Jenny Häggström 
  
Xavier De Luna 
email: xavier.deluna@stat.umu.se
  
  
  
  
Estimating prediction error: Cross-validation vs accumulated prediction error

Keywords: Local polynomial regression, Non-parametric regression, Out-ofsample validation, Smoothing parameter Local polynomial regression, Non-parametric regression, Out-of-sample validation, Smoothing parameter

HAL is a

This paper is concerned with the validation of general prediction rules for a variable of interest y.

We consider situations where a prediction rule μn for y is obtained using a sample of size n, y = (y 1 , y 2 , . . . , y n ) ′ . Typical examples of prediction rules are regression and classification applications.

As an illustration of the former, Figure 1 (left panel) displays 221 observations from a light detection and ranging (LIDAR) experiment, where the horizontal axis is the distance, x, travelled by laseremitted light before it is reflected back to its source and the vertical axis is the logarithm of the ratio, y, of received light from two laser sources, one of which had a frequency equal to the resonance frequency of mercury. LIDAR experiments are used to detect such chemical compounds in the atmosphere; see Ruppert et al. (2003, Sec. 2.7) for more details. Together with the data two regression curves are displayed (plain and dashed line), which are prediction rules of y given x.

As [START_REF] Efron | The estimation of prediction error: Covariance penalties and cross-validation[END_REF] pointed out there are two main schools to approach the problem of assessing the performance of different prediction rules for a given variable y: out-of-sample methods and covariance penalty methods. The latter class of methods is model based, i.e. parametric statistical models for the data generating mechanism are assumed, while the former is non-parametric and allow for the comparison of prediction rules obtained with different inferential frameworks and/or different modelling strategies. Although covariance penalty methods may be more efficient when the assumptions made hold (e.g., [START_REF] Efron | The estimation of prediction error: Covariance penalties and cross-validation[END_REF], we consider in this paper out-of-sample validation which is more widely applicable. The evaluation of prediction rules is concerned with the question: "what is the generalizability of a given prediction rule?" A common approach to validation arises from a translation of this question to, here quoting [START_REF] Efron | The estimation of prediction error: Covariance penalties and cross-validation[END_REF]: (Question 1) "We wonder how well [a prediction rule] will predict a future dataset [of same size n] independently generated by the same mechanism that produced y." Under certain conditions (see Section 2), this statement justifies the use of a cross-validation (CV, [START_REF] Stone | Cross-validatory choice and assessment of statistical predictions (with discussion)[END_REF] 

criterion 1 n n i=1 L (y i , μn-1 i ), ( 1 
)
where L is a loss function and μn-1 i is the prediction rule μn obtained with a sample where observation y i has been omitted.

Another approach to measuring the generalizability of a prediction rule arises from asking: (Question 2) How good is a prediction rule at predicting n observations arriving sequentially? As described in Section 2, this question justifies the use of the accumulated prediction error criterion (APE) (due 2 to [START_REF] Dawid | Present position and potential developments: Some personal views: Statistical theory: the prequential approach (with discussion)[END_REF] and [START_REF] Rissanen | Order of estimation by accumulated prediction errors[END_REF])

1 n -m n i=m+1 L (y i , μi-1 i ), (2) 
where μi-1 i is the prediction rule μn obtained with the sub-sample y i-1 = (y 1 , y 2 , . . . , y i-1 ) ′ and m is the size of the sub-sample on which the first prediction rule is obtained.

CV is widely used, particularly in non-parametric applications, and the study of its properties has received much attention in the literature. The application of APE methods is less spread, except for time series situations (e.g., [START_REF] Sjöstedt | Resampling m-dependent random variables with applications to forecasting[END_REF][START_REF] De Luna | Predictive spatio-temporal models for spatially sparse environmental data[END_REF][START_REF] Wagenmakers | Accumulative prediction error and the selection of time series models[END_REF], where the time ordering of the observed units is used in accumulating prediction errors in APE. However, APE is also applicable in situations where units are exchangeable (no natural ordering exists) as was advocated by [START_REF] Dawid | Present position and potential developments: Some personal views: Statistical theory: the prequential approach (with discussion)[END_REF] and later on by de [START_REF] De Luna | Choosing a model selection strategy[END_REF], where APE is shown to be consistent in discriminating between model selection strategies.

In this paper we focus on the APE criterion and use the framework of [START_REF] Efron | Estimating the error rate of a prediction rule: Improvement on cross-validation[END_REF] to make comparisons with CV. This allows us to shed some new light on the properties of these criteria.

In particular, the APE criterion is an unbiased estimate of a measure of prediction error which is different from the one used to justify CV. The use of CV and APE to select the smoothing parameter in nonparametric regression is further studied and we show, for instance, that CV and APE yield different choices of smoothing parameters, where the difference does not vanish as the sample size increases.

The paper is organized as follows. The next section presents the two different measures of prediction errors which can be used to justify the use of CV and APE respectively. Section 3 focuses on linear prediction rules in regression situations, where out-of-sample methods are typically used to select a smoothing parameter. We review some asymptotics on the use of CV for this purpose and note that few results are available for APE. We then give finite sample expressions for the measures of prediction errors estimated by CV and APE. These results allows us in Section 4 to present numerical experiments to study and compare CV and APE. The paper is concluded in Section 5.

Measures of prediction error: new data versus sequential principle

Validation methods can be justified as estimators of measures of prediction errors. In this respect, a measure justified by Question 1 mentioned above is (e.g., [START_REF] Efron | The estimation of prediction error: Covariance penalties and cross-validation[END_REF]) where y 0 1 , y 0 2 , . . . , y 0 n is a new independent sample generated by the same mechanism as y. For instance, with a linear prediction rule (see Section 3.1 below) and squared error loss, L (y, µ) = (yµ) 2 , it can be shown [START_REF] Hastie | Generalized Additive Models[END_REF]) that the CV criterion (1) yields an approximately unbiased estimate of Err new , E(

Err new = 1 n n i=1 E{L (y 0 i , μn i )|y}, (3) 
1 n n i=1 (y i -μn-1 i ) 2 ) ≈ E(Err new ) .
A measure of prediction error based on Question 2 is:

Err seq = 1 n -m n i=m+1 E{L (y i , μi-1 i )|y i-1 }. (4) 
An advantage of this prediction rule is that an unbiased estimator of E(Err seq ) is readily available in wide generality by using the APE criterion (2): by the law of iterated expectations where S(z) is an n z × n matrix with n z the dimension of the design vector z at which predictions are made. For z = x, μn x contains fitted values (i.e. prediction of the response at the observed design points). When parametric linear models are fitted with ordinary least squares we have S(x) = X(X ′ X) -1 X ′ , which is called the hat matrix, and where X = (1 x) with 1 an n-length vector of 1:s.

E{ 1 n-m n i=m+1 L (y i , μi-1 i )} = E(Err seq
Examples of nonparametric linear prediction rules include kernel smoothers, cubic smoothing splines and local polynomial regression (see e.g., Schimek, 2000, and references therein). We focus on the latter in this paper to illustrate the use of CV and APE. Local polynomial regression with weights assigned by the tricube kernel, called loess in [START_REF] Cleveland | Locally weighted regression: An approach to regression analysis by local fitting[END_REF], consists of fitting a polynomial of degree p at a design point z using only the part of the data that is deemed to be sufficiently close to the target. The fit, at z, is

μn z (h) = e ′ 1 (Z ′ W h,z Z) -1 Z ′ W h,z y
where e 1 = (1, 0, . . . , 0) ′ , a (p + 1)-length vector,

Z =    1 (x 1 -z) . . . (x 1 -z) p . . . . . . . . . 1 (x n -z) . . . (x n -z) p    and W h,z = diag(K (x 1 -z)/b 1 (h) /b 1 (h), . . . , K (x n -z)/b n (h) /b n (h)).
The tricube kernel, K(•), is defined as

K(u) = 70 81 (1 -|u| 3 ) 3 , if |u| < 1 0, if |u| ≥ 1 ,
and, assuming no ties, b j (h) = the (hn):th nearest (in Euclidean distance) to z among the x j :s for h). This implies that if h is held constant for i = 1, . . . , n a constant number of observations are used for the local fits while b j (h), the size of the local neighborhood, varies with the data points x j .

x j = z, h ∈ [1/n, 1].
An illustrative example is provided in Figure 1. On the left hand panel, the LIDAR data described in the introduction is plotted together with two fitted curves with loess (p = 1) in R (R Development Core Team, 2008), one obtained with h = 0.23 (dashed) and one with h = 0.31. The difference between the two fit is most obvious by looking at the corresponding fitted first derivatives (right hand panel). We can see that a larger value for h yields a less wiggly behaviour. Out-of-sample validation is often used to select a relevant value for the smoothing parameter. The values used in Figures 1 correspond to the choices made with CV and APE (m = 50). The larger value for h, and hence the smoother curve, is obtained with APE. Note that the derivative is of main interest in this application since its proportional to mercury concentration at distance x, see [START_REF] Ruppert | Local polynomial variance function estimation[END_REF].

Choice of smoothing parameter

While CV is routinely used to choose a relevant smoothing parameter, the use of APE is rare. As a consequence there are many theoretical results available on the properties of CV as a method to select smoothing parameters, while these are scarce for APE. We make a review of these results (selective for CV and up to our knowledge exhaustive for APE).

Reviewing some asymptotics on the use of CV and APE

In the literature concerning smoothing parameter selection, the optimal smoothing parameter is often defined (using the squared error loss) either as ĥ0 = arg min

h 1 n n i=1 (µ i -μn i (h)) 2 or h 0 = arg min h 1 n n i=1 E[(µ i -μn i (h)) 2 ],
where µ i = E(y i ), which is allowed to vary at different design points x i . Note that throughout the design x is considered as non-random. Since Err new (h) can be expressed as

σ 2 + 1 n n i=1 (µ i -μn i (h)) 2 ,
where σ 2 = V ar(y i ), ĥ0 and h 0 are the minimizers of Err new (h) and E(Err new (h)), respectively. terms of the rate of convergence of the resulting ĥ to one of the optimal smoothing parameters defined above. The relative asymptotic success of CV depends on if one considers ĥ as an estimator of ĥ0 or h 0 . From [START_REF] Hall | Empirical functionals and efficient smoothing parameter selection[END_REF], in a setting where the prediction rule is a kernel estimator and the smoothing parameter representing a local neighborhood of constant size, we have

that h CV -h 0 h 0 = O p (n -1/10 ),
where h CV is the CV smoothing parameter, i.e. chosen by minimizing (1). This is a relatively slow rate of convergence, since there exist plug-in selectors for which the relative error is of O p (n -1/2 ) (albeit requiring strong smoothness assumptions on f [START_REF] Hall | Empirical functionals and efficient smoothing parameter selection[END_REF]). In the case of approximating ĥ0 CV does perform somewhat better. The relative error is still of O p (n -1/10 ) but in this situation h CV is optimal in the sense that there is no empirical smoothing parameter for which the relative error can be reduced below n -1/10 ; see [START_REF] Hall | Empirical functionals and efficient smoothing parameter selection[END_REF]. Similar results for selection of a constant size neighborhood and selection of a smoothing parameter of the k nearest neighbor type (i. e equivalent to h in Section 3.1) in local linear regression can be found in [START_REF] Li | Cross-validated local linear nonparametric regression[END_REF] and [START_REF] Ouyang | Cross-validation and non-parametric k-nearest-neighbour estimation[END_REF], respectively.

For APE there are no results qualitatively comparable to those reviewed above. [START_REF] Modha | Prequential and cross-validated regression estimation[END_REF] gave, however, rates of convergence for the integrated mean-squared errors in estimating non-parametrically the regression functions, showing that CV and APE achieved the same rates. Finally, de [START_REF] De Luna | Choosing a model selection strategy[END_REF] showed a consistency result for APE holding under weak assumptions. Loosely, their results say that APE will eventually (as the sample size grows) choose the prediction strategy that has lowest E(Err seq ). This result is limited to the comparison of a finite number of strategies and, therefore, it does not apply to the selection of a smoothing parameter. On the other hand, APE could consistently choose between a collection of prediction strategies defined by using different linear smoothers associated with different bandwidth selection criteria.

Finite sample properties

Explicit finite sample expressions for prediction errors can be obtained for linear prediction rules allowing for direct comparison, without the need to use asymptotic approximations. Thus, assuming independently distributed observations, a fixed design vector x and using the squared error loss, we 7 

(h) = 1 n n i=1 E{(y 0 i -μn i ) 2 |y} = 1 n n i=1 E y 0 i - n j=1 {S h (x)} ij y j 2 y = 1 n n i=1 E y 0 i -µ i + µ i - n j=1 {S h (x)} ij y j 2 y = σ 2 + 1 n n i=1 µ i - n j=1 {S h (x)} ij y j 2 , E(Err new (h)) = σ 2 + 1 n n i=1 E µ i - n j=1 {S h (x)} ij y j 2 = σ 2 + 1 n n i=1 µ 2 i -2µ i n j=1 {S h (x)} ij E(y j ) + V ar({S h (x)} ij y j ) (5) + E n j=1 {S h (x)} ij y j 2 = σ 2 + σ 2 n n i=1 n j=1 {S h (x)} 2 ij + 1 n n i=1 µ i - n j=1 {S h (x)} ij µ j 2 (6) (7) 
where {S h (x)} ij is the (ij):th entry in the n × n smoothing matrix. Analogous derivations yield

Err seq (h) = σ 2 + 1 n -m n i=m+1 µ i - i-1 j=1 {S i-1 h (x i )} ij y j 2 , E(Err seq (h)) = σ 2 + σ 2 n -m n i=m+1 i-1 j=1 {S i-1 h (x i )} 2 ij (8) + 1 n -m n i=m+1 µ i - i-1 j=1 {S i-1 h (x i )} ij µ j 2 , (9) 
where {S i-1 h (x i )} ij is the (ij):th entry in the i × (i -1) smoothing matrix based on the design for sub-sample i = 1, 2, . . . , i -1 with

x i = (x 1 , x 2 , . . . , x i ).
When the data generating mechanism is known (in particular µ i and σ 2 ) these prediction errors can be computed for different values of h and compared. Such numerical illustrations are provided in the next section giving some insights on how these two measures of prediction errors differ.

Numerical experiments

We have several objectives in this section. First we want to illustrate numerically that the minimization of E(Err new ) and E(Err seq ) may yield different optimal smoothing parameters, where 

Design of the experiments

The following data generating mechanisms are considered:

y k,i = f k (x i ) + ǫ k,i , k = 1, 2, 3, i = 1, . . . , n, n = 100, 200, 500, 1000 where f 1 (x i ) = 0.3 + 0.55x i , f 2 (x i ) = sin(x i ) + sin(2x i ) and f 3 (x i ) = 0.3 + 0.55x i + 2x 2 i , either x i ∼ U(0, 2π) or x i ∼ N (π, 1), x i is generated only once since it is considered fixed. ǫ k,i ∼ N (0,Var(f k (x i ))
), thereby ensuring that the signal-to-noise ratio equals one. For x i ∼ U(0, 2π), and local quadratic regression (loess with p = 2) estimators. For (2), ( 4) and ( 9) we fix m = 50. In order to investigate if the behavior of APE becomes more similar to CV if m is allowed to increase with n, as suggested by [START_REF] Ing | Accumulated prediction errors, information criteria and optimal forecasting for autoregressive time series[END_REF], we also let m = n/2 for n = 200, 1000, f 1 , f 2 , p = 1, 2 with x i ∼ U. We call this criterion APE δ . Moreover, an arbitrary ordering of the observations is used to accumulate prediction errors. Using a non-random ordering should be avoided when observations are exchangeable since, for instance, accumulating prediction errors for observations ordered with increasing x value would imply that the predictions made are always outside the support of the fitted regression function. We also include in the study the popular model based covariance penalty criteria AIC [START_REF] Akaike | A new look at the statistical model identification[END_REF],

Var(f 1 (x i )) = (0.3025/3)π 2 ≈ 0.9952, Var(f 2 (x i )) = 1 and Var(f 3 (x i )) = (0.3025/3)π 2 + (4.
1 n n i=1 (y i -μn i (h)) 2 + 2 n σ2 n i=1 {S h (x)}
ii , and BIC [START_REF] Schwarz | Estimating the dimension of a model[END_REF],

1 n n i=1 (y i -μn i (h)) 2 + log(n) n σ2 n i=1 {S h (x)} ii for comparison. σ2 = P n i=1 (yi-μ n i (h * )) 2 n- P n i=1 (2{S h * (x)}ii- P n j=1 {S 2 h * (x)}ij
) with h * = 0.13. When looking for optimal h values we restrict attention to the span [0.1, 1]. Figure 4 displays data simulated with the design described.

The design of this study is chosen to be able to distinguish two types of situations: cases where the true regression function f (x) is a polynomial function of order smaller or equal to the order p used in loess (correct specification case), and cases where f (x) is not a polynomial function or it is a polynomial function of order larger than p (misspecification case).

Results

Results are based on 1000 replicates. For all the simulated situations we show results on the minimal values obtained for the different measures of prediction errors and their estimates (Tables 1-2 and We first comment on the minima obtained for E(Err new ) and E(Err seq ) and their respective smoothing parameters. We can note that for designs with polynomial regression functions, the minima of E(Err new ) and E(Err seq ) obtained by using a value of p such that we are in the correct specification case are smaller, for n large enough, than the minima obtained with lower value of p (such that we are in the misspecification case, Table 2 f 3 ) and the minima obtained with higher values of p (Table 1, f 1 ). Estimates of the minimum of E(Err new ) and E(Err seq ) obtained with CV and APE seem to be comparable with a slight systematic advantage for CV. This difference may be due to minima of Err seq having a larger variability than the minima of Err new .

We focus now on Table 3-4 summarized in Figures 45, 8-9. A striking result in Table 3 and4 with the sample size in all misspecification situations. This shows that there is an intrinsic difference between the two measures of prediction errors. In the correct specification cases we observe that the selected values of h approach one as the sample size grows, while they tend to zero in the misspecification cases. It can be noted that APE yields h values closer to the ideal value one in the former situations. On the other hand, CV is slightly less biased (as an estimator of h minimizer of E(Err new )) than APE (as an estimator of h minimizer of E(Err seq )). However, APE yields h values which are less variable than those obtained with CV and this results in lower MSE for APE, in both types of situations, when samples are large enough.

The discrepancy, in selected values of h, between APE δ and CV decreases with n. This is in accordance with the theoretical results by [START_REF] Ing | Accumulated prediction errors, information criteria and optimal forecasting for autoregressive time series[END_REF] mentioned in Section 4.1.

Finally, while AIC behaves similarly to CV (note that they have been shown to be asymptotically equivalent in parametric situations, [START_REF] Stone | Asymptotics for and against cross-validation[END_REF]; Shao (1997)), BIC yields systematically higher values than APE. This is to be put in contrast with results showing that BIC and APE are asymptotically equivalent for linear time series models [START_REF] Ing | Accumulated prediction errors, information criteria and optimal forecasting for autoregressive time series[END_REF]. Thus, while AIC may be a reasonable substitute for CV in the situations studied, BIC cannot be used if the interest lies in minimizing E(Err seq ).

Discussion

Cross-validation and accumulated prediction error are two methods used in order to validate and compare different prediction rules without making parametric assumptions. In this paper, we highlight that these two methods are estimating two different measures of prediction error, answering thereby different questions.

In order to compare CV and APE we use the framework developed by [START_REF] Efron | Estimating the error rate of a prediction rule: Improvement on cross-validation[END_REF] to study CV and give its counterpart for APE. This allows us to show that when the prediction rules are linear smoothers, and the above methods are used to select the amount of smoothing (smoothing parameter) then the prediction errors estimated by CV and APE lead to different optimal smoothing parameters. Moreover, the latter difference does not vanish as the sample increases. This result is important since it shows that the choice between CV and APE does matter.
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Figure 1 :

 1 Figure 1: Left hand panel: LIDAR data with two loess fit obtained with h = 0.23 (plain line, CV choice) and with h = 0.31 (dashed line, APE choice). Right hand panel: Fitted first derivatives corresponding to the curve fitted on the left hand panel.

  not vanish with increasing sample sizes, thereby showing that both measures of prediction errors are not measuring the same thing. Secondly, we want to study the finite sample properties of smoothing parameters obtained by estimating E(Err new ) and E(Err seq ) with CV and APE respectively.

Figure 2 :

 2 Figure 2: Regression functions and 100 generated observations: f 1 and f 2 from left to right in the upper panel, f 3 with x i ∼ U and f 3 with x i ∼ N from left to right in the lower panel.
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  4/3)π 3 + (256/45)π 4 ≈ 600.6206. For x i ∼ N (π, 1), Var(f 3 (x i )) = (8.3025/3) + 4.4π + 16π 2 ≈ 180.0392. 9We consider local linear regression (loess with p = 1 in R, (R Development Core Team, 2008))
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 2 [6][7] in the appendix), as well as for the argument of these minima, i.e. the h values selected (Tables3-4 and Figures 4-5, 8-9; tables and Figure8-9 in the appendix).
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  is the fact that the difference between the values for h minimizing E(Err new ) and E(Err seq ) increases 10
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  accordance with previous results obtained with parametric prediction rules; see de Luna and Skouras 11

Figure 4 :

 4 Figure 3: Boxplots for results from Table1in the appendix. Values of (1), (2), (3) and (4) for the minimizing h:s. First row n = 200, second row n = 1000. First two columns µ i = f 1 (x i ), last two columns µ i = f 2 (x i ). MSE for (1) and (2) are given on top. The dashed and dotted lines indicates E(Err new ) and E(Err seq ) for the minimizing smoothing parameter, respectively.

Figure 5 :

 5 Figure 4: Boxplots for results from Table3in the appendix. Values of h minimizing (1), (2), AIC and BIC. First row n = 200, second row n = 1000. First two columns µ i = f 1 (x i ), last two columns µ i = f 2 (x i ). MSE for (1) and (2) are given on top. The dashed and dotted lines indicates the smoothing parameter minimizing E(Err new ) and E(Err seq ), respectively.

Figure 6 :

 6 Figure 5: Boxplots for results from Table2. Values of (1), (2), (3) and (4) for the minimizing h:s . First row n = 200, second row n = 1000.First two columns µi = f 3 (x i ) with x i ∼ U, last two columns µ i = f 3 (x i ) with x i ∼ N . MSE for (1) and (2) are given on top. The dashed and dotted lines indicates E(Err new ) and E(Err seq ) for the minimizing smoothing parameter, respectively.
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 7 Figure 6: Boxplots for results from Table 4. Values of h minimizing (1), (2), AIC and BIC. First row n = 200, second row n = 1000. First two columnsµ i = f 3 (x i ) with x i ∼ U, last two columns µ i = f 3 (x i ) with x i ∼ N . MSE for (1) and (2) are given on top. The dashed and dotted lines indicates the smoothing parameter minimizing E(Err new ) and E(Err seq ), respectively.

  Figure 7: Boxplots for results from Table1. Values of (1), (2), (3) and (4) for the minimizing h:s. First row n = 100, second row n = 500. First two columns µ i = f 1 (x i ), last two columns µ i = f 2 (x i ). MSE for (1) and (2) are given on top. The dashed and dotted lines indicates E(Err new ) and E(Err seq ) for the minimizing smoothing parameter, respectively.

Figure 9 :

 9 Figure 8: Boxplots for results from Table2. Values of (1), (2), (3) and (4) for the minimizing h:s. First row n = 100, second row n = 500.First two columns µi = f 3 (x i ) with x i ∼ U, last two columns µ i = f 3 (x i ) with x i ∼ N . MSE for (1) and (2) are given on top. The dashed and dotted lines indicates E(Err new ) and E(Err seq ) for the minimizing smoothing parameter, respectively.

Figure 10 :

 10 Figure 9: Boxplots for results from Table3. Values of h minimizing (1), (2), AIC and BIC. First row n = 100, second row n = 500. First two columns µ i = f 1 (x i ), last two columns µ i = f 2 (x i ). MSE for (1) and (2) are given on top. The dashed and dotted lines indicates the smoothing parameter minimizing E(Err new ) and E(Err seq ), respectively.

  Figure 10: Boxplots for results from Table4. Values of h minimizing (1), (2), AIC and BIC. First row n = 100, second row n = 500. First two columns µ i = f 3 (x i ) with x i ∼ U, last two columns µ i = f 3 (x i ) with x i ∼ N . MSE for (1) and (2) are given on top. The dashed and dotted lines indicates the smoothing parameter minimizing E(Err new ) and E(Err seq ) , respectively.
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  Err CV Err APE Err APEδ Err new Err seq Boxplots for results from Table1in the appendix. Values of (

	Observed error for selected h	0.6 0.8 1.0 1.2 1.4	0.01 0.01	p=1	Observed error for selected h	0.6 0.8 1.0 1.2 1.4	0.01 0.01	p=2	Observed error for selected h	0.6 1.0 1.4	0.01 0.02	p=1	Observed error for selected h	0.6 1.0 1.4	0.01 0.02	p=2
							Err CV Err APE Err APEδ Err new Err seq			Err CV Err APE Err APEδ Err new Err seq			Err CV Err APE Err APEδ Err new Err seq
	Observed error for selected h	0.8 0.9 1.0 1.1 1.2	0.002 0.002	p=1	Observed error for selected h	0.8 0.9 1.0 1.1 1.2	0.002 0.002	p=2	Observed error for selected h	0.8 0.9 1.0 1.1 1.2	0.002 0.002	p=1	Observed error for selected h	0.9 1.0 1.1 1.2	0.002 0.002	p=2
			Err CV Err APE Err APEδ Err new Err seq			Err CV Err APE Err APEδ Err new Err seq			Err CV Err APE Err APEδ Err new Err seq			Err CV Err APE Err APEδ Err new Err seq
	Figure 3:														

Table 1 :

 1 Mean values of (

Table 2 :

 2 Similar to Table 1 but for f 3 with x i ∼ U and x i ∼ N .

	n	d Err CV	d Err AP E	Err new	Err seq	E(Err new ) E(Err seq )

Table 3 :

 3 Mean of the h:s minimizing (1), (

Table 4 :

 4 Similar to Table but 3 but for f 3 with x i ∼ U and x i ∼ N .

	n	CV	APE	AIC	BIC	E(Err new ) E(Err seq )
	f 1 , x ∼ U , p = 1					
	100	0.807	0.756	0.810	0.955	0.971	0.994
		(0.228)	(0.221)	(0.229)	(0.086)		
		[-0.164] [-0.237]				
	200	0.833	0.839	0.834	0.974	0.995	0.996
		(0.224)	(0.187)	(0.222)	(0.075)		
		[-0.162] [-0.156]				
	500	0.828	0.869	0.830	0.988	0.996	0.996
		(0.240)	(0.175)	(0.237)	(0.045)		
		[-0.168] [-0.127]				
	1000	0.816	0.903	0.817	0.991	0.996	0.994
		(0.244)	(0.147)	(0.244)	(0.035)		
		[-0.180] [-0.090]				
	f 1 , x ∼ U , p = 2					
	100	0.836	0.771	0.839	0.970	0.971	0.996
		(0.200)	(0.199)	(0.209)	(0.063)		
		[-0.135] [-0.225]				
	200	0.860	0.861	0.858	0.982	0.994	0.996
		(0.195)	(0.160)	(0.197)	(0.049)		
		[-0.134] [-0.134]				
	500	0.856	0.897	0.854	0.993	0.994	0.994
		(0.209)	(0.141)	(0.210)	(0.022)		
		[-0.138] [-0.097]				
	1000	0.856	0.924	0.855	0.995	0.994	0.994
		(0.209)	(0.116)	(0.210)	(0.010)		
		[-0.138] [-0.070]				
	f 2 , x ∼ U , p = 1					
	100	0.267	0.280	0.266	0.358	0.261	0.281
		(0.053)	(0.085)	(0.055)	(0.113)		
		[0.006]	[-0.001]				
	200	0.224	0.255	0.225	0.300	0.228	0.257
		(0.037)	(0.041)	(0.037)	(0.027)		
		[-0.004] [-0.001]				
	500	0.179	0.218	0.179	0.252	0.176	0.216
		(0.028)	(0.026)	(0.028)	(0.017)		
		[0.003]	[0.002]				
	1000	0.154	0.200	0.157	0.223	0.153	0.197
		(0.022)	(0.020)	(0.022)	(0.011)		
		[0.001]	[0.003]				
	f 2 , x ∼ U , p = 2					
	100	0.438	0.449	0.435	0.533	0.439	0.460
		(0.069)	(0.090)	(0.071)	(0.070)		
		[-0.001] [-0.010]				
	200	0.423	0.447	0.422	0.494	0.430	0.462
		(0.055)	(0.056)	(0.056)	(0.030)		
		[-0.008] [-0.015]				
	500	0.380	0.422	0.380	0.455	0.393	0.423
		(0.051)	(0.040)	(0.051)	(0.021)		
		[-0.013] [-0.001]				
	1000	0.364	0.403	0.364	0.438	0.363	0.404
		(0.041)	(0.032)	(0.041)	(0.015)		
		[0.001]	[-0.001]				
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