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Abstract

We model the effect of a road safety measure on a set of target sites with a control area for

each site, and we suppose that the accident data recorded at each site are classified in different

mutually exclusive types. We adopt the before-after technique and we assume that at any

one target site the total number of accidents recorded is multinomially distibuted between the

periods and types of accidents. In this paper, we propose an MM algorithm for obtaining the

constrained maximum likelihood estimates of the parameter vector. We compare it with a GP-

EM algorithm, based on gradient projections. The performance of the algorithms is examined

through a simulation study of road safety data.

Keys Words Road Safety Measure, Multinomial model, Constrained Maximum Likelihood, MM

algorithm, GP-EM algorithm, Standard errors, Monte Carlo Simulation.

1 Introduction

Most statistical studies involving data collecting (random phenomenon modelling, experiment plan-

ning, opinion poll, etc) not only bring out the problems of parameter estimation ( looking for optimal

solutions) but also those related to the evaluation of the accuracy of those estimations. In many of

the statistical evaluation problems, and particularly in multivariate statistics, interest parameters

are not functionally independent, which means there are relations - constraints - between them

(Aitchison and Silvey 1958, Crowder 1984). These constraints add further difficulties to bring out

the solutions (estimations) and their accuracy (standard errors). But, sometimes incorporation of

constraints leads to better or more acceptable estimates (cf. Jamshidian 2004 for details).

Most problems in statistics involve the optimization of a function such as a likelihood or a

sum of squares. EM (Expectation Maximization) algorithms (Dempster, Laird and Rubin 1977) are

∗correspondance author
†correspondance author
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the most useful algorithms for maximum likelihood (ML) estimation since they consistently drive

the likelihood uphill by maximizing a simple surrogate function for the loglikelihood. They are

essentially based on the notion of missing data principle. An EM algorithm operates by identifying

the theoritical complete data space. In its E step, the conditional expectation of the complete data

loglikelihood is computed with respect to the observed data. The surrogate function created by the

E step is a minorizing function. In the M step, this minorizing function is maximized with respect

to the parameters of the underlying model. But, iterative optimization of a surrogate function

as exemplified by an EM algorithm does not necessarily require missing data. In fact, every EM

algorithm is a special case of the more general class of MM (Minorization Majorization) optimization

algorithms (cf. Lange, Hunter and Yang 2000 and Hunter and Lange 2004), which typically exploit

convexity rather than missing data principle in minorizing or majorizing an objective function.

On the other hand, Jamshidian (2004) proposed a globally convergent generalized gradient pro-

jection algorithm (GP) adapted to any maximum likelihood estimation problem that requires incor-

poration of linear equality and inequality constraints. Global convergent means that it converges

to local maximizer of a non linear functional from almost any starting value (cf. Jamshidian 2004).

As a special case, GP algorithm can be applied for solving restricted ML problems where the EM

algorithm is applicable. As claimed by the author, GP algorithm is simple to implement and is more

efficient than its competitors.

In this paper and for multidimensional statistical modelling of a road safety measure, we propose

an MM algorithm which cycles through the components of the vector parameter and updates one

component at a time which leads to closeform solutions of the parameters. It is simple to implement

without any inversion matrix. Moreover, the inequality constraints are integrated easily. Standard

errors are obtained by exploiting quantities readily available by running the algorithm. Its perfor-

mance is compared with the GP algorithm, which is adapted to this setting, through a simulation

study of road safety data.

The paper is organized as follows: Section 2 is devoted to the description of road safety data

and problem formulation. A statistical model based on multinomial law depending on an unknown

vector of parameters is described. In Section 3, we propose an MM algorithm for restricted maxi-

mum likelihood estimation of the vector of parameters. In the same section, a method of estimation

of standard errors, based on the code of the MM algorithm, is described. Section 4 gives a brief

description of GP algorithm and the method of estimation of its standard errors. Illustrative numer-

ical experiments are presented in Section 5. We also analyse, the performance of the two algorithms

via the Mean Square Error (MSE). Concluding remarks in Section 6 end the paper.

2 Modelling road accident data

2.1 Data and problem formulation

The data comes from a road safety measure (crossroad lay-out, surface of a motorway section, etc...)

that has been applied to s sites. We suppose that the total accident numbers is known for each

2
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site before and after the measure for significant periods (often equal and generally longer than one

year). The problem is: how can one estimate the measure’s mean effect for the whole set of s sites,

when each site counts r(r > 1) accident types ?

We denote by y1jk (resp. y2jk) the number of type j accidents on site k before (resp. after)

the setting up of the measure, nk the total accident number on site k and N =
∑s

k=1 nk. In or-

der to take some external factors into account (such as traffic flow, speed limit variation, weather

conditions,...), let’s also suppose that, for the same periods, we know the data for areas where the

measure is not applied but which are linked to the target sites thus enabling to obtain the control

coefficient denoted by zjk , j = 1, . . . , r; k = 1, . . . , s.

Here zjk is the multiplying coefficient which has to be used in the control area linked to site k

and for accident type j to convert the accident number in the before period into the accident number

in the after period. One then has to simultaneously combine data crash of experimental sites and

control areas in order to efficiently estimate the mean effect of the measure and the different global

risk of accident relatively to all sites and accident types.

2.2 Statistical model

Different statistical models can be used to model the mean effect of a road safety measure and the

global risks of different accident. The model used in this paper has been proposed for modelling

such data set by N’Guessan and al. (2001). To formulate it, let’s consider the period before (resp.

after) the measure and note Y1jk (resp. Y2jk) the random variable (r.v.) giving the type j accident

number on target site k. Then, we consider the joint random vector

Y(k) = (Y11k, · · · , Y1rk, Y21k, · · · , Y2rk) k = 1, . . . , s

whose observed value is y(k) = (y11k, · · · , y1rk, y21k, · · · , y2rk). We then assume that for a fixed k,

the random vector Y(k) follows the multinomial law:

IP [Y(k) = y(k)] =















nk!
2

∏

t=1

r
∏

j=1

ytjk!















2
∏

t=1

r
∏

j=1

q
ytjk

tjk (1)

where

q1jk =
pjk

1 + θ0zk

, q2jk =
θ0zjkpjk

1 + θ0zk

, j = 1, 2, · · · , r (2)

with θ0 (θ0 > 0), the parameter mean effect of the road safety measure for all sites and accident

types, the pjk (0 < pjk < 1) values being auxiliary parameters linked to control areas and target

sites such as
r

∑

j=1

pjk = 1, zk =

r
∑

j=1

zjkpjk. (3)

3
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Through construction of the pattern, two types of parameters can be spotted out among those

linked to s target sites and r accident types: θ0, the interest parameter, and the set of auxiliary

parameters pk = (p1k, p2k, · · · , prk)t, k = 1, 2, · · · , s where t stands for the transpose.

In this paper we focus on the estimation of the parameter vector θ = (θ0,p
t
1,p

t
2, . . . ,p

t
s)

t ∈ IR1+sr

such that
∑r

j=1 pjk = 1 for k = 1, . . . , s. Then the log-likelihood function, to one additive constant,

is given by

L(θ)) =

s
∑

k=1

r
∑

j=1

{y.jkln(pjk) + y2jkln(θ0) − y.jkln(1 + θ0 < zk,pk >)}. (4)

where θ = (θ0,p
t
1,p

t
2, . . . ,p

t
s)

t, y.jk =
∑2

i=1 yijk and < ., . > is the classical inner product.

Now, using iterative procedures, the restricted maximum likelihood estimator (RMLE) θ̂ can be

obtained (cf. N’Guessan et al. 2001). However, the whole parameter vector is updated at one with

an inversion matrix in each iteration of the Newton-Raphson algorithm. In the following Section,

we describe two algorithms which are simple to implement. The equality constraints are integrated

easily and their standard errors are obtained by exploiting quantities readily available by running

the two algorithms. The first one is a new MM algorithm which cycles through the components of

the vector of parameters and updates one component at a time which leads to closeform solutions of

the parameters. The second one is the generalized gradient projection algorithm (GP) (Jamshidian

2004) adapted to any maximum likelihood estimation problem that requires incorporation of linear

equality and inequality constraints.

3 An MM algorithm for constrained estimation

Let α = (α0, α)t, with α = (pt
1,p

t
2, . . . , ,p

t
s) and α0 = θ0. In this section, we propose an MM

algorithm for maximizing L(α) (Eq. (4)) under the same constraints

(A1) hk(α) = 0 k = 1, 2, . . . , s,

where functions hk : IR1+sr 7→ IR are given by:

(A2) hk(α) =< 1r, αk > −1

with 1r = (1, . . . , 1)t ∈ IRr.

3.1 Main results

Let α(m) represent a fixed value of the vector parameter α, and let g1(α|α
(m)) denote a real-valued

function of α, whose form depends on α(m), defined by

g1(α|α
(m)) = cte +

s
∑

k=1

r
∑

j=1

{y.jkln(αjk) + y2jkln(α0) − y.jkln(1 + α
(m)
0 < zk, α

(m)
k >)} (5)

−

s
∑

k=1

y..k

1 + α0 < zk, αk >

1 + α
(m)
0 < zk, α

(m)
k >

+ y..., (6)

4
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where y... =
∑2

t=1

∑r

j=1

∑s

k=1 ytjk. The following lemma states that g1(α|α
(m)) is a minorizing

function of L(α).

Lemma 3.1 For any vector parameter α, we have

g1(α|α
(m)) ≤ L(α) and g1(α

(m)|α(m)) = L(α(m)).

The proof of this lemma is based on the simple application of the convexity of the function (−ln)

(cf. Mkhadri and N’Guessan, 2008). Now, we will introduce the constraints α0 > 0, αjk ≥ 0 and
∑r

j=1 αjk = 1. But, we first begin by introducing the non negative constraints (i) α0 > 0 and

(ii)αjk ≥ 0 for j = 1, . . . , r and k = 1, . . . , s. The maximization of g1(α|α
(m)) under constraints

(i) and (ii) is equivalent to the minimization of −g1(α|α
(m)) subject to the same constraints. The

lemma below gives us a new majorizing function of −L(α) to be minimized under the constraints

(i) and (ii).

Lemma 3.2 Let w be a non negative real scalar (w > 0) and α0k = α0, the new function

g2(α|α
(m)) = −g1(α|α

(m)) + w

s
∑

k=1

r
∑

j=0

{α
(m)
jk ln

α
(m)
jk

αjk

+ (αjk − α
(m)
jk )} (7)

satisfies : g2(α|α
(m)) ≥ −g1(α|α

(m)) and g2(α
(m)|α(m)) = −g1(α

(m)|α(m)).

Proof. The proof is based on the arguments in Hunter and Lange (2004, p.21) for handling the

constraints in MM algorithms, which we recall here. Consider the problem of minimizing a function

f(θ) subject to the constraints vi(θ) ≥ 0 for 1 ≤ i ≤ q, where each vi(θ) is a concave and differentiable

function. Since −vi(θ) is convex, then

−vi(θ) ≥ −vi(θ
(m)) + ∇vi

(θ(m))t(θ(m) − θ),

where t stands for the transpose. The latter is based on the fact that any linear function tangent

to the graph of a convex function is a minimizer at the point of tangency. Then, application of the

similar inequality −ln(y) + ln(x) ≥ x−1(x − y), for x > 0 and y > 0, implies that

vi(θ
(m))[−lnvi(θ) + lnvi(θ

(m))] ≥ vi(θ
(m)) − vi(θ).

Adding the last two inequalities, we can see that

vi(θ
(m))[−lnvi(θ) + lnvi(θ

(m))] + ∇vi
(θ(m)t(θ − θ(m)) ≥ 0,

with equality when θ = θ(m). Summing over j and multiply by a positive tuning parameter w, the

function

h(θ|θ(m)) = f(θ) + w

q
∑

i=1

[vi(θ
(m))

vi(θ
(m))

vi(θ)
+ (θ − θ(m))t∇vi

(θ(m))]

majorizes f(θ) at θ(m). Then, the majorizing function, at θ(m), of −g1(α|α
(m)) subject to the (rs+1)

inequality constraints v0(α) = α0 > 0 and vi(α) = αjk ≥ 0 , for i = 1, . . . , rs (j = 1, . . . , r; k =

1, . . . , s) is defined by

g2(α|α
(m)) = −g1(α|α

(m)) + w

s
∑

k=1

r
∑

j=0

{α
(m)
jk ln

α
(m)
jk

αjk

+ (αjk − α
(m)
jk )},

5
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with α
(m)
0k = α

(m)
0 by convention, which ends the proof.

We will now minimize g2(α|α
(m)) while enforcing the constraint

∑r

j=1 αjk = 1, for k = 1, . . . , s, by

introducing a Lagrange multiplier and looking for a stationary point of the Lagrangian

g2(α|α
(m)) +

s
∑

k=1

λk(
r

∑

j=1

αjk − 1). (8)

The next theorem outlines the closeform solutions of the minimization problem of the latter function

(8).

Theorem 3.3 Let’s assume that all the components of the vector parameter α, at the (m)th itera-

tion, are remaining fixed and equal α(m), then

i) the (m + 1)th iterate of α0 is given

α
(m+1)
0 =

y2.. + wsα
(m)
0

ws +
∑s

k=1 a
(m)
k y..k < zk, α

(m)
k >

. (9)

ii) the (m + 1)th iteration of the jk component of α (j = 1, . . . , r and k = 1, . . . , s) is defined by

α
(m+1)
jk =

y.jk + wα
(m)
jk

w + y..k + a
(m)
k y..kα

(m+1)
0 [zjk− < zk, α

(m)
k >]

, (10)

where

a
(m)
k =

1

1 + α
(m)
0 < zk, α

(m)
k >

.

Proof. Computation of the score functions of the function (8) with respect to the parameters

α0 and αjk, for j = 1, . . . , r; k = 1, . . . , s, respectively, and equalizing to zero leads to the following

system equations

−y2..

α0
+

s
∑

k=1

a
(m)
k y..k < zk, α

(m)
k > +w

s
∑

k=1

{1 −
α

(m)
0k

α0k

} = 0

−y.jk

αjk

+ a
(m)
k y..kα0zjk + w(1 −

α
(m)
jk

αjk

) + λk = 0.

Now, putting by convention α0k = α0 and α
(m)
0k = α

(m)
0 in the first equation, then the result of

equation (9) follows easily. The second equation can be written as

−y.jk + αjk[a
(m)
k y..kα0zjk + λk + w] − wα

(m)
jk = 0.

Replacing α0 and αjk by α
(m)
0 and α

(m)
jk respectively, and summing on j reveals that

λk = +y..k − a
(m)
k y..kα

(m+1)
0 < zk, α

(m)
k >,

and yields the update (10).

Remark 1 Since the 1+sr components are computed one by one and in closeform, it makes the MM

algorithm easy to implement. So our MM algorithm is a so-called Cyclic MM algorithm (cf. Hunter

6
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and Lange 2004) which cycles through the parameters updating one at a time instead of updating

the whole vector at once as in N’Guessan et al. (2001). Moreover, a cyclic MM algorithm always

drives the objective function in the right direction; indeed, every iteration of a cyclic MM algorithm

is simply an MM iteration on a reduced parameter set (cf. Hunter and Lange 2004).

From equations (9) and (10) in the theorem, it is easy to see that all the components of the

parameter α are positives for any fixed positive value of tuning parameter w. The boundness of the

components of α by 1 are guaranted if each component y.jk (j = 1, . . . , r and k = 1, . . . , s) satisfies

a supplementary inequality condition which seems to be often satisfied in practice. The following

corollary summarizes these results.

Corollary 3.4 i) At the (m) step of the MM algorithm and for all w > 0, we have α
(m)
0 > 0 and

α
(m)
jk ≥ 0, for all j = 1, . . . , r; k = 1, . . . , s.

ii) If we assume that 0 < α
(m)
jk < 1 and y.jk ≤ y..k + a

(m)
k y..kα

(m+1)
0 [zjk− < zk, α

(m)
k >] for all

j = 1, . . . , r; k = 1, . . . , s, then 0 < α
(m+1)
jk ≤ 1 for all j = 1, . . . , r; k = 1, . . . , s,.

Proof. i) The result is obvious from the equations (9) and (10), since all terms of these equations

are positive.

ii) Let 0 < α
(m)
jk < 1 and y.jk ≤ y..k + a

(m)
k y..kα

(m+1)
0 [zjk− < zk, α

(m)
k >] for all j = 1, . . . , r; k =

1, . . . , s, then it’s easy to show from equation (10) that 0 < α
(m+1)
jk ≤ 1 for all j = 1, . . . , r; k =

1, . . . , s.

Remark 2 The latter inequality condition on y.jk (j = 1, . . . , r; k = 1, . . . , s) is difficult to establish

analytically, since it depends on the values of the observations (y.jk, zjk) for j = 1, . . . , r and k =

1, . . . , s. But, it seems to be often satisfied in practice as shown in our experimental study.

3.2 Standard error estimates

Besides computing point estimates, statistical inference requires measures of uncertainty, for exam-

ple (asymptotic) variance-covariance matrix of the estimates which is equal to the inverse of the

expected information matrix. In practice, the expected information matrix is well-approximated by

the observed information matrix −∇2L(α) = H(α) computed by differentiating the loglikelihood

L(α) twice. Thus, a standard error of the maximum likelihood estimator (MLE) α̂ can be obtained

by taking square roots of the diagonal terms of the inverse of H(α̂). We can also use direct cal-

culation of the information matrix via EM algorithm (see for instance Oakes, 1999). But,in some

problems, however, direct computation of ∇2L(α) is difficult.

Estimating standard errors of α when applying the EM algorithm appears in Jamshidian and Jen-

nrich (2000). Two approaches, called NDS and NDM, are often considered in this context. The

first numerically differentiates the Fisher score vector at MLE α̂ to give the observed information

matrix H(α̂). The second numerically differentiates the EM operator M(α) and uses an identity

that relates the Jacobian of M(α) at α̂. A specific NDM algorithm called the SEM (supplemented

EM) algorithm was introduced by Meng and Rubin (1991). To overcome some problems of SEM

algorithm when the number of parameters is large, two alternative NDM algorithms called FDM

7
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and REM have been recently proposed by Jamshidian and Jennrich (2000) and are based on the

forward difference and Richardson extrapolation methods of numerical differentiation. They also

proposed a Richardson extrapolation implementation of the NDS approach and they called it RES.

On the other hand, Hunter and Lange (2004) described a procedure similar to SEM algorithm for the

computation of standard errors of the MM algorithm, we call it SuppMM. But, for many problems,

SuppMM can be as numerically instable as SEM. So, we adapt here the three alternative NDM and

NDS algorithms for obtaining standard errors estimates of α̂. We call them hereunder MM-FDM,

MM-REM and MM-RES, respectively. A detailed comparison of these four algorithms, based on a

simulation study of road safety data, is considered in the next Section.

4 Gradient projection algorithm for linear equality constraints

An alternative to MM algorithm is the generalized gradient (GP) algorithm proposed by Jamshidian

(2004) which is adapted to any restricted maximum likelihood problem. A brief description of the

latter algorithm is described here. Consider the following restricetd ML problem

maxθ∈Ω`(θ) where Ω = {θ ∈ IR : Aθ = b}, (11)

where A ia an m by p (m < p) matrix of rank m, and `(θ) is the log-likelihood function which is

supposed to be sufficiently smooth. Let W denote a positive definite matrix, g(θ) the gradient of

`(θ). The generalized gradient of ` in the metric W is given by g̃(θr) = W−1g(θr). Given a feasible

initial value θr ∈ Ω, the GP algorithm cycles through the following steps until it converges to θ̂:

Step 1: Compute d = PW g̃(θr), where PW = I−W−1At(AW−1At)−1A and I is the identity matrix.

If d = 0, stop and declare convergence.

Step 2: Obtain a new point θ̃r = θr + αd by choosing α = argmaxα`(θr + αd) (or alternatively a

smallest integer k ≥ 0 such that `(θr + (1/2)kd) > `(θr).

Step 3: Replace θr by θ̃r and go to Step 1.

It is shown that d is an ascent and feasible direction. Thus, it is guaranteed that a small enough

step from θr in the direction of d results in a new feasible point θr such that `(θ̃r) > `(θr).

Jamshidian(2004) argued that, generally, the GP algorithm is superior to expectation-restricted-

maximization (ERM), used to deal with constraints in the EM algorithm setting, in terms of simplic-

ity of implementation and time to converge. Standard error estimates (called SE-GP) are obtained

by taking square roots of the diagonal terms of the inverse of H(α̂). In the following, numerical

experiments are given to compare the finite-sample performance of MM and GP algorithms.

5 Numerical simulated studies

5.1 Data simulation Principle

In this section, we report on some numerical studies for analyzing the practical behavior of MM

and GP algorithms for the estimation of the parameter vector θ = (θ0,p
t
1,p

t
2, . . . ,p

t
s)

t. Moreover,

8
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a comparison between three methods for the estimation of standard errors, following numerical

differentiation methods of Section 3 which use the code of the two algorithms, is presented. Our

numerical studies are based on Monte Carlo numerical experiments on simulated data sets of Target

sites and control areas.

Given s (the number of sites) and r (the number of accidents types), we generate the coefficients zjk

(j = 1, . . . , r; k = 1, . . . , s) from a uniform random variable U] 1
2

, 5
2
[. We pose the true valeur of θ0 as

the mean of a uniform random variable U[0,1] and suppose that the true value of vector pk, noted

p0
k = (p0

1k, . . . , p0
rk)t such that

∑r

j=1 p0
jk = 1; k = 1, . . . , s, comes from a uniform random variable

U[α,1−α] ( with α = 10−5). Using those values, we then define the true mean control coefficients

z0
k =

r
∑

j=1

zjkp0
jk, (k = 1, . . . , s),

and then the true probabilities

q0
1jk =

p0
jk

1 + θ0z0
k

, q0
2jk =

zjkθ0p0
jk

1 + θ0z0
k

, (k = 1, . . . , r)

linked to the multinomial distribution of r.v. Y(k).

Finally, for a set of values of k ( k = 1, . . . , s), one generates the total number nk of site k and then

randomly shares nk between the before and after periods using probabilities q0
1jk and q0

2jk. The

observed values of ytjk, with
∑2

t=1

∑r

j=1 ytjk = nk, k = 1, . . . , s, are then found. For our numerical

experiments, several tables of differents sizes and with different numbers have been generated by

setting the values of s = 4 and r = 3 and by choosing nk in different accident brackets B1, . . . , B7:

{]0, 30[, ]30, 50[, ]300, 1000[, ]3000, 5000[, ]7000, 9000[, ]9000, 11000[, ]11000, 13000[}.

These data are modelled using the multinomial model (1) with unknown vector parameters

θ = (θ0,p
t
1,p

t
2, . . . ,p

t
s)

t. The model parameters are then estimated by the MM and GP algorithms

defined via the equations (9), (10) and (11) respectively.

5.2 Numerical comparison of MM and GP algorithms

In order to compare the two algorithms for the estimatiom the true value of the parameters’ vector,

we have used the different tables of simulated accident data. The results presented here only concern

the particular case when s = 4, r = 3 and nk belonging to each of the seven accident brackets. The

variation of this value of nk enables to compare both algorithms at one time for small and large

values of accident numbers.

=======================

Tables 1 and 2 go here

=======================

Table 1 (resp. 2) shows the parameter vector’s estimation with the MM algorithm (resp. GP)

for s=4 and r=3. For Table 1, for example, the values which are under column θ0 correspond to the

9
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true value of the parameters whereas those under column B1 to B7 represent the estimation with

the MM algorithm. Same thing for Table 2 which is relative to the GP algorithm.

For all obtained simulations, and especially in the example of Tables 1 and 2, we reach the fact

that the estimation values given by the MM algorithm (column B1 to B7 of Table 1 ) are much

closer to the true parameter value than those coming from the GP algorithm (column B1 to B7

of Table 2). This proximity to the true parameter value of the solutions of the MM algorithm is

even more important when number nk varies from bracket B1 (small accident number) to bracket

B7 (high accident number). In particular, we note that the first component of vector θ̂ numerically

converges towards the true value for the MM algorithm whereas it remains fairly far from it for the

GP algorithm. The same remark is valuable for the other components of the parameters’ vector in

the case of an upward progression in the accident brackets.

=======================

Tables 3 to 5 go here

=======================

Tables 3 to 5 represent the standard errors associated to each component and obtained through

the estimation methods described in section 3.2. In relation with the estimation of the standard

errors associated to each of the components of the parameters’ vector, we observe, through the

carried out simulations, that the values obtained with the MM-RES method are on the whole lower

with a more stable order of magnitude from one accident bracket to another.

Excepting bracket B1 where the approximation methods give standard errors the order of mag-

nitude of which varies between 10−1 and 10−2, we can note, as early as bracket B6, if not B2, that

the order of magnitude of the MM-RES becomes stable at 10−3 whereas the other approximation

methods have an order of magnitude whose value goes on varying between 10−2 and 10−3. If we

only consider the higher numbers of accidents, i.e. accident numbers belonging to bracket B4 and

up, the simulations show that the estimated values of the standard errors with the SuppMM and

MM-REM methods are similar (results not reported here). Nevertheless, these values remain, for

the most part, higher than those obtained through the GP and MM-RES methods and smaller than

those obtained through the MM-FDM (results not reported here).

=======================

Table 6 goes here

=======================

In parallel with the comparison of the estimated values θ̂, we have assessed the two algorithms in

terms of iteration number and CPU times. Table 6 summarizes our comparison of iteration number

and CPU times of the MM and GP algorithms on 50 simulations in each accident bracket. The

mean number of iterations for both algorithms are about the same in all accident brackets. While

for the mean CPU times, the MM algorithm is surprisingly on average faster than the GP algorithm.

10
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In addition to the numerical comparison, we also analyse the convergence of the solutions pro-

vided from the two algorithms. For the convergence, we use the mean square error (MSE) defined

by:

MSE(θ̂, θ0) = (1 + sr)−1
1+sr
∑

m=1

(θ̂m − θ0
m)2.

To achieve this, we have simulated 1000 accident data sets per bracket using s = 4 and r = 3.

We then get 1000 estimates for each of the two algorithms.

=======================

Figure 1 goes here

=======================

Figure 1 represents the cases of small accident’s numbers. A similar figure (not reported here)

is obtained with high accident’s numbers. The Figure 1 shows that the two algorithms are of the

same kind. They also provide solutions which converge to the true vector value when the total

accident’s number per experimental site becomes large. Whatever the algorithm may be, the order

of magnitude of the MSE(θ̂, θ0) goes from 10−2 to 10−5 when the total accident’s number per

experimental site passes from bracket B1 to bracket B7. The convergence’s results of the two

algorithms are similar to those obtained by the classic Newton-Raphson (N’Guessan et al 2001).

6 Conclusion

We presented an MM algorithm for the estimation of the parameter vector of the constrained

maximum likelihood function of the multinomial before-after law modelling the effect of a road

safety measure. Generally, iterative algorithms, like Newton-Raphson, are used for obtaining the

constrained maximum likelihood estimates of the parameter vector (cf N’Guessan et al. 2001).

However, the whole parameter vector is updated at one with an inversion matrix in each iteration

of the Newton-Raphson algorithm. Instead, our MM algorithm cycles through the components of

the parameter vector and updates one component at a time. It is simple to program without any

inversion matrix and it leads to closeform solutions of the parameters. Moreover, the inequality con-

straints are integrated easily. Standard errors are obtained by exploiting quantities readily available

by running the algorithm.

On the other hand, Jamshidian (2004) proposed a globally convergent generalized gradient projection

algorithm (GP) adapted to any maximum likelihood estimation problem that requires incorporation

of linear equality and inequality constraints. Global convergent means that it converges to a local

maximizer of a nonlinear functional from almost any starting value (cf. Jamshidian 2004). As a

special case, GP algorithm was applied for solving restricted ML problem on road safety measure.

The performance of the two algorithm is examined through a simulation study in the cases of 4

sites and 3 types of accidents. Limited comparisons suggest that the MM algorithm is competitive

in statistical accurancy and computational speed with the best currently available algorithm. It
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is shown that the MM estimates of the vector parameter are relatively close to those obtained by

N’Guessan et al (2001), while the corresponding standard error estimates obtained by MM-RES

algorithm are generally very small.
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Table 1: Value of θ̂ for s = 4 and r = 3 obtained by MM algorithm.

θ0 B1 B2 B3 B4 B5 B6 B7

5.000e-01 4.427e-01 4.427e-01 5.217e-01 4.933e-01 5.006e-01 4.987e-01 5.015e-01

3.413e-01 3.413e-01 3.205e-01 3.794e-01 3.373e-01 3.439e-01 3.368e-01 3.288e-01

2.469e-01 2.469e-01 3.051e-01 2.626e-01 2.400e-01 2.459e-01 2.557e-01 2.508e-01

4.118e-01 4.118e-01 3.745e-01 3.580e-01 4.227e-01 4.102e-01 4.075e-01 4.204e-01

1.699e-01 1.699e-01 2.674e-01 1.716e-01 1.693e-01 1.682e-01 1.738e-01 1.688e-01

3.760e-01 3.760e-01 2.280e-01 3.793e-01 3.717e-01 3.795e-01 3.737e-01 3.736e-01

4.540e-01 4.540e-01 5.045e-01 4.491e-01 4.590e-01 4.523e-01 4.525e-01 4.576e-01

4.636e-01 4.636e-01 4.937e-01 4.623e-01 4.614e-01 4.674e-01 4.589e-01 4.666e-01

8.520e-02 8.520e-02 2.520e-02 9.220e-02 8.330e-02 8.190e-02 8.380e-02 8.450e-02

4.512e-01 4.512e-01 4.811e-01 4.455e-01 4.553e-01 4.507e-01 4.573e-01 4.489e-01

4.954e-01 4.954e-01 5.924e-01 4.932e-01 4.967e-01 5.016e-01 4.943e-01 4.976e-01

2.553e-01 2.553e-01 1.065e-01 2.603e-01 2.578e-01 2.469e-01 2.618e-01 2.586e-01

2.493e-01 2.493e-01 3.011e-01 2.465e-01 2.455e-01 2.515e-01 2.439e-01 2.437e-01

Table 2: Value of θ̂ for s = 4 and r = 3 obtained by GP algorithm.

θ0 B1 B2 B3 B4 B5 B6 B7

5.000e-01 5.534e-01 4.922e-01 6.281e-01 5.734e-01 5.645e-01 5.719e-01 5.791e-01

3.413e-01 3.325e-01 3.427e-01 3.242e-01 3.363e-01 3.322e-01 3.331e-01 3.331e-01

2.469e-01 2.436e-01 2.481e-01 2.479e-01 2.542e-01 2.433e-01 2.462e-01 2.478e-01

4.118e-01 4.022e-01 4.136e-01 3.977e-01 4.059e-01 4.000e-01 4.016e-01 4.012e-01

1.699e-01 1.660e-01 1.706e-01 1.753e-01 1.638e-01 1.642e-01 1.645e-01 1.634e-01

3.760e-01 3.654e-01 3.757e-01 3.908e-01 3.688e-01 3.690e-01 3.703e-01 3.684e-01

4.540e-01 4.434e-01 4.549e-01 4.600e-01 4.420e-01 4.433e-01 4.438e-01 4.413e-01

4.636e-01 4.539e-01 4.646e-01 4.436e-01 4.549e-01 4.577e-01 4.562e-01 4.555e-01

8.520e-02 1.662e-01 7.500e-02 1.871e-01 1.561e-01 1.682e-01 1.644e-01 1.754e-01

4.512e-01 4.438e-01 4.521e-01 4.315e-01 4.421e-01 4.440e-01 4.427e-01 4.419e-01

4.954e-01 4.902e-01 4.961e-01 4.790e-01 4.884e-01 4.892e-01 4.887e-01 4.875e-01

2.553e-01 2.527e-01 2.557e-01 2.504e-01 2.521e-01 2.523e-01 2.521e-01 2.517e-01

2.493e-01 2.399e-01 2.508e-01 2.124e-01 2.353e-01 2.364e-01 2.361e-01 2.327e-01
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Table 3: Standard error estimates (SEE) using SuppMM algorithm.

θ0 B1 B2 B3 B4 B5 B6 B7

5.000e-01 1.948e-01 9.720e-02 3.460e-02 1.110e-02 7.900e-03 6.700e-03 6.500e-03

3.413e-01 1.194e-01 7.580e-02 2.740e-02 1.070e-02 6.300e-03 5.600e-03 5.400e-03

2.469e-01 9.250e-02 7.850e-02 2.440e-02 9.600e-03 5.600e-03 5.200e-03 5.000e-03

4.118e-01 1.065e-01 8.250e-02 2.660e-02 1.210e-02 6.900e-03 6.200e-03 6.200e-03

1.699e-01 4.220e-02 9.420e-02 2.210e-02 6.300e-03 4.400e-03 3.900e-03 3.600e-03

3.760e-01 1.391e-01 9.240e-02 3.560e-02 1.010e-02 7.100e-03 6.100e-03 5.700e-03

4.540e-01 1.074e-01 1.351e-01 3.760e-02 1.100e-02 7.600e-03 6.600e-03 6.200e-03

4.636e-01 7.580e-02 1.210e-01 2.960e-02 1.170e-02 8.800e-03 7.100e-03 6.900e-03

8.520e-02 2.760e-02 2.470e-02 1.160e-02 4.400e-03 3.300e-03 2.700e-03 2.600e-03

4.512e-01 6.670e-02 1.106e-01 2.640e-02 1.080e-02 7.900e-03 6.500e-03 6.200e-03

4.954e-01 1.897e-01 1.331e-01 2.670e-02 1.290e-02 8.600e-03 7.700e-03 6.700e-03

2.553e-01 1.288e-01 5.240e-02 1.750e-02 8.600e-03 5.600e-03 5.200e-03 4.500e-03

2.493e-01 1.508e-01 8.700e-02 1.640e-02 8.200e-03 5.500e-03 4.900e-03 4.200e-03

Table 4: Standard error estimates (SEE) using RES algorithm.

θ0 B1 B2 B3 B4 B5 B6 B7

5.000e-01 7.610e-02 5.080e-02 1.610e-02 5.900e-03 4.100e-03 3.500e-03 3.300e-03

3.413e-01 9.560e-02 5.580e-02 2.030e-02 7.600e-03 4.500e-03 4.000e-03 3.900e-03

2.469e-01 7.220e-02 5.710e-02 1.780e-02 6.800e-03 4.000e-03 3.700e-03 3.600e-03

4.118e-01 8.580e-02 6.080e-02 1.970e-02 8.600e-03 5.000e-03 4.500e-03 4.500e-03

1.699e-01 3.460e-02 6.770e-02 1.590e-02 4.500e-03 3.100e-03 2.800e-03 2.600e-03

3.760e-01 1.077e-01 6.620e-02 2.550e-02 7.200e-03 5.100e-03 4.400e-03 4.100e-03

4.540e-01 8.560e-02 9.680e-02 2.700e-02 7.800e-03 5.400e-03 4.700e-03 4.400e-03

4.636e-01 1.133e-01 8.760e-02 2.180e-02 8.300e-03 6.300e-03 5.000e-03 4.900e-03

8.520e-02 2.470e-02 1.790e-02 8.800e-03 3.200e-03 2.400e-03 1.900e-03 1.900e-03

4.512e-01 8.670e-02 8.090e-02 1.990e-02 7.700e-03 5.700e-03 4.700e-03 4.500e-03

4.954e-01 1.117e-01 9.820e-02 2.010e-02 9.200e-03 6.200e-03 5.500e-03 4.800e-03

2.553e-01 8.380e-02 3.810e-02 1.350e-02 6.200e-03 4.100e-03 3.700e-03 3.300e-03

2.493e-01 9.430e-02 6.400e-02 1.280e-02 5.900e-03 4.000e-03 3.500e-03 3.100e-03
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Table 5: Standard error estimates (SEE)using GP algorithm.

θ0 B1 B2 B3 B4 B5 B6 B7

5.000e-01 9.700e-02 7.410e-02 5.070e-02 2.480e-02 1.300e-02 1.300e-02 1.120e-02

3.413e-01 1.040e-01 8.490e-02 2.510e-02 1.150e-02 6.400e-03 6.000e-03 5.900e-03

2.469e-01 1.719e-01 1.006e-01 3.980e-02 1.600e-02 9.100e-03 8.100e-03 8.000e-03

4.118e-01 1.607e-01 1.065e-01 3.650e-02 1.400e-02 8.200e-03 7.500e-03 7.100e-03

1.699e-01 1.887e-01 8.940e-02 3.410e-02 1.060e-02 6.800e-03 6.000e-03 5.700e-03

3.760e-01 1.206e-01 1.929e-01 4.520e-02 1.280e-02 8.700e-03 7.700e-03 7.100e-03

4.540e-01 1.620e-01 1.364e-01 4.250e-02 1.270e-02 8.800e-03 7.700e-03 7.100e-03

4.636e-01 1.105e-01 1.034e-01 2.690e-02 1.070e-02 7.700e-03 6.400e-03 6.100e-03

8.520e-02 1.351e-01 1.605e-01 1.488e-01 8.760e-02 5.460e-02 4.790e-02 4.210e-02

4.512e-01 7.510e-02 5.850e-02 1.540e-02 5.900e-03 4.400e-03 3.600e-03 3.500e-03

4.954e-01 6.370e-02 3.860e-02 9.700e-03 4.200e-03 2.800e-03 2.500e-03 2.200e-03

2.553e-01 7.690e-02 3.810e-02 1.450e-02 5.500e-03 4.100e-03 3.400e-03 3.300e-03

2.493e-01 9.670e-02 7.880e-02 1.740e-02 9.700e-03 6.000e-03 5.600e-03 4.800e-03

Table 6: Means number of iterations and CPU times required for MM and GP algorithms

MM algorithm GP algorithm

Numb itera CPU Numb itera CPU

B1 2.96 0.0109 3 0.0304

B2 3 0.0135 3 0.0444

B3 3 0.0538 3 0.1288

B4 3 0.2303 3 0.5830

B5 3 0.4785 3 1.1340

B6 3 0.5949 3 1.4231

B7 3 0.7161 3 1.6737
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Figure 1 : MSE for n = 1000 and bracket B_1 
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