977); Shao (1997)), BIC yields systematically higher

values than APE. This is to be put in contrast with results showing that BIC and APE are asymp-

totically equivalent for linear time series models (Ing, 2007). Thus, while AIC may be a reasonable

substitute for CV in the situations studied, BIC cannot be used if the interest lies in minimizing

E(Errseq).

5 Discussion

Cross-validation and accumulated prediction error are two methods used in order to validate and

compare different prediction rules without making parametric assumptions. In this paper, we high-

light that these two methods are estimating two different measures of prediction error, answering

thereby different questions.

In order to compare CV and APE we use the framework developed by Efron (1983) to study

CV and give its counterpart for APE. This allows us to show that when the prediction rules are

linear smoothers, and the above methods are used to select the amount of smoothing (smoothing

parameter) then the prediction errors estimated by CV and APE lead to different optimal smoothing

parameters. Moreover, the latter difference does not vanish as the sample increases. This result is

important since it shows that the choice between CV and APE does matter.

Our comparative results are exact for finite samples and do not rely on asymptotic approxi-

mations. Moreover, the non-equivalence result of CV and APE in our non-parametric context is in

accordance with previous results obtained with parametric prediction rules; see de Luna and Skouras
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Figure 3: Boxplots for results from Table 1 in the appendix. Values of (1), (2), (3) and (4) for the minimizing h:s. First row n = 200, second
row n = 1000. First two columns µi = f1(xi), last two columns µi = f2(xi). MSE for (1) and (2) are given on top. The dashed and dotted
lines indicates E(Errnew) and E(Errseq) for the minimizing smoothing parameter, respectively.
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Figure 4: Boxplots for results from Table 3 in the appendix. Values of h minimizing (1), (2), AIC and BIC. First row n = 200, second row
n = 1000. First two columns µi = f1(xi), last two columns µi = f2(xi). MSE for (1) and (2) are given on top. The dashed and dotted lines
indicates the smoothing parameter minimizing E(Errnew) and E(Errseq), respectively.
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Appendix

Additional figures and tables with results discussed in Section 4.2 are included in the sequel.
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Figure 5: Boxplots for results from Table 2. Values of (1), (2), (3) and (4) for the minimizing h:s . First row n = 200, second row n = 1000.
First two columns µi = f3(xi) with xi ∼ U , last two columns µi = f3(xi) with xi ∼ N . MSE for (1) and (2) are given on top. The dashed
and dotted lines indicates E(Errnew) and E(Errseq) for the minimizing smoothing parameter, respectively.
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Figure 6: Boxplots for results from Table 4. Values of h minimizing (1), (2), AIC and BIC. First row n = 200, second row n = 1000. First
two columns µi = f3(xi) with xi ∼ U , last two columns µi = f3(xi) with xi ∼ N . MSE for (1) and (2) are given on top. The dashed and
dotted lines indicates the smoothing parameter minimizing E(Errnew) and E(Errseq), respectively.
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Figure 7: Boxplots for results from Table 1. Values of (1), (2), (3) and (4) for the minimizing h:s. First row n = 100, second row n = 500.
First two columns µi = f1(xi), last two columns µi = f2(xi). MSE for (1) and (2) are given on top. The dashed and dotted lines indicates
E(Errnew) and E(Errseq) for the minimizing smoothing parameter, respectively.
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Figure 8: Boxplots for results from Table 2. Values of (1), (2), (3) and (4) for the minimizing h:s. First row n = 100, second row n = 500.
First two columns µi = f3(xi) with xi ∼ U , last two columns µi = f3(xi) with xi ∼ N . MSE for (1) and (2) are given on top. The dashed
and dotted lines indicates E(Errnew) and E(Errseq) for the minimizing smoothing parameter, respectively.
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Figure 9: Boxplots for results from Table 3. Values of h minimizing (1), (2), AIC and BIC. First row n = 100, second row n = 500. First
two columns µi = f1(xi), last two columns µi = f2(xi). MSE for (1) and (2) are given on top. The dashed and dotted lines indicates the
smoothing parameter minimizing E(Errnew) and E(Errseq), respectively.
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Figure 10: Boxplots for results from Table 4. Values of h minimizing (1), (2), AIC and BIC. First row n = 100, second row n = 500. First
two columns µi = f3(xi) with xi ∼ U , last two columns µi = f3(xi) with xi ∼ N . MSE for (1) and (2) are given on top. The dashed and
dotted lines indicates the smoothing parameter minimizing E(Errnew) and E(Errseq) , respectively.
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Table 1: Mean values of (1), (2), (3), (4) and values of (6) and (9), for the minimizing h:s, for f1,
and f2 with xi ∼ U . Sample standard deviation in parenthesis and bias (difference between the mean
of the minima of (1) or (2) and the minimum of (6) or (9)) in brackets.

n dErr
CV

dErr
APE

Errnew Errseq E(Errnew) E(Errseq)

f1, x ∼ U , p = 1
100 1.01 1.01 1.02 1.03 1.02 1.03

(0.15) (0.21) (0.02) (0.03)
[-0.01] [-0.02]

200 1.00 1.01 1.01 1.02 1.01 1.02
(0.10) (0.12) (0.01) (0.02)
[-0.004] [-0.01]

500 1.00 1.00 1.00 1.01 1.00 1.01
(0.06) (0.07) (0.01) (0.01)
[-0.002] [-0.003]

1000 1.00 1.00 1.00 1.00 1.00 1.00
(0.05) (0.05) (0.002) (0.004)
[-0.002] [-0.002]

f1, x ∼ U , p = 2
100 1.03 1.03 1.02 1.05 1.03 1.05

(0.15) (0.21) (0.02) (0.04)
[-0.004] [-0.02]

200 1.01 1.03 1.01 1.03 1.01 1.03
(0.10) (0.12) (0.01) (0.02)
[-0.003] [-0.005]

500 1.00 1.01 1.00 1.01 1.00 1.01
(0.06) (0.07) (0.004) (0.01)
[-0.002] [-0.002]

1000 1.00 1.00 1.00 1.01 1.00 1.01
(0.05) (0.05) (0.002) (0.01)
[-0.002] [-0.002]

f2, x ∼ U , p = 1
100 1.08 1.10 1.08 1.13 1.08 1.13

(0.16) (0.22) (0.04) (0.06)
[-0.002] [-0.03]

200 1.05 1.08 1.05 1.10 1.05 1.10
(0.11) (0.13) (0.02) (0.04)
[-0.002] [-0.01]

500 1.02 1.05 1.02 1.05 1.02 1.05
(0.06) (0.07) (0.01) (0.02)
[-0.003] [-0.01]

1000 1.01 1.03 1.01 1.04 1.01 1.03
(0.05) (0.05) (0.005) (0.01)
[-0.002] [-0.003]

f2, x ∼ U , p = 2
100 1.07 1.09 1.07 1.11 1.08 1.12

(0.16) (0.22) (0.04) (0.05)
[-0.001] [-0.03]

200 1.04 1.07 1.04 1.08 1.04 1.09
(0.11) (0.12) (0.02) (0.03)
[-0.003] [-0.01]

500 1.01 1.04 1.02 1.04 1.02 1.04
(0.06) (0.07) (0.008) (0.02)
[-0.002] [-0.005]

1000 1.01 1.03 1.01 1.03 1.01 1.03
(0.05) (0.05) (0.004) (0.01)
[-0.002] [-0.003]
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Table 2: Similar to Table 1 but for f3 with xi ∼ U and xi ∼ N .

n dErr
CV

dErr
APE

Errnew Errseq E(Errnew) E(Errseq)

f3, x ∼ U , p = 1
100 615 613 622 631 620 628

(89) (125) (15) (21)
[-6] [-15]

200 608 614 613 622 612 620
(62) (71) (8) (12)
[-3] [-6]

500 604 609 606 613 606 612
(38) (41) (4) (6)
[-2] [-3]

1000 602 606 604 609 603 608
(28) (29) (2) (3)
[-1] [-2]

f3, x ∼ U , p = 2
100 619 622 624 633 622 632

(91) (126) (16) (22)
[-2] [-10]

200 609 619 612 624 611 622
(62) (72) (8) (14)
[-2] [-3]

500 605 611 605 612 605 612
(38) (41) (3) (6)
[-0.2] [-1]

1000 602 606 603 608 603 607
(28) (29) (2) (3)
[-1] [-1]

f3, x ∼ N , p = 1
100 184 184 186 186 186 186

(25) (36) (4) (5)
[-2] [-2]

200 182 184 184 187 184 186
(18) (22) (2) (4)
[-2] [-2]

500 181 183 182 184 182 184
(11) (12) (1) (2)
[-0.5] [-1]

1000 181 182 181 182 181 182
(8) (8) (1) (1)
[-0.2] [-0.3]

f3, x ∼ N , p = 2
100 187 186 187 187 187 187

(27) (36) (5) (5)
[0.2] [-1]

200 182 185 184 187 183 187
(18) (22) (2) (4)
[-1] [-1]

500 181 183 181 184 181 183
(11) (12) (1) (2)
[-0.2] [-0.1]

1000 181 182 181 182 181 182
(8) (8) (1) (1)
[-0.2] [-0.1]
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Table 3: Mean of the h:s minimizing (1), (2), AIC, BIC, (6)and (9) for f1 and f2 with xi ∼ U .
Sample standard deviation in parenthesis and bias (difference between the mean of the minimizing
h:s and h minimizing (6) or (9)) in brackets.

n CV APE AIC BIC E(Errnew) E(Errseq)

f1, x ∼ U , p = 1
100 0.807 0.756 0.810 0.955 0.971 0.994

(0.228) (0.221) (0.229) (0.086)
[-0.164] [-0.237]

200 0.833 0.839 0.834 0.974 0.995 0.996
(0.224) (0.187) (0.222) (0.075)
[-0.162] [-0.156]

500 0.828 0.869 0.830 0.988 0.996 0.996
(0.240) (0.175) (0.237) (0.045)
[-0.168] [-0.127]

1000 0.816 0.903 0.817 0.991 0.996 0.994
(0.244) (0.147) (0.244) (0.035)
[-0.180] [-0.090]

f1, x ∼ U , p = 2
100 0.836 0.771 0.839 0.970 0.971 0.996

(0.200) (0.199) (0.209) (0.063)
[-0.135] [-0.225]

200 0.860 0.861 0.858 0.982 0.994 0.996
(0.195) (0.160) (0.197) (0.049)
[-0.134] [-0.134]

500 0.856 0.897 0.854 0.993 0.994 0.994
(0.209) (0.141) (0.210) (0.022)
[-0.138] [-0.097]

1000 0.856 0.924 0.855 0.995 0.994 0.994
(0.209) (0.116) (0.210) (0.010)
[-0.138] [-0.070]

f2, x ∼ U , p = 1
100 0.267 0.280 0.266 0.358 0.261 0.281

(0.053) (0.085) (0.055) (0.113)
[0.006] [-0.001]

200 0.224 0.255 0.225 0.300 0.228 0.257
(0.037) (0.041) (0.037) (0.027)
[-0.004] [-0.001]

500 0.179 0.218 0.179 0.252 0.176 0.216
(0.028) (0.026) (0.028) (0.017)
[0.003] [0.002]

1000 0.154 0.200 0.157 0.223 0.153 0.197
(0.022) (0.020) (0.022) (0.011)
[0.001] [0.003]

f2, x ∼ U , p = 2
100 0.438 0.449 0.435 0.533 0.439 0.460

(0.069) (0.090) (0.071) (0.070)
[-0.001] [-0.010]

200 0.423 0.447 0.422 0.494 0.430 0.462
(0.055) (0.056) (0.056) (0.030)
[-0.008] [-0.015]

500 0.380 0.422 0.380 0.455 0.393 0.423
(0.051) (0.040) (0.051) (0.021)
[-0.013] [-0.001]

1000 0.364 0.403 0.364 0.438 0.363 0.404
(0.041) (0.032) (0.041) (0.015)
[0.001] [-0.001]
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Table 4: Similar to Table but 3 but for f3 with xi ∼ U and xi ∼ N .

n CV APE AIC BIC E(Errnew) E(Errseq)

f3, x ∼ U , p = 1
100 0.704 0.699 0.701 0.882 0.745 0.798

(0.201) (0.217) (0.202) (0.120)
[-0.042] [-0.099]

200 0.646 0.717 0.648 0.862 0.649 0.734
(0.169) (0.167) (0.169) (0.114)
[-0.003] [-0.017]

500 0.548 0.640 0.546 0.765 0.541 0.651
(0.136) (0.142) (0.138) (0.092)
[0.007] [-0.012]

1000 0.474 0.601 0.474 0.690 0.475 0.606
(0.115) (0.113) (0.114) (0.064)
[-0.001] [-0.005]

f3, x ∼ U , p = 2
100 0.836 0.771 0.839 0.970 0.971 0.996

(0.200) (0.199) (0.209) (0.063)
[-0.135] [-0.225]

200 0.860 0.861 0.858 0.982 0.994 0.996
(0.195) (0.160) (0.197) (0.049)
[-0.134] [-0.135]

500 0.851 0.900 0.849 0.993 0.994 0.994
(0.213) (0.140) (0.215) (0.023)
[-0.142] [-0.094]

1000 0.854 0.924 0.853 0.995 0.994 0.996
(0.211) (0.116) (0.212) (0.010)
[-0.140] [-0.072]

f3, x ∼ N , p = 1
100 0.778 0.733 0.774 0.955 0.899 0.944

(0.211) (0.222) (0.218) (0.077)
[-0.121] [-0.210]

200 0.705 0.769 0.704 0.935 0.779 0.887
(0.203) (0.192) (0.204) (0.071)
[-0.074] [-0.117]

500 0.647 0.763 0.646 0.911 0.663 0.826
(0.175) (0.150) (0.175) (0.064)
[-0.017] [-0.063]

1000 0.575 0.724 0.577 0.863 0.585 0.766
(0.156) (0.132) (0.156) (0.062)
[-0.011] [-0.042]

f3, x ∼ N , p = 2
100 0.818 0.774 0.839 0.978 0.972 0.994

(0.203) (0.201) (0.204) (0.055)
[-0.155] [-0.219]

200 0.859 0.8543 0.852 0.990 0.995 0.995
(0.194) (0.173) (0.198) (0.030)
[-0.135] [-0.141]

500 0.867 0.916 0.863 0.995 0.993 0.996
(0.192) (0.122) (0.196) (0.007)
[-0.126] [-0.080]

1000 0.871 0.926 0.872 0.995 0.996 0.996
(0.193) (0.111) (0.192) (0.011)
[-0.124] [-0.071]
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