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Abstract—" In this paper, a novel pilot-aided algorithm is and attenuates the desired signal. These effects reduce the
developed for MIMO-OFDM systems operating in fast time- effective signal-to-noise ratio (SNR) in OFDM receptioreisu
varying environment. The algorithm has been designed to work {5t the system performance is degraded [6] [7]. Most of the

both with parametric L-path channel model (with known path . . .
delays) and equivalent discrete-time channel model to jointly reported works consider that all the paths present iddntica

estimate the multi-path Rayleigh channel complex amplitudes Doppler shifts. Hence, they group together the Dopplert shif
(CA) and Carrier Frequency Offset (CFO). Each CA time- and CFO due to oscillator mismatch to obtain a single offset

variation within one OFDM symbol is approximated by a Basis parameter [8] for each channel branch. However, this model
Expansion Model (BEM) representation. An Auto-Regressive g ot gyfficiently accurate since separate offset paramate

(AR) model is built for the parameters to be estimated. The . . . .
algorithm performs estimation using Extended Kalman Filtering. required for each propagation path given that the Doppliér sh

The channel matrix is thus easily computed and the data symbol depends on the angle of arrival, which is particular to each
is estimated without Inter-sub-Carrier-Interference (ICI) when path. Recently, it has been proposed to directly track ablann

the channel matrix is QR-decomposed. It is shown that our paths to take into account separate Doppler shifts for each
algor!thm is far more robust to high speed than the con_ventlonal path ([9][10] for SISO and [11] for MIMO). Those works
algorithm, and the performance approaches that of the ideal cas . . . )
for which the channel response and CFO are known. estimate the equivalent discrete-time channel taps ([20])
the real path Complex Amplitudes (CA) ([9][11]) which are
both modeled by a basis expansion model (BEM). The BEM
. INTRODUCTION methods include Karhunen-Loeve BEM (KL-BEM), prolate

, , ) spheroidal BEM (PS-BEM), complex exponential BEM (CE-
Multiple-Input-Multiple-Output (MIMO) antennas with Or- BEM) and polynomial BEM (P-BEM).

thogonal Frequency Division Multiplex_ing (OFDM)_proyide However the CFO due to the mismatch between transmitter
high data rates and are robust to multi-path delay in wigeleg, eceiver oscillators is not taken into account in those

communications. Channel parameters are required forsiyer 5, iihms The idea of joint channel and CFO estimation has
combining, coherent detection and decoding. Therefor@<h oo initially proposed for SISO-OFDM systems in [12] and
nel estimation is essential to design MIMO-OFDM SysteMgan extended to MIMO-OFDM systems [13]. The authors
For MIMO-OFDM systems, most Of, the channel eSt'mat'OE;jposed an algorithm based on Extended Kalman Filtering
schemes have focused on pilot-assisted approaches Bl][2]yg

based on a quasi-static fading model that allows the chan
to be invariant within a MIMO-OFDM block. However, in
fast-fading channels, the time-variation of the channéhiwia
MIMO-OFDM block results in the loss of subcarrrier orthogo

nality, and consequently intercarrier interference (I@dturs environment.

[4][5]. Therefore, the channel time-variation within a 60— Genaraly, it is preferable to directly estimate the phaic

must be considered to support high-speed mobile channelgy,nne| parameters [14] [9] [11] instead of the equivalent
On the other hand, similarly to the single-input singlepotit isqrete-time channel taps [10]. Indeed, as the channaydel

(SISO) OFDM, one of the disadvantages of MIMO-OFDM5ea4 increases, the number of channel taps also increases

lies in its sensitivity to carrier frequency offset (CFO)edto 5 4 jarge number of BEM coefficients have to be estimated.
carrier frequency mismatches between transmitter andvexce 11,;g requires more pilot symbols. Hence, using a parametric

oscillators. As for the Doppler shift, the CFO produces ICl,annel model rather than an equivalent discrete channel
LCopyright (¢) 2010 IEEE. Personal use of this material is : model enables to reduce the signal subspace dimension [14].

However, permission to use this material for any other purpasest be Additiona”_y’ estimating the physical propagation par_wme )
obtained from the IEEE by sending a request to pubs-permis@deee.org. means estimating path delays and path CA. Note that in Radio-

KF) and on equivalent discrete-time channel model. Bet th
t time-variation of the channel was not taken into actoun
In this paper, we propose a complete algorithm capable
of jointly estimating the CFO and the path CA, by taking
into account the fast variation of each path CA in MIMO



Frequency transmissions, the delays are quasi-invariegit oreceive antenna (call€a, ¢) branch from now on) experiences
several MIMO-OFDM blocks [15] [4] (whereas the CA maya normalized frequency shift(™) = AFYNT,, where
change significantly, even within one MIMO-OFDM block). AF (") is the absolute CFO. All the normalized CFO can
In this work, the delays are assumed perfectly estimated dmel stacked in vector form:

quasi-invariant. It should be noted that an initial, andegafty def

. . — l/(l,l) V(LNT)
accurate estimation of the number of paths and delays ca’ 1 AR
be obtained by using t'he MDL' (minimum description Iength) D) (rN) V(NR,NT)}T )
and ESPRIT (estimation of signal parameters by rotational AR AR

invariance techniques) methods [14][9]. After  transmission over a multi-path  Rayleigh

This paper is organized as follows: Section Il introduc&shannel, the nth received MIMO-OFDM  block
the MIMO-OFDM system and the BEM modeling. Sectio, ~ %f [yng)Tvy;?)T,...7y£’{VR)T]T, where y() %
[l describes the state model and the Extended Kalman Filt r(r)[_ﬂ] (r)[_ﬁ T y(r)[ﬁ B 1HT is the nth
Section IV covers the algorithm for joint channel and CF%geivedz é)FnDM szmboI E)y {hgth raceiver antenna. is given
estimation together with data recovery. Section V prestms in the frequency domain by [4] [10]: '
simulations results which validate our technique. Finadiyr
conclusions are presented in Section VI. Yo = HaXo+w, (2)

The notations adopted are as follows: Upper (lower) bo{/‘\j/here w. g [W(l)T w@” W(NR)T] T def
face letters denote matrices (column vectofg), denotes =~ )" b T T _
the kth element of the vectox, and [X];,, denotes the [wn [f?]>w7} -5 +1], . wn [_?_1]] avyhltg complex
[k, m]th element of the matriX. The row and column indices Gaussian noise vector of covariance matfio”ly. The
start from 0 (and not 1). We will use the matlab notatiof'@rix Hx is @ NN > NrN MIMO channel matrix given
X [ks ks ,m1:m] tO €xtract a submatrix withixX from row k; to  PY:
row k, and from columnmn, to columnms. Iy is a N x N HED o HLND)
identity matrix andy is a N x N matrix of zeros. diafx} is a H, % : . : ©)
diagonal matrix withx on its main diagonal and blkdid¥, Y}

is a block diagonal matrix with the matrices and Y on
its main diagonal. The superscript”, (-)* and ()" stand \hereH (" is the ¢, t) branch channel matrix. The elements
respectively for transpose, conjugate and Hermitian dpESa of channel matrixH (") can be written in terms of equivalent

Tr(-) and B:] are respectively the determinant and expectati% }{ (r,t) (ryt) } ;
. . . . annel taps [5 T,) = T+qT,) : orin terms
operations.Jy(-) is the zeroth-order Bessel function of the first PS B} 91 (aTs) = 9 (nT+aTs)

kind. V, represents the first-order partial derivative operat@f physical channel parameters [9}¢( delays {7""} and

with w!"”

HOVRD .. H(NRNT)

ey V= [52 eo 52] T CA {agg;f) (qT%) = o{™ (nT + qu)}), yielding Eq. (4) and
(5), respectively.
Il. MIMO-OFDM SYSTEM AND CHANNEL MODELS L't} < N, is the number of channel taps add"") the

A. MIMO-OFDM Svstemn Model number of paths for ther(t) branch. The delays are normal-
: ) ystem viode ized by T, and not necessarily integersl(’(’t) < N,). The
Consider a MIMO—OFDM system WlthNT transmltter. LY elements of{al(?Lt)(qu)} are uncorrelated. However,

antennas)/Ny receiver antennasy sub-carriers, and a cyclic ot (rit)

prefix length N,. The duration of a MIMO-OFDM block the L' elements Of{gz,ﬁ (qu)} are correlated, unless

is T = N,T,, where T, is the sampling time andV, = the delays are multiple df; as is commonly assumed in the

N+ N,. Let x, & [XS})T7X,§L2)T,___,ngT)T]T be thenth literature. They are wide-sense stationary (WSS), narramdb

. . 02
transmitted signal block, whepéf) def [ng) [_N] (t)[_% + Zzero-mean complex Gaussian processes of vananﬁe%

21D n (7'7t) 2

1], .., 20 [X — 1]]" is the nth signal vector transmitted by @ndoa,” , with the so-called Jakes’ power spectrum of max-
the #th transmitter antenna and the data symiof/)[k]} 'Mum Doppler frequency [16]. The average energy of each
is transmitted on theith sub-carrier. The data symbol are . . ) P! rt)2 _

. () 171 (t)% B .~ (r,t) branch is normalized to oné,e., Z oy =1
normalized {.e., E[zy [k]zyn " [k]] = 1). The frequency mis- —
match between the oscillators used in the radio transmitter ;.o _;
and receivers causes a CFO. In multi-antenna systems, eggh Z U((;;,tﬂ 1.
transmitter and receiver typically requires its own Radie-F =0
quency - Intermediate Frequency (RF-IF) chain. Consedyent In the next sections, we present the derivations for the
each transmitter-receiver pair has its own mismatch paermesecond approach (physical channel). The results of the first
yielding separate CFO. In &y x Nz MIMO system this leads approach (channel taps) can be deduced by replacing by
to Ny Ny, different CFO. However, if transmitter or receiverl’"") and the set of delaysr”"} by {1, 1 =0 : L/("") —1}.
antennas share RF-IF chains, fewer different CFO occur. The
system model describes the general case where it is negesBarBEM Channel Model
to compensate forNyNp CFO. Assume that the MIMO Let L &ef Zivjl i\fl L") be the total number of paths
channel branch between tligh transmit antenna and theh for the MIMO channel. There ard, samples to be estimated



LI(T t) _ 1

1
Hhn = 5 2 [ & Z”Zeﬂ” g (g e (4)
1 L("')fl y t)N 1 .
- = et b P ol (¢, ) (5)
=0 q=0

for each path CA due to the fast time-variation of the channék — N,;)™ [9] and the Discrete Karhuen-Loeve BEM (DKL-
yielding a total ofL NV, samples for the whole MIMO channel.BEM) which employs basis sequences that correspond to the
In order to reduce the number of parameters to be estimatethst significant eigenvectors of the autocorrelation matri
we resort to the Basis Expansion Model (BEM). Inthls sectloR(’ t)[ 0] [19]. From now on, we can describe the MIMO-
our aim is to accurately model the time- varlatmméf (qTs) OFDM system model derived previously in terms of BEM.
from g = —N, to N — 1 by using a BEM. Substituting (7) in (2) and neglecting the BEM model error,

Supposex(”) represents atv, x 1 vector that collects the One obtains after some algebra:

In
time-variation of thelth path of the(r,¢) branch within the y, = Ko@) cutw, (13)
where theL N, x 1 vectorc, and the NgN x LN, matrix

nth MIMO-OFDM block:

az(rnt) def[ DO (=NgT), oy 0 t)((N ~)T)]" (6) K. (v) are given by:
Then, eacml(;’f) can be expressed in terms of a BEM as: ¢, %' [C;LI)T’ LN ._.7CglNR~,NT)T:|T (14)
ol = ol e - Bdleel) M o )
where theN;, x N, matrixB is defined asB &' by, ....by. 1], Kn(v) & b|kd|ag{;c§}>(u<1>), ;cgNw(u(NR))}

The N, x 1 vectorb, is termed as thelth expansion basis.
c(mt) &ef [e"010], .., ¢} [N — 1]]" represents thev, BEM

ln - ln
coefficients antf(” represents the corresponding BEM mod- ¢ () (;, (1)) &&f L [Z(Tﬂf)(y(nt))’ ._.7Z(L’“{f)t) ) (VW))}
eling error, which is assumed to be minimized in the MSE det N e
sense [17]. Under this criterion, the optimal BEM coefficien  z{"." (") [M (1) (1,10 diag{x(®)} £
and the corresponding model error are given by:

PO e M, (040 diaglx} 17|

K:glr) (V(r)) d:(-Z‘f [’Cglr,l)(y(r,l))’ " K:SIT,NT)(V(T,NT))]

PEEEY)

) = (87B) B"a))) (®) o ., ,
0 _ (1 — el ©) wherev(™ = [y y(nND) T Vectorf(’“ is the ith
bn o Ln column of theN x L") Founer matrixF (" whose elements
whereS = B (BHB)71 B is a N, x N, matrix. Then, the &€ given by:
MMSE approximation for all BEM withN, coefficients is [F(T’t)]k,z _ e—j2w(%—%)7—f""> ’ (15)
given by:
1 and M(T’t) is a N x N matrix whose elements are given by:
MMSE(") ! g [¢lr0el" (10) .
M(rt) rt) } ed2m AN Ny ej27rm kg '
:iTr((le —S)R(” 0(n,-S") @y Z ot
A (16)

Moreover, the channel matrix of the, t) branch can be easily

(r,t def (ryt) _(r,t) .
whereR(:"[s] < E { O s } is the N, x N, correla-  computed by using the BEM coefficients [4]:

tion matrix ofagrj with elements given by: Nelt .
’ HED = S MY ) diaglF)x ) (17)
REO [k = 000 (%des(k—ersNb)) (12) =0
rt) def r (r, r, T .
wherex ) € [0 [d), ..., 70, L] Eq. (17) will be

Various traditional BEM designs have been reported to modgded in the followmg to obtain an estimated channel matrix
the channel time-variations, e g the Complex Exponkntigom the estimated CFO and BEM coefficients.

BEM (CE-BEM) Bl = ¢/>"C %)™ ="57) which leads

to a strictly banded frequency domain matrle[18] the Gene  !ll. AR M ODEL AND EXTENDED KALMAN FILTER
2n(S ) (m="5=%) A, The AR Model foc

alized CE-BEM (GCE-BEM)B,, = /7 % n

with 1 < a < Je= (1) are correlated complex
exponentials [17] the Polynomial BEM (P-BEMB]x.,, = Gaussian variables with zero- means and correlation matrix




given by: There areLN,. BEM coefficients andV; Nz CFO values in
the state vector of dimensiohN. + NrNgi x 1. Then, the

H
Rg’t) [s] aef E[cl(;’f)cl(;’ﬁs ] linear state equation may be written as follows:
— (BB) 'BYRUY[sB (BYB) " (18) P = A~ i1 + Uy (25)

. - r . . where th ransition matrix i fin follows:
Since the coeff|C|ents§ ;f) are correlated Gaussian variables, ere the state transition matrix is defined as follows

their dynamics can be correctly modeled by an auto-regressi AL plkdiag{ A, A, } (26)

(AR) process [20] [21] [9] . A.complex AR process of ordeI:I_he LN, + NaNy x 1 noise vector is such that, def
p can be generated such that:

[ud,, ul, }T with covariance matrity ' blkdiag{U, U, }.

cno vn

P
o = STAO Y (19) D. Extended Kalman Filter (EKF)
=1 The measurement equation (13) can be reformulated as:
whereA™M ... A®) are N, x N, matrices andjl(;’f) isaN,x1 Y, =g (tn) + W, 27)
complex Gaussian vector with covariance mati"”. From where the nonlinear functiomof the state vectog,, is defined
[9], it is sufficient to choose = 1 to correctly model the 44 g(pn) = Kn(v) - c,. Nonlinearity of the measurement

. Tt . . ..
path CA. The matrmesAm = A and U™ are the AR equation (27) is caused by CFO. The BEM coefficients are
model parameters obtained by solving the set of Yule-Walkgfj|| |inearly related to observations. Since the measergm

equations: equation is nonlinear, we use the Extended Kalman filter to
(rit) (i) "t adaptively tracku,,. Let fi(,,,—1) be our a priori state estimate
A = RyV[] (Rcf’ [O]) (20)  at stepn given knowledge of the process prior to Step )
Uz(v"t) — ROV[0] 4 ARCO[1] 1) be our a posteriori state estimate at stegiven measurement

Y,, and,P,,—1) andP,,, are respectively the a priori and
Using (19), we obtain théirst-order AR approximation for the a posteriori error estimate covariance matrix of $i2€ +

the dynamics ot,: NgNp x LN.+ NrNrp. We initialize the EKF Wlthﬁ,(o‘o) =
OLN.+NpNp,1 @NdPg o) given by:
c, = - Cp_1 + Ucn 22 .

AC ! € ( ) P(O\O) = blkdlag{Rc[O], JZVINRNT} (28)

where A, aef blkdiag{A,...,A} is a LN, x LN, matrix Re[s] = b|kdiag{Rglyl)[s]w.7RgNR,NT)[S]}
def [ (1,1)7T (Ng,Np)T T
and Uep, = UO’” ""’uL(NR=NT)— IS a LNC X 1 (r,t) o . (r,t) (r,t)
. Ln| . . R"Y[s] = blkdiagy Ry [s], ..., Rg [s]

zero-mean complex Gaussian vector with covariance matrix 0 Lt 1
Ue d=6fb|kdiag{U((>1’1)>---»U(L]YJIJ'I;J,VNTT))_l}- where R{"")[s] is the correlation matrix ot{"" defined in

(18). To derive the EKF equations, we need to compute the

B. The AR Model fou, Jacobian matrixG,, of g (u,,) with respect tqu,, and evaluated

at p’(n|n—1):
Let us write the globalffirst-order AR model for v,, as def
follows: p - Gn = vung(“") Hn=R(nin-1)
Vi = Ay Vi + U, (23) (V00 VGG, ] @9)
where the state transition matrix is of si2d6; Nr x NrNr. . T
Since the CFO can be assumed as constant during the obsetet us define wlr) def [,A:*” s, i) } and
vation interval, /A, is considered to be close to the identity (. ;) gef [ (r.0)T (r.0)77 i .
matrix A, = al y,n,., Wherea is typically chosen between #n = = [C” Vn } . After computation, we find:
0.99 and 0.9999 [22][13]. The Nz N x 1 state noise vector
U, is assumed to be zero-mean complex Gaussian. The statg’" - [K”(V”) Vn=D(nin-1)’ Vilben) un:ﬂmm—w} (30)

noise covariance matrix i, = o2 |y, n, Whereo? isthe where

variance of the state noise associated with CFO. The value def _ D¢, 1) (NR) (. (NR)
of the state noise variance depends on the parametes Valpn) = blkd|ag{vn ()5 s V0 (™ )}
explained in Appendix. Vﬁf)(ug)) def {V(r,l)(uglr,l))7 o ’V(T,NT)(%T,NT))}

V(r,t)(uq(ir,t)) def ’C;l(r,t)(ygr,t)) L crt)

n

C. State equation o 1
. . Ty T, _ef ’(T)t) T, /(Tvt) T,
Now, let us write the state-variable model. The state vector Kff t)(Vfb t)) =N |:ZO,n (Vv(b t))7 "'7ZL—1,7L(V7(L t))}
at time instance: consists of the BEM coefficients, and the 1mt) o () def - . (r,t)
vector of CFOVn: Zlm, (V'SL t)) = [Mé(Vﬁt t)) dlag{ng)} fl 3 eeey

PRCIR AL (24) My, -1 (") diagfx(} f;""



The elements of théV x N matrix M/, (v) are given by: possible since a version of the channel matrix is available.
Before this step, the contribution of the pilotsytpis removed:

it
R m—k

N-1
7 (rt) _ o4 jor jom -
[Md(Vn >]k,m = 2} J2m o€ Blosn,a €7F Yo =Y, — Aainet)  Xp, (34)
—

(31) where the vector, is a NyN x 1 vector composed of

The EKF is a recursive algorithm composed of two stagegie pilots at the pilot positions and 0 elsewhere. With the
Time Update Equations and Measurement Update Equatiogssumption thaﬂ(nm_n -Xp, = H, -Xp_, we obtain a new

defined as follows: version of the transmission model that only includes the:dat
Time Update Equations:

q

y;L _ H;dlata. X(;ilataJr W?Lata (35)
(1 nin— AA n—1ijn— . . .
Hinin-1) Hn-1in-1) . where theNgN x N (N — N,) matrix H%®is obtained by
Pin-1) = APm_1jn-1) A" +U (32) removing theNr N, columns ofH,, at the pilot positionsP.
Measurement Update Equations: xda@ and wd@ are Ny (N — N,,) x 1 vectors built fromx,,
) andw,,, respectively, by removing the vector elements at pilot
Kn = P(n\nfl)GrIj (an(n\nfl)GrIj""NT-UglNRN) pOSItIOI’]?’P._ . . R .
A A ) Equalization is performed on this model, yielding a first
finin) = Baln—1) + Ko (Vo = 9 (Bpn-1))) version of the detected data symbdis,,_1). The Mea-
Pininy = Pun-1) — KnGnPmn-1) (33) surement Update Equations (33) are then computed by using

nin—1) instead ofx,, in Eq. (30). Finally, a new equalization
performed with the updated parametfis,,) to obtain the
updated version of the data symbdls, .

The algorithm is initialized withi o0y = OLN.+NpNr.15
O4Rd P(ojoy computed with Eq. (28).

whereK,, is the Kalman gain. The Time Update Equations ari)((g(

responsible for projecting forward (in time) the currerdtst

and error covariance estimates to obtain the a priori etisna

for the next time step. The Measurement Update Equati

are responsible for the feedbacle., for incorporating a new

measurement into the a priori estimate to obtain an improved

a posteriori estimate. The Time Update Equations can alBe Computational Complexity

be thought of as predictor equations, while the MeasurementThe purpose of this section is to determine the imple-

Update Equations can be thought of as corrector equationgnentation complexity in terms of the number of the muilti-
plications needed for our algorithm. The matrided!) are

V. JOINT DATA DETECTION AND PARAMETER pre-computed and stored if the delays are invariant for a
ESTIMATION great number of OFDM symbols. The computational cost of
A. Proposed algorithm computing the different terms and processes of the algorith

is given by Table I. The complexity analysis of Time Update

. ) . . Equations and Measurement Update Equations of the Kalman
into the V subcarriers. The pilot positions are the same f?ﬁter in Table | uses the fact thatdl is a sparse matrix

all the transmitter antennas, yielding the set of pilot dedi In practice, L, Ny, Ny and N, are much smaller thamV,
Ph = {nly : (td'— DA, TE): 0...Np— Ld't =1 '.fVT}’ {herefore, the computational complexity of our algorithsn i
\év ere %f IS tde .|f,]tance etW(ien two ghj?cent b ?‘t;'l T (N3N?). So we can say that our proposed algorithm and
Ina;tear;eszreit:eeCt(TCI\;wtthaist Fibeguggzre[gl:nvgosﬁ;lnter ' the algo_rithm proposed in [13] have asymptqtical!y the same
The general principle is as follows : to detect tHe data sy c9mplexny (same order of growth). The algorithm in [13] wil
e : Ye used for performance comparison in Section V.
bols x,,, we need to perform an equalization which requires
the knowledge of the channel matrii, (see Eq. (2) for
the transmission model and Eq. (3) for the definition of the V. SIMULATION
channel matrix). However, the data symbals are required  In this section, the performance of our recursive algorithm
to estimate the channel matrix. To alleviate this contigalic is evaluated in terms of Mean Square Error (MSE) for joint
a predicted version of the channel matﬁbgn‘n_l) obtained CA and CFO estimation and Bit Error Rate (BER) for data
with x,, unknown is computedﬂ(n‘n_l) is subsequently detection. We consider two antennas at the transmitter and
updated intoH,,,,, through the EKF measurement updatévo antennas at the receiveNf = N = 2). A normalized
equations (33) with the current received OFDM symipl 4-QAM MIMO-OFDM system with N = 128 subcarriers,
The current data symbdi,,,,) is finally retrieved from this Ny = & Np = & pilots .e., Ly = 4), and - = 2M Hz
updated channel matrifd ,,|,.)- was used. . . .

The algorithm for thenth OFDM symbol is depicted in Both parametric and equivalent discrete channel models
details in Fig. 1. From the previous OFDM symbai £ 1), are being discussed. We recall that the derivations have bee
we execute the EKF Time Update Equations (32) to obtain tRarried out for the parametric model, although the equation
prediction parameterg,,,,—1). The predicted version of the for the equivalent discrete-time channel modwn also be
channel matrixl3|(n|n,1) is computed fromyi,,,,_1) instead obtained by substituting the set of dela{@(”)} by the tap
of w,, with Eq. (17). Therefore, the equalization task is nouwndices (see Section II-A).

The algorithm usesV,, pilots subcarriers evenly inserted



From previous From current received

OFDM symbol OFDM symbol (n): ¥, $ * *

(n-1): l %

- - i Compute Remove 4 X(n|n—1 N Compute | Remove the (n|n)

#(n-1Jn-1) | Time Hnln-1) chanzel Hinin-1) | the ICI due Y (=1 Medasturement “(ﬂ\”a channel )] 1Cl due to

——»| update matrix > 1o pilots —»| Equalization update matrix > pilots >
Eq. (32) Eq. (17) Eq. (34) Eq. (33) Eq. (17) + Equalization

Fig. 1. Joint Data Detection, channel estimation and CFQnesibn algorithm.

[ Term or process [ Computational cost (number of multiplications)
Mt(ir,t) (ng:r,t)) N3
M) N3
KD W) N(N + 1)LN,
1! (D) N(N + 1)LN,
Vi (1) NN.L
H, NNo(NNrNg + L)

Removing ICI NNt NNgr

QR-decomposition ZN3 + N2+ $Ng — 2 with Ny = NgN

data QR-detection IN/(N) + 1) with N/, = Np(N — Np)

Time Update Equations (LNZ + NrNg) + (LNZ + N2N2)(LN; + NrNg)
Measurement Update Equations2Nr N (LN, + NgrN1)? + NrN(LN. + NrN7)(2NgN + 1) + NgNrN? + (NgN)?
TABLE |

COMPUTATIONAL COMPLEXITY

In Section V-A, the parametric channel model is being [_Path number] Average Power (dB)[ Delay (T5) |

considered with aclassicalscenario with one base station 2 :Zﬁg 094
and one mobile receiver, and one CFO parameter to be 2 6.2190 1
estimated. Section V-B deals with the equivalent discrete 3 -10.219 32
channel model and considers a more pessimistic scenario ;‘ :iigig ‘i-g
where each transmitter and receiver requires its own RF-IF TABL'E |

chain. For this scenario, the number of CFO parameters to
be estimated - Nr = 4) is the largest. This scenario could
correspond to the area of coordinated base stations or retwo
MIMO. Performance comparisons have been carried out with

RAYLEIGH CHANNEL PARAMETERS

the algorithm proposed in [13]. where N, is the number of CFO to be estimated. The MSE
of the path CA (denoted MSE and the MSE of the CFO

A. Parametric channel model (denoted MSE) are computed as follows (we recall thatis

We assume that all the-, ) channel linksy = 1, ..., Ni, the t.otal number of paths for the MIMO channel, see Section
t = 1,..., Nr share the same path delays and fading pronB)'
erties ée the same number of paths, of/,"” * and Tl”)) def e B ",
since the antennas are very close to each other, which isMSE. = } Z Ni (nin) — @) (B(njn) — Atn)
typical in practice. The Rayleigh channel model given in [9] n=0 (36)
[11)(L("Y = 6 paths and maximum delay,,., = 107, see 1
Table 1) was chosen. The MSE will be computed for both path MSEg, %' Il( ]\1[ Dnpmy = )" (P(amy) — ) (37)

CA and CFO to evaluate the estimation performance. First, le

us define: where K is set to 1000 in our simulations. The MSE and the

&(nin) d=efb|kdiag{B7 ...,B}- (ﬂ(n\n)| OGN 1]) BER were evaluated under a rapid time-varying channel with
S ' faT = 0.1 (corresponding to a vehicle speed38f0km/h at

L tmes fe =5 GHz). A GCE-BEM with N, = 4 was initially chosen
def [ (1.1)" W7 to model the path CA of the channel and= 0.1.
ap = {ao}}; e QA g e The tracking capability of our proposed algorithm is first
T T T demonstrated as a function of time. Real and imaginary parts
(1,N7) (Ngr,NT) (rt . .
Ao .n v O (NRNT) g g of one trajectory example af, "’ are plotted in Fig. 2 for

def r=1t=1andl =0,. 5atEb/N0_20dB After an

Dinjn) = B n|n)‘[NCL:NCL+NU] initial transient, the algorlthm locks on to the true valdehe
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Fig. 2. Time domain tracking of the path CA &,/Ny = 20 dB and
faT =01forr=1,t=1,a=0.99

path CA and tracks them closely, even for the paths with lo
average power.

The convergence results for the CFO is shown in Fig. 3 fi
different values of th&€CFO tracking parameter (see Section
[11-B). To emphasize the effect af, simulations are performed
in Data-Aided mode. Classically, is chosen from0.99 up

10°

-6

10

— © — prediction
—©— estimation
DA

0.99

0.995

0.999

0.9995

0.9999

parameter a

to 0.9999 [13][22]. The estimated CFO is initialized to zero
(see Section II-D). It is observed that the convergencetingjg 4. MSE of the CFO estimation (MSEas a function of: at £, /No =
increases witha, which is an expected resuliOn the other 5, 15, 25 dB for /47T = 0.1, v = 0.1
hand, the MSE is expected to decrease with increasing values
of a, which can be observed in Fig. 4. However, the gain
in MSE performance is too small to impact the BER, whickhe curves obtained with the perfect knowledge of the CFO
remains constant for any values @f(see Fig. 5). So it turns are plotted. It is seen that the performarineterms of CA
out that our system is relatively independentaof estimation are unchangedo, it turns out that the CFO
Fig. 6 shows the CA MSE as a function Bf /N,. For refer- estimation does not impact the CA estimation.
ence, the MSE obtained in Data-Aided (DA) mode (knowledge Let us now discuss the CFO estimation. Fig. 7 shows
of the data symbols) is also plotted. In addition to the MSE tfie MSEs for the CFO obtained with the predicted and the
the estimated CA (see Eq. (36)), we added the MSE obtainestimated parameter. Similarly to the CA MSE, the curves
with the predicted CA by substituting,, |,y with &, ,—1) in DA mode and with the perfect knowledge of the CA are
in Eq. (36). As expected, it is observed that both predictesthown. First, it is observed that the estimated curve is very
and estimated MSEpproachtheir DA curve whenE,/N, close to the predicted one. This is due to the fact that the CFO
is increased. Indeed, for larg®,/N, values, the number of is constant in our model, and so the AR-model is not very
detection errors is small. On the other hand, it is seen thatcurate. Unlike for the CAestimation taskthe knowledge
the estimated curve is far better than the predicted curve faf the unwanted parameter highly increases the performance
eachE,/Ny. Hence, it can beoncludedhat the measurementof the CFO estimatiotrecause the CA rapidly varies in time,
update task (Eq. (33)) is still efficient, even when the eigunat yielding high MSE. The impact of their estimation, due tcsthi
are computed with the predicted data symhiys,,_1) (see high MSE, is not negligible on the CFO estimation task.
Section IV-A). Figure 8 gives the corresponding BER curve. A lower bound
Then, to evaluate the performance of our joint algorithnfor the BER performance is given by using the ideal channel
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state information (CSI), i.e. perfectly known CA and CFO at

the receiver. Together with this reference curve, we alstigld Fig- 8. Bit Error Rate (BER) as a function dfy, /Ny for fyT = 0.1,
the BER curves obtained with the perfect knowledge of the™ 0-1

CFO only, and the CA only. As expected, the parameter that

degradeshe most the performance is the CA, due to the higkyse for the P-BEM. It is noteworthy that the BER would be
mobility of the channel. more sensitive to the estimation errors with a higher order

Figures 9 and 10 show the impact of the number of BEMyodulation (we recall that we used a QPSK modulation).
coefficients N, to the performance for different BEMs. The

considered BEM are the P-BEM, the GCE-BEM, and the ] ) ) ]
DKL-BEM (see Section II-B). For lowE, /N, values, the B. Equwalent discrete channel model - comparison with the
P-BEM is the most efficient in terms of MSE, but the gaift'gorithm of [13]

is negligible on the BER. However, for largg, /Ny values, Here, we consider the equivalent discrete channel model
the gain in terms of MSE obtained with the GCE-BEM anwvhere 4 CFO have to be estimated (one per sub-channel).
DKL-BEM impacts the BER. Hence, it turns out that the besthis scenario could correspond to the area of coordinatse ba
trade-off is to choos€V, = 3 and either the GCE-BEM or stations or network MIMO. The CFOs have been arbitrarily
the DKL-BEM. Nevertheless, these two BEMSs require sonfixed to 0.1,0.07, —0.1, —0.05. For the sake of comparison,
a-priori information (Doppler frequency,; for the GCE-BEM we also show the performance of the algorithm proposed
and correlation matrix for the DKL-BEM) which is not thein [13], called theclassical algorithmfrom now on. This
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Fig. 9. MSE of the CA estimatiofMSE, ) as a function ofN,. for different
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10 i ‘ For reference, the performance of the algorithm is given by
Eb/NO—O dB P-BEM . . . .
§ &  GCE-BEM using the ideal channel state information (CSl).
N 4 — — DKL-BEM { For the classical algorithm, the performance degrades
107 % S A . ___A rapidly as the speed is increased. This is expected sinse thi
10 dB algorithm does not take into account the ICI due to mobility.
N 4 However, we observe that our algorithm is far more robust to
15dB - .
v spegd. The prediction performance Qegra}des with the speed
u10 "¢ b4 but is clearly compensated by the estimation.
20 dB
v S  ATpiie VI. CONCLUSION
10 e BB 4 In this paper, a new algorithm which jointly estimates path
R e ety T $ Complex Amplitudes (CA) and Carrier Frequency Offsets
(CFO) in MIMO environments has been presented. The al-
. gorithm is based on a parametric channel model or equivalent
0 ‘ 3 ‘ " ‘ = discrete channel model. Within one OFDM symbol, each time-
N, varying CA is approximated by a Basis Expansion Model
(BEM) representation. The dynamics of the BEM coefficients
Fig. 10. BER as a function aN. for different BEM, f47" = 0.1 and that of the CFO parameters are modeled by first-order

auto-regressive processes. Parameter estimation isripedo

by Extended Kalman Filtering and the data recovery is cdrrie
algorithm is also based on extended Kalman filtering to cargyt by means of a QR-equa”zer_ Compared to the conventional
out channel taps and CFO estimation together with daggjorithm, simulation results show the good robustnessuof o
detection. Note that the simulations presented in [13] ha¥gyorithm to fading rate for normalized Doppler frequeney-v
been carried out in Decision-Directed (DD) mode only, i.iesf,7" up to0.1. For this very high mobility, the performance
only decoded data symbols are used to perform the filtering.the joint estimation algorithm in terms of Bit Error Rate i
However, when introducing their algorithm, the authorsalsgjose to the performance obtained with perfect knowledge of
stated that in case of high mobility, pilot signals are alsghannel and CFO as long as 3 BEM coefficients are used with

needed [13][23]. So to compare both algorithms, we inse&sther the GCE-BEM or the DKL-BEM.
pilots in the algorithm following our pilot scheme (see et

IV-A). The same channel as in [13] has been selected i.e. a APPENDIX
power loss|0, —1, —3, —9][dB] and delay profild0, 1, 2, 3] us

(i.c. [0T,, 2T, AT}, 6T.]), which corresponds to a urban type Ip this SQecuon, we detail the .com.p.utat|on of the state noise
; 4 2" Varianceo;, . For the sake of simplicity, only the scalar case
of scenario. We also fix the same parameter 0.99 as in

[13] is performéd. Thevectorialcase can be easily extended from

First, simulations for different speeds ranging from 30 Ikm/thls' The scalar version of (23) is as follows:
up to 300 km/h have been performed at 20 dB (see Fig. 11). Up =0 Vp_1+ Uy, (38)



First, let us define the correlation function of

R,[m] = E[vnvn—m)] (39)
Using (38) in (39) yields:
Ryim]|=a-R,[m — 1]+ E[uy, vn_m] (40)
Then, we compute (40) fon = 1 andm = 0, yielding:
R, [1] = a-R,0] (42)
R0 = a-R,J[-1]+0. (42)

Note that the expectation [&,, v,,_,,] equals zero foin = 1
sincev,,_; only depends om,,, , (and not onu,,,) on the one

hand, and on the other hang, is zero-mean white Gaussian

noise.
Combining (41) and (42) yields:

ou, = (1=a*) R.[0] (43)
sinceR,[—1] = R,[1].
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