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ADAPTIVE DENSITY ESTIMATION UNDER WEAK DEPENDENCE

GANNAZ IRÈNE(1) AND WINTENBERGER OLIVIER(2)

Abstract. Assume that (Xt)t∈Z is a real valued time series admitting a common marginal den-
sity f with respect to Lebesgue’s measure. Donoho et al. (1996) propose near-minimax estimators
bfn based on thresholding wavelets to estimate f on a compact set in an independent and identi-
cally distributed setting. The aim of the present work is to extend these results to general weak
dependent contexts. Weak dependence assumptions are expressed as decreasing bounds of covari-

ance terms and are detailed for different examples. The threshold levels in estimators bfn depend
on weak dependence properties of the sequence (Xt)t∈Z through the constant. If these properties
are unknown, we propose cross-validation procedures to get new estimators. These procedures
are illustrated via simulations of dynamical systems and non causal infinite moving averages. We
also discuss the efficiency of our estimators with respect to the decrease of covariances bounds.

1. Introduction

Let (Xt)t∈Z be a real valued time series admitting a common marginal density f that is com-

pactly supported. The general purpose of this paper is to estimate f by wavelet estimators f̂n

constructed from n observations (X1, . . . ,Xn). In their seminal paper Donoho et al. (1996) [8]
showed that projection-like linear estimators are not optimal: introduction of nonlinearity via
thresholds of wavelet coefficients is investigated. Wavelets thresholding provides estimators which
adapt themselves to the unknown smoothness of f , we refer to Vannucci (1998) [26] for a survey
of the use of wavelet bases in density estimation. The present work extends near minimax results
of soft and hard-threshold estimators from the independent and identically distributed (iid for
short) framework, see Theorem 5 in Donoho et al. (1996) [8], to cases where weak dependence
between variables occurs.

Our main assumptions give bounds for covariance terms as decreasing sequences which tend
to zero when the gap between the past and the future of the time series goes to infinity. In
order to give examples satisfying these conditions, we introduce coefficients that give bounds of
covariance terms and that are computable for a large class of models. Weak dependent coefficients,
introduced by Doukhan and Louhichi (1999) [9], as mixing ones, are well-adapted to that purpose.
Using β-mixing coefficients Tribouley and Viennet (1998) [24] proposed minimax estimators with
respect to the Mean Integrated Square Error (MISE for short). Comte and Merlevède (2002) [3]
obtained near-minimax results using α-mixing coefficients. The loss of a logarithmic factor in the

1991 Mathematics Subject Classification. Primary 62G07; Secondary 60G10, 60G99, 62G20.
Key words and phrases. adaptive estimation, cross validation, hard thresholding, near minimax results, non-

parametric density estimation, soft thresholding, wavelets, weak dependence.

1

This provisional PDF is the accepted version. The article should be cited as: ESAIM: PS, doi: 10.1051/ps:2008025

http://dx.doi.org/10.1051/ps:2008025


2 I. GANNAZ AND O. WINTENBERGER

convergence rate in this last paper is balanced by the generality of the context, as the class of
α-mixing models is larger than the one of β-mixing models.

However, α and β-mixing coefficients are not easy to compute for some models and are useless
for others; Andrews (1984) [1] proved that the mixing coefficients of the stationary solution of
the AR(1) model

Xt =
1

2
(Xt−1 + ξt) , where (ξt)t∈Z iid with a Bernouilli law of parameter 1/2, (1.1)

do not tend to zero as the gap from the past to the future of the time series goes to infinity.
Mixing coefficients do not behave nicely in this case as, through a reversion of time, the Markov
chain solution of (1.1) is a dynamical system, i.e. Xt−1 = T (Xt) for some transformation T ,
namely T (x) = 2x110≤x<1/2 +(2x−1)111/2≤x≤1. So called weak dependence coefficients have been
recently developed to deal with such processes, see Dedecker et al. [5], Maume-Deschamps [20]

and references therein. Introduced by Dedecker and Prieur (2005) in [6], φ̃-weak dependence co-
efficients give sharp bounds on the covariance terms of dynamical systems, such as the stationary
solution to (1.1). Using these coefficients, we prove near-minimax results of thresholded wavelet
estimators for dynamical systems called expanding maps. To our knowledge, only non adaptive
density estimation has been studied in this non-mixing context, see for instance Bosq et Guegan
[2], Prieur [22] and Maume-Deschamps [20].

The advantage of our approach is also to treat in one draw many other contexts of dependence.
We prove that near-minimaxity still holds for a very large class of models using λ-weak depen-
dence coefficients, defined by Doukhan and Wintenberger, 2007, [14]. We pay for generality by
adding up conditions on the joint densities of the couples (X0,Xr) for all r > 0. These conditions
are not restrictive as it is satisfied for many econometric models such as ARMA, GARCH, ARCH,
LARCH, MA models.

The estimation scheme is based on Donoho et al.’s procedures developed in [8] for the iid case,
and it is adaptive with respect to the regularity of f . Soft and hard-threshold levels (λj)j0≤j≤j1

are chosen equal to K
√
j/n for some K > 0. Note that the constant K and the highest resolu-

tion level j1 depend on the weak dependence properties of the observations. If weak dependence
properties are known, estimators are near minimax: same rates as in the iid setting are achieved
for mean-Lp errors with 1 ≤ p < ∞. If weak dependence properties are unknown, we develop
cross-validation procedures to approximate threshold levels λ̂j and the highest resolution level ĵ1.
We check on simulations that corresponding estimators are adaptive with respect to the regularity
of f and to weak dependence properties of (Xt)t∈Z. The order of errors of approximations in the
dependence cases are very close to the one in the iid cases.

We believe that we obtain such good results as we work on simulations of processes satisfying
our main Assumption (D). This assumption consists of the exponential decay of the covariance
terms. We give in this paper some simulations study of dynamical systems that do not satisfy this
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Assumption (D). Comparing the behavior of our estimators with the kernel ones show that ours
are less efficient when covariance terms do not decrease exponentially fast. We also prove that the
error terms of our estimators are unbounded in some cases, due to terms of covariances that de-
crease too slowly. This is a restriction of our procedure, based on thresholding wavelet coefficients.

The paper is structured as follows. In Section 2, we give notation, we introduce estimation pro-
cedures and we formulate weak dependence assumptions. Main results are given in Section 3 and
examples of models in Section 4. Cross-validation procedures and their accuracy on simulations
are developed in Section 5. Proofs are relegated in the last Section.

2. Preliminaries

2.1. Notation. We restrict ourselves to the estimation of a density f which is compactly sup-
ported. We suppose that f is supported by [−B,B] for some B > 0. For all p ≥ 1, Lp denotes
the space of all functions f such that ‖f‖p

p =
∫
|f(x)|pdx <∞.

2.2. Density estimators. Throughout the paper, we work within an r-regular orthonormal
multiresolution analysis of L2 (endowed with the usual inner product), associated with a com-
pactly supported scaling function φ and a compactly supported mother wavelet ψ. Without loss
of generality, we suppose that the support of functions φ and ψ is included in an interval [−A,A]
for some A > 0. Let us recall that φ and ψ generate orthonormal basis by dilatations and trans-
lations: for a given primary resolution level j0, the functions {φj,k : x 7→ 2j/2φ(2jx− k)}k∈Z and

{ψj,k : x 7→ 2j/2ψ(2jx− k)}k∈Z are such that the family

{φj0,k, k ∈ Z, ψj,k j ≥ j0, k ∈ Z}

is an orthonormal base of L2. Any function f ∈ L2 can thus be decomposed as

f =
∑

k∈Z

αj0,kφj0,k +

∞∑

j=j0

∑

k∈Z

βj,kψj,k,

where αj,k =
∫
f(x)φj,k(x)dx, βj,k =

∫
f(x)ψj,k(x)dx.

The nonlinear estimator developed in [8] is defined by the equation

f̂n =
∑

k∈Z

α̂j0,kφj0,k +

j1∑

j=j0

∑

k∈Z

γλj
(β̂j,k)ψj,k,

where α̂j,k = n−1
∑n

i=1 φj,k(Xi) and β̂j,k = n−1
∑n

i=1 ψj,k(Xi), and where γλ is a threshold
function of level λ. The authors consider both hard and soft thresholding functions, corresponding
respectively to γλ(β) = β11|β|>λ and γλ(β) = (|β| − λ)+sign(β). If no distinction is done in the
sequel, both hard and soft thresholding estimators are concerned.
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Let s, π, r be three positive real numbers satisfying s + 1/2 − 1/π > 0. We assume that f
belongs to the Besov ball Bs

π,r(M1) on the real line, i.e. ‖f‖s,π,r ≤M1 where

‖f‖s,π,r = |α0,0| +



∑

j∈N

(
2j(sπ+π/2−1)

∑

k∈Z

|βj,k|π
)r/π




1/r

.

Approximation errors of an estimator fn are expressed as E‖fn − f‖p
p for p ≥ 1. Associated

minimax rates are the best convergence decrease α of the worst approximation error we may
achieve over all estimators fn:

inf
fn

sup
f∈Bs

π,r(C)
E‖fn − f‖p

p = O
(
n−pα

)
.

The minimax rate α is determined in [8] as:

α =

{
α+ = (s/(1 + 2s) if ǫ ≥ 0,

α− = (s− 1/π + 1/p)/(1 + 2s− 2/π) if ǫ ≤ 0,
where ǫ = sπ − (p − π)/2. (2.1)

2.3. Weakly dependent assumption. Throughout the paper, the symbol δ denotes with no

distinction φ or ψ and δ̃j,k(x) = δj,k(x) − E δj,k(X0) for all integers j ≥ 0 and k. Define for all
positive integers u, v the quantities

Cj,k
u,v(r) = sup

max si+1−si=su+1−su=r
{|Cov(δ̃j,k(Xs1) · · · δ̃j,k(Xsu), δ̃j,k(Xsu+1) · · · δ̃j,k(Xsu+v

))|}. (2.2)

Functions φ and ψ play a symmetric role through δ in this setting. As stressed in [9], bounds on

covariance terms Cj,k
u,v(r) are useful to extend asymptotic results from the iid case. Now we can

state the main assumption of this paper:

(D): There exists a sequence ρ(r) such that for all r ≥ 0, all indexes j, k, u, v, we have

Cj,k
u,v(r) ≤ (u+v+uv)/2 (2j/2M2)

u+v−2ρ(r) where M2 is a constant satisfying ‖δ‖∞ ≤M2. (D1)

Moreover, there exist real numbers a, b, C0 > 0 depending only on δ, f and on the depen-
dence properties of (Xt)t∈Z such that

ρ(r) ≤ C0 exp(−arb) for all r > 0. (D2)

In Section 4, we give explicit conditions on the stationary process (Xt)t∈Z in order that it satisfies
Assumption (D). When it is possible, the values of the constants a, b, C0 and M2 are given.

3. Main results

Let (Xt)t∈Z be a stationary real valued time series.
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3.1. A useful lemma. Under similar conditions than Assumption (D), moments inequalities of

even orders and Bernstein’s type inequalities for the sums
∑n

i=1 δ̃j,k(Xi) are respectively given in
[9] and [10]. The following Lemma recall these inequalities applied on the quantities βj,k. They
remain valid for αj,k as φ and ψ play the same role in (D).

Lemma 3.1. If (D) holds then for all even integer q ≥ 2, for all λ ≥ 0 and for j, k such that
0 ≤ j ≤ log n and 0 ≤ k ≤ 2j − 1:

E|β̂j,k − βj,k|q ≤ C1n
−q/2, (3.1)

P
(
|β̂j,k − βj,k| ≥ λ

)
≤ 2 exp

(
− nλ2

C2 + C3(2j/n)b/(2(1+2b))(
√
nλ)(2+3b)/(1+2b)

)
, (3.2)

where C1, C2 and C3 are constants depending on q and on the constants of Assumption (D): a,
b, C0 and M2.

The proof of this Lemma is given in Section 6.1. Notice that C3 depends deeply on the
dependence context through C0, see Propositions 4.1 and 4.2 for more details.

3.2. Near-minimax results of thresholded wavelet estimators. Following results are ex-
tensions to weak dependence settings of Theorem 5 of [8].

Theorem 3.1. Suppose that f ∈ Bs
π,r(M1) with 1/π < s < N/2 where N is the regularity of the

function ψ. If (D) holds, then for each 1 ≤ p <∞ there exists a constant C(N, p, a, b, C0,M1,M2, A,B)
such that

E[‖f̂n − f‖p
p] ≤ C





(
log n

n

)pα

if ǫ 6= 0
(

log n

n

)pα

(log n)(p/2−(1∧π)/r)+ if ǫ = 0

where the minimax rate α and the parameter ǫ are given in (2.1). Here j0 is chosen as the smallest

integer larger than log(n)(1+N)−1, j1 is the largest integer smaller than log(n log−2/b−3(n)) and

λj = K
√
j/n for a sufficiently large constant K > 0.

A sketch of the proof of this Theorem is given in Section 6.2.

We refer to [21] for the definition of the parameter N , the regularity of the wavelet function
ψ. The condition s < N/2 ensures the sparsity of the wavelet coefficients of the density f . This
condition is not restrictive as N can be chosen sufficiently large in practice.

The estimators f̂n are the same than in the iid case given in [8], except for the highest resolution
level j1 which is smaller here. This restriction is needed in the weak dependence context due to
the Bernstein’s type inequality (3.2) which is not as sharp as the one in the iid case. But this
restriction does not perturb the rate of convergence which is the same as the one obtained in the
iid case by [8].
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The constant K > 0 plays a key role in the asymptotic behavior of f̂n. From (3.2), we infer that
the constant K depends on the parameters a, b, C0,M2 through C1, C2, C3 in an intricate way.
Then how sufficiently large the constant K must be deeply depends on the dependence structure
of observations (X1, . . . ,Xn). Then contrarily to the iid case, we are not able to develop direct
procedures based on the observations (X1, . . . ,Xn) that chose a convenient parameter K like in
[17]. In Section 5, we propose cross validation procedures to determine the threshold levels λj

when the weak dependence properties of the process (Xt)t∈Z are unknown.

4. Examples

In this Section, we give examples of models that satisfy Assumption (D) using φ̃ and λ-weak
dependence coefficients introduced respectively in [6] and [14]. For each of them, we proceed in
two steps: Firstly we give sufficient conditions on these coefficients for ensuring Assumption (D)
in Propositions 4.1 and 4.2 and secondly we give in Subsections 4.2 and 4.4 examples of models
satisfying such conditions.

A Lipschitz function h : R
u → R for some u ∈ N

∗ is a function such that Lip (h) <∞ with

Lip (h) = sup
(a1,...,au)6=(b1,...,bu)

|h(a1, . . . , au) − h(b1, . . . , bu)|
|a1 − b1| + · · · + |au − bu|

.

As Lipschitz functions play an important role in weak dependence contexts we restrict ourselves
to the cases where N > 4. This assumption on the regularity of the wavelet functions implies that
φ and ψ can be chosen as Lipschitz functions, as established in [4]. Note also that ‖f‖∞ <∞ as
f ∈ Bs

π,r(M1), see equation (15) in [8]. For convenience, we denote with no distinction ψj,k(x)−βj,k

and φj,k(x) − αj,k as δ̃j,k(x) for any integers j ≥ 0 and k.

Weak dependence coefficients is to generalize mixing ones. Let us recall that α-mixing coeffi-
cients can be defined in a similar way by two equations:

α(r) = sup
1 ≤ ℓ

i + r ≤ j1 ≤ · · · ≤ jℓ

‖g‖∞ ≤ 1

E|E (g(Xi1 , . . . ,Xiu)|σ({Xj , j ≤ i})) − E (g(Xi1 , . . . ,Xiu)) |,

α(r) = sup
(u, v) ∈ N

∗ × N
∗

i1 ≤ · · · ≤ iu ≤ iu + r ≤ iu+1 ≤ · · · ≤ iu+v

‖f‖∞, ‖g‖∞ ≤ 1

|Cov(f(Xi1 , . . . ,Xiu), g(Xiu+1 , . . . ,Xiu+v
))|.

These coefficients measure the dependence between the past and the future values of the process
(Xt)t∈Z as the gap r between past and future goes to infinity. As these coefficients are often too
restrictive, the authors of [7] release them by considering a supremum taken on functions with
bounded variations or on Lipschitz bounded functions rather than uniformly bounded functions.
These different choices of functions sets lead to different coefficients of weak dependence, namely

φ̃ and λ respectively. We give hereafter the precise definition of φ̃ and λ-weak dependence
coefficients.
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4.1. φ̃-weak dependence. Bounded variations functions are defined as follows: let BV and
BV1 denote the sets of functions g supported on [−A,A] satisfying respectively ‖g‖BV < +∞
and ‖g‖BV ≤ 1 where

‖g‖BV = |g(−A)| + sup
n∈N

sup
a0=−A<a1<···<an=A

n∑

i=1

|g(ai) − g(ai−1)|.

Let (Ω,A,P) be a probability space, M a σ-algebra of A and let X = (X1, . . . ,Xv), for v ≥ 1,

be a collection of real valued random variables Xi defined on A. We define the coefficient φ̃ as it
was introduced in [7] by the equation:

φ̃(M,X1, . . . ,Xv) = sup
g1,...,gv∈BV1

∥∥∥∥∥

∫ v∏

i=1

gi(xi)PX|M(dx) −
∫ v∏

i=1

gi(xi)PX(dx)

∥∥∥∥∥
∞

,

where dx = (dx1, . . . , dxv). The coefficients φ̃(r) are now defined by the equation

φ̃(r) = max
1≤ℓ

1

ℓ
sup

i+r≤j1≤···≤jℓ

φ̃(σ({Xj ; j ≤ i}),Xj1 , . . . ,Xjℓ
) .

These coefficients are multivariate extensions of φ̃1(r) defined in [6], see also [20]. Instead of
mixing coefficients, they efficiently treat the dependence structure of dynamical systems and

associated Markov chains. A process (Xt)t∈Z is said to be φ̃-weakly dependent if the series φ̃(r)
goes to 0 when r goes to infinity, i.e. when the gap between observations from the future and

observations from the past goes to infinity. Introducing φ̃-weakly dependent processes is useful
in the present framework due to the following links with the Assumption (D):

Proposition 4.1. Assume that (Xt)t∈Z is a process such that there exist a, b, c > 0 satisfying

φ̃(r) ≤ cv exp(−arb), (4.1)

then Assumption (D) holds with M2 = 2(‖δ‖∞ +ALip δ) and C0 = 4c(‖δ‖∞ +ALip δ)‖f‖∞‖δ‖1.

The proof of this Proposition is given in Subsection 6.3.

4.2. Examples of φ̃-weakly dependent processes. Following the work of [7], we give a general
class of models where (4.1) is satisfied.

Lemma 4.1. Assume that (Xt)t∈Z is a process satisfying the Markov property, taking values in
[0, 1] and such that there exist constants a, b, c > 0 satisfying, for any functions g, k with g ∈ BV1

and E|k(X0)| <∞, and for all r ≥ 0,

|Cov(k(X0), g(Xr))| ≤ E|k(X0)| exp(ar−b), (4.2)

‖E(g(Xr|X0 = ·)‖BV ≤ c, (4.3)

then φ̃v(r) ≤ cv exp(−arb) and the conclusions of Proposition 4.1 follow.

The proof of this Lemma is given in Subsection 6.3. Various examples of processes satisfying
conditions of Lemma 4.1 are given in [7]. We recall here the case of Markov chains obtained by
time reversing expanding maps, as they are extensions of Andrew’s example (1.1).
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Let us define stationary Markov chains (Xt)t∈Z associated with dynamical systems through a
reversion of the time as non degenerate stationary solutions of the recurrent equation

Xt = T i(Xt−i), ∀t ∈ Z, i ∈ N (4.4)

where T : [0, 1] → [0, 1] is a deterministic function.

Remark 1. For such Markov chains, mixing coefficients are useless. Future values write simply
as functions of past values via (4.4) and then it is easy to check that α(r) are constant from their
definitions. Thus α(r) does not tend to 0 and α-mixing coefficients do not evaluate the dependence
of such processes.

A Markov chain (Xt)t∈Z is associated with an expanding map through a reversion of the time
if T satisfies

• (Regularity) The function T is differentiable, with a continuous derivate T ′ and there
exists a grid 0 = a0 ≤ a1 · · · ≤ ak = 1 such that |T ′(x)| > 0 on ]ai−1, ai[ for each
i = 1, . . . , k.

• (Expansivity) For any integer i, let Ii be the set on which the first derivate of T i, (T i)′,
is defined. There exists a > 0 and s > 1 such that infx∈Ii

{|(T i)′(x)|} > asi.
• (Topological mixing) For any nonempty open sets U , V , there exists i0 ≥ 1 such that
T−i(U) ∩ V 6= ∅ for all i ≥ i0.

Under these three conditions a non degenerate stationary solution (Xt)t∈N to (4.4) exists and
has remarkable properties, see [27] for a nice survey. For instance, the process (Xt)t∈Z satisfies
the conditions of Proposition 4.1 for some a, c > 0 and b = 1, see [6]. Moreover, the marginal
distribution is absolutely regular and its distribution belongs to BV . Noticing that B1

1,1 ⊂ BV ⊂
B1

1,∞, see e.g. [8], Theorem 3.1 provides adaptive estimators of the marginal density of (Xt)t∈Z in

that context and extends Theorem 2.2 of [25] where rates of the MISE for non adaptive estimators
are given in such context.

4.3. λ-weak dependence. The stationary process (Xt)t∈Z is λ-weakly dependent, as defined in
[14], if there exists a sequence of non-negative real numbers λ(r) satisfying λ(r) → 0 as r → ∞
and such that:
∣∣Cov

(
h (Xi1 , . . . Xiu) , k

(
Xiu+1 , . . . ,Xiu+v

))∣∣ ≤
(u ‖k‖∞Lip(h) + v‖h‖∞ Lip(k) + uvLip (h)Lip (k)) λ(r)

for all p-tuples, (i1, . . . , ip) with i1 ≤ · · · ≤ iu ≤ iu + r ≤ iu+1 ≤ · · · ≤ ip, and for all h ∈ Λu and
h ∈ Λv where

Λu = {h : R
u → R, Lip (h) <∞, ‖h‖∞ <∞} , for any u ≤ 1.

The λ-weak dependence provides simple bounds of the covariance terms:
∣∣∣Cov

(
δ̃j,k(Xi1) · · · δ̃j,k(Xiu), δ̃j,k(Xiu+1) · · · δ̃j,k(Xiu+v

)
)∣∣∣ ≤ (u+ v+uv) ‖δ̃j,k‖u+v−2

∞ (Lip δ̃j,k)
2λ(r).
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The right hand side term is bounded by (2j/22‖δ‖∞)u+v−2Lip δ223jλ(r). At this point, we do
not achieve Assumption (D1) as this bound depends on j via an extra term 23j . An additional
assumption is needed to ensure Assumption (D):

(J): The joint densities fr of (X0,Xr) exist and are bounded for r > 0.

Proposition 4.2. Assume that (Xt)t∈Z is a λ-weakly dependent process satisfying (J) and such
that there exist a′, b′, c′ > 0 and a′′, b′′, c′′ > 0 with:

λ(r) ≤ c′ exp(−a′rb′) and ‖fr‖∞ ≤ c′′ exp(a′′rb′′) for all r > 0.

If b′′ < b′ then (D) holds for some C0 > 0 with M2 = 2‖δ‖∞, a = a′/4 and b = b′.

The proof of this Proposition is given in Subsection 6.3.

4.4. Examples of λ-weakly dependent processes. Firstly we give in this Section two generic
λ-weakly dependent models, Bernoulli shifts and random processes with infinite connections.
Secondly we detail the conditions of Proposition 4.2 in three more specific models.

Let H : R
Z → [0, 1] be a measurable function. A Bernoulli shift with innovations ξt is defined

as
Xt = H ((ξt−i)i∈Z) , t ∈ Z.

According to [14], such Bernoulli shifts are λ−weakly dependent with λ(r) ≤ 2v([r/2]). If (ξt)t∈Z

is iid, (v(r))r>0 is a non-increasing sequence satisfying

E
∣∣H (ξj, j ∈ Z) −H

(
ξ′j , j ∈ Z

)∣∣ ≤ v(r) for all r > 0,

where the iid sequence (ξ′j)j∈Z is such that ξ′j = ξj for |j| ≤ r and ξ′j independent of ξj otherwise.

If the weak dependence coefficients λξ(r) refer to (ξt)t∈Z, we can compute these of (Xt)t∈Z. More
precisely, the result in [14] states that if there exists ℓ ≥ 0 such that

|H(x) −H(y)| ≤ bs(‖z‖ℓ ∨ 1)|xs − ys|,
for some sequence bj ≥ 0 satisfying

∑
j |j|bj < ∞ and where x, y ∈ R

Z coincide except for the

index s ∈ Z and ‖x‖ = supi∈Z |xi|, if E|ξ0|m
′

< ∞ for some m′ ≥ ℓ+ 1 then (Xt)t∈Z is λ-weakly
dependent with

λ(k) ≤ c inf
r≤[k/2]



∑

|j|≥r

|j|bj + (2r + 1)2λξ(k − 2r)
m′

−1−ℓ

m′−1+ℓ


 , for some c > 0.

Different values of b in Assumption (D2) may arise naturally when realizing the minimum of the
equation above, see below for some classical examples.

Another approach is the one of random processes with infinite connections considered in [12].

Let F : [0, 1]Z/{0} × R → [0, 1] be measurable. Under suitable conditions on F , the stationary
solution of the equation

Xt = F ((Xj , j 6= t), ξt), a.s.,
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exists and is λ-weakly dependent. We refer the reader to [12] for more details and we end the
Section with some specific λ-weakly dependent models.

4.4.1. Infinite moving average. A Bernoulli shift is an infinite moving average process if

Xt =
∑

i∈Z

αiξt−i. (4.5)

If ξt are iid random variables satisfying E|ξ0| ≤ 1 then (Xt)t∈Z is λ-weakly dependent with

λ(r) ≤ 4
∑

|j|>[r/2] |aj|. If aj ≤ Kα|j| for j 6= 0, K > 0 and 0 < α < 1 then the condition on λ in

Proposition 4.2 holds with b′ = 1. Then Assumption (D2) is ensured with b = 1.

4.4.2. LARCH(∞) model. Let (ξt)t∈Z be an iid centered real valued sequence and a, aj , j ∈ N
∗

be real numbers. LARCH(∞) models are solutions of the recurrence equation

Xt = ξt


a+

∑

j 6=0

ajXt−j


 . (4.6)

The stationary solution of (4.6) satisfies the condition on λ in Proposition 4.2 with b′ = 1/2 if

there exists K,α > 0 and α < 1 such that aj ≤ Kα|j| for all j 6= 0. Then Assumption (D2) is
ensured with b = 1/2. See [11] for applications of this model in econometrics.

4.4.3. Affine model. Let us consider the stationary solution (Xt)t∈Z of the equation

Xt = M(Xt−1,Xt−2, . . .)ξt + f(Xt−1,Xt−2, . . .),

where M and f are both Lipschitz functions. This model contains various time series processes
such as ARCH, GARCH, ARMA, ARMA-GARCH, etc. If the ξt are iid random variables with a
bounded marginal density, then (J) holds and the joint densities are uniformly bounded, as stated
in the Appendix of [13]. Moreover if the functions M and f have exponentially decreasing Lips-
chitz coefficients, then conditions of Proposition 4.2 hold with b′ = 1/2, b′′ = 0 and Assumption
(D2) follows with b = 1/2.

5. Cross-validation procedures and simulations

The aim of this Section is to evaluate the applicability and the quality of the procedure on
simulated data. Even if the estimators are adaptive with respect to the regularity of the density
function, a constant appears in the threshold levels that we cannot calibrate if the dependence
properties of the observations are unknown. Then we develop a cross-validation scheme in order to
apply concretely the estimator on simulated data. We investigate several examples of dependence
for the simulated observations that satisfy the convergence result of this paper. We also give
counter-examples where the estimators fail to converge near-minimaxly.
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5.1. Cross-validation procedures. According to Theorem 3.1, let us fix j0 as the smallest

integer larger than log(n)(1 +N)−1 and define f̂HTCV
n and f̂STCV

n respectively as the hard and

soft-thresholding estimators associated with threshold levels ((λ̂j)j0≤j≤j∗). Here j∗ = log2 n and

((λ̂j)j0≤j≤j∗) are determined by cross-validation procedures: λ̂j = Argminλ CVj(λ) where cross
validation criterion are respectively defined by the equations

HTCV: CVj(λ) =
∑

k∈Z

11
{|bβj,k|≥λ}


β̂2

j,k − 2

n(n− 1)

∑

1≤i6=h≤n

ψj,k(Xi)ψj,k(Xh)


 ,

STCV: CVj(λ) =
∑

k∈Z

11
{|bβj,k|≥λ}


β̂2

j,k − 2

n(n− 1)

∑

1≤i6=h≤n

ψj,k(Xi)ψj,k(Xh) + λ2


 .

These criterion are obtained by approximating the coefficients βj,k by β̂j,k and the products
βj,kβj,k′ by

∑
h 6=i ψj,k(Xi)ψj,k(Xh)/(n(n− 1)) in the Integrated Square Error.

The estimator ĵ1 is defined as the smallest integer such that CVj(λ̂j) = 0 for all ĵ1 ≤ j ≤ j∗.
Notice that cross-validation procedures may consider larger resolution levels than the estimators

f̂n as j∗ is larger than j1 given in Theorem 3.1.

5.2. Different dependent samplings satisfying (D). To illustrate the behavior of this cross-
validation scheme, we simulate three different weak-dependence cases with the same marginal
absolutely continuous distribution F . The simulations were carried out as follows:

Case 1: Independent observations are given by Xi = F−1(Ui) where the Ui are simulations
of independent variables, uniform on [0,1].

Case 2: A φ̃-weakly dependent process is obtained by the equation Xi = F−1(G(Yi)) for

i = 1, . . . , n with G(x) = 2
√
x(1 − x)/π and (Yi)i=1,...,n given by

Y1 = G−1(U1)
and, recursively, Yi = T i−1(Y1) for 2 ≤ i ≤ n with T (x) = 4x(1 − x).

Note that for all 1 ≤ i ≤ n the Yi admits the repartition function G the invariant distri-
bution of T . Moreover the sequence (Y1, . . . , Yn) satisfies the assumptions of Proposition
4.1, see [22] for details.

Case 3: A λ-weakly dependent process resulting from the transform Xi = F−1(G(Yi)) of
variables (Yt)t∈Z which are solution of

Yt = 2(Yt−1 + Yt+1)/5 + 5ξt/21
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where (ξt)t∈Z is an iid sequence of Bernoulli variables with parameter 1/2. The stationary
solution of this equation admits the representation

Yt =
∑

j∈Z

ajξt−j ,

where aj = 1/3(1/2)|j|. This solution belongs to [0, 1] and its marginal distribution G is
the one of (U+U ′+ξ0)/3 where U and U ′ are independent variables following U([0, 1]). For

1 ≤ i ≤ n, the solution Yi is approximated by Y
(N)
i for 1 ≤ j ≤ N and j−N ≤ i ≤ n+N−j

where Y
(j)
i is generated according to the convergent algorithm given in [12]: the initial

values Y
(0)
i are fixed equal to 0 and, given simulated variables (ξi)−N≤i≤n+N , we define

recursively Y
(j)
i = 2(Y

(j−1)
i−1 +Y

(j−1)
i+1 )/5+5ξi/21 for 1 ≤ i ≤ N and i−N ≤ t ≤ n+N − i.

Error of approximation are negligible as decreasing exponentially fast with the parameter
N that we fix N = n, see Lemma 6 of [12] for more details. Moreover, Proposition 2.1 of
[5] ensures that there exists a,C > 0 such that λ(r) ≤ C exp(−ar) for the process (Yt)t∈Z

and consequently for (Xt)t∈Z.

Two different density functions are considered. The first one is a mixture of a sinus function
and a uniform distribution, presenting a discontinuitie, and the second one is a mixture of two
gaussian distributions.

5.3. Comparison of f̂HTCV
n and f̂STCV

n . The first density considered is a mixture between a
sinus function and a uniform distribution.

The calculations were carried out on MATLAB on a Unix environment. We considered n = 210

observations repeated M = 500 times for each of the three weak dependence cases. Once the
data simulated we applied cross-validation procedures. The usual DWT algorithm proposed by
[19] and implemented in the Wavelab toolbox by Donoho and his collaborators (available on [29])
only gives values of wavelet functions on an equidistant grid. As one needs to compute these
values at given data points, we consider an equidistant grid of I points with the number of points
I huge with respect to the number of observations n. Then we approximate the values ψj,k(Xi)
by ψj,k([XiI]/I) where [x] denotes the closest integer from any real number x. The wavelets used
for the decomposition are Daubechies Symmlets with N = 8 zero-moments. Notice that another
possible scheme is the algorithm of [28] that gives directly the values ψj,k(Xi). But as it needs
much more calculus time it has not been used here for convenience.

In Figures 1 and 2 are represented the estimators f̂HTCV
n and f̂STCV

n and the true density
function f in different weakly dependent cases. The quality of the estimators is visually good.
According to Figures 1 and 2 the weak dependence properties of the simulated data do not seem
to affect both procedures of estimation. Density estimators presented in Figures 1 and 2 do not
detect the discontinuity in the density. Actually, for any finite data set, not enough simulated
values are concentrated around the discontinuity to allow estimators to detect it.



ADAPTIVE DENSITY ESTIMATION UNDER WEAK DEPENDENCE 13

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 1. Examples of estimators f̂HTCV
n obtained on 210 observations. The true dis-

tribution is represented in dashed lines. Figures from left to right correspond respectively

to Case 1, Case 2 and Case 3.
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Figure 2. Examples of estimators f̂STCV
n obtained on 210 observations. The true dis-

tribution is represented in dashed lines. Figures from left to right correspond respectively

to Case 1, Case 2 and Case 3.

Table 1 gives approximations by Monte-Carlo method of the MISE. MISE values of the esti-

mators have the same order whereas the weak dependent cases and f̂STCV
n is preferable in all the

cases.

MISE of the estimation

Case 1 Case 2 Case 3

HTCV 0.096696 0.077064 0.097193
STCV 0.082934 0.06586 0.097184

Table 1. MISE approximated by MC on 500 simulations of samples of size n = 210.

In Figure 3 threshold levels are represented with respect to resolution levels. Their behaviors
are similar in all cases: the threshold levels increase with respect to resolution levels. For small

resolutions, both HTCV and STCV procedures are close as λ̂2
j is negligible in CVj(λ). For high

resolution it is also the case as λ̂2
j is big enough to kill almost all β̂j,k. Moreover these figures

tend to confirm that threshold levels do not depend on weak dependence. Finally remark that
the curves do not behave in square root of j as theoretical threshold levels given in Theorem 3.1.

After looking at the threshold levels values, we give in Figure 4 the frequencies of the β̂j,k

that are less than λ̂j with respect to j. As these frequencies are not discretized in two values
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Figure 3. Means of the proportions of the threshold levels obtained by cross-validation

with respect to the resolution levels for hard-thresholding (left) and soft-thresholding

(right). Case 1 corresponds to the solid line, Case 2 to the dashed line and Case 3 to

the dotted line.

0 and 1, we can infer that both f̂HTCV
n and f̂STCV

n are not equivalent to linear estimators. It
is encouraging for both methods as the results in [8] state that linear estimators are not near-
minimax. One can also see in these figures that frequencies of effective thresholds are the same
among the weak dependence cases.
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Figure 4. Means of the proportions of thresholded coefficients with respect to the reso-

lution levels for hard-thresholding (left) and soft-thresholding (right). Case 1 corresponds

to the solid line, Case 2 to the dashed line and Case 3 to the dotted line.

Finally, means of higher resolution levels are given in last Table 2. According to Theorem
3.1, the values of this parameter do depend on the cases of weak dependence. But no significant
differences appear on simulations.

Mean of ĵ1

Case 1 Case 2 Case 3
HTCV 5.168 5.14 5.13

STCV 5.14 5.04 5.13

Table 2. Means of ĵ1 on 500 simulations of n = 210 observations.
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5.4. Comparison with kernel estimators. As results computed in the last Subsection are
systematically better for the STCV estimators than for the HTCV ones, we only present in the
sequel results for the STCV estimators. Let us now consider the case of a density function that is
a mixture of normal distributions. Like in [16], we compare the quality of the wavelet estimator

f̂STCV with linear kernel estimators. The kernel used is Epanechnikov’s one and we computed
two choices for its width parameter: firstly we consider the width given by the rule of thumb of
Matlab, (more precisely, the width is equal to (q3 − q1)/(2 ∗ 0.6745) ∗ (4/(3 ∗n))1/5, where q1 and
q3 denote respectively the first and the third quartile of the empirical distribution) and secondly
we consider the width obtained by cross validation on the mean integrated squared error risk.

In Figure 5 are represented the means of wavelet and kernel estimators in the different cases.
Like in the last Subsection, there is no visual difference between the different cases of dependence.
In this Figure, it appears that the mean of the kernel estimators fails to detect the two modes
of the density when the width is choosing according to the rule of thumb. The bandwidth is

overestimated in this case. The quality of the wavelet estimators f̂STCV
n and the kernel estimators

with the width from a cross validation procedure are visually equivalent.
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Figure 5. Means of estimators f̂STCV
n obtained from 210 observations on 500 simula-

tions. The mean of the wavelet estimators is represented in dashed lines while the means of

the kernel estimators are represented respectively in line with dots for the rule of thumb’s

width (kernel estimator 1) and in dots for the cross-validation width (kernel estimator 2).

Figures from left to right correspond respectively to Case 1, Case 2 and Case 3.

To analyse more precisely approximations realized by f̂STCV
n and by kernel estimators, we

represent in Figure 6 the evolution of the mean Lp risk with respect to p for the three estimators
in each case of dependence, i.e. E(‖g − f‖p

p)1/p with g equals to one of the three estimators.
Even if these risks are close to each others, kernel estimator with cross validation bandwidth has
the smallest risk for small values p ≤ 4. Yet, approximations of this kernel estimator clearly get

worse with higher values of p, while risks of f̂STCV
n seem relatively stable for different value of p.

Concerning kernel estimator with the width parameter taken according to the rule of thumb, the
Lp risk is worse for small values of p but comparable with the one of wavelet estimator for higher
values, even if the modes of the density are not detected.

These graphs show that an advantage of f̂STCV
n is that its mean L

p risk seems stable for high
values of p. Nevertheless, the mean of the L2 risk is larger than the one of kernel estimators
with cross-validation width and the computation time higher. One possible way to improve the
quality of approximation for the cross validation procedure may be to consider different levels of
thresholding at each resolution level. We do not investigate this axis of research as then the time
of computation exploded.
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Figure 6. Evolution of the Lp risk of estimators f̂STCV
n and kernel estimators obtained

on 210 observations. The wavelet estimator is represented in dashed lines while the kernel

estimators are represented respectively in dots line for the rule of thumb width (kernel

estimator 1) and in dots for the cross-validation width (kernel estimator 2). Figures from

left to right correspond respectively to Case 1, Case 2 and Case 3.

5.5. Different dependent samplings that do not satisfy (D). In this Subsection, we discuss
the necessity of Assumption (D). For this, we study the convergence of the density estimators
on some dynamical systems that do not satisfy this assumption. More precisely, we focus on
Liverani-Saussol-Vaienti maps, see [18], defined as the solution of Xt = T i(Xt−i) with

T (x) =

{
x(1 + 2α′

xα′

), 0 ≤ x ≤ 1/2 for some 0 < α′ < 1

2x− 1, 1/2 < x ≤ 1.

The process (Xt)t∈Z is stationary and such that the covariance terms Cov(f(X0), g(Xr)) are of

order r1−1/α′

, see [30] and refinement in [15]. Thus the Assumption (D) is not satisfied in this
case and we have the non-minimaxity of any thresholded wavelets estimators:

Proposition 5.1. Suppose that the father wavelet φ is such that
∫
φ > 0 and that the assumptions

of Theorem 3.1 are satisfied. If 1 > α′ ≥ 1/(2α + 1) with α defined by (2.1), then for the
thresholded estimators of the marginal density of the Liverani-Saussol-Vaienti map of index α
there exists some C > 0 such that:

n2α
E[‖f̂n − f‖2

2] ≥ C, for n sufficiently large.

The same result also holds for the cross validation thresholded estimator f̂STCV
n .

The proof of this Proposition is given in Section 6.

To simulate these dynamical systems, we simulate Z0 according to the Lebesgue measure on
[0, 1], then we apply recursively T to determine Zi and finally we set (X1, . . . ,Xn) = (Zn+1, . . . , Z2n).
This approximation of the stationary solution does not affect the study of the convergence rates
as the dynamical system Z is ergodic in mean with rate O(n1−1/α′

), see Theorem 5 of [30].

The analytic expression of the density f is unknown but it is proved to be continuous, locally
Lipschitz and to behave like x−α′

as x → 0, see [18] and [30]. In particular, f is unbounded
on [0, 1]. Then we restrict our study on [0.01, 1] where f is bounded. As the true density f is

unknown, we compare here the estimators f̂STCV
n with other estimators. In Figure 7, we plot the
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mean of M = 100 estimators f̂STCV
n and Epanechnikov kernel estimators given by Matlab’s rule

of thumb for 9 different values of α′.
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Figure 7. Means of the estimators f̂STCV
n obtained on 210 observations and 500 simu-

lations. Means of the kernel estimators are represented in dashed lines.

Visually, means of both estimators are closed to each other. To detect some difference be-
tween the estimators behavior, we decide to compute the moments of order k = 1, . . . , 20 of the
estimators integrated on [0, 1]: ∫ 1

0.01

(
E

[
gk(t)

])1/k
dt

where the random function g is alternatively f̂STCV
n or kernel estimators.

For small values α′ ≤ 0.02 and k ≤ 4, the moments of both estimators have similar values.

But as α′ growths, all the moments of f̂STCV
n explode more rapidly than the ones of kernel

estimators as k increases. Previous simulations studies show no behavior difference for f̂STCV
n

between independent cases and dependent cases satisfying (D). In dependent cases that do not

satisfy (D), the behavior of f̂STCV
n depends on the decrease rates of covariance terms. On the

contrary, the behavior of the kernel estimators with rule of thumb width is more stable when (D)
is not satisfied.

6. Proofs

In this Section are collected all the proofs of this paper.



18 I. GANNAZ AND O. WINTENBERGER

0 5 10 15 20
1

1.05

1.1

1.15

k

flu
ct

ua
tio

ns

Fluctuations of the estimators α=0.1

0 5 10 15 20
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

k

flu
ct

ua
tio

ns

Fluctuations of the estimators α=0.2

0 5 10 15 20
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

k

flu
ct

ua
tio

ns

Fluctuations of the estimators α=0.3

0 5 10 15 20
1

1.05

1.1

1.15

1.2

1.25

k

flu
ct

ua
tio

ns

Fluctuations of the estimators α=0.4

0 5 10 15 20
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

k

flu
ct

ua
tio

ns

Fluctuations of the estimators α=0.5

0 5 10 15 20
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

k

flu
ct

ua
tio

ns

Fluctuations of the estimators α=0.6

0 5 10 15 20
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

k

flu
ct

ua
tio

ns

Fluctuations of the estimators α=0.7

0 5 10 15 20
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

k

flu
ct

ua
tio

ns

Fluctuations of the estimators α=0.8

0 5 10 15 20
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

k

flu
ct

ua
tio

ns

Fluctuations of the estimators α=0.9

Figure 8. Moments of the estimators f̂STCV
n obtained on 210 observations and 500

simulations. In dashed lines are represented the moments of the kernel estimators.

6.1. Proofs of Lemma 3.1. Firstly we give the proof of the inequality (3.1) of Lemma 3.1.
This proof is essentially based on Lemmas 6.1 and 6.2. The first one, Lemma 6.1, is simply the
Theorem 2 of [9] that we recall here for completeness:

Lemma 6.1. (Doukhan & Louhichi (1999)) Let (Zi)1≤i≤n be centeres variables.
Let q be an even integer and n ≥ 2.
Suppose that for all p = 2, . . . , q and for all 1 ≤ s1 ≤ sp ≤ n satisfying max si+1−si = su+1−su =
r, there exists Vp,n such that:

n

n−1∑

r=0

(r + 1)p−2Cov(Zs1 · · ·Zsu , Zsu+1 · · ·Zsp) ≤ Vp,n.

Then, we have

E|
n∑

i=1

Zi|q ≤ (2q − 2)!

(q − 1)!

{
V

q/2
2,n ∨ Vq,n

}
, (6.1)

We refer the reader to [9] for the proof of this result. We apply this result on Zi = ψj,k(Xi)−βj,k,
when (D) holds. We first determine the bounds Vp,n as under Assumption (D) we have:

n−1∑

r=0

(r + 1)p−2Cov(Zs1 · · ·Zsu, Zsu+1 · · ·Zsp) ≤
n−1∑

r=0

(r + 1)p−2ρ(r)p2(2j/2M2)
p−2.

Here we need the following analytic Lemma to bound the quantity
∑∞

r=0(r + 1)pρ(r):
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Lemma 6.2. If (D2) is satisfied, i.e. if ρ(r) ≤ C0e
−arb

, then for all integer p we have

∞∑

r=0

(r + 1)pρ(r) ≤ C1C
p
2 (p!)1/b, (6.2)

with some constants C1 and C2 that are depending on a and b.

Applying this result, whose proof is given at the end of this subsection, we directly obtain the
new bound:

n−1∑

r=0

(r + 1)p−2Cov(Zs1 · · · ≤ C1p
2(2j/2M2C2)

p−2((p− 2)!)1/b

We set Vp,n = C1p
2(2j/2M2C2)

p−2((p− 2)!)1/bn, and, applying Lemma 6.1, we obtain that:

E|
n∑

i=1

(Zi − EZ0)|q ≤ (2q − 2)!

(q − 1)!

{
(C1n)q/2

}
∨
{
C1(2

j/2M2C2)
q−2((q − 2)!)1/b

}
.

Dividing by n−q and noticing that 2j/2 ≤ n for 0 ≤ j ≤ log n, we derive that:

E|β̂j,k − βj,k)|q ≤ nq/2 (2q − 2)!

(q − 1)!

{
(C1)

q/2
}
∨
{
C1(M2C2)

q−2((q − 2)!)1/b
}
,

which corresponds to the inequality (3.1). In particular, for p = 2 we have

E|
n∑

i=1

(Zi − EZ0)|2 ≤ 4C1n.

Now the inequality (3.2) of Lemma 3.1 is a direct application of Theorem 1 in [10] with

Sn =
∑n

i=1(Zi − EZ0), t = nλ, ν = 0, µ = 1/b, An = 4C1n and Bn = 2M2C22
(2+b)/b2j/2. We

refer the reader to [10] for the definition of the parameters t, ν, µ,An and Bn.

Proof of Lemma 6.2. Define g(x) = (1 + x)e−axb
for all x ≤ 0. Studying its derivative, we can

easily see that it exists xa,b such that the function g decreases on [xa,b,+∞). If we denote k ≥ 1
the smallest integer greater than xa,b, we can infer from (D2) that

∞∑

r=0

(r + 1)pρ(r) ≤ C0

(
k−1∑

r=0

(r + 1)pρ(r) +

∫ ∞

k−1
(x+ 1)p exp(−axb)dx

)

≤ C0

(
Ca,b +

∫ ∞

0
(x+ 1)p exp(−axb)dx

)
.

With a convex inequality on x 7→ xp, we achieve the bound

∞∑

r=0

(r + 1)pρ(r) ≤ C0

(
Ca,b + 2p−1

(∫ ∞

0
xp exp(−axb)dx+

∫ ∞

0
exp(−axb)dx

))
.
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Then, writing u = axb,

∞∑

r=0

(r + 1)pρ(r) ≤ C0

(
Ca,b + 2p−1b−1

[
a−(p+1)/bΓ

(
p+ 1

b

)
+ a−1/bΓ

(
1

b

)])
,

with Γ defined by Γ(x) =
∫∞
0 ux−1 exp(−u)du for all x > 0. Let ⌈x⌉ denotes the largest integer

smaller than x > 0 and note Γ = supx∈]0,1] Γ(x). Using the inequalities Γ((p + 1)/b) ≤ Γ⌈(p +

1)/b⌉! ≤ Γep/b(p !)1/b and the fact that this last bound is also available for Γ(1/b), we have:

∞∑

r=0

(r + 1)pρ(r) ≤ C0

(
Ca,b + 2p−1b−1

[
a−(p+1)/b + a−1/b

]
Γep/b(p !)1/b

)

≤ C0

(
Ca,b + 2−1b−1a−1/bΓ

)(
2e1/b(a−1/b ∨ 1)

)p
(p !)1/b.

The Lemma comes immediately by choosing the appropriated constants. �

6.2. A sketch of the proof of Theorem 3.1. The proof of Theorem 3.1 is very similar to the
one in the iid case given in [8]. It is well known for the community that both inequalities (3.1)
and (3.2) are sufficient to set rates of convergence. We just give here a sketch of the proof.

As f ∈ L2 we write it in the basis of wavelets:

f =
∑

k∈Sj0

αj0,kφj0,k

︸ ︷︷ ︸
Ej0

f

+

∞∑

j=j0

∑

k∈Sj

βj,kψj,k

︸ ︷︷ ︸
Dj0

f

, (6.3)

with Sj = {k, |2−jk| < A + T}. Note that the number of elements in Sj is less or equal than

2j(A+ T ) and that every k in Sj is bounded by 2j(A + T ). We decompose the estimators f̂n of
f in the same way:

f̂n =
∑

k∈Sj0

α̂j0,kφj0,k

︸ ︷︷ ︸
bEj0

f

+

j1∑

j=j0

∑

k∈Sj

γλj
(β̂j,k)ψj,k

︸ ︷︷ ︸
bDj0

f

, (6.4)

where the γλj
denotes without distinction the soft and hard-threshold function.

Thanks to Minkowski’s inequality, the risk of f̂n is divided in two terms:

E[‖f̂n − f‖p
p] ≤ 2p−1


E[‖Êj0f − Ej0f‖p

p]︸ ︷︷ ︸
T1

+ E[‖D̂j0,j1f −Dj0f‖p
p]︸ ︷︷ ︸

T2


 .

The following Lemmas given in [21] give bounds for these terms. Here for any p ≥ 1 we denote
‖ · ‖ℓp

the ℓp-norm defined by ‖a‖p
ℓp

=
∑

i |ai|p for any sequence of real number (ai)i≥0 and we

denote δ the wavelet φ or ψ with no distinction.
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Lemma 6.3. For any 1 ≤ p ≤ ∞, there exists c1, c2 > 0 such that for all j ≥ 0 and all sequence
(ak)0≤k≤2j−1 we have

c12
j(p/2−1)‖a‖p

ℓp
≤

∥∥∥∥∥∥

∑

k∈Sj

akδj,k

∥∥∥∥∥∥

p

p

≤ c22
j(p/2−1)‖a‖p

ℓp
.

The proof of Theorem 3.1 is based on multiple applications of Lemma 6.3 and its refinements

given in [8], see Eq. (21), with aj,k = γλj
(β̂j,k) − βj,k. From the linearity of the expectation,

bounds for the mean of the approximation in Lp express as functions of

E‖γλj
(β̂j,k) − βj,k‖p

ℓp
=
∑

k∈Sj

E|γλj
(β̂j,k) − βj,k|p.

Then one uses the following estimate, common for hard and soft-thresholding:

|γλj
(β̂j,k) − βj,k|p ≤ 2p−1

(
|β̂j,k − βj,k|p + |λj|p

)
11
{|bβj,k|>λj}

+ |βj,k|p11{|bβj,k|≤λj}
. (6.5)

The indicators terms are bounded by using (3.2) and the centered moments of the coefficients are
bounded using (3.1). We refer the reader to [8] for more details.

6.3. Proofs of results given in Sections 5 and 4. In this Section are collected the proof of
Proposition 4.1, Lemma 4.1, Proposition 4.2 and Propostion 5.1. Denoting with no distinction

ψj,k(x) − βj,k and φj,k(x) − αj,k as δ̃j,k(x) for any j, k, we collect here some inequalities useful

in this Section: E|δ̃j,k(X0)| ≤ 2‖f‖∞‖δ‖12
−j/2, E|δ̃j,k(X0)|2 ≤ ‖f‖∞, ‖δ̃j,k‖∞ ≤ 2‖δ‖∞2j/2,

Lip δ̃j,k ≤ Lip δ̃23j/2 and ‖δ̃j,k‖BV ≤ (‖δ̃‖∞+ALip δ̃)2j/2+1 for all j ≥ 1. The last assertion comes

from the fact that δ̃j,k is a bounded Lipschitz function supported by [(−A+ k)2−j , (A+ k)2−j ].

Proof of Proposition 4.1. As for any j, k the function δ̃j,k has bounded variations we have
∣∣∣Cov

(
δ̃j,k(Xs1) · · · δ̃j,k(Xsu), δ̃j,k(Xsu+1) · · · δ̃j,k(Xsu+v

)
)∣∣∣ ≤ vE

∣∣∣δ̃j,k(Xs1) · · · δ̃j,k(Xsu)
∣∣∣ ‖δ̃j,k‖v

BV φ̃v(r).

Noticing that ‖δ̃j,k‖∞ ≤ ‖δ̃j,k‖BV , it follows

Cj,k
u,v(r) ≤ v‖δ̃j,k‖u+v−2

BV ‖δ̃j,k‖BV E|δ̃j,k(X0)|φ̃v(r)

≤ (u+ v + uv)(2j/2+1c(‖δ‖∞ +ALip δ))u+v−12‖f‖∞‖δ‖12
−j/2 exp(−arb).

Then Proposition 4.1 is proved. �

Proof of Lemma 4.1. The proof is very close to the one given in [7]. First notice that (4.3) for

r = 0 implies that c ≥ 1 = supg∈BV1
‖g‖BV . From (4.2) we infer that φ̃(σ(X0),Xr) ≤ exp(ar−b)

applying Lemma 4 of [6] on (4.2). From the Markov property we get φ̃(σ({Xj , j ≤ 0}),Xr) =

φ̃(σ(X0),Xr). Now for any ℓ ≤ 1, for all r ≤ i1 ≤ · · · ≤ iℓ consider any gij ∈ BV1 for 1 ≤ j ≤ ℓ.
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Let us prove that we can restrict ourselves to the ℓ-uplets satisfying i1 < · · · < iℓ. On the
one hand, if ij = ij′ = r then we have ‖E(gr(Xr)gr(Xr)|Xi1 = ·)‖BV ≤ c‖g2

r‖BV from (4.3). As
from assumption ‖gr‖∞ ≤ ‖gr‖BV ≤ 1 then ‖g2

r‖BV ≤ ‖gr‖BV + ‖gr‖BV ≤ 2 and we achieve the
bound ‖E(gr(Xr)gr(Xr)|Xi1 = ·)‖BV ≤ 2c. On the other hand, if ij < ij′ then, from the Markov
property, we get the equation

‖E(gij (Xij )gij′ (Xij′ )|Xi1 = ·)‖BV = ‖E(gij (Xij )E(gij′ (Xij′ )|Xij )|Xi1 = ·)‖BV .

We proceed in two steps. Firstly from (4.3), we infer thet x 7→ gij ,ij′ (x) = E(gij′ (Xij′ )|Xij = x)

has variations bounded by c. Notice also that ‖gij ,ij′‖∞ ≤ ‖gij′ ‖∞ ≤ 1 and therefore we deduce

the bound ‖gijgij ,ij′‖BV ≤ ‖gij‖BV +‖gij ,ij′‖BV ≤ 1+c. Secondly, using (4.3) on gij ,ij′/‖gij ,ij′‖BV ,

we infer that ‖E(gij (Xij )gij′ (Xij′ )|Xi1 = ·)‖BV ≤ c(1 + c) ≤ c+ c2.

As c ≥ 1, this bound is larger than the one in the case ij = ij′ . Now, by straightforward
recurrences in the worst cases i1 < · · · < iℓ, we get that

‖E(gi1(Xi1) · · · giℓ(Xiℓ)|Xi1 = ·)‖BV ≤ c+ · · · + cℓ ≤ ℓ cℓ as c ≤ 1.

Then, denoting gi1,...,cℓ
(x) = E(gi1(Xi1) · · · giℓ(Xiℓ)|Xi1 = x) for all x, we have almost surely the

equation

E(gi1(Xi1) · · · giℓ(Xiℓ)|X0) − E(gi1(Xi1) · · · giℓ(Xiℓ)) = E(gi1,...,cℓ
(Xi1)|X0) − E(gi1,...,cℓ

(Xi1))

From the definition of coefficients φ̃ we get

‖E(gi1,...,cℓ
(Xi1)|X0) − E(gi1,...,cℓ

(Xi1))‖∞ ≤ ℓcℓφ̃(σ({Xj , j ≤ 0}),Xr).

For all 1 ≤ ℓ ≤ v this bound holds uniformly for all gij ∈ BV1, 1 ≤ j ≤ ℓ, using the definition of

φ̃v(r) we conclude that φ̃v(r) ≤ cvφ̃(σ({Xj , j ≤ 0}),Xr) ≤ cv exp(−arb). �

Proof of Proposition 4.2. We use the direct bound given in the proof of Lemma 1 of [23] under
(J):

∣∣∣Cov
(
δ̃j,k(Xi1) · · · δ̃j,k(Xiu), δ̃j,k(Xiu+1) · · · δ̃j,k(Xiu+v

)
)∣∣∣ ≤ 23(2j/22‖δ‖∞)u+v−2γ(r)

with γ(r) = E|δ̃j,k(X0)δ̃j,k(Xr)|∨(E|δ̃j,k(X0)|)2 ≤ (‖fr‖∞∨2‖f‖∞)‖δ‖2
12

−j. Noticing that γ∧β ≤
γ1/4β3/4 for any positive numbers γ and β, we combine the two bounds on the covariance terms
and we infer that (D1) is satisfied with M2 = 2‖δ‖∞ and

ρ(r) = 29/2‖δ‖3/2
1 (Lip δ)1/2(‖fr‖∞ ∨ ‖f‖∞)3/4λ(r)1/4.

Assumptions of Proposition 4.2 on respective decrease and increase rates of λ(r) and ‖fr‖∞ yield

the existence of C0 > 0 such that ρ(r) ≤ C0 exp(−a′rb′/4). �

Proof of Propostion 5.1. We give the proof for f̂n but it also holds for f̂STCV
n . We begin with

recalling the result of Corollary 7.1 in [15]:



ADAPTIVE DENSITY ESTIMATION UNDER WEAK DEPENDENCE 23

Lemma 6.4 (Gouëzel, 2004). For any Lipschitz function δ1, bounded measurable function δ2
such that δ1, δ2 = 0 in a neighborhood of 0, then for any 0 < α′ < 1, there exists some constant
C > 0 such that

Cov(δ1(X0), δ2(Xr)) ∼ C

∫
δ1(x)dx

∫
δ2(x)dx r

1−1/α′

when r → ∞. (6.6)

We use the decomposition of f ∈ L
2 in the orthogonal basis of wavelets functions, see (6.3)

and (6.4), and we obtain

E(‖f̂n − f‖2
2) ≥ E‖

∑

k∈Sj0

(α̂j0−k − αj0−k)φj0,k‖2
2

≥
∑

k∈Sj0

E(α̂j0−k − αj0−k)
2.

If we develop E(α̂j0−k − αj0−k)
2 using the covariance terms and denoting δ̃j,k(x) = φj,k(x)− αj,k

for x ∈ [0.01, 1] and null elsewhere, it comes:

E(α̂j0−k − αj0−k)
2 =

1

n
E(δ̃j,k(Xi)

2) + 2

n−1∑

r=1

n− r

n2
Cov(δ̃j0,k(X0), δ̃j0,k(Xr)).

We want to apply Lemma 6.4 with δ1 = δ2 = δ̃j0,k. We check easily the assumptions of this

Lemma because of the definition of δ̃j0,k, resulting from the fact that we estimate the density on

[0.01, 1]. Moreover
∫
φj0,k = 2−j0/2

∫
φ with

∫
φ > 0 from assumption and then the covariance

terms Cov(δ̃j0,k(X0), δ̃j0,k(Xr)) are equivalent to C2−j0 r1−1/α′

for some C > 0 as r goes to infinity.

Let n0 be such that for all n ≥ n0, ur,n = n−r
n2 Cov(δ̃j0,k(X0), δ̃j0,k(Xr)) is nonnegative. For

some m > m′ > 2, we decompose the sum of covariance terms, for n sufficiently large, in four
sums:

n−1∑

r=1

n− r

n2
Cov(δ̃j0,k(X0), δ̃j0,k(Xr)) =

n0∑

r=1

ur,n +

[n/m]∑

r=n0

ur,n +

[n/m′]∑

r=[n/m]

ur,n +

n−1∑

r=[n/m′]

ur,n,

where [a] denotes the integer part of a. The first term goes to 0 with rate n. Then, by definition

of n0, the second and the last terms are nonnegative. Concerning the sum
∑[n/m′]

r=[n/m] ur,n, the

summands ur,n are all larger than (m′ − 2)/(m′n)Cov(δ̃j0,k(X0), δ̃j0,k(Xr)) that is equivalent to

C2−j0n−1r1−1/α′

as n → ∞. The minimax rate α is such that α < 1/2 and then by hypothesis

α′ ≥ 1/(2α+1) > 1/2. Consequently, when n goes to infinity, the sum
∑[n/m′]

r=[n/m] ur,n is larger than

a partial sum equivalent to C2−j0n1−1/α′

for some C > 0 as n→ ∞. As we assume 2α ≥ 1/α′−1
we obtain the existence of some C > 0 such that

n2α2j0

n−1∑

r=1

n− r

n2
Cov(δ̃j0,k(X0), δ̃j0,k(Xr)) ≥ C, for n sufficiently large.
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Collecting these facts and using that |Sj0| is up to a constant equal to 2j0, we obtain that

n2α
E(‖f̂n −f‖2

2) is larger than some positive constant and the result of Proposition 5.1 is proved.
�
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