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France

Abstract

This paper gives a stochastic representation in spectral terms for the absorption time T of a
finite Markov chain which is irreducible and reversible outside the absorbing point. This yields
quantitative informations on the parameters of a similar representation due to O’Cinneide for gen-
eral chains admitting real eigenvalues. In the discrete time setting, if the underlying Dirichlet
eigenvalues (namely the eigenvalues of the Markov transition operator restricted to the functions
vanishing on the absorbing point) are nonnegative, we show that T is distributed as a mixture of
sums of independent geometric laws whose parameters are successive Dirichlet eigenvalues (starting
from the smallest one). The mixture weights depend on the starting law. This result leads to a
probabilistic interpretation of the spectrum, in terms of strong random times and local equilibria
through a simple intertwining relation. Next this study is extended to the continuous time frame-
work, where geometric laws have to be replaced by exponential distributions having the (opposite)
Dirichlet eigenvalues of the generator as parameters. Returning to the discrete time setting we
consider the influence of negative eigenvalues which are given another probabilistic meaning. These
results generalize results of Karlin and McGregor and Keilson for birth and death chains.

Keywords: irreducible and reversible subMarkovian matrices, exit or absorption times, Dirich-
let eigenvalues, mixtures, geometric laws, exponential distributions, strong random times, local
equilibria, intertwining, birth and death chains and processes.
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1 Introduction

This paper shows that the time to absorption of a reversible Markov chain has a stochastic rep-
resentation in spectral terms. It gives quantitative informations on the parameters of a similar
representation due to O’Cinneide [24] for general chains admitting real eigenvalues. In continuous
time, the absorption time is distributed as a mixture of sums of independent exponentials having
the underlying eigenvalues as parameters. This generalizes results of Karlin and McGregor [15]
and Keilson [17] for birth and death chains.

We begin with the case of discrete time. Let S̄ be a finite set endowed with a probability
transition matrix P̄ . We make the following irreducibility and reversibility assumptions:

(A1): There exists a particular point 4 ∈ S̄ which is absorbing (i.e. P̄ (4,4) = 1) and
such that {4} is the unique irreducible class of P̄ (or equivalently, for any x ∈ S̄, there exists a
path going from x to 4, x = x0, x1, ..., xp = 4, satisfying P̄ (xi, xi+1) > 0 for i ∈ J0, p − 1K). Let
S B S̄ \ {4}, we assume furthermore that the subMarkovian restriction P B (P̄ (x, y))x,y∈S of P̄
to S is irreducible (namely, any pair of points from S can be joined by a path).

(A2): P is reversible with respect to some positive probability measure π on S:

∀ x, y ∈ S, π(x)P (x, y) = π(y)P (y, x)

Let m0 be a probability measure on S, we consider X B (Xn)n∈N a homogeneous Markov chain
on S̄ whose initial distribution is m0 and whose transitions are given by P̄ . We are interested in
the absorption time

T B inf{n ∈ N : Xn = 4}

which is almost surely finite by the first irreducibility hypothesis.
To describe its law, we need to introduce the corresponding Dirichlet eigenvalues, which are

the eigenvalues of the restriction of P̄ to the space of functions f : S̄ → R satisfying the Dirichlet
condition f(4) = 0. Equivalently, they are the eigenvalues of P ,

1 > θ0 > θ1 ≥ θ2 ≥ · · · ≥ θN−1 > −1

where N = card(S). The fact that they are real numbers comes from the reversibility assumption.
They belong to (−1, 1) because {4} is the unique irreducible class of P̄ . The inequality θ0 > θ1

(and also θ0 ≥ |θN−1|) is a consequence of the irreducibility of P and of the Perron-Frobenius
theorem.

To get a simple statement below, we assume that all these eigenvalues are nonnegative:
(A3): θN−1 ≥ 0.

For 0 ≤ i ≤ N − 1, we denote by G(θi, θi+1, ..., θN−1) the convolution of geometric distributions
of parameters θi, θi+1, ..., θN−1. More precisely, this is the law of τi + τi+1 + · · ·+ τN−1, where the
τj , for j ∈ Ji,N − 1K, are independent random variables and satisfy

∀ j ∈ Ji,N − 1K, ∀ n ∈ N∗, P[τj = n] = θn−1
j (1− θj)

If we denote θ B (θ0, ..., θN−1) and if a B (a0, ..., aN−1) is a probability measure on J0, N − 1K, we
introduce MG(θ, a) the mixture of the distributions G(θi, θi+1, ..., θN−1), for i ∈ J0, N − 1K, with
respective weights given by a, i.e.

MG(θ, a) B
∑

0≤i≤N−1

aiG(θi, θi+1, ..., θN−1)

From a probabilistic point of view, if Ti, for i ∈ J0, N − 1K, are respectively distributed according
to G(θi, θi+1, ..., θN−1) and if A is independent of (Ti)i∈J0,N−1K and has a as law, then TA has
distribution MG(θ, a).
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One of our main results can now be stated (see the paragraph after Theorem 2 below for a
discussion of the links with the representation due to O’Cinneide [24]):

Theorem 1 Under the assumptions (A1), (A2) and (A3), there exists a probability measure a B
(a0, ..., aN−1), with a0 > 0, such that T is distributed as MG(θ, a).

The probability measure a strongly depends on the initial distribution m0 of X. Let us write
a(m0), then a commutes with the operation of taking mixtures: if m′0 and m′′0 are two probabilities
on S and α ∈ [0, 1], then a(αm′0 + (1− α)m′′0) = αa(m′0) + (1− α)a(m′′0). Thus to prove the above
theorem, it is sufficient to deal with the case where m0 is a Dirac mass at some initial point x ∈ S,
nevertheless it will be more fruitful to treat the general situation directly. There is an explicit
formula for a:

∀ i ∈ J0, N − 1K, ai = m0

 ∏
j∈Ji+1,N−1K

P − θj
1− θj

 1− P
1− θi

(S) (1)

but to see that it is nonnegative, we will need a non-immediate linear algebra result due to Micchelli
and Willoughby [21]. In Remark 7 below, we will see how this expression simplifies in the important
case i = 0.
If P is not assumed to be irreducible (then the inequality θ0 > θ1 is not necessarily satisfied), we
can decompose S into the corresponding irreducibility classes for P , say S1, ..., Sr, and apply the
previous theorem to the Markovian transition matrices P̄i B (P̄ (x, y))x,y∈Sit{4}, for i ∈ J1, rK, to
get a similar result (except for the assertion a0 > 0), with a mixture of sum of geometric variables
of parameters certain successive Dirichlet eigenvalues of the Pi B (P̄ (x, y))x,y∈Si , for i ∈ J1, rK.

It is also possible to describe the law of T when some of the eigenvalues are negative, but the
corresponding statement is more involved and we refer the reader to Section 6 below. The case
of nonnegative eigenvalues is already sufficient to deduce a similar result in the continuous time
setting. Let S̄ = S t {4} be a finite set, endowed with L̄ a Markov generator matrix (i.e. the
off-diagonal entries are nonnegative and the rows sum up to zero). In analogy to what we have
done before, we assume that

(B1): {4} is the unique recurrence class of L̄, so in particular 4 is an absorbing point
(namely the row L̄(4, ·) is null) and the S × S submatrix L of L̄ (or from a functional point of
view, the restriction of the operator L̄ to functions vanishing in 4) is irreducible.

(B2): L is reversible with respect to some positive probability measure π on S:

∀ x, y ∈ S, π(x)L(x, y) = π(y)L(y, x)

Let m0 be a probability measure on S, we consider X B (Xt)t≥0 a homogeneous Markov process
on S̄ whose initial distribution is m0, whose infinitesimal generator is L̄ and whose trajectories are
cadlag, namely they are right-continuous and admit left-limits. We are interested in the absorption
time

T B inf{t ≥ 0 : Xt = 4}

which is almost surely finite by the irreducibility hypothesis.
To describe its law, we need to introduce the corresponding Dirichlet eigenvalues, which are

the eigenvalues of the restriction of −L̄ to the space of functions vanishing at 4. They are just
the eigenvalues of −L,

0 < λ0 < λ1 ≤ · · · ≤ λN−1

where N = card(S). As above, the fact that they are real numbers comes from the reversibil-
ity assumption and they are positive because {4} is the unique recurrence class of L̄. The
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inequality λ0 < λ1 is a consequence of the irreducibility of L and of the Perron-Frobenius the-
orem. Alternatively, one can come back to the previous situation by considering the semigroup
(P̄t)t≥0 B (exp(tL̄))t≥0. Then for any t > 0, P̄t satisfies the above discrete time hypotheses and we
have for its eigenvalues

∀ 0 ≤ i ≤ N − 1, θi(t) = exp(−tλi)

which in particular are positive: θN−1(t) > 0.
For 0 ≤ i ≤ N − 1, we denote by E(λi, λi+1, ..., λN−1) the convolution of exponential distributions
of parameters λi, λi+1, ..., λN−1. More precisely, this is the law of τ̃i + τ̃i+1 + · · ·+ τ̃N−1, where the
τ̃j , for j ∈ Ji,N − 1K, are independent r.v. and satisfy

∀ j ∈ Ji,N − 1K, ∀ t ≥ 0, P[τ̃j ≥ t] = exp(−λjt)

Again, we denote λ B (λ0, ..., λN−1) and for a probability measure a B (a0, ..., aN−1) on J0, N −1K,
we introduce ME(λ, a) the mixture of the distributions E(λi, λi+1, ..., λN−1), for i ∈ J0, N − 1K,
with respective weights given by a, i.e.

ME(λ, a) B
∑

0≤i≤N−1

aiE(λi, λi+1, ..., λN−1)

As a consequence of previous result, we get

Theorem 2 Under the continuous time assumptions (B1) and (B2), there exists a probability
measure a B (a0, ..., aN−1), with a0 > 0, such that T is distributed as ME(θ, a).

That T is distributed as a mixture of convolutions of exponential laws is known and due to
O’Cinneide [24]. Under the relaxed assumption that the eigenvalues of L are real, he showed
that there exist M ≥ N , a probability measure a = (ai)i∈J0,M−1K and positive parameters l =
(li)i∈J0,M−1K such the law of T is described by

ME(l, a) B
∑

0≤i≤M−1

aiE(li, li+1, ..., lM−1)

O’Cinneide [24] also indicated that, once the exponential distributions have been replaced by
geometric distributions, the same representation can also be deduced in discrete time by resorting
to techniques from [23].
These results belong to the realm of phase type distributions (they correspond to general laws
of absorbing time of finite Markov chains), which are important in the computational probability
approach to queueing theory, because they lead to matrix algorithms which are tractable in practice.
This field of investigation was initiated by Neuts [22] but it is out of the scope of the present article
to present it. We refer the interested reader to the above references and to the bibliography therein
(see also for instance Commault and Mocanu [4] or He and Zhang [13, 14] for more recent works on
the subject). We just mention briefly a few features. The view point of phase type distributions is
the opposite of our approach: for queueing theorists the law of T is given (this is the distribution
of the arrival or service times) and they want to find a corresponding generator L̄ with the smallest
possible state space. The information (under the reversibility assumption) that we can take M = N
is important since it reduces the size of a representation in terms of a simple Markov chain. Note
that in the general case of real eigenvalues, one may have to take M > N , as it is shown by
an example due to Botta, Harris and Marchal [3]. Further, to estimate the minimal M seems
a difficult task. The identification of the parameters as eigenvalues given in Theorem 2 is also
relevant. But above all, our proof is completely different from the invariant polytope method of
O’Cinneide [24] and it sheds a new probabilistic insight on his result. We hope we will be able
to extend our approach (where reversibility is only needed in next section) to recover the full
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validity of O’Cinneide’s representation and maybe to better understand the general case where
complex eigenvalues enter the game (see the nice review of O’Cinneide [25] for very motivating
open problems in this direction).

An immediate application of Theorems 1 and 2, is to provide easy bounds on absorption times.
Thus in continuous time (respectively in discrete time, with nonnegative eigenvalues), T is always
stochastically bounded above by a sum of exponential laws (resp. geometric laws) of parameters
the corresponding Dirichlet eigenvalues.
For instance, in discrete time with nonnegative eigenvalues, we get with the notation introduced
before Theorem 1, for any n ∈ N∗,

P[T ≥ n] ≤ P[τ1 + · · ·+ τN−1 ≥ n]

=
∑

m∈Jn,∞J

∑
n0+···+nN−1=m,nj∈N∗

∏
j∈J0,N−1K

(1− θj)θ
nj−1
j

This formula can be deduced using a divided differences computation (see also (23) in Section 6).
For simplicity, assume that all the eigenvalues are distinct, then we have

∑
n0+···+nN−1=m,nj∈N∗

∏
j∈J0,N−1K

θ
nj−1
j =

∑
i∈J0,N−1K

θN+m
i∏

j∈J0,kK\{i}(θi − θj)

and we recover the standard bound

P[T ≥ n] ≤
∑

i∈J0,N−1K

θN+n
i∏

j∈J0,kK\{i}(θi − θj)

Similar computations hold for continuous time. Unfortunately, these bounds are not very sharp
in general, unless if a0 is not negligible. Indeed, lower bound on a0 will be important in deduc-
ing interesting quantitative informations on absorption time for specific models, but we will not
investigate this subject here. Another strong motivation to study the quantity a0 is that it can
be used to deduce cut-off phenomenon in the separation distance (at least in the absorbing setting
instead of convergence to equilibrium, but they are related, see also a remark below). Indeed, if
a0 is sufficiently close to 1 (or at least if the probability measure a is concentrated near 0), the
strategy of Diaconis and Saloff-Coste [7] can be applied: they only work with birth and death
chains because they needed the structure of the law of (dual) absorbing times. The later can also
be useful for cut-off in total variation, see the recent preprint of Ding, Lubetzky and Peres [8].

Below we obtain more structural results, we present an intertwining relation between the absorb-
ing chain or process and a special kind of chain or process, which is nonreversible. Nevertheless, the
corresponding transition probability kernel, or generator, belongs to K̂ or L̂, respectively a certain
kind of closure of reversible and irreducible (as before) transition probabilities with nonnegative
eigenvalues, or generators, absorbing in 4 (see sections 4 and 5 for the exact definitions). This will
enable us to deduce that the class of distributionsMG(a, θ) with 1 > θ0 ≥ θ1 ≥ · · · ≥ θN−1 ≥ 0 (re-
spectivelyME(a, λ) with 0 < λ0 ≤ λ1 ≤ · · · ≤ λN−1) and any probability measure a on J0, N − 1K,
is exactly the set of laws of absorption times of Markov chains (resp. processes) starting from S
and associated to a transition matrix belonging to K̂ (resp. to a generator belonging to L̂). This
characterization goes further than the result obtained by Kent [20] in this direction, even when
restricted to birth and death processes.

Theorems 1 and 2 and their proofs permit a better probabilistic understanding of the fact that
under certain circumstances, the absorption time is distributed as a sum of exponential laws (or
geometrical laws in discrete time with nonnegative eigenvalues) of parameters the corresponding
Dirichlet eigenvalues. This is true for birth and death processes (or monotone chains) starting
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from one end of a finite segment and absorbing at the other end and we recover the results Karlin
and McGregor [15] and Keilson [17], see for instance [6] or Fill [11] for references and the historical
background on the subject.

The proof will be based on two ideas, one is the construction of strong random times (general-
izing strong stationary times) in the spirit of the work of Aldous and Diaconis [1]. The other one is
a stability result on symmetric matrices with nonnegative entries due to Micchelli and Willoughby
[21], that we learned from two recent preprints of Fill [11, 12]. The ingredient linking these two
tools is the notion of local equilibrium, which appeared in [6], but was not fully exploited there.

One limitation of our approach is that we are only able to deal with reversible chains or
processes, while Theorem 1 and 2 sometimes also hold for nonreversible chains or processes, e.g.
for skip-free ones, see the paper of Fill [12]. We hope to better understand this situation in
future work. An easy potential extension concerns reversible Markov chains or processes with
more general state space, specially diffusions (see for instance the papers [18, 19] of Kent), but this
subject will not be developped here. Another even more interesting variation relates to convergence
to equilibrium for reversible Markov chains or processes. Indeed, a similar approach can be applied
for truly irreducible chains or processes (where the whole state space is the unique recurrence class),
so that Theorems 1 and 2 equally hold for strong stationary times (for a background on this field,
see for instance the paper of Aldous and Diaconis [1], Diaconis and Fill [5] or Fill [10]) with the
standard (Neumann) eigenvalues. This will be the matter of a forthcoming paper.

One may be tempted, say in the continuous time setting, to obtain a more “spatial” interpreta-
tion of the exponential variables appearing in Theorem 2, for instance by seeing their partial sums
as reaching times of some level sets of the state space. But this is not true in general. We have
seen in [6] that in the simple situation of birth and death process, starting from one end of a finite
interval and absorbed at the other end, the partial sums of exponential variables correspond to
stopping times of the process in certain distributions (called the local equilibria, whose supports are
the naturally increasing subinterval), but they are not reaching times. The kind of stopping times
needed, called strong randomized stopping times, will be introduced in next section. Still in the
above case of birth and death processes, the local equilibria can be related to the left-eigenvectors
of the generator (see [6]), but we have not been able to take advantage of that, in particular to
deduce a probabilistic or geometric proof of the result of Micchelli and Willoughby [21]. In the
same spirit, the well-known eigenvalue expansion for the distributions of the process at fixed times
enables to get the law of the absorption time as a ”mixture” of exponential laws, but with signed
weights. The interest of Theorem 2 is to provide a truly probabilistic decomposition.

The plan of the paper is the following: in the next section we study a particular kind of strong
random time. In section 3, we take advantage of these and of a linear algebra result to define local
equilibrium distributions associated to the initial probability measure m0, which lead to the proof
of Theorem 1. In section 4 we go further and build an intertwining relation. We deduce the similar
results for continuous time in section 5 and we deal with negative eigenvalues in section 6. In the
last section, we consider two antagonistic examples, one is birth and death processes and the other
one is chains or processes with a constant probability or rate to go to the absorbing point.

2 Strong random times

In the next three sections, we will be working in the discrete time framework. This section is devoted
to the construction of a special kind of strong random time which will serve as an elementary brick
in building intertwinings.

Let X B (Xn)n∈N be any homogeneous Markov chain taking values in a finite state space S.
We denote by P its transition matrix and by m0 its initial distribution (seen as a row vector).
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By definition, a strong random time τ is an almost surely finite randomized stopping time for
X (namely a stopping time with respect to the filtration generated by X enlarged with some
independent randomness) such that τ and Xτ are independent.
Our principal result here is

Proposition 3 Assume there exist θ ∈ (0, 1) and a probability measure µ on S such that

m0P = θm0 + (1− θ)µ

Then there exists a strong random time τ , distributed as a geometric law of parameter θ, such that
Xτ admits µ as law.

Formally, this result also holds for θ = 0, since we can then take τ ≡ 1. For θ = 1 (in which case
m0 is invariant for P ), the natural extension of the above statement would lead to τ ≡ +∞, so
Xτ cannot be defined in general, which also reflects the fact that µ is not determined by the above
equation in this situation. But if µ = m0, one can take τ ≡ 0.

Proof
The starting idea of the following construction comes from a paper of Aldous and Diaconis [1],
see the proof of their Proposition 3.2.b. They were looking for a fastest strong stationary time
(namely a strong random time τ such that Xτ is distributed according to an invariant measure for
P and which is stochastically minimal among all such times).
Let us define

∀ x ∈ S, s(x) B 1− m1

µ
(x)

= θ

(
1− m0

µ
(x)
)
∈ R t {−∞}

where m1 B m0P is the law of X1. This quantity is related to the “distance” in separation between
m1 and µ, but this feature will not be explicitely used in what follows. At time 1, knowing X0 and
X1, we take τ = 1 with probability (1 − θ)/(1 − s(X1)), namely we generate a Bernoulli random
variable with parameter (1 − θ)/(1 − s(X1)) (conditionally independent of X, knowing the latter
parameter, this is where additional noise is required) to decide if τ = 1 or not. Since s(X1) ≤ θ,
one would have checked that the previous parameter belongs to [0, 1]. So we can write

P[τ = 1|X0, X1] =
1− θ

1− s(X1)

and in particular P[τ = 1|X1] = 1−θ
1−s(X1) .

Let us check that

∀ x ∈ S, P[τ = 1, Xτ = x] = (1− θ)µ(x) (2)

Indeed, we have for any x ∈ S,

P[τ = 1, Xτ = x] = P[τ = 1, X1 = x]
= P[τ = 1|X1 = x]P[X1 = x]

=
1− θ

1− s(x)
m1(x)

=
1− θ

1− s(x)
(θm0(x) + (1− θ)µ(x))

=
1− θ

1− s(x)

(
θ
m0

µ
(x) + (1− θ)

)
µ(x)

=
1− θ

1− s(x)
(1− s(x))µ(x)
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Thus (2) is satisfied, at least for x ∈ S such that µ(x) 6= 0, so that the above operations are
justified. But if µ(x) = 0 and m1(x) > 0, we have directly that P[τ = 1, X1 = x] = 0, because
s(x) = −∞, and the equality (2) also holds in this situation. This is also trivially true if m1(x) = 0.
It follows from (2) that P[τ = 1] = (1− θ) and that the conditional law of X1 on {τ = 1} is µ. We
also deduce that the conditional law L(X1|τ > 1) is equal to m0. This observation is the key to
the iterative construction, since we are led back to the initial situation, in some sense after having
removed the µ part of m1. More rigorously, by iteration of the above procedure, at any time n ∈ N,
n ≥ 2, knowing X0, X1, ..., Xn and that the value of τ has not yet been fixed, i.e. τ > n, we take
τ = n with probability (1− θ)/(1− s(Xn)), using additional randomness as before, if necessary.
The proposition will be proven if we show that for any n ∈ N∗,

∀ x ∈ S, P[τ = n,Xn = x] = (1− θ)θn−1µ(x) (3)

This is proved by induction on n. To facilitate this, consider the equality

L(Xn|τ > n) = m0 (4)

We have already seen that (3) and (4) are satisfied with n = 1, so let us assume they are true for
any n ∈ N∗ smaller than some N ∈ N∗, we are going to deduce them with n replaced by N + 1.
Begin by computing for x ∈ S,

P[τ = N + 1, XN+1 = x] = P[τ = N + 1|XN+1 = x, τ > N ]P[XN+1 = x, τ > N ]

=
1− θ

1− s(x)
P[XN+1 = x, τ > N ]

=
1− θ

1− s(x)

∑
y∈S

P[XN = y, τ > N ]P (y, x)

where in the last line, we have used that the event {τ > N} depends on X only through
(Xm)0≤m≤N , so we can apply the Markov property. By the induction assumption, we have for
any y ∈ S,

P[XN = y, τ > N ] = P[XN = y|τ > N ]P[τ > N ]
= m0(y)(1− P[τ ≤ N ])
= m0(y)θN

where we took into account that (3) implies that P[τ = n] = (1 − θ)θn−1 for n ∈ J1, NK. So we
obtain ∑

y∈S
P[XN = y, τ > N ]P (y, x) = θN

∑
y∈S

m0(y)P (y, x)

= θNm1(x)
= θN (1− s(x))µ(x)

Putting all the previous computations together, we get (3) with n replaced by n + 1 (except for
x ∈ S such that µ(x) = 0, where (3) has to be checked directly). It remains to compute that for
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any x ∈ S,

P[XN+1 = x|τ > N + 1] =
P[XN+1 = x, τ > N + 1]

P[τ > N + 1]

= θ−N−1P[XN+1 = x, τ > N + 1]
= θ−N−1P[XN+1 = x, τ 6= N + 1, τ > N ]
= θ−N−1P[τ 6= N + 1|XN+1 = x, τ > N ]P[XN+1 = x, τ > N ]

= θ−N−1

(
1− 1− θ

1− s(x)

)
P[XN+1 = x, τ > N ]

= θ−N−1 θ − s(x)
1− s(x)

P[XN+1 = x, τ > N ]

= θ−N
m0(x)
µ(x)

P[XN+1 = x, τ > N ]
1− s(x)

but as above, we have P[XN+1 = x, τ > N ] = θN (1 − s(x))µ(x), so replacing it in the previous
expression it appears that (4) is satisfied with n replaced by N + 1.

�

Remark 4
a) Contrary to the fastest strong stationary time considered in Aldous and Diaconis [1], the

new strong random time constructed in Proposition 3 does not require a lot of information about
the time marginal laws of the chain X. In fact only m0 and θ are needed.

b) Notice that for a given m0, the previous result can be applied to any θ ∈ (0, θ∗]∩ (0, 1), with
θ∗ = minx∈Sm0P (x)/m0(x). The next section will help us to choose θ in a convenient way.

c) Note that if x ∈ S is such that m0(x) = 0, then s(x) = θ (even if µ(x) = 0, by virtue of the
implicitly enforced convention that 0 · ∞ = 0), so for any n ∈ N,

P[τ = n+ 1|Xn+1 = x, τ > n] = 1

Thus the strong random time τ constructed above is always bounded above by the first hitting
time of the complementary set of the support of m0.

�

There is a case which is of special interest. Let us come back to the notation of the introduction,
so we replace P by P̄ and S by S̄ = S t {4}. But we now only make the first irreducibility
assumption on P̄ . Then there exists a unique distribution m0 which is positive on S and satisfies

m0P̄ = θ0m0 + (1− θ0)δ4

where θ0 ∈ (0, 1) is the largest eigenvalue of the restriction of P̄ to functions vanishing on 4 (these
properties of θ0 and m0 are insured by the Perron-Frobenius theorem, reversibility is not needed).
It is indeed the renormalized positive left eigenvector associated to the eigenvalue θ0 of P and it is
called the quasi-stationary distribution of P̄ , because for any n ∈ N, the restriction of m0P̄

n to S
is just θn0m0.
Note that the function s introduced in the above proof is given by

∀ x ∈ S̄, s(x) =
{
θ , if x = 4
−∞ , if x ∈ S

so τ is in fact the hitting time of 4 and we recover the well-known fact that it is distributed as
a geometric law of parameter θ0 (see for instance Section 6.5 of Chapter 3 of the book of Aldous
and Fill [2]).

To profit fully from Proposition 3, it is important that no assumption is made on the respective
supports of m0 and µ.
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3 Local equilibria

We will prove Theorem 1 here, through the use of a sequence of local equilibria, going from the
initial condition m0 to the quasi-stationary measure in N − 1 steps, before collapsing to δ4.

Again we consider the discrete time framework presented in the introduction. We begin by
recalling a linear algebra result of Micchelli and Willoughby [21]:

Theorem 5 Let B be a symmetric S × S matrix whose entries are nonnegative and let b0 ≤ b1 ≤
· · · ≤ bN−1 be its eigenvalues. Then for any l from J0, N − 1K, the matrix

∏
i∈J0,lK(B − bi) has

nonnegative entries.

The symmetry condition can be weakened to a reversibility condition, asking for the existence of
a positive vector µ B (µ(x))x∈S such that

∀ x, y ∈ S, µ(x)B(x, y) = µ(y)B(y, x)

where we have writtenB = (B(x, y))x,y∈S . Then letD denote the diagonal matrix with (
√
µ(x))x∈S

as diagonal and define B̃ = DBD−1. The latter matrix is symmetric and its entries are nonnegative,
furthermore it has the same eigenvalues as B. Thus for any l ∈ J0, N − 1K, the matrix∏

i∈J0,lK

(B − bi) = D−1
∏
i∈J0,lK

(B̃ − bi)D

has also nonnegative entries.

Unless otherwise stated, from now on we assume that all the eigenvalues of P are nonnegative.
We can now define the local equilibria associated to the initial condition m0. First we consider for
any l ∈ J0, NK,

µ̃l B m0

∏
i∈J0,l−1K

P − θN−1−i
1− θN−1−i

in particular µ̃0 = m0 and the Cayley-Hamilton theorem shows that µ̃N = 0.
From Theorem 5, applied to the reversible matrix P , we get that all these row vectors are nonneg-
ative and thus can be considered as nonnegative measures on S. We note that their total mass is
non-increasing: for any i ∈ J0, N − 1K, since P is subMarkovian, we have

P − θN−1−i
1− θN−1−i

1S ≤ 1S

(where 1S is the indicator function of S), so integrating this inequality with respect to µ̃i, we get
µ̃i+1[S] ≤ µ̃i[S]. Next we define

∀ i ∈ J0, N − 1K, di B 1− µ̃i+1[S]
µ̃i[S]

∈ [0, 1]

(in particular di = 1 if µ̃i[S] = 0, since then we also have µ̃i+1[S] = 0) and

I B min{i ∈ J0, N − 1K : µ̃i+1[S] = 0}
= min{i ∈ J0, N − 1K : di = 1}

We will show later on that I = N − 1, but for the moment, we introduce for any i ∈ J0, IK, the
probability measures

µi B

 ∏
j∈J0,i−1K

(1− dj)−1

 µ̃i

which are called local equilibria. Let also take the convention that µi B δ4 for i ∈ JI + 1, NK.
Their interest comes from the following observation

10



Lemma 6 For any i ∈ J0, N − 1K, we have

µiP̄ = θN−i−1µi + (1− θN−i−1)((1− di)µi+1 + diδ4)

Proof

By construction, we have for any i ∈ J0, N − 1K,

µ̃i(P − θN−i−1) = (1− θN−i−1)µ̃i+1

which can be rewritten

µiP = θN−i−1µi + (1− θN−i−1)(1− di)µi+1

For i ∈ J0, IK, µi is a probability measure on S and so µiP is the restriction to S of the probability
measure µiP̄ on S̄. To get the formula of the lemma, we add the missing mass, which must be at
4. For i ∈ JI + 1, NK, this formula reduces to δ4 = δ4.

�

The proof of Theorem 1 is now quite straightforward, since it is sufficient to successively apply
Proposition 3 to the local equilibria, via Lemma 6. More precisely, starting from m0 = µ0, we
construct a strong random time τN−1 through Proposition 3, with θ = θN−1 and µ = (1− d0)µ1 +
d0δ4. We have that τN−1 is distributed as a geometric law G(θN−1) and according to Remark 4 c),
with probability d0 and independently from τN−1, τN−1 coincides with T , the hitting time of 4,
and with probability 1 − d0, XτN−1 is distributed according to the second local equilibrium µ1.
Let us define the shifted chain X̃(1) B (X̃(1)

n )n∈N B (XτN−1+n)n∈N. Due to the fact that τN−1

is a strong random time, X̃(1) is independent from τN−1 and is a Markov chain whose transition
matrix is P̄ and with (1− d1)µ1 + d1δ4 as initial distribution. Let us consider X(1) which is just
X̃(1) conditioned by X

(1)
0 6= 4. It is a Markov chain admitting P̄ as transition matrix and µ1 as

initial distribution. Apply Proposition 3, with m0 = µ1, θ = θN−2 and µ = (1− d1)µ2 + d1δ4, to
construct a strong random time τN−2 for X(1), which is distributed as G(θN−2) and is independent
of τN−1.
The proof goes on by an obvious iteration and in the end (the procedure has to stop, because
I ≤ N − 1, due to the fact that µ̃N = 0), we get Theorem 1 with

∀ i ∈ J0, N − 1K, aN−1−i B di
∏

j∈J0,i−1K

(1− dj) (5)

Indeed, one can define a random variable A with distribution a = (a0, a1, ..., aN−1) (see the dis-
cussion before Theorem 1) in the following way: let us denote X̃(1), X̃(2), ..., the shifted Markov
chains constructed iteratively through the previous procedure, then take

A B N −min{i ∈ J1, NK : X̃(i)
0 = 4}

Then for any i ∈ J1, NK, the event {A = i} is independent of τN−1, ..., τN−i (which are also inde-
pendent among themselves). This is sufficient to insure that T =

∑
j∈JN−A,N−1K τj is distributed

according to MG(a, θ).
The only point which remains to be proven is that a0 > 0. This is a consequence of the

well-known fact that for any initial distribution m0 on S,

lim
n→∞

1
n

ln(P[T > n]) = − ln(θ0) (6)

(indeed, one can be brought back to the case where the initial distribution is the quasi-stationary
probability measure by noticing that the quantities limn→∞

1
n ln(Px[T > n]) exist and do not

11



depend on the starting point x ∈ S by the irreducibility assumption). But if J = min{j ∈
J0, N − 1K : aj > 0}, and if T is distributed according to MG(a, θ), then we have that

∀ 0 ≤ u < 1
θJ
, E[uT ] < +∞

so the fact that θ0 > θ1 shows that J = 0. Furthermore, since

a0 = dN−1

∏
j∈J0,N−2K

(1− dj)

=
∏

j∈J0,N−2K

(1− dj)

we also get that dj < 1 for all j ∈ J0, N − 2K, so I = N − 1. Thus µN−1 is a probability measure
on S, and since Lemma 6 shows that

µN−1P̄ = θ0µN−1 + (1− θ0)δ4

it follows that µN−1 is the quasi-stationary probability measure associated to P̄ (recall its definition
given in Remark 4c).

Remark 7 Formula (5) simplifies if the definition of the dj , for j ∈ J0, N − 1K, is inserted and the
telescoping product is simplified:

∀ i ∈ J0, N − 1K, aN−1−i = µ̃i(S)− µ̃i+1(S)

= m0

 ∏
j∈J0,i−1K

P − θN−1−j
1− θN−1−j

 1− P
1− θN−1−i

(S)

which is the formula (1) announced in the introduction. Thus the law of T can be explicitely given
in terms of the initial distribution, the product Pn, for n ∈ J1, N − 1K, and the eigenvalues of P .
At least for small state space, this is easy to implement.
Note also that it can be used to recover that a0 > 0 and to give an expression for this quantity.
Let (νi)i∈J0,N−1K be an orthogonal basis of left-eigenvectors (=measures) associated to the eigen-
values (θi)i∈J0,N−1K of P in L2(π), where π is the reversible probability measure mentioned in the
introduction. In particular ν0 is proportional to the quasi-stationary distribution, let us call it ν.
Let us decompose m0, on this basis, m0 B

∑
i∈J0,N−1K biνi. Then formula (1) for i = 0 is just

a0 =

 ∏
j∈J1,N−1K

θ0 − θj
1− θj

 b0ν0(S)

So a0 > 0 is equivalent to b0 > 0, but b0 = 〈m0, ν0〉L2(π) > 0 because π and ν0 are positive on S
and m0 is a probability measure on S. Indeed, in terms of the quasi-stationary distribution, we
have

b0 =
∑

x∈Sm0(x)ν(x)π(x)√∑
x∈S ν

2(x)π(x)

and

a0 =

 ∏
j∈J1,N−1K

θ0 − θj
1− θj

∑x∈Sm0(x)ν(x)π(x)∑
x∈S ν

2(x)π(x)

This formula may be useful in applications where the evaluation of a0 will be important.
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�

Remark 8 It is the sequence of local equilibria (µi)i∈J0,N−1K which has a meaning, not the notion
of local equilibrium by itself. Indeed, we can go a little further: let say that a finite sequence of
probabilities on S, (µi)i∈JM,N−1K, with M ∈ J0, N − 1K, is an M -sequence of local equilibria going
from µM to δ4, if the relations of Lemma 6 are satisfied for i ∈ JM,N − 1K, with a sequence
(di)i∈JM,N−1K of numbers from [0, 1] and with µN = δ4. The above proof shows that if the initial
distribution of X is µM , then the law of T is a mixture of the distributions G(θi, θi+1, ..., θN−1−M ),
for i ∈ J0, N−1−MK, which gives positive weight to G(θ0, θ1, ..., θN−1−M ). This is even true under
the weakened assumption that θN−1−M ≥ 0, so the eigenvalues θN−M , θN−M+1, ..., θN−1 can be
negative.
In particular if M = N − 1, µN−1 must be the quasi-stationary probability measure and we
know by the Perron-Frobenius theorem that θ0 is nonnegative. So we recover the fact that if the
initial distribution of X is the quasi-stationary probability measure, then the distribution of T is
a geometric law of parameter θ0. Note that the reversibility hypothesis can be dispensed with in
this special case, since we don’t need Theorem 5 to check that µN = δ4 is nonnegative.
It also appears that to write the law of T in the form MG(θ, a) may not be very clever and that
it is better to introduce for M ∈ J0, N − 1K, the distributions

MG(M, θ, a) B
∑

0≤i≤N−1−M
aiG(θi, θi+1, ..., θN−1−M )

where a is a probability measure on J0, N − 1 − MK. Now the law of T may not be uniquely
represented as MG(M, θ, a). Indeed, we may have MG(M, θ, a) = MG(M ′, θ, a′) with M 6= M ′

and a 6= a′. For instance, taking into account the previous example, MG(N − 1, θ, 1) = G(θ0),
for any M ∈ J0, N − 2K, we can find a probability measure aM on J0, N − 1 − MK such that
G(θ0) = MG(M, θ, aM ). To simplify the expression for the law of T , one has to try to find the
largest M such that there exists an M -sequence of local equilibria going from m0 to δ4.
Note also that for given M ∈ J0, N − 1K and a nonnegative θ = (θ0, ..., θN−1), the mapping a =
(a0, ..., aN−1−M ) 7→ MG(θ, a) is one to one. This can be proven by considering the corresponding
moment generating functions (or rather its meromorphic extension to C).
Finally notice that from a complexity point of view, once the eigenvalues are known, (µi)i∈J0,N−1K,
(di)i∈J0,N−1K and (ai)i∈J0,N−1K are not difficult to obtain via Lemma 6 and (5), indeed at most N
iterations of P̄ are necessary. To obtain the largest M such that the law of T can be represented
in the form MG(M, θ, a), at most (N − 1)N/2 steps are needed, since we have first to try with
M = N − 1, next M = N − 2 etc. to verify if we can associate to m0 an M -sequence of local
equilibria through Lemma 6.

�

4 Intertwining

Our goal here is to construct an intertwining relation between X and a Markov chain of a special
kind. This is indeed the main result of this paper, as it gives a probabilistic interpretation of
Theorem 1.

More precisely, let P̄ be an absorbing transition matrix on S̄, as in the introduction, and let
θ0 > θ1 ≥ · · · ≥ θN−1 ≥ 0 be its eigenvalues, assumed to be nonnegative. For a given initial
distribution m0, consider the associated sequences of local equilibria (µi)i∈J0,N−1K and of real
numbers from [0, 1], (di)i∈J0,N−1K, as in Lemma 6. Recall that for i ∈ J0, N − 2K, di < 1 and that
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dN−1 = 1.
Next introduce an absorbing Markov chain Y B (Yn)n∈N on Ē B J0, N − 1K t {4}, starting from
0 and with transition matrix Q̄ given by

∀ i, j ∈ Ē, Q̄(i, j) B


θN−1−i , if i = j ∈ J0, N − 1K
di(1− θN−1−i) , if i ∈ J0, N − 1K and j = 4
(1− di)(1− θN−1−i) , if i ∈ J0, N − 2K and j = i+ 1
1 , if i = j = 4
0 , otherwise

(7)

(for X as well as for Y , we denote 4 the absorbing point, this should not lead to confusion).
The behaviour of the Markov chain Y is easy to understand: it tries to go to the next neighbour on
the right, or stay at the same place, except that it can also be killed (i.e. go to the absorbing point)
and the respective probabilities for these actions are (1−di)(1−θN−1−i), θN−1−i and di(1−θN−1−i)
when the current position is i ∈ J0, N − 2K. This is also true if i = N − 1 since dN−1 = 1, so
from there the Markov chain either stays at the same place, with probability θ0, or is killed, with
probability 1− θ0. But for i ∈ J0, N − 2K, the probability to go to the right is positive. With this
interpretation, for i ∈ J0, N − 1K, di can be called the chance of death immediately after moving
from the ith local equilibrium.
Let us furthermore denote by Λ the |Ē| × |S| matrix defined by

∀ i ∈ Ē, ∀ x ∈ S̄, Λ(i, x) B
{
µi(x) , if i ∈ J0, N − 1K
δ4(x) , if i = 4 (8)

Its interest comes from the following intertwining relation

Lemma 9 For Q̄ and Λ defined at (7) and (8), we have the intertwining relation

ΛP̄ = Q̄Λ

Proof

This is just a rewriting of Lemma 6: fix some i ∈ J0, N − 1K and x ∈ S̄. On one hand we have

ΛP̄ (i, x) =
∑
y∈S

Λ(i, y)P̄ (y, x)

= µiP̄ (x)

and on the other hand,

Q̄Λ(i, x) = θN−1−iΛ(i, x) + (1− di)(1− θN−1−i)Λ(i+ 1, x) + di(1− θN−1−i)Λ(4, x)
= (θN−i−1µi + (1− θN−i−1)((1− di)µi+1 + diδ4))(x)

from where we get the equality ΛP̄ (i, x) = Q̄Λ(i, x).
Consider finally the case where i = 4. Then the previous equality reads δ4(x) = δ4(x).

�

This intertwining relation and the fact that we have for the initial laws

L(Y0)Λ = m0 = L(X0)

enables use of a result of Diaconis and Fill [5] asserting we can intertwine X in Y in the following
sense: there exists a coupling of X and Y such that the chain (Xn, Yn)n∈N is Markovian and such
that for any time n ∈ N, we have for the conditional law of Xn knowing Y0, Y1, ..., Yn,

L(Xn|Y0, Y1, ..., Yn) = Λ(Yn, ·)
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In some sense Y indicates which local equilibrium has been reached by X and in this respect, it is
interesting to know that if a trajectory (Xn)n∈N is given, it is possible to construct (Yn)n∈N from
it in a progressive way, using also independent randomness (for more details, see Diaconis and Fill
[5]).

Under the above coupling, let us denote

TX B inf{n ∈ N : Xn = 4}
TY B inf{n ∈ N : Yn = 4}

It is clear that TX has the same law as T and that TY is distributed according to MG(θ, a), with
the probability measure a given by (5). So the next result gives another proof of Theorem 1:

Lemma 10 We have a.s. that TX = TY .

Proof

Let n ∈ N be given, we have that

P[TX ≤ n, TY ≤ n] = E[δ4(Xn)δ4(Yn)]
= E[E[δ4(Xn)|Y0, ..., Yn]δ4(Yn)]
= E[Λ(Yn,4)δ4(Yn)]
= Λ(4,4)E[δ4(Yn)]
= P[TY ≤ n]

so it follows that {TX ≤ n} is a.s. included in {TY ≤ n}. Since this is true for any n ∈ N, we get
that TX ≤ TY a.s.
But for any n ∈ N, we compute in a similar way that

P[TX ≤ n, TY > n] = E[Λ(Yn,4)1J0,N−1K(Yn)]
= 0

and as a consequence TX = TY a.s.
�

Thus for any absorbing Markov chain satisfying the hypotheses of the introduction, the absorption
time is distributed according to a law of the form MG(θ, a), with θ ∈ Θ and a ∈ A, where

Θ B {θ = (θi)i∈J0,N−1K ∈ [0, 1)N : θ0 > θ1 ≥ θ2 ≥ · · · ≥ θN−1}
A B {a = (ai)i∈J0,N−1K ∈ P(J0, N − 1K) : a0 > 0}

where from now on P(E) will denote the set of probability measures on E, for any finite set E.
Conversely, we can wonder if for an a priori given θ ∈ Θ and a ∈ A, one can find an absorbing
Markov chain satisfying the assumptions of the introduction and such that the law of its absorption
time is distributed according to MG(θ, a). Then the set of laws of such absorption times would
exactly be MG B {MG(θ, a) : θ ∈ Θ, a ∈ A}. We do not conjecture that this assertion is true,
because we believe more restrictions should be put on the admissible pairs (θ, a), for instance
maybe that for any i ∈ J1, N − 1K, ai > 0⇒ ai−1 > 0.
Nevertheless, the above chain Y can be used to get a result in this direction. Let K̄ be the closure
of the set of Markov transition matrices P̄ on S̄ whose unique recurrence class is {4} and such
that the restriction P of P̄ to S × S is irreducible, reversible and admits nonnegative eigenvalues.
Note that the elements of K̄ are still transition matrices absorbing at 4. Here we are interested in
K̂, the set of matrices P̄ from K̄ such that {∞} is the unique recurrence class of P̄ . If m0 ∈ P(S)
and P̄ ∈ K̂ are given, we can associate to them a Markov chain, starting from m0 with transition
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matrix P̄ . Let us write L(m0, P̄ ) for the law on N∗ of the corresponding absorption time. We also
need to introduce

M̂G B {MG(θ, a) : θ ∈ Θ̂, a ∈ P(J0, N − 1K)}

with

Θ̂ B {θ = (θi)i∈J0,N−1K ∈ [0, 1)N : θ0 ≥ θ1 ≥ θ2 ≥ · · · ≥ θN−1}

Proposition 11 The set of distributions L(m0, P̄ ), when m0 runs through P(S) and P̄ runs
through K̂, coincides with M̂G.

Proof

We begin with the inclusion

{L(m0, P̄ ) : m0 ∈ P(S), P̄ ∈ K̂} ⊂ M̂G (9)

Let P̄ ∈ K̂ be given and (P̄ (r))r∈N be a sequence of transition matrices as in the introduction and
converging to P̄ . For any fixed r ∈ N, we consider 1 > θ

(r)
0 > θ

(r)
1 ≥ · · · ≥ θ(r)

N−1 ≥ 0 the eigenvalues
of the restriction P (r) of P̄ (r) to S×S. Let us also fix an initial distribution m0 ∈ P(S). Lemma 6
enables us to associate to m0 and P̄ (r) a sequence of local equilibria (µ(r)

i )i∈J0,N−1K from P(S)

and a sequence of real numbers from [0, 1), (d(r)
i )i∈J0,N−2K. As in the beginning of this section, we

construct from them two matrices Q̄(r) and Λ(r) so that

Λ(r)P̄ (r) = Q̄(r)Λ(r) (10)

Up to the extraction of a subsequence, we can assume by standard compactness arguments, that
there exist 1 ≥ θ0 ≥ θ1 ≥ · · · ≥ θN−1 ≥ 0, a sequence (µi)i∈J0,N−1K of probabilities from P(S) and
a sequence of real numbers from [0, 1], (di)i∈J0,N−2K such that

∀ i ∈ J0, N − 1K, lim
r→∞

θ
(r)
i = θi

∀ i ∈ J0, N − 1K, lim
r→∞

µ
(r)
i = µi

∀ i ∈ J0, N − 2K, lim
r→∞

d
(r)
i = di

Thus if we construct Q̄ and Λ from (θi)i∈J0,N−1K, (di)i∈J0,N−2K and (µi)i∈J0,N−1K as above, we get,
by passing to the limit in (10)

ΛP̄ = Q̄Λ

We note that the first line of Λ is m0 (since this is also true for Λ(r), for all r ∈ N), so using again
a result of Diaconis and Fill [5], we can intertwine, as above, a Markov chain X starting from m0

and admitting P̄ as transition matrix with a Markov chain Y starting from δ0 and admitting Q̄ as
transition matrix. Lemma 10 is still valid and we deduce that L(m0, P̄ ) is equally the distribution
of the hitting time TY of4 by Y . But the latter can now be a.s. infinite and one easily checks that it
is a.s. finite if and only if θ0 < 1. To deduce this property, we have to take into account that the only
recurrence class of P̄ is {4}. Indeed, this latter assumption implies that 1 cannot be an eigenvalue
of P , the restriction of P̄ to S × S. But by a standard finite dimensional pertubation result (see
for instance the book [16] of Kato), we have that the eigenvalues of the matrices P (r) converge to
the eigenvalues of P , so in particular θ0 is the largest eigenvalue of P and thus θ0 < 1. Now it
is clear from the structure of Q̄ that the distribution of TY belongs to M̂G and this observation
concludes the proof of (9).
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We now come to the reverse inclusion

{L(m0, P̄) : m0 ∈ P(S), P̄ ∈ K̂} ⊃ M̂G (11)

Let θ B (θi)i∈J0,N−1K ∈ Θ̂ and a ∈ P(J0, N − 1K) be given. We have first to verify that we can find

a sequence (d(r)
i )i∈J0,N−2K of real numbers from [0, 1], such that

∀ i ∈ J0, N − 1K, aN−1−i B di
∏

j∈J0,i−1K

(1− dj)

Seeing a as a probability measure on J0, N − 1K, let

I B max{i ∈ J0, N − 1K : a(J0, I − 1K) = 0}

so I = 0 is equivalent to a0 > 0. Next we define

∀ i ∈ J0, N − 2K, di B

{ aN−1−i
a(J0, N − 1− iK)

, if i ≤ N − I − 1

1 , otherwise
(12)

and we immediately check that the above relation between a and (di)i∈J0,N−2K is satisfied. Now we
have at our disposition all the ingredients to construct the matrix Q̄ given in (7). Furthermore,
it is quite obvious that L(δ0, Q̄) = MG(θ, a). So to end the proof of (11), it remains to check
that Q̄ ∈ K̂. First we remark that since 1 > θ0 ≥ θ1 ≥ · · · ≥ θN−I−1 ≥ 0 and dN−I−1 = 1,
the path (0, 1, 2, ..., N − I − 1,4) is admissible for Q̄, as well as the one-step paths (i,4), for
i ∈ JN − I,N − 1K, because 1 > θi ≥ 0 and di = 1. So {4} is the unique recurrence class for Q̄.
Next we define, for ε ∈ (0, 1/2), a new absorbing transition matrix Q̄ε by taking

∀ i, j ∈ Ē, Q̄ε(i, j) B



ε , if i ∈ J1, N − 1K and j = i− 1
ε , if i ∈ JN − I − 1, N − 2K and j = i+ 1
(1− ε)θN−1−i , if i = j ∈ J0, N − I − 1K
(1− 2ε)θN−1−i , if i = j ∈ JN − I,N − 1K
(1− ε)di(1− θN−1−i) , if i ∈ J0, N − I − 1K and j = 4
(1− 2ε)(1− θN−1−i) , if i ∈ JN − I,N − 1K and j = 4
(1− ε)(1− di)(1− θN−1−i) , if i ∈ J0, N − I − 2K and j = i+ 1
1 , if i = j = 4
0 , otherwise

As usual, let Qε be the restriction of Q̄ε to J0, N − 1K2. It is an irreducible subMarkovian matrix
of birth and death type and thus Qε is reversible. Let us denote by

1 > θ0(ε) > θ1(ε) > θ2(ε) > · · · > θN−1(ε) > −1

the eigenvalues of Qε (they are well-known to be all distinct in the context of irreducible subMarko-
vian birth and death chains). It may happen that some of them are negative. This is for instance
the case, as soon as N ≥ 1, if all the θi, for i ∈ J0, N − 1K, are zero and if a = δN−1, in which case
Qε = ε(δ1(|i− j|))i,j∈J0,N−1K (it has some negative eigenvalue, because it is symmetric, not null
and its trace is zero). So let us rather consider

Q̂ε B α(ε)Id + (1− α(ε))Q̄ε

with α(ε) B max(0,−θN−1(ε)) ∈ [0, 1). Since limε→0+ Q̄ε = Q̄, we also have

lim
ε→0+

θN−1(ε) = θN−1
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and by consequence limε→0+ α(ε) = 0. Thus we get

lim
ε→0+

Q̂ε = Q̄

So finally Q̄ ∈ K̄, because all the transition matrices Q̃ε, for ε ∈ (0, 1/2), satisfy the assumption of
the introduction.

�

Remarks 12
1) The end of the above proof shows that the matrix Q̄ constructed from P̄ in (7) belongs to

K̂. Clearly, Q is not reversible, since moves to the left are not permitted on J1, N − 1K. Also notice
that since Q, the restriction of Q̄ to J0, N −1K2 (respectively Q̄) is upper triangular, its eigenvalues
are immediate to compute and are given by the entries of the diagonal of Q (resp. Q̄). But if some
of these eigenvalues are equal, Q (resp. Q̄) is not necessary diagonalizable, e.g. this is the case for
the following matrix

Q̄ B

 θ 1 0
0 θ 1
0 0 1


for any θ ∈ [0, 1).

2) Let (P̄ (r))r∈N be a sequence from K̂ converging to P̄ ∈ K̂ and (m(r)
0 )r∈N be a sequence from

P(S) converging to m0 ∈ P(S). Then for large r, L(m(r)
0 , P̄ (r)) is weakly convergent to L(m0, P̄ ),

because this is equivalent to

∀ k ∈ N∗, lim
r→∞

L(m(r)
0 , P̄ (r))[k] = L(m0, P̄ )[k]

and to get these limits, just write L(m(r)
0 , P̄ (r))[k] as a finite sum of products of k+ 1 entries from

m
(r)
0 or P (r).

Assume that there exists m0 ∈ P(S) such that L(m0, P̄ ) = MG(θ, a) with a0 > 0. Then by
considering the moment generating functions of the L(m0, P̄

(r)), for r ∈ N, and of L(m0, P̄ ), we
can deduce the convergence for large r ∈ N of the eigenvalues of P̄ (r) to the eigenvalues of P̄ . This
gives a probabilistic alternative to the reference to classical perturbation theory in the proof of
Proposition 11.

3) Let K̃ denote the set of P̄ ∈ K̂ which are weakly irreducible, in the sense that we cannot
decompose S into a non trivial partition S = S1 t S2 such that the restrictions of P̄ to S1 × S2

and to S2 × S1 are null. We also introduce

M̃G B {MG(θ, a) : θ ∈ Θ̂, a ∈ P(J0, N − 1K) with a0 > 0}

It seems possible that

{L(m0, P̄ ) : m0 ∈ P(S), P̄ ∈ K̃} = M̃G

�

In the same spirit, note that due to the example of Botta, Harris and Marchal [3] alluded to in
the introduction, Theorems 1 and 2 are no longer true when the reversibility condition is replaced
by the assumption that all the eigenvalues of P are nonnegative. It follows that there are such
subMarkovian matrices P that cannot be approached by reversible subMarkovian matrices (but
maybe this is true for real-diagonalizable subMarkovian matrices). To understand better this
phenomenon, maybe it would be interesting to investigate carefully the case of skip-free chains
considered by Fill [12].

18



5 Continuous time

We now return to the continuous-time framework presented in the introduction. We will not
develop a specific continuous time approach, instead we extend the previous results by considering
discrete time skeletons of the underlying semi-group.

More precisely, as already mentioned in the introduction, under the hypotheses made in the
continuous-time setting, for any δ > 0, the absorbing transition matrix P̄δ = exp(δL̄) satisfies the
previous discrete time assumptions: {4} is the unique recurrent class of P̄δ and its restriction Pδ to
S×S, which coincides with exp(δL), is irreducible and reversible with respect to the same positive
probability measure π on S. Let X = (Xt)t≥0 be a Markov process with cadlag trajectories,
starting from m0 with generator L̄. Then X(δ) B (Xδn)n∈N is a Markov chain starting from m0

with transition matrix P̄δ. Recall that we are interested in T , the absorption time of X, and let
us denote

T (δ) B inf{n ∈ N : Xδn = 4}

the absorption time of X(δ).
The key to Theorem 2 is the simple observation that

Lemma 13 As δ goes to 0+, δT (δ) converges a.s. to T , in particular in the weak sense,

lim
δ→0+

L(δT (δ)) = L(T )

Proof

Since the trajectories of X are cadlag, for any s ≥ 0, XT+s = 4, at least outside the negligible
event where T = +∞, so

T ≤ δT (δ) ≤ T + δ

�

Let θ(δ) = (θ(δ)
i )i∈J0,N−1K be the eigenvalues of Pδ, with multiplicities and in nonincreasing order.

Since θ(δ)
i = exp(−δλi) for all i ∈ J0, N − 1K, they are positive, so we can apply Theorem 1 to get

a probability measure a(δ) on J0, N − 1K such that

L(T (δ)) = MG(θ(δ), a(δ)) (13)

By compactness of P(J0, N − 1K), a probability measure a can be found on J0, N − 1K and a
decreasing sequence (δ(r))r∈N of positive real numbers converging to 0, such that limr→∞ a

(δr) = a.
In conjunction with the above lemma. The next result enables us to conclude the proof of Theorem
2, except for the assertion that a0 > 0.

Lemma 14 In the sense of weak convergence,

lim
r→∞

L(δrT (δr)) = ME(λ, a)

Proof

In view of (13) and by definition of the laws MG(θ(δ), a(δ)) and ME(λ, a), it is sufficient to show
that if for some fixed l > 0, R(δ) is distributed according to G(exp(−δl)), with δ > 0, then

lim
δ→0+

L(δR(δ)) = L(R)
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where R is distributed according to an exponential distribution of parameter l. This convergence
can be proven through the use of Laplace transforms, or from a more probabilistic point of view,
by noticing that R(δ) has the same distribution as dR/δe, which denote the smallest integer larger
or equal to R/δ.

�

By resorting to Laplace transforms, one can see that the mapping

P(J0, N − 1K) 3 a′ 7→ ME(λ, a′) ∈ P(R+)

is one to one, so we get a posteriori that

lim
δ→0+

a(δ) = a

To finish the proof of Theorem 2, we must show that a0 > 0. Indeed, use similar arguments to
those given in discrete time: it is well-known that for any initial distribution m0 on S,

lim
t→+∞

1
t

ln(P[T > t]) = −λ0

(this can be easily deduced from the similar discrete time result (6) through finite skeletons). But
if J = min{j ∈ J0, N − 1K : aj > 0}, and if T is distributed according to ME(λ, a), then

∀ 0 ≤ l < λJ , E[exp(lT )] < +∞

so from the fact that λ0 < λ1, we conclude that J = 0, i.e. a0 > 0.

More structural results can be deduced by exhibiting an intertwining relation. Again start with
skeleton subchains. For any δ > 0, associate to the initial law m0 and to the absorbing transition
matrix P̄δ, a sequence (µ(δ)

i )i∈J0,N−1K of local equilibria on S and a sequence (d(δ)
i )i∈J0,N−2K of real

numbers from [0, 1), with the convention that d(δ)
N−1 = 1, as in Lemma 6. By compactness of P(S)

and of [0, 1], we can find a sequence (µi)i∈J0,N−1K of probabilities on S, a sequence (di)i∈J0,N−1K of
real numbers from [0, 1] and a decreasing sequence (δ(r))r∈N of positive real numbers converging to
0, such that

lim
r→∞

(µ(δr)
i )i∈J0,N−1K = (µi)i∈J0,N−1K

lim
r→∞

(d(δr)
i )i∈J0,N−1K = (di)i∈J0,N−1K

(in particular dN−1 = 1).
Next introduce an absorbing generator K̄ on Ē B J0, N − 1K t {4} given by

∀ i, j ∈ Ē, K̄(i, j) B


−λN−1−i , if i = j ∈ J0, N − 1K
diλN−1−i , if i ∈ J0, N − 1K and j = 4
(1− di)λN−1−i , if i ∈ J0, N − 2K and j = i+ 1
1 , if i = j = 4
0 , otherwise

(14)

and a Markov kernel Λ̄ from Ē to S̄ given by

∀ i ∈ Ē, ∀ x ∈ S̄, Λ(i, x) B
{
µi(x) , if i ∈ J0, N − 1K
δ4(x) , if i = 4

Their interest comes from the following intertwining relation

20



Lemma 15 We have the intertwining relation

ΛL̄ = K̄Λ

Proof
For δ > 0, let Q̄(δ) and Λ(δ) be the matrices associated to (θ(δ)

i )i∈J0,N−1K, (µ(δ)
i )i∈J0,N−1K and

(d(δ)
i )i∈J0,N−1K as in the beginning of section 4. So

Λ(δ)P̄δ = Q̄(δ)Λ(δ)

and by consequence

Λ(δ) P̄δ − Id
δ

=
Q̄(δ) − Id

δ
Λ(δ)

Now by replacing δ by δr and by letting r go to infinity, we get the needed relation.
�

Notice that the first row of Λ is m0, since this is also true for Λ(δ), for any δ > 0. These facts lead
us to consider a particular absorbing cadlag Markov process Y B (Yt)t≥0 on Ē, starting from 0
and whose generator is K̄. Indeed, Fill [5] has shown that under the above intertwining relation
and the equality L(Y0)Λ = L(X0), X and Y can be intertwined: there exists a coupling of X and
Y such that the process (Xt, Yt)t≥0 is Markovian, and such that for any time t ≥ 0, the conditional
law of Xt knowing (Ys)0≤s≤t is given by

L(Xt|(Ys)0≤s≤t) = Λ(Yt, ·)

As in discrete time, heuristically Y indicates which probability measure among {µi : i ∈ J0, N−1K}
(whose elements can also be interpreted as local equilibria) has been reached by X, and in this
respect, it is interesting to know that if a trajectory (Xt)t≥0 is given, it is possible to construct
(Yt)t≥0 from it in a progressive way, using also independent randomness (for more details, see Fill
[10]).

Under the above coupling, let us denote

TX B inf{t ≥ 0 : Xt = 4}
TY B inf{t ≥ 0 : Yt = 4}

It is clear that TX has the same law as T and that TY is distributed according to ME(θ, a′), with
the probability measure a′ given by

∀ i ∈ J0, N − 1K, a′N−1−i B di
∏

j∈J0,i−1K

(1− dj)

The last assertion is a consequence of the traditional description of the evolution of a finite cadlag
homogeneous Markov process using exponential times and the embedded Markov chain (which
records the successive different positions taken by the process).
Next remark that the proof of Lemma 10 is also valid in continuous time, so under the above
coupling TX = TY a.s. In particular it follows that a′ = a and since we have already seen that
a0 > 0, it follows that

∀ i ∈ J0, N − 2K, di ∈ [0, 1)

We can deduce a posteriori that it was not necessary to take subsequences: first taking into account
(12) (with I = 0), we obtain

lim
δ→0+

(d(δ)
i )i∈J0,N−1K = (di)i∈J0,N−1K
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Next Lemma 15 implies that

∀ i ∈ J0, N − 1K, µiL̄ = −λN−i−1µi + λN−i−1((1− di)µi+1 + diδ4) (15)

which shows that the local equilibria can be iteratively determined by this relation and the fact
that µ0 = m0. So it follows that

lim
δ→0+

(µ(δ)
i )i∈J0,N−1K = (µi)i∈J0,N−1K

Finally, by similar arguments, it is also possible to extend Proposition 11. Let L̄ be the closure
of the set of generator matrices L̄ on S̄ whose unique recurrence class is {4} and such that the
restrictions L of L̄ to S × S are irreducible and reversible. Next let L̂ be the set of matrices L̄ in
L̄ such that {∞} is the unique recurrence class of L̄. If m0 ∈ P(S) and L̄ ∈ L̂ are given, associate
to them a cadlag Markov process, starting from m0 with generator L̄. Let us write L(m0, L̄) for
the law on R+ of the corresponding absorption time. Quite naturally, also introduce

M̂E B {ME(λ, a) : θ ∈ Λ̂, a ∈ P(J0, N − 1K)}

with

Λ̂ B {λ = (λi)i∈J0,N−1K ∈ (R∗+)N : λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN−1}

Then we have

Proposition 16 The set of distributions L(m0, L̄), when m0 runs through P(S) and L̄ runs
through L̂, coincides with M̂E .

6 Negative eigenvalues

We return to the discrete time setting and investigate the peculiar features coming from the
existence of negative eigenvalue(s). They will lead to an implicit description of the law of the
absorption time involving simple probabilistic quantities and to an explicit formulation (but maybe
less easy to manipulate) in terms of local equilibria and death proportions.

As in the introduction, P̄ is a Markov transition matrix on S̄ such that {4} is the unique
recurrence class and such that the restriction P of P̄ to S × S is irreducible and reversible. So
we can consider (θi)i∈J0,N−1K the eigenvalues of P in nonincreasing order, a priori they belong to
(−1, 1). We are also given m0 an initial distribution on S and X a Markov chain starting from m0

whose transitions are described by P̄ . We are interested in the absorption time TX B inf{n ∈ N :
Xn = 4}. To describe its distribution, introduce the number of negative eigenvalues

I B inf{i ∈ J0, N − 1K : θN−1−i ≥ 0}

and we assume that I ≥ 1 (by Perron-Frobenius theory, we know that θ0 ≥ 0, so I ≤ N − 1),
namely that we are no longer in the situation where all the eigenvalues are nonnegative.

A first observation is that the beginning of the construction of the local equilibria is easier in
this situation. Indeed, for any i ∈ J0, I − 1K, (P̄ − θN−1−iIdS̄)/(1− θN−1−i) is a Markov transition
matrix, as a convex combination of P̄ and the S̄ × S̄ identity matrix IdS̄ . So we don’t need the
result of Micchelli and Willoughby [21] to see that the family of measures (m̃i)i∈J0,IK defined by

∀ i ∈ J0, IK, m̃i B m0

∏
j∈J0,i−1K

P̄ − θN−1−jIdS̄
1− θN−1−j

(16)
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is in fact a family of probabilities on S̄. As before, we can decompose them into

∀ i ∈ J0, IK, m̃i = m̃i(S)µi + m̃i(4)δ4

where µi is a probability measure on S (in particular, µ0 = m0). Since 4 is absorbing, the map
J0, IK 3 i 7→ m̃i(S) is nonincreasing, so we write

∀ i ∈ J0, IK, m̃i(S) =
∏

j∈J0,i−1K

(1− dj)

with (di)i∈J0,I−1K a family of numbers from [0, 1]. In fact it is not possible that for some i ∈ J0, I−1K,
di = 1, otherwise we would have m0P̄

i = δ4 and this would lead to a contradiction to the
irreducibility of P . This implies that X can stay inside S for arbitrarily large times (but with an
exponentially smaller and smaller probability as time is running on). The families (µi)i∈J0,IK of
probabilities on S and (di)i∈J0,IK of numbers from [0, 1), are uniquely determined by µ0 = m0 and
the iterative relations

∀ i ∈ J0, IK, µiP̄ = θN−1−iµi + (1− θN−1−i)((1− di)µi+1 + diδ4) (17)

But since θN−1−i < 0 for i ∈ J0, I − 1K, Lemma 6 is of no help here. Another probabilistic
interpretation is needed. The heuristic principle is that negative eigenvalues make the chain X
run “too fast” and we have to slow it down. To do so, let (Bi)i∈J0,I−1K be independent Bernoulli
random variables of respective parameters (1/(1− θN−1−i))i∈J0,I−1K:

∀ i ∈ J0, I − 1K, P[Bi = 1] =
1

1− θN−1−i
= 1− P[Bi = 0]

The family (Bi)i∈J0,I−1K is assumed to be independent of X. Next, define the time change

∀ i ∈ N, S(i) B
{ ∑

j∈J0,i−1KBj , if i ∈ J0, IK
S(I) + i− I , if i ≥ I + 1

which is independent of X and consider the chain Y B (Yi)i∈N given by

∀ i ∈ N, Yi B XS(i)

It is in fact an inhomogeneous Markov chain with initial distribution m0 and transition matrix at
time i ∈ N 

P̄ − θN−1−iIdS̄
1− θN−1−i

, if i ∈ J0, I − 1K

P , if i ≥ I

Let TY B inf{n ∈ N : Yn = 4} be the absorption time of Y (even if this chain is inhomogeneous).
Its law is easy to describe, but we first need to extend the families (µi)i∈J0,IK and (di)i∈J0,IK into
(µi)i∈J0,N−1K and (di)i∈J0,N−1K by using the iterative relations (17) equally for i ∈ JI+1, N−1K. For
the same reason as above, for i ∈ JI+1, N−2K, di ∈ [0, 1), but to have that the µi belong to P(S), for
i ∈ JI+1, N−1K, we need to use the result of Micchelli and Willoughby [21] recalled in Theorem 5.
Indeed, up to a normalizing factor, µi is just m0

∏
j∈J0,i−1K(P −θN−1−jIdS)/(1− θN−1−j). We also

end up with dN−1 = 1 and by convention we take µN = δ4.
Next consider θ+ B (θ+

i )i∈J0,N−1K (where for any r ∈ R, r+ = r ∨ 0) and let a B (ai)i∈J0,N−1K be
the probability measure defined from the death proportions (di)i∈J0,N−1K as in (5), in particular
a0 > 0. The next assertion can be seen as a generalization of Theorem 1.

Proposition 17 The law of TY is MG(θ+, a).
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To prove this result, consider an intertwining between the inhomogeneous Y and a homogeneous
Markov chain Z constructed as in the beginning of section 4, but with θ replaced by θ+. More
precisely, Z takes values in Ē B J0, N − 1K t {4}, starts from 0 and its transition matrix Q̃ is
given by

∀ i, j ∈ Ē, Q̃(i, j) B


θ+
N−1−i , if i = j ∈ J0, N − 1K
di(1− θ+

N−1−i) , if i ∈ J0, N − 1K and j = 4
(1− di)(1− θ+

N−1−i) , if i ∈ J0, N − 2K and j = i+ 1
1 , if i = j = 4
0 , otherwise

(18)

Again we denote by Λ the Markov kernel from Ē to S̄ defined in (8). Then we have

Lemma 18 There exists a Markovian coupling between Y and Z such that for any time n ∈ N,
the conditional law of Yn knowing Z0, Z1, ..., Zn is

L(Yn|Z0, Z1, ..., Zn) = Λ(Zn, ·)

Proof
We still have L(Z0)Λ = m0 = L(Y0), but since Y is not homogeneous, the intertwining cannot be
reduced to an intertwining property between transition matrices.
First construct (Yi, Zi)i∈J0,IK in the following way: Begin by considering (Y )i∈J0,IK as before. Next,
define

∀ i ∈ J0, IK, Zi B

{
i , if Yi ∈ S
4 , if Yi = 4

Let us check the assertion of the above lemma for n ∈ J0, IK. If Zn = 4, then by construction and
from the fact that 4 is absorbing, we know that Yn = 4, so the relation is satisfied. On the other
hand, if Zn 6= 4, then we just know that Yn 6= 4. But (16) indicates that for n ∈ J0, IK, the law
of Yn is m̃n and by construction µn is the renormalization of the restriction of m̃n to S, thus we
get the relation of the lemma.
Next the construction of (Yi, Zi)i∈JI+1,+∞J is more traditional. Indeed, let Ê B JI,N − 1K t {4},
Q̂ be the Ê × Ê-restriction of Q̃ and Λ̂ be the Ê × S̄-restriction of Λ. These matrices are Markov
kernels and we check from the extension of (17) to i ∈ JI,N − 1K that we have

Λ̂P̄ = Q̂Λ̂

(see the proof of Lemma 9). Since furthermore we have L(ZI)Λ̂ = L(YI) with L(ZI) = m̃I(S)δI +
m̃I(4)δ4 ∈ P(Ê), the arguments of Diaconis and Fill [5] enables us to construct a Markov chain
(Ŷi, Ẑi)i∈JI+1,+∞J such that
- we have (ŶI , ẐI) = (YI , ZI)
- (Ŷi)i∈JI+1,+∞J is a homogeneous Markov chain with transitions described by P̄
- (Ẑi)i∈JI+1,+∞J is a homogeneous Markov chain with transitions described by Q̂, or equivalently
by Q̃
- at any time n ∈ JI,+∞J, the conditional law of Ŷn knowing ẐI , ẐI+1, ..., Ẑn is

L(Ŷn|ẐI , ẐI+1, ..., Ẑn) = Λ̂(Ẑn, ·)
= Λ(Ẑn, ·)

These facts lead us to define (Yi, Zi)i∈JI+1,+∞J B (Ŷi, Ẑi)i∈JI+1,+∞J, because we then easily deduce
the properties announced in the above lemma. In particular, notice that for n ∈ JI,+∞J, to condi-
tion Yn with respect to (Z0, Z1, ..., Zn) is the same as to condition with respect to (ZI , ZI+1, ..., Zn)
(since (Z0, Z1, ..., ZI) is deterministic if Zn 6= 4).
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Now it is easy to deduce Proposition 17. Indeed, the proof of Lemma 10 is still valid and shows
that L(TY ) = L(TZ). It is quite clear that TZ is distributed as MG(θ+, a). We remark that the
families (µi)i∈J0,N−1K and (di)i∈J0,N−1K retain their interpretations as local equilibria and death
proportions, but with respect to the speeded up Markov chain Y , not X.

But we are interested in TX , not in TY . By construction of Y , it appears that TX = S(TY ), nev-
ertheless this relation does not seem easy to exploit in general, since S and TY are not independent.
Let S−1 be the generalized inverse of S:

∀ n ∈ N, S−1(n) B inf{k ∈ N : S(k) ≥ n}

Then it is immediate to see that we also have

TY = S−1(TX) (19)

and since TX and S−1 are independent, this equality and Proposition 17 implicitely determine the
law of TX :

Lemma 19 The law L(TX) ∈ P(N∗) is uniquely determined by the fact that if T is distributed as
L(TX) and is independent of S, then S−1(T ) has MG(θ+, a) as law.

Proof

It is sufficient to write that for any n ∈ N∗, we have

MG(θ+, a)[n] = P[S−1(T ) = n]

=
∑

k∈J1,nK

P[S−1(k) = n, T = k]

=
∑

k∈J1,nK

P[S−1(k) = n]P[T = k]

(notice that for any k ∈ N, S−1(k) ≥ k), and since for any n ∈ N∗, P[S−1(n) = n] > 0 these
identities enable to compute iteratively P[T = n] for any n ∈ N∗.

�

We could deduce from the above proof an explicit formula for the law of TX , but there is a simpler
way to deduce it.

Proposition 20 For any n ∈ N∗,

P[TX = n] =
∑

k∈J1,nK

bn,kMG(θ+, a)[k] (20)

where for any k ∈ J1, nK,

bn,k B
∏

j∈J0,(k−1)∧(I−1)K

(1− θN−1−j)
∑

i0+···+i(k−1)∧(I−1)=n−k
θi0N−1θ

i1
N−2 · · · θ

i(k−1)∧(I−1)

N−1−(k−1)∧(I−1)

In particular (bn,k)n∈N∗,k∈J1,nK only depends on the negative eigenvalues, whileMG(θ+, a) is defined
in terms of the nonnegative eigenvalues.
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Proof

To simplify the notation, let us denote for any k ∈ N, θ̂k = θN−1−k ∧ 0 (with the convention that
θ̂k = 0 for all k ≥ N). Next consider the polynomial in the z variable defined by

Qk(z) B
∏

j∈J0,k−1K

z − θ̂j
1− θ̂j

Then write for any n ∈ N,

zn =
∑

k∈J0,nK

cn,kQk(z) (21)

with for any k ∈ J0, nK,

cn,k B
∏

j∈J0,k−1K

(1− θ̂j)
∑

i0+···+ik=n−k
θ̂i00 θ̂

i1
1 · · · θ̂

ik
k (22)

(in particular c0,0 = 1). To get these formulas, use the observations that for any n ∈ N and
k ∈ J0, nK, zn+1 = zzn and XQk(z) = (1− θ̂k)Qk+1(z) + θ̂kQk(z), which can be translated into the
iterative relations

cn+1,0 = cn,0θ̂0

cn+1,k = cn,k−1(1− θ̂k−1) + cn,kθ̂k, for k ∈ J1, nK

cn+1,n+1 = cn,n(1− θ̂n)

If the θn, for n ∈ N, were nonnegative, we would recognize that cn,k = P[Rn = k], where (Rn)n∈N
is a Markov chain on N starting from 0 whose transitions are described by

∀ n ∈ N, P[Rn+1 = Rn + 1|Rn] = 1− θ̂Rn = 1− P[Rn+1 = Rn|Rn]

and (22) would follow without difficulty. But conversely, one can directly check by an elementary
combinatorial argument that the above iterative relations are satisfied if, for n ∈ N and k ∈ J0, nK,
we take cn,k as defined in (22), without any assumption on the signs of the θn, for n ∈ N.
Next we can translate (21) into information about absorption time: for any time n ∈ N∗, we have

P[TX ≤ n] = P[Xn = 4]
= m0P̄

n
1{4}

= m0

 ∑
k∈J1,nK

cn,kQk(P̄ )

1{4}

=
∑

k∈J1,nK

cn,km0Qk(P̄ )1{4}

=
∑

k∈J1,nK

cn,kP[Yk = 4]

=
∑

k∈J1,nK

cn,kP[TY ≤ k]

So using that for any n ∈ N∗, P[T = n] = P[T ≤ n] − P[T ≤ n − 1], with T = TX or T = TY , we
obtain

P[TX = n] =
∑

k∈J1,nK

bn,kP[TY = k]
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with for any k ∈ J1, nK,

bn,k B cn,n +
∑

j∈Jk,n−1K

cn,j − cn−1,j

To recover the formula given in the proposition, we notice that by the above iterative relations,

cn,j − cn−1,j = cn−1,j−1(1− θ̂j−1)− cn−1,j(1− θ̂j)

so

bn,k = cn,n − cn−1,n−1(1− θ̂n−1) + cn−1,k−1(1− θ̂k−1)

= cn−1,k−1(1− θ̂k−1)

We get the announced result, by taking into account that θ̂j = 0 for j ≥ I.
�

One can give a reduced formula for the (bn,k)n∈N∗,k∈J1,nK appearing in the above proposition, at least
if all the negative eigenvalues are distinct. For n ∈ N, let pn(x) B xn be the nth monomial, then in
terms of divided difference, we have for any k ∈ J0, nK, and any real numbers x0 < x1 < · · · < xk,∑

i0+···+ik=n

xi00 x
i1
1 · · ·x

ik
k = pn+k[x0, x1, ..., xk] (23)

=
∑
i∈J0,kK

xn+k
i∏

j∈J0,kK\{i} xi − xj

thus for any n ∈ N∗ and k ∈ J1, nK,

bn,k =
∏

j∈J0,(k−1)∧(I−1)K

(1− θN−1−j)
∑

i∈J0,(k∧I)−1K

θn−k−1+k∧I
N−1−i∏

j∈J0,(k∧I)−1K\{i} θN−1−i − θN−1−j

One has to be careful about the decomposition of the law of TX given in Proposition 20, since some
of the terms of the sum can be negative. Indeed, bn,k is nonpositive if n−k is odd and nonnegative
otherwise. Nevertheless, it seems that some partial sums are positive, see the third point in the
remarks below.

Remarks 21

1) The probability measure a = (ai)i∈J0,N−1K which appears in Propositions 17 and 20 satisfies
ai > 0 ⇒ ai−1 > 0, for any i ∈ JN − I,N − 1K. In fact, if ai > 0 then dN−1−i > 0, which means
there exists an element x ∈ S in the support of m̃N−1−i such that P̄ (x,4) > 0, but since m̃N−i is
the transportation of m̃N−1−i through the Markov matrix (P̄ − θiIdS̄)/(1− θi) whose diagonal is
positive, x also belongs to the support of m̃N−i, so dN−i > 0 and ai−1 > 0. We believe that this
condition may be true in general for i ∈ J1, N − 1K, that is why we alluded to it in the previous
section. It would be a consequence of the property that the mapping associating to i ∈ J0, N − 1K
the support of µi is nondecreasing.

2) Let ΘsM be the set of eigenvalues (θi)i∈J0,N−1K in nonincreasing order of irreducible and
reversible N ×N subMarkovian matrices. It seems it is not easy to characterize ΘsM, since this is
related to the famous nonnegative inverse eigenvalue problem, see for instance the overview given
by Egleston, Lenker, Terry and Narayan [9].

3) Suppose given a family θ = (θi)i∈J0,N−1K ∈ ΘsM and a probability measure a = (ai)i∈J0,N−1K
on J0, N − 1K, satisfying that for any i ∈ J1, N − 1K, ai > 0⇒ ai−1 > 0 (or equivalently if a is given
by (5), that for any i ∈ J0, N − 2K, di > 0⇒ di+1 > 0). In a similar spirit to what we have done in
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the previous section and at least under the above restriction on a, it seems possible that we can find
a Markov chain as in the present section, whose absorption time is distributed as in Proposition
17. We assume for the remainder of these remarks that such a Markov chain exists, denoted X(θ,a).
For simplicity, we also make the assumption that the death proportions (di)i∈J0,N−1K associated to
our original Markov chain X satisfy the condition ∀ i ∈ J0, N − 2K, di > 0⇒ di+1 > 0.

4) Let J ≥ I be defined by

J B inf{i ∈ J0, N − 1K : θN−1−i > 0}

and for any j ∈ J0, JK, let us decompose the sum of Proposition 17 into

P[TX = n] =
∑

k∈J1,n∧jK

bn,kMG(θ+, a)[k] +
∑

k∈Jj+1,nK

bn,kMG(θ+, a)[k] (24)

Then the last sum is nonnegative and it can be written in the following form∑
k∈Jj+1,nK

bn,kMG(θ+, a)[k] = MG(θ+, a)[Jj + 1,∞J]P[TX(θ,ǎ) = n] (25)

where the probability measure ǎ is defined as a, but in terms of the modified death proportions
ď B (ďi)i∈J0,N−1K given by

∀ i ∈ J0, N − 1K, ďi B

{
0 , if i ∈ J0, j − 1K
di , otherwise

Let us also denote d = (di)i∈J0,N−1K and write Z(d) for the chain Z constructed after Proposition
17, to indicate explicitely its dependence on the vector d. From the fact that j ∈ J0, JK, it follows
that

∀ k ∈ Jj + 1,∞J, P[TZ(d) = k|TZ(d) ≥ j + 1] = P[TZ(ď) = k]

and this can be rewritten in the form

∀ k ∈ Jj + 1,∞J, P[TZ(d) = k] = P[TZ(d) ≥ j + 1]P[TZ(ď) = k]
= MG(θ+, a)[Jj + 1,∞J]MG(θ+, ǎ)[k]

Furthermore we have for any k ∈ J0, jK, MG(θ+, ǎ)[k] = 0, so if we apply Proposition 17 to the
Markov chain X(θ,ǎ), we get (25).

5) In the above considerations, let us take j = I. It is tempting to believe that the conditional
law of TX knowing that TY > I is the law of TX(θ,ǎ) , so we can identify the quantity in (25) as
P[TX = n, TY > I] and it would follow that the first sum in the r.h.s. of (24) (with j = I) is equal
to P[TX = n, TY ≤ I]. But this is not true, since the latter sum can be negative. Indeed, assume
that dI > 0 and let ã be the probability measure on J0, N − 1K defined as a, but in terms of the
modified death proportions d̃ B (d̃i)i∈J0,N−1K given by

∀ i ∈ J0, N − 1K, d̃i B


0 , if i ∈ J0, I − 2K
1/2 , if i = I − 1
di , otherwise

Then we get thatMG(θ+, ã)[k] = 0 for any k ∈ J1, I − 1K andMG(θ+, ã)[I] > 0, so that for n ≥ I,
the sign of ∑

k∈J1,n∧IK

bn,kMG(θ+, a)[k] = bn,IMG(θ+, a)[I]
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is (−1)n−I .
�

There is one situation where the implicit formula (19) can be simplified. Put an unoriented graph
structure on S̄ by saying that x, y ∈ S̄ are neighbours if P̄ (x, y) > 0 or P̄ (y, x) > 0. We denote by ρ
the corresponding distance and assume that the support of m0 is included in {x ∈ S : ρ(x,4) > I}.
Then we have that di = 0 for all i ∈ J0, I − 1K (this is equivalent to the above condition), so a.s.
TY > I and we can write

TY = TX + I − S(I) (26)

Let ψ be the moment generating function of the law MG(θ+, a) and ϕ be the moment generating
function of I − S(I) (which is a sum of N independent Bernoulli random variables of respective
parameters (−θN−1−i/(1−θN−1−i))i∈J0,I−1K). Then the moment generating function of TX is given
by

∀ u ∈ [0, 1], E[uTX ] =
ψ(u)
ϕ(u)

(27)

We will encounter such a situation in next section.
More generally, it is natural to try to decompose TX as a mixture by conditioning with respect to
the σ-field generated by {TX > S(I)} = {TY > I}. Indeed, conditioned by the event {TY > I},
(YI+n)n∈N is a homogeneous Markov chain with initial distribution µI and transition kernel is P̄ .
Thus according to the proof of Lemma 18, the law of TY − I conditioned by {TY > I} is the
distribution of the absorption time for a Markov chain Z on JI,N − 1K t {4} starting from I and
whose transitions are described by the restriction to (JI,N − 1K t {4})2 of the matrix Q̃ defined
in (18). So we have

L(TX − S(I)|TX > S(I)) = MG(θ̌, ǎ)

where θ̌ = (θi)i∈J0,N−1−IK and ǎ is the probability measure on J0, N − 1− IK defined by

∀ i ∈ J0, N − 1− IK, ǎN−1−I−i B dI+i
∏

j∈JI,I+i−1K

(1− dj)

Unfortunately the conditional law L(TX |TX > S(I)) is not easy to deduce, because on {TX > S(I)},
TX and S(I) are no longer independent in general. Let us introduce the Markov kernel K from N∗
to J0, IK describing the conditional law L(S(I)|TX − S(I)). Let us also consider ν the probability
measure on J0, IK which is the distribution of TX conditioned on {TX ≤ S(I)}. Then to sample
according to L(TX) one has to do the following: first to draw a Bernoulli variable B of parameter
m̃I(S) =

∏
j∈J0,I−1K(1 − dj). If B = 1, one samples T according to MG(θ̌, ǎ) and adds to T a

variable distributed according to K(T, ·). If B = 0, one samples according to ν. In particular,
it appears that TX is stochastically dominated by I + T̃ , where T̃ is distributed according to the
mixture 1−

∏
j∈J0,I−1K

(1− dj)

 δ0 +
∏

j∈J0,I−1K

(1− dj)MG(θ̌, ǎ)

But a better bound can be obtained by noticing directly that TX is stochastically dominated by
TY . Both of these bounds are independent of the negative eigenvalues.
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7 Examples

We present three illustrations of the previous results: finite birth and death chains which are
absorbed at one end of their state space interval, the situation of constant probability/rate of ab-
sorption and the case N = 2 in continuous time. Their common point is that the death proportions
can be easily computed (at least when the initial point is the non-absorbing end in the birth and
death setting). We hope to consider in future studies more serious applications, where estimates
of death proportions are more involved (even if from a complexity point of view, they only ask for
the knowledge of (m0P̄

n(4))n∈J1,N−1K, once the Dirichlet eigenvalues are known, see remark 7).

•We begin with the birth and death setting, which was the first motivation for this investigation
(see [6] and in particular the end of its introduction for historical background). We take S =
J0, N − 1K and write 4 = N , where N ∈ N∗.

First consider the discrete time situation, where the absorbing transition matrix P̄ satisfies

∀ i, j ∈ J0, NK, P̄ (i, j) > 0 ⇐⇒ |i− j| = 1 and i 6= N

Then its restriction P to J0, N − 1K2 is irreducible and reversible, with respect to the measure π
defined by

∀ i ∈ J0, N − 1K, π(i) B
∏

j∈J0,i−1K

P (j, j + 1)
P (j + 1, j)

(28)

As usual, let (θi)i∈J0,N−1K be the eigenvalues of P , in decreasing order (here they are all of multi-
plicity 1). Then we recover the following well-known result:

Corollary 22 Assume that the eigenvalues are nonnegative, i.e. θN−1 ≥ 0, and that the initial
distribution m0 is δ0. Then TX is distributed as a sum of independent geometric distributions of
respective parameters the θi, for i ∈ J0, N − 1K.

Indeed, for any n ∈ J0, N −1K, the support of P̄n(0, ·) is included in J0, nK, so Lemma 6 shows that
the death proportions di, for i ∈ J0, N − 2K, are null. In particular, we get that the probability
measure a defined by (5) is just δ0. So Proposition 22 is an immediate consequence of Theorem 1.

The above arguments can also be applied when there are some negative eigenvalues (see equation
(17)). Taking into account the discussion after Remarks 21, in particular (26) and (27), we get

Corollary 23 Without any assumptions on the sign of the eigenvalues, the moment generating
function of TX , when X is starting from 0, is given by

∀ u ∈ [0, 1], E[uTX ] =
∏

i∈J0,N−1K

(1− θi)u
1− θiu

This has the probabilistic interpretation that if we add to TX an independent sum of independent
Bernoulli random variables of respective parameters (θ−i /1+θ−i )i∈J0,N−1K then we get a random vari-
able distributed as a sum of independent geometric random variables of parameters (θ+

i )i∈J0,N−1K.

Let us come back to the case of nonnegative eigenvalues. For more general initial distributions
m0 ∈ P(J0, N − 1K) than δ0, the law of TX is a “true” mixture of sum of geometric distributions
(which can sometimes be simplified, for instance ifm0 is the quasi-stationary law, we get a geometric
law of parameter θ0, see Remark 8). Indeed, if I0 B max{i ∈ J0, N−1K : m0(i) > 0}, then L(TX) is
a mixture of the distributions G(θ0, θ1, ..., θN−1), G(θ1, θ2, ..., θN−1), ..., G(θI0 , θI0+1, ..., θN−1), with
the notation of the introduction, since we must have di = 0 for i ∈ J0, N − 2− I0K. The situation
becomes more involved if there exists some negative eigenvalues. But if we have I0 < N − 1 − I,
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where I is the number of negative eigenvalues, then according to (26), there exists a probability
measure a = (ai)i∈J0,I0K such that

∀ u ∈ [0, 1], E[uTX ] =
∑

i∈J0,I0K

ai
∏

j∈Ji,N−1K

(1− θj)u
1− θju

Let us now deal with the continuous time situation, which is simpler. Suppose L̄ is a generator
on J0, NK satisfying

∀ i, j ∈ J0, NK, L̄(i, j) > 0 ⇐⇒ |i− j| = 1 and i 6= N

As above, its restriction L to J0, N − 1K2 is irreducible and reversible with respect to the measure
π defined as in (28), with P replaced by L. We denote by (λi)i∈J0,N−1K the eigenvalues of −L in
increasing order. Then we have the equivalent of Proposition 22:

Corollary 24 Assume that the Markov process X starts from 0. Then TX is distributed as a sum
of independent exponential distributions of respective parameters the λi, for i ∈ J0, N − 1K.

This is an immediate consequence of the recursive formula (15), which implies that the death
proportions di are null for i ∈ J0, N − 2K. We also recover the local equilibria that were considered
in [6]:

∀ i ∈ J0, N − 1K, µi = δ0

∏
j∈J0,i−1K

L− λN−1−iIdJ0,N−1K

λN−1−i

even if they were not described so explicitely there. As above, for more general initial distribution
m0 ∈ P(J0, N−1K), L(TX) is a mixture of the sums of exponential distributions E(λ0, λ1, ..., λN−1),
E(λ1, λ2, ..., λN−1), ..., E(λI0 , λ2, ..., λN−1), where I0 B max{i ∈ J0, N − 1K : m0(i) > 0}.

• We now come to the example of constant absorption probability. It is characterized by the
existence of a ∈ (0, 1) such that

∀ x ∈ S, P̄ (x,4) = 1− a

This is equivalent to the fact that P can be written under the form P = aP̃ , where P̃ is a Markov
transition matrix on S. Under our usual assumption that P is irreducible and reversible, P̃ is also
irreducible and reversible. Let (θ̃i)i∈J0,N−1K be its eigenvalues in nonincreasing order, which now
belong to [−1, 1]. Thus

∀ i ∈ J0, N − 1K, θi = aθ̃i

and since θ̃0 = 1, we get a = θ0.
In this situation, whatever the initial distribution m0 ∈ P(S), the absorption time TX is distributed
as the geometric law G(θ0). This is an immediate consequence of the fact that at each time n ∈ N,
if the chain has not yet been absorbed, then it has a chance 1 − θ0 to be absorbed at next step,
independent of the underlying position. Taking into account (17) (for all i ∈ J0, N − 1K), it follows
that we have for the death proportions

∀ i ∈ J0, N − 1K, di =
1− θ0

1− θN−1−i

Let a = (ai)i∈J0,N−1K be the weight given by (5):

∀ i ∈ J0, N − 2K, ai =
1− θ0

1− θi

∏
j∈J0,N−2−iK

θ0 − θN−1−j
1− θN−1−j

(29)
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If all the eigenvalues are assumed to be nonnegative, we get the identity

G(θ0) =
∑

i∈J0,N−1K

aiG(θi, θi+1, ..., θN−1)

If there are some negative eigenvalues, we end up with a result even more surprising. Let ΘM

be the set of eigenvalues (θi)i∈J0,N−1K in nonincreasing order of irreducible and reversible N × N
Markovian matrices. If (θi)i∈J0,N−1K is an a priori given family of numbers with θ0 ∈ (0, 1) and such
that (θi/θ0)i∈J0,N−1K belongs to ΘM and if in (20) we put the weight a defined by (29), we obtain
G(θ0)[n] = (1 − θ0)θn−1

0 . Indeed, let P̃ be an irreducible and reversible S × S Markovian matrix
admitting (θi/θ0)i∈J0,N−1K as eigenvalues. It is then sufficient to apply (20) with the absorbing
transition matrix P̄ naturally constructed from its S × S-restriction P = θ0P̃ .

Again the continuous time equivalent is simpler. Let L̄ be an absorbing generator satisfying
our usual hypotheses and assume that there exists a constant a > 0 such that

∀ x ∈ S, L̄(x,4) = a

Necessarily a = λ0 and independently from the initial distribution m0 ∈ P(S), the absorption time
TX is distributed as an exponential distribution E(λ0). Computing the death proportions via (15),
we obtain the identity

E(λ0) =
∑

0≤i≤N−1

aiE(λi, λi+1, ..., λN−1)

with

∀ i ∈ J0, N − 2K, ai =
λ0

λi

∏
j∈Ji+1,N−1K

λj − λ0

λj

• To finish, we investigate the case N = 2 in continuous time, to determine the set of laws of
absorption time in this very simple situation.
So we consider the state space S̄ = {0, 1,4} endowed with the generator matrix

L̄ B

 −(a+ b) a b
c −(c+ d) d
0 0 0


with a > 0, c > 0 and b ∨ d > 0, to insure the validity of assumption (B1). Note that (B2) is
automatically satisfied here.

The eigenvalues of L =
(
−(a+ b) a

c −(c+ d)

)
are

λ0 =
1
2

(a+ b+ c+ d−
√

(a+ b+ c+ d)2 − 4(bd+ cb+ da)) (30)

λ1 =
1
2

(a+ b+ c+ d+
√

(a+ b+ c+ d)2 − 4(bd+ cb+ da)) (31)

Let also be given a probability measure m0 B (e, f) on S. Using the formula

m0L̄ = −λ1m0 + λ1((1− d0)µ1 + d0δ4)

where µ1 is a probability measure on S, it follows that m0L̄(4) = eb+ fd = λ1d0, i.e.

d0 =
eb+ fd

λ1
(32)
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With these quantities, the law of the absorption time of the corresponding Markov process is given
by

(1− d0)E(λ0) ∗ E(λ1) + d0E(λ1)

Conversely, we wonder if for any real numbers 0 < λ0 < λ1 and 0 ≤ d0 < 1, we can find
a, b, c, d, e, f as above such that (30), (31) and (32) are satisfied. This is indeed true and even if
we only consider birth and death processes, namely satisfying the restriction b = 0.

Proposition 25 Given 0 < λ0 < λ1 and 0 ≤ d0 < 1 there exist a > 0, c > 0, d > 0 and f ∈ [0, 1]
such that

λ0 =
1
2

(a+ c+ d−
√

(a+ c+ d)2 − 4da)

λ1 =
1
2

(a+ c+ d+
√

(a+ c+ d)2 − 4da)

d0 =
fd

λ1

Proof

The two first equations of the proposition are equivalent to{
ad = λ0λ1

a+ c+ d = λ0 + λ1

and this leads to the following second order equation in a:

a2 + (c− λ0 − λ1)a+ λ0λ1 = 0 (33)

Its discriminant

(c− λ0 − λ1)2 − 4λ0λ1 = (c− (
√
λ1 −

√
λ0)2)(c− (

√
λ1 +

√
λ0)2)

must be nonnegative, so we must have c ∈ R∗+ \ ((
√
λ1−

√
λ0)2, (

√
λ1 +

√
λ0)2). Requiring further-

more that equation (33) must have a positive solution implies that c ∈ (0, (
√
λ1 −

√
λ0)2] and for

these values of c, we get two positive solutions (which is double for c = (
√
λ1 −

√
λ0)2),

a−(c) B
1
2

(λ0 + λ1 − c−
√

(c− λ0 − λ1)2 − 4λ0λ1)

a+(c) B
1
2

(λ0 + λ1 − c−
√

(c− λ0 − λ1)2 − 4λ0λ1)

As c goes from 0 to (
√
λ1 −

√
λ0)2, a−(c) (respectively a+(c)) goes from λ0 to

√
λ0λ1 (resp. from

λ1 to
√
λ0λ1).

To end the proof, we note that the third equation of the above proposition permits to choice d0 in
the range [0, d/λ1] = [0, λ0/a], so all values of d0 in [0, 1) can be reached, since λ0/a−(c) converges
to 1− as c goes to 0+.

�

The fact that birth and death processes lead to the same set of laws of absorption times as in the
general case (always under assumptions (B1) and (B2)) is specific to N = 2, because for N ≥ 3,
we may have multiple eigenvalues in the general case, but not for birth and death processes. We
wonder if for N ≥ 3, the set of laws of absorption times of birth and death processes is dense in
the set of general absorption times.
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