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Abstract—1 In this paper, a novel pilot-aided algorithm is
developed for MIMO-OFDM systems operating in fast time-
varying environment. The algorithm has been designed to work
both with parametric L-path channel model (with known path
delays) and equivalent discrete-time channel model to jointly
estimate the multi-path Rayleigh channel complex amplitudes
(CA) and Carrier Frequency Offset (CFO). Each CA time-
variation within one OFDM symbol is approximated by a Basis
Expansion Model (BEM) representation. An Auto-Regressive
(AR) model is built for the parameters to be estimated. The
algorithm performs estimation using Extended Kalman Filtering.
The channel matrix is thus easily computed and the data symbol
is estimated without Inter-sub-Carrier-Interference (ICI) wh en
the channel matrix is QR-decomposed. It is shown that our
algorithm is far more robust to high speed than the conventional
algorithm, and the performance approaches that of the ideal case
for which the channel response and CFO are known.

I. INTRODUCTION

Multiple-Input-Multiple-Output (MIMO) antennas with Or-
thogonal Frequency Division Multiplexing (OFDM) provide
high data rates and are robust to multi-path delay in wireless
communications. Channel parameters are required for diversity
combining, coherent detection and decoding. Therefore, chan-
nel estimation is essential to design MIMO-OFDM systems.
For MIMO-OFDM systems, most of the channel estimation
schemes have focused on pilot-assisted approaches [1][2][3],
based on a quasi-static fading model that allows the channel
to be invariant within a MIMO-OFDM block. However, in
fast-fading channels, the time-variation of the channel within a
MIMO-OFDM block results in the loss of subcarrrier orthogo-
nality, and consequently intercarrier interference (ICI)occurs
[4][5]. Therefore, the channel time-variation within a block
must be considered to support high-speed mobile channels.

On the other hand, similarly to the single-input single-output
(SISO) OFDM, one of the disadvantages of MIMO-OFDM
lies in its sensitivity to carrier frequency offset (CFO) due to
carrier frequency mismatches between transmitter and receiver
oscillators. As for the Doppler shift, the CFO produces ICI

1Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
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and attenuates the desired signal. These effects reduce the
effective signal-to-noise ratio (SNR) in OFDM reception such
that the system performance is degraded [6] [7]. Most of the
reported works consider that all the paths present identical
Doppler shifts. Hence, they group together the Doppler shift
and CFO due to oscillator mismatch to obtain a single offset
parameter [8] for each channel branch. However, this model
is not sufficiently accurate since separate offset parameters are
required for each propagation path given that the Doppler shift
depends on the angle of arrival, which is particular to each
path. Recently, it has been proposed to directly track channel
paths to take into account separate Doppler shifts for each
path ([9][10] for SISO and [11] for MIMO). Those works
estimate the equivalent discrete-time channel taps ([10])or
the real path Complex Amplitudes (CA) ([9][11]) which are
both modeled by a basis expansion model (BEM). The BEM
methods include Karhunen-Loeve BEM (KL-BEM), prolate
spheroidal BEM (PS-BEM), complex exponential BEM (CE-
BEM) and polynomial BEM (P-BEM).

However the CFO due to the mismatch between transmitter
and receiver oscillators is not taken into account in those
algorithms. The idea of joint channel and CFO estimation has
been initially proposed for SISO-OFDM systems in [12] and
then extended to MIMO-OFDM systems [13]. The authors
proposed an algorithm based on Extended Kalman Filtering
(EKF) and on equivalent discrete-time channel model. But the
fast time-variation of the channel was not taken into account.

In this paper, we propose a complete algorithm capable
of jointly estimating the CFO and the path CA, by taking
into account the fast variation of each path CA in MIMO
environment.

Generally, it is preferable to directly estimate the physical
channel parameters [14] [9] [11] instead of the equivalent
discrete-time channel taps [10]. Indeed, as the channel delay
spread increases, the number of channel taps also increases
and a large number of BEM coefficients have to be estimated.
This requires more pilot symbols. Hence, using a parametric
channel model rather than an equivalent discrete channel
model enables to reduce the signal subspace dimension [14].
Additionally, estimating the physical propagation parameters
means estimating path delays and path CA. Note that in Radio-
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Frequency transmissions, the delays are quasi-invariant over
several MIMO-OFDM blocks [15] [4] (whereas the CA may
change significantly, even within one MIMO-OFDM block).
In this work, the delays are assumed perfectly estimated and
quasi-invariant. It should be noted that an initial, and generally
accurate estimation of the number of paths and delays can
be obtained by using the MDL (minimum description length)
and ESPRIT (estimation of signal parameters by rotational
invariance techniques) methods [14][9].

This paper is organized as follows: Section II introduces
the MIMO-OFDM system and the BEM modeling. Section
III describes the state model and the Extended Kalman Filter.
Section IV covers the algorithm for joint channel and CFO
estimation together with data recovery. Section V presentsthe
simulations results which validate our technique. Finally, our
conclusions are presented in Section VI.

The notations adopted are as follows: Upper (lower) bold
face letters denote matrices (column vectors).[x]k denotes
the kth element of the vectorx, and [X]k,m denotes the
[k,m]th element of the matrixX. The row and column indices
start from 0 (and not 1). We will use the matlab notation
X[k1:k2,m1:m2] to extract a submatrix withinX from row k1 to
row k2 and from columnm1 to columnm2. IN is aN ×N
identity matrix and0N is aN×N matrix of zeros. diag{x} is a
diagonal matrix withx on its main diagonal and blkdiag{X,Y}
is a block diagonal matrix with the matricesX and Y on
its main diagonal. The superscripts(·)T , (·)∗ and (·)H stand
respectively for transpose, conjugate and Hermitian operators.
Tr(·) and E[·] are respectively the determinant and expectation
operations.J0(·) is the zeroth-order Bessel function of the first
kind. ∇x represents the first-order partial derivative operator
i.e., ∇x = [ ∂

∂x1
, ..., ∂

∂xN
]T .

II. MIMO-OFDM SYSTEM AND CHANNEL MODELS

A. MIMO-OFDM System Model

Consider a MIMO-OFDM system withNT transmitter
antennas,NR receiver antennas,N sub-carriers, and a cyclic
prefix length Ng. The duration of a MIMO-OFDM block
is T = NbTs, where Ts is the sampling time andNb =

N + Ng. Let xn
def
=

[
x(1)

T

n , x(2)
T

n , ..., x(NT )T

n

]T
be thenth

transmitted signal block, wherex(t)n
def
=

[
x
(t)
n [−N

2 ], x
(t)
n [−N

2 +

1], ..., x
(t)
n [N2 − 1]

]T
is the nth signal vector transmitted by

the tth transmitter antenna and the data symbol{x
(t)
n [k]}

is transmitted on thekth sub-carrier. The data symbol are
normalized (i.e.,E

[
x
(t)
n [k]x

(t)∗
n [k]

]
= 1). The frequency mis-

match between the oscillators used in the radio transmitters
and receivers causes a CFO. In multi-antenna systems, each
transmitter and receiver typically requires its own Radio Fre-
quency - Intermediate Frequency (RF-IF) chain. Consequently,
each transmitter-receiver pair has its own mismatch parameter,
yielding separate CFO. In aNT×NR MIMO system this leads
to NTNR different CFO. However, if transmitter or receiver
antennas share RF-IF chains, fewer different CFO occur. The
system model describes the general case where it is necessary
to compensate forNTNR CFO. Assume that the MIMO
channel branch between thetth transmit antenna and therth

receive antenna (called(r, t) branch from now on) experiences
a normalized frequency shiftν(r,t) = ∆F (r,t)NTs, where
∆F (r,t) is the absolute CFO. All the normalized CFO can
be stacked in vector form:

ν
def
=

[

ν(1,1), . . . , ν(1,NT ), . . . ,

ν(r,1), . . . , ν(r,NT ), . . . , ν(NR,NT )
]T

(1)

After transmission over a multi-path Rayleigh
channel, the nth received MIMO-OFDM block
yn

def
=

[
y(1)

T

n , y(2)
T

n , ..., y(NR)T

n

]T
, where y(r)n

def
=

[
y
(r)
n [−N

2 ], y
(r)
n [−N

2 + 1], ..., y
(r)
n [N2 − 1]

]T
is the nth

received OFDM symbol by therth receiver antenna, is given
in the frequency domain by [4] [10]:

yn = Hn xn + wn (2)

where wn
def
=

[
w(1)T

n ,w(2)T

n , ...,w(NR)T

n ]
]T

with w(r)
n

def
=

[
w

(r)
n [−N

2 ], w
(r)
n [−N

2 +1], ..., w
(r)
n [N2 −1]

]T
a white complex

Gaussian noise vector of covariance matrixNTσ
2IN . The

matrix Hn is a NRN × NTN MIMO channel matrix given
by:

Hn
def
=






H(1,1)
n · · · H(1,NT )

n

...
. . .

...
H(NR,1)

n · · · H(NR,NT )
n




 (3)

whereH(r,t)
n is the (r, t) branch channel matrix. The elements

of channel matrixH(r,t)
n can be written in terms of equivalent

channel taps [5]
{

g
(r,t)
l,n (qTs) = g

(r,t)
l (nT +qTs)

}

or in terms

of physical channel parameters [9] (i.e. delays
{
τ
(r,t)
l

}
and

CA
{

α
(r,t)
l,n (qTs) = α

(r,t)
l (nT + qTs)

}

), yielding Eq. (4) and
(5), respectively.
L′(r,t) < Ng is the number of channel taps andL(r,t) the

number of paths for the (r, t) branch. The delays are normal-
ized by Ts and not necessarily integers (τ

(r,t)
l < Ng). The

L(r,t) elements of
{

α
(r,t)
l,n (qTs)

}

are uncorrelated. However,

the L′(r,t) elements of
{

g
(r,t)
l,n (qTs)

}

are correlated, unless
the delays are multiple ofTs as is commonly assumed in the
literature. They are wide-sense stationary (WSS), narrow-band

zero-mean complex Gaussian processes of variancesσ
(r,t)
gl

2

andσ(r,t)
αl

2
, with the so-called Jakes’ power spectrum of max-

imum Doppler frequencyfd [16]. The average energy of each

(r, t) branch is normalized to one,i.e.,
L′(r,t)−1∑

l=0

σ(r,t)
gl

2
= 1

and
L(r,t)−1∑

l=0

σ(r,t)
αl

2
= 1.

In the next sections, we present the derivations for the
second approach (physical channel). The results of the first
approach (channel taps) can be deduced by replacingL(r,t) by
L′(r,t) and the set of delays

{
τ
(r,t)
l

}
by

{
l, l = 0 : L′(r,t)−1

}
.

B. BEM Channel Model

Let L
def
=

∑NR

r=1

∑NT

t=1 L
(r,t) be the total number of paths

for the MIMO channel. There areNb samples to be estimated
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[H(r,t)
n ]k,m =

1

N

L′(r,t)−1∑

l=0

[

e−j2π(m
N

− 1
2 )·l

N−1∑

q=0

ej2π
ν(r,t)q

N g
(r,t)
l,n (qTs)e

j2πm−k
N

q
]

(4)

=
1

N

L(r,t)−1∑

l=0

[

e−j2π(m
N

− 1
2 )τ

(r,t)
l

N−1∑

q=0

ej2π
ν(r,t)q

N α
(r,t)
l,n (qTs)e

j2πm−k
N

q
]

(5)

for each path CA due to the fast time-variation of the channel,
yielding a total ofLNb samples for the whole MIMO channel.
In order to reduce the number of parameters to be estimated,
we resort to the Basis Expansion Model (BEM). In this section,
our aim is to accurately model the time-variation ofα

(r,t)
l,n (qTs)

from q = −Ng to N − 1 by using a BEM.
Supposeα(r,t)

l,n represents anNb×1 vector that collects the
time-variation of thelth path of the(r, t) branch within the
nth MIMO-OFDM block:

α
(r,t)
l,n

def
=

[
α
(r,t)
l,n (−NgTs), ..., α

(r,t)
l,n

(
(N − 1)Ts

)]T
(6)

Then, eachα(r,t)
l,n can be expressed in terms of a BEM as:

α
(r,t)
l,n = α

(r,t)
BEM l,n

+ ξ
(r,t)
l,n = B c(r,t)l,n + ξ

(r,t)
l,n (7)

where theNb×Nc matrixB is defined as:B def
= [b0, ...,bNc−1].

The Nb × 1 vector bd is termed as thedth expansion basis.
c(r,t)l,n

def
=

[
c
(r,t)
l,n [0], ..., c

(r,t)
l,n [Nc − 1]

]T
represents theNc BEM

coefficients andξ(r,t)l,n represents the corresponding BEM mod-
eling error, which is assumed to be minimized in the MSE
sense [17]. Under this criterion, the optimal BEM coefficients
and the corresponding model error are given by:

c(r,t)l,n =
(
BHB

)−1
BHα

(r,t)
l,n (8)

ξ
(r,t)
l,n = (INb

− S)α(r,t)
l,n (9)

whereS = B
(
BHB

)−1
BH is a Nb × Nb matrix. Then, the

MMSE approximation for all BEM withNc coefficients is
given by:

MMSE(r,t)
l

def
=

1

Nb

E
[

ξ
(r,t)
l,n ξ

(r,t)
l,n

H]

(10)

=
1

Nb

Tr
((

INb
− S

)
R(r,t)

αl
[0]

(
INb

− SH
))

(11)

whereR(r,t)
αl

[s]
def
= E

[

α
(r,t)
l,n α

(r,t)
l,n−s

H
]

is theNb ×Nb correla-

tion matrix ofα(r,t)
l,n with elements given by:

[R(r,t)
αl

[s]]k,m = σ(r,t)
αl

2
J0

(

2πfdTs(k −m+ sNb)

)

(12)

Various traditional BEM designs have been reported to model
the channel time-variations, e.g., the Complex Exponential

BEM (CE-BEM) [B]k,m = e
j2π(

k−Ng

Nb
)(m−Nc−1

2 ) which leads
to a strictly banded frequency-domain matrix [18], the Gener-

alized CE-BEM (GCE-BEM)[B]k,m = e
j2π(

k−Ng

aNb
)(m−Nc−1

2 )

with 1 < a ≤ Nc−1
2fdT

which is a set of oversampled complex
exponentials [17], the Polynomial BEM (P-BEM)[B]k,m =

(k −Ng)
m [9] and the Discrete Karhuen-Loeve BEM (DKL-

BEM) which employs basis sequences that correspond to the
most significant eigenvectors of the autocorrelation matrix
R(r,t)

αl
[0] [19]. From now on, we can describe the MIMO-

OFDM system model derived previously in terms of BEM.
Substituting (7) in (2) and neglecting the BEM model error,
one obtains after some algebra:

yn = Kn(ν) · cn + wn (13)

where theLNc × 1 vector cn and theNRN × LNc matrix
Kn(ν) are given by:

cn
def
=

[

c(1,1)
T

n , ..., c(1,NT )T

n , ..., c(NR,NT )T

n

]T

(14)

c(r,t)n

def
=

[

c(r,t)
T

0,n , ..., c(r,t)
T

L(r,t)−1,n

]T

Kn(ν)
def
= blkdiag

{

K
(1)
n (ν(1)), ...,K(NR)

n (ν(NR))
}

K
(r)
n (ν(r))

def
=

[

K
(r,1)
n (ν(r,1)), ...,K(r,NT )

n (ν(r,NT ))
]

K
(r,t)
n (ν(r,t))

def
=

1

N

[

Z(r,t)
0,n (ν(r,t)), ...,Z(r,t)

L(r,t)−1,n
(ν(r,t))

]

Z(r,t)
l,n (ν(r,t))

def
=

[

M (r,t)
0 (ν(r,t)) diag{x(t)n } f(r,t)l , ...,

M (r,t)
Nc−1(ν

(r,t)) diag{x(t)n } f(r,t)l

]

whereν(r) def
=

[
ν(r,1), . . . , ν(r,NT )

]T
. Vector f(r,t)l is the lth

column of theN×L(r,t) Fourier matrixF(r,t) whose elements
are given by:

[F(r,t)]k,l = e−j2π( k
N

− 1
2 )τ

(r,t)
l , (15)

andM (r,t)
d is aN ×N matrix whose elements are given by:

[

M (r,t)
d (ν(r,t))

]

k,m
=

N−1∑

q=0

ej2π
ν(r,t)q

N [B]q+Ng,d ej2π
m−k
N

q .

(16)
Moreover, the channel matrix of the(r, t) branch can be easily
computed by using the BEM coefficients [4]:

H(r,t)
n =

Nc−1∑

d=0

M (r,t)
d (ν(r,t))diag{F(r,t)χ

(r,t)
d,n } (17)

whereχ(r,t)
d,n

def
=

[
c
(r,t)
0,n [d], ..., c

(r,t)

L(r,t)−1,n
[d]

]T
. Eq. (17) will be

used in the following to obtain an estimated channel matrix
from the estimated CFO and BEM coefficients.

III. AR M ODEL AND EXTENDED KALMAN FILTER

A. The AR Model forcn
The optimal BEM coefficientsc(r,t)l,n are correlated complex

Gaussian variables with zero-means and correlation matrix
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given by:

R(r,t)
cl [s]

def
= E[c(r,t)l,n c(r,t)l,n−s

H
]

=
(
BHB

)−1
BHR(r,t)

αl
[s]B

(
BHB

)−1
(18)

Since the coefficientsc(r,t)l,n are correlated Gaussian variables,
their dynamics can be correctly modeled by an auto-regressive
(AR) process [20] [21] [9] . A complex AR process of order
p can be generated such that:

c(r,t)l,n =

p
∑

i=1

A(i)c(r,t)l,n−i + u(r,t)
l,n (19)

whereA(1), ...,A(p) areNc×Nc matrices andu(r,t)
l,n is aNc×1

complex Gaussian vector with covariance matrixU(r,t)
l . From

[9], it is sufficient to choosep = 1 to correctly model the
path CA. The matricesA(1) = A and U(r,t)

l are the AR
model parameters obtained by solving the set of Yule-Walker
equations:

A = R(r,t)
cl [1]

(

R(r,t)
cl [0]

)−1

(20)

U(r,t)
l = R(r,t)

cl [0] + AR(r,t)
cl [−1] (21)

Using (19), we obtain thefirst-order AR approximation for
the dynamics ofcn:

cn = Ac · cn−1 + ucn (22)

where Ac
def
= blkdiag{A, ...,A} is a LNc × LNc matrix

and ucn
def
=

[

u(1,1)T

0,n , ...,u(NR,NT )T

L(NR,NT )−1,n

]T

is a LNc × 1

zero-mean complex Gaussian vector with covariance matrix
Uc

def
= blkdiag

{

U(1,1)
0 , ...,U(NR,NT )

L(NR,NT )−1

}

.

B. The AR Model forνn

Let us write the globalfirst-order AR model for νn as
follows:

νn = Aν · νn−1 + uνn (23)

where the state transition matrix is of sizeNRNT ×NRNT .
Since the CFO can be assumed as constant during the obser-
vation interval,Aν is considered to be close to the identity
matrix Aν = aINRNT

, wherea is typically chosen between
0.99 and0.9999 [22][13]. TheNRNT × 1 state noise vector
uνn is assumed to be zero-mean complex Gaussian. The state
noise covariance matrix isUν = σ2

uν
INRNT

whereσ2
uν

is the
variance of the state noise associated with CFO. The value
of the state noise variance depends on the parametera, as
explained in Appendix.

C. State equation

Now, let us write the state-variable model. The state vector
at time instancen consists of the BEM coefficientscn and the
vector of CFOνn:

µn
def
=

[
cTn , νT

n

]T
(24)

There areLNc BEM coefficients andNTNR CFO values in
the state vector of dimensionLNc + NTNR × 1. Then, the
linear state equation may be written as follows:

µn = A · µn−1 + un (25)

where the state transition matrix is defined as follows:

A
def
= blkdiag{Ac, Aν} (26)

The LNc + NRNT × 1 noise vector is such thatun
def
=

[
uT

cn, uT
νn

]T
with covariance matrixU def

= blkdiag{Uc, Uν}.

D. Extended Kalman Filter (EKF)

The measurement equation (13) can be reformulated as:

yn = g(µn) + wn (27)

where the nonlinear functiong of the state vectorµn is defined
as g(µn) = Kn(ν) · cn. Nonlinearity of the measurement
equation (27) is caused by CFO. The BEM coefficients are
still linearly related to observations. Since the measurement
equation is nonlinear, we use the Extended Kalman filter to
adaptively trackµn. Let µ̂(n|n−1) be our a priori state estimate
at stepn given knowledge of the process prior to stepn, µ̂(n|n)

be our a posteriori state estimate at stepn given measurement
yn and,P(n|n−1) andP(n|n) are respectively the a priori and
the a posteriori error estimate covariance matrix of sizeLNc+
NRNT ×LNc +NRNT . We initialize the EKF withµ̂(0|0) =
0LNc+NRNT ,1 andP(0|0) given by:

P(0|0) = blkdiag
{

Rc[0], σ2
uν

INRNT

}
(28)

Rc[s] = blkdiag
{

R(1,1)
c [s], ...,R(NR,NT )

c [s]
}

R(r,t)
c [s] = blkdiag

{

R(r,t)
c0 [s], ...,R(r,t)

c
L(r,t)−1

[s]
}

where R(r,t)
cl [s] is the correlation matrix ofc(r,t)l,n defined in

(18). To derive the EKF equations, we need to compute the
Jacobian matrixGn of g(µn) with respect toµn and evaluated
at µ̂(n|n−1):

Gn
def
= ∇T

µn
g(µn)

∣
∣
µn=µ̂(n|n−1)

=
[

∇T
cng(µn)

∣
∣
µn=µ̂(n|n−1)

, ∇T
νn

g(µn)
∣
∣
µn=µ̂(n|n−1)

]

(29)

Let us define µ
(r)
n

def
=

[

µ
(r,1)T

n , . . . ,µ
(r,NT )T

n

]T

and

µ
(r,t)
n

def
=

[

c(r,t)
T

n ν
(r,t)
n

]T

. After computation, we find:

Gn =
[

Kn(νn)|νn=ν̂(n|n−1)
, Vn(µn)|µn=µ̂(n|n−1)

]

(30)

where

Vn(µn)
def
= blkdiag

{

V
(1)
n (µ(1)

n ), ...,V(NR)
n (µ(NR)

n )
}

V
(r)
n (µ(r)

n )
def
=

[

v(r,1)(µ(r,1)
n ), . . . , v(r,NT )(µ(r,NT )

n )
]

v(r,t)(µ(r,t)
n )

def
= K

′(r,t)
n (ν(r,t)n ) · c(r,t)n

K
′(r,t)
n (ν(r,t)n )

def
=

1

N

[

Z′(r,t)
0,n (ν(r,t)n ), ...,Z′(r,t)

L−1,n(ν
(r,t)
n )

]

Z′(r,t)
l,n (ν(r,t)n )

def
=

[

M ′

0(ν
(r,t)
n ) diag{x(t)n } f(r,t)l , ...,

M ′

Nc−1(ν
(r,t)
n ) diag{x(t)n } f(r,t)l

]
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The elements of theN ×N matrix M ′

d(ν) are given by:

[

M ′

d(ν
(r,t)
n )

]

k,m
=

N−1∑

q=0

j2π
q

N
ej2π

ν
(r,t)
n q

N [B]q+Ng,d ej2π
m−k
N

q

(31)
The EKF is a recursive algorithm composed of two stages:

Time Update Equations and Measurement Update Equations,
defined as follows:

Time Update Equations:

µ̂(n|n−1) = Aµ̂(n−1|n−1)

P(n|n−1) = AP(n−1|n−1)A
H + U (32)

Measurement Update Equations:

Kn = P(n|n−1)G
H
n

(

GnP(n|n−1)G
H
n +NT .σ

2INRN

)−1

µ̂(n|n) = µ̂(n|n−1) + Kn

(
yn − g

(
µ̂(n|n−1)

))

P(n|n) = P(n|n−1) − KnGnP(n|n−1) (33)

whereKn is the Kalman gain. The Time Update Equations are
responsible for projecting forward (in time) the current state
and error covariance estimates to obtain the a priori estimates
for the next time step. The Measurement Update Equations
are responsible for the feedback,i.e., for incorporating a new
measurement into the a priori estimate to obtain an improved
a posteriori estimate. The Time Update Equations can also
be thought of as predictor equations, while the Measurement
Update Equations can be thought of as corrector equations.

IV. JOINT DATA DETECTION AND PARAMETER

ESTIMATION

A. Proposed algorithm

The algorithm usesNp pilots subcarriers evenly inserted
into the N subcarriers. The pilot positions are the same for
all the transmitter antennas, yielding the set of pilot indices
P = { nLf + (t− 1)N, n = 0 . . . Np − 1, t = 1 . . . NT },
whereLf is the distance between two adjacent pilots. The
data is detected with a QR-equalizer [9] with free Inter-Carrier-
Interference (ICI) thanks to a QR-decomposition.

The general principle is as follows : to detect the data sym-
bols xn, we need to perform an equalization which requires
the knowledge of the channel matrixHn (see Eq. (2) for
the transmission model and Eq. (3) for the definition of the
channel matrix). However, the data symbolsxn are required
to estimate the channel matrix. To alleviate this contradiction,
a predicted version of the channel matrix̂H(n|n−1) obtained
with xn unknown is computed.̂H(n|n−1) is subsequently
updated intoĤ(n|n) through the EKF measurement update
equations (33) with the current received OFDM symbolyn.
The current data symbol̂x(n|n) is finally retrieved from this
updated channel matrix̂H(n|n).

The algorithm for thenth OFDM symbol is depicted in
details in Fig. 1. From the previous OFDM symbol (n − 1),
we execute the EKF Time Update Equations (32) to obtain the
prediction parameterŝµ(n|n−1). The predicted version of the
channel matrixĤ(n|n−1) is computed fromµ̂(n|n−1) instead
of µn with Eq. (17). Therefore, the equalization task is now

possible since a version of the channel matrix is available.
Before this step, the contribution of the pilots toyn is removed:

y′n = yn − Ĥ(n|n−1) · xpn (34)

where the vectorxpn is a NTN × 1 vector composed of
the pilots at the pilot positions and 0 elsewhere. With the
assumption that̂H(n|n−1) · xpn = Hn · xpn, we obtain a new
version of the transmission model that only includes the data:

y′n = Hdata
n · xdata

n + wdata
n (35)

where theNRN ×NT (N −Np) matrix Hdata
n is obtained by

removing theNTNp columns ofHn at the pilot positionsP.
xdata
n and wdata

n are NT (N − Np) × 1 vectors built fromxn
andwn, respectively, by removing the vector elements at pilot
positionsP.

Equalization is performed on this model, yielding a first
version of the detected data symbolsx̂(n|n−1). The Mea-
surement Update Equations (33) are then computed by using
x̂(n|n−1) instead ofxn in Eq. (30). Finally, a new equalization
is performed with the updated parametersµ̂(n|n) to obtain the
updated version of the data symbolsx̂(n|n).

The algorithm is initialized witĥµ(0|0) = 0LNc+NRNT ,1,
andP(0|0) computed with Eq. (28).

B. Computational Complexity

The purpose of this section is to determine the imple-
mentation complexity in terms of the number of the multi-
plications needed for our algorithm. The matricesF(r,t) are
pre-computed and stored if the delays are invariant for a
great number of OFDM symbols. The computational cost of
computing the different terms and processes of the algorithm
is given by Table I. The complexity analysis of Time Update
Equations and Measurement Update Equations of the Kalman
filter in Table I uses the fact thatA is a sparse matrix.
In practice,L, NT , NR and Nc are much smaller thanN ,
therefore, the computational complexity of our algorithm is
O(N3

RN
3). So we can say that our proposed algorithm and

the algorithm proposed in [13] have asymptotically the same
complexity (same order of growth). The algorithm in [13] will
be used for performance comparison in Section V.

V. SIMULATION

In this section, the performance of our recursive algorithm
is evaluated in terms of Mean Square Error (MSE) for joint
CA and CFO estimation and Bit Error Rate (BER) for data
detection. We consider two antennas at the transmitter and
two antennas at the receiver (NT = NR = 2). A normalized
4-QAM MIMO-OFDM system withN = 128 subcarriers,
Ng = N

8 , Np = N
4 pilots (i.e., Lf = 4), and 1

Ts
= 2MHz

was used.
Both parametric and equivalent discrete channel models

are being discussed. We recall that the derivations have been
carried out for the parametric model, although the equations
for the equivalent discrete-time channel modelcan also be
obtained by substituting the set of delays

{

τ
(r,t)
l

}

by the tap
indices (see Section II-A).
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Time 
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Eq. (32)
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channel
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Eq. (17)
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to pilots 

Eq. (34)

Equalization

From current received

OFDM symbol (n):

Measurement

update 

Eq. (33)

Compute

channel

matrix

Eq. (17)

Remove the 

ICI due to 

pilots

+ Equalization

Fig. 1. Joint Data Detection, channel estimation and CFO estimation algorithm.

Term or process Computational cost (number of multiplications)

M (r,t)
d

(ν
(r,t)
n ) N3

M ′

d
(ν

(r,t)
n ) N3

K
(r,t)
n (ν

(r,t)
n ) N(N + 1)LNc

K
′(r,t)
n (ν

(r,t)
n ) N(N + 1)LNc

Vn(µn) NNcL
Hn NNc(NNTNR + L)

Removing ICI NpNTNNR

QR-decomposition 2
3
N3

d
+N2

d
+ 1

3
Nd − 2 with Nd = NRN

data QR-detection 1
2
N ′

d
(N ′

d
+ 1) with N ′

d
= NT (N −Np)

Time Update Equations (LN2
c +NTNR) + (LN2

c +N2
T
N2

R
)(LNc +NTNR)

Measurement Update Equations2NRN(LNc +NRNT )2 +NRN(LNc +NRNT )(2NRN + 1) +NRNTN2 + (NRN)3

TABLE I
COMPUTATIONAL COMPLEXITY

In Section V-A, the parametric channel model is being
considered with aclassical scenario with one base station
and one mobile receiver, and one CFO parameter to be
estimated. Section V-B deals with the equivalent discrete
channel model and considers a more pessimistic scenario
where each transmitter and receiver requires its own RF-IF
chain. For this scenario, the number of CFO parameters to
be estimated (NTNR = 4) is the largest. This scenario could
correspond to the area of coordinated base stations or network
MIMO. Performance comparisons have been carried out with
the algorithm proposed in [13].

A. Parametric channel model

We assume that all the(r, t) channel links,r = 1, . . . , NR,
t = 1, . . . , NT share the same path delays and fading prop-

erties (i.e., the same number of paths, ofσ(r,t)
αl

2
and τ

(r,t)
l )

since the antennas are very close to each other, which is
typical in practice. The Rayleigh channel model given in [9]
[11](L(r,t) = 6 paths and maximum delayτmax = 10Ts, see
Table II) was chosen. The MSE will be computed for both path
CA and CFO to evaluate the estimation performance. First, let
us define:

α̂(n|n)
def
= blkdiag{B, . . . ,B

︸ ︷︷ ︸

L times

} ·
(
µ̂(n|n)

∣
∣
[0:NcL−1]

)

αn
def
=

[

α
(1,1)T

0,n , . . . ,α
(1,1)T

L(1,1)−1,n
, . . . ,

α
(1,NT )T

0,n , . . .α
(NR,NT )T

L(NR,NT )−1,n

]T

ν̂(n|n)
def
= µ̂(n|n)

∣
∣
[NcL:NcL+Nν ]

Path number Average Power (dB) Delay (Ts)

0 -7.219 0
1 -4.219 0.4
2 -6.219 1
3 -10.219 3.2
4 -12.219 4.6
5 -14.219 10

TABLE II
RAYLEIGH CHANNEL PARAMETERS

whereNν is the number of CFO to be estimated. The MSE
of the path CA (denoted MSEα) and the MSE of the CFO
(denoted MSEν) are computed as follows (we recall thatL is
the total number of paths for the MIMO channel, see Section
II-B):

MSEα
def
=

1

K

K−1∑

n=0

1

NbL

(
α̂(n|n) −αn

)H (
α̂(n|n) −αn

)

(36)

MSEν
def
=

1

K

K−1∑

n=0

1

Nν

(
ν̂(n|n) − νn

)H (
ν̂(n|n) − νn

)
(37)

whereK is set to 1000 in our simulations. The MSE and the
BER were evaluated under a rapid time-varying channel with
fdT = 0.1 (corresponding to a vehicle speed of300km/h at
fc = 5 GHz). A GCE-BEM withNc = 4 was initially chosen
to model the path CA of the channel andν = 0.1.

The tracking capability of our proposed algorithm is first
demonstrated as a function of time. Real and imaginary parts
of one trajectory example ofα(r,t)

l,n are plotted in Fig. 2 for
r = 1, t = 1 and l = 0, . . . , 5 at Eb/N0 = 20 dB. After an
initial transient, the algorithm locks on to the true value of the
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Fig. 2. Time domain tracking of the path CA atEb/N0 = 20 dB and
fdT = 0.1 for r = 1, t = 1, a = 0.99

path CA and tracks them closely, even for the paths with low
average power.

The convergence results for the CFO is shown in Fig. 3 for
different values of theCFO tracking parametera (see Section
III-B). To emphasize the effect ofa, simulations are performed
in Data-Aided mode. Classically,a is chosen from0.99 up
to 0.9999 [13][22]. The estimated CFO is initialized to zero
(see Section III-D). It is observed that the convergence time
increases witha, which is an expected result. On the other
hand, the MSE is expected to decrease with increasing values
of a, which can be observed in Fig. 4. However, the gain
in MSE performance is too small to impact the BER, which
remains constant for any values ofa (see Fig. 5). So it turns
out that our system is relatively independent ofa.

Fig. 6 shows the CA MSE as a function ofEb/N0. For refer-
ence, the MSE obtained in Data-Aided (DA) mode (knowledge
of the data symbols) is also plotted. In addition to the MSE of
the estimated CA (see Eq. (36)), we added the MSE obtained
with the predicted CA by substitutinĝα(n|n) with α̂(n|n−1)

in Eq. (36). As expected, it is observed that both predicted
and estimated MSEapproachtheir DA curve whenEb/N0

is increased. Indeed, for largeEb/N0 values, the number of
detection errors is small. On the other hand, it is seen that
the estimated curve is far better than the predicted curve for
eachEb/N0. Hence, it can beconcludedthat the measurement
update task (Eq. (33)) is still efficient, even when the equations
are computed with the predicted data symbolsx̂(n|n−1) (see
Section IV-A).

Then, to evaluate the performance of our joint algorithm,
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Fig. 3. Time domain tracking of CFO atEb/N0 = 20 dB andfdT = 0.1
for different values ofa
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Fig. 4. MSE of the CFO estimation (MSEν ) as a function ofa atEb/N0 =
5, 15, 25 dB for fdT = 0.1, ν = 0.1

the curves obtained with the perfect knowledge of the CFO
are plotted. It is seen that the performancein terms of CA
estimation are unchanged. So, it turns out that the CFO
estimation does not impact the CA estimation.

Let us now discuss the CFO estimation. Fig. 7 shows
the MSEs for the CFO obtained with the predicted and the
estimated parameter. Similarly to the CA MSE, the curves
in DA mode and with the perfect knowledge of the CA are
shown. First, it is observed that the estimated curve is very
close to the predicted one. This is due to the fact that the CFO
is constant in our model, and so the AR-model is not very
accurate. Unlike for the CAestimation task, the knowledge
of the unwanted parameter highly increases the performance
of the CFO estimationbecause the CA rapidly varies in time,
yielding high MSE. The impact of their estimation, due to this
high MSE, is not negligible on the CFO estimation task.

Figure 8 gives the corresponding BER curve. A lower bound
for the BER performance is given by using the ideal channel



8

0.99 0.995 0.999 0.9995 0.9999
10

−4

10
−3

10
−2

10
−1

10
0

parameter a

B
E

R

 

 
prediction
estimation
perfect CSI

5 dB

15 dB

25 dB

Fig. 5. BER as a function ofa at Eb/N0 = 5, 15, 25 dB for fdT = 0.1

0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

Eb/No (dB)

M
S

E
α

 

 

prediction

estimation

prediction − DA

estimation − DA

prediction − perfect CFO

estimation − perfect CFO

prediction − DA − perfect CFO

estimation − DA − perfect CFO

Fig. 6. MSE of the CA estimation(MSEα) as a function ofEb/N0 for
fdT = 0.1, ν = 0.1

state information (CSI), i.e. perfectly known CA and CFO at
the receiver. Together with this reference curve, we also plotted
the BER curves obtained with the perfect knowledge of the
CFO only, and the CA only. As expected, the parameter that
degradesthe most the performance is the CA, due to the high
mobility of the channel.

Figures 9 and 10 show the impact of the number of BEM
coefficientsNc to the performance for different BEMs. The
considered BEM are the P-BEM, the GCE-BEM, and the
DKL-BEM (see Section II-B). For lowEb/N0 values, the
P-BEM is the most efficient in terms of MSE, but the gain
is negligible on the BER. However, for largeEb/N0 values,
the gain in terms of MSE obtained with the GCE-BEM and
DKL-BEM impacts the BER. Hence, it turns out that the best
trade-off is to chooseNc = 3 and either the GCE-BEM or
the DKL-BEM. Nevertheless, these two BEMs require some
a-priori information (Doppler frequencyfd for the GCE-BEM
and correlation matrix for the DKL-BEM) which is not the
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Fig. 7. MSE of the CFO estimation(MSEν ) as a function ofEb/N0 for
fdT = 0.1, ν = 0.1
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Fig. 8. Bit Error Rate (BER) as a function ofEb/N0 for fdT = 0.1,
ν = 0.1

case for the P-BEM. It is noteworthy that the BER would be
more sensitive to the estimation errors with a higher order
modulation (we recall that we used a QPSK modulation).

B. Equivalent discrete channel model - comparison with the
algorithm of [13]

Here, we consider the equivalent discrete channel model
where 4 CFO have to be estimated (one per sub-channel).
This scenario could correspond to the area of coordinated base
stations or network MIMO. The CFOs have been arbitrarily
fixed to 0.1, 0.07,−0.1,−0.05. For the sake of comparison,
we also show the performance of the algorithm proposed
in [13], called theclassical algorithmfrom now on. This
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algorithm is also based on extended Kalman filtering to carry
out channel taps and CFO estimation together with data
detection. Note that the simulations presented in [13] have
been carried out in Decision-Directed (DD) mode only, i.e.
only decoded data symbols are used to perform the filtering.
However, when introducing their algorithm, the authors also
stated that in case of high mobility, pilot signals are also
needed [13][23]. So to compare both algorithms, we insert
pilots in the algorithm following our pilot scheme (see Section
IV-A). The same channel as in [13] has been selected i.e. a
power loss[0,−1,−3,−9][dB] and delay profile[0, 1, 2, 3]µs
(i.e. [0Ts, 2Ts, 4Ts, 6Ts]), which corresponds to a urban type
of scenario. We also fix the same parametera = 0.99 as in
[13].

First, simulations for different speeds ranging from 30 km/h
up to 300 km/h have been performed at 20 dB (see Fig. 11).
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Fig. 11. BER performance for variable terminal velocity (Eb/N0 = 20dB)

For reference, the performance of the algorithm is given by
using the ideal channel state information (CSI).

For the classical algorithm, the performance degrades
rapidly as the speed is increased. This is expected since this
algorithm does not take into account the ICI due to mobility.
However, we observe that our algorithm is far more robust to
speed. The prediction performance degrades with the speed
but is clearly compensated by the estimation.

VI. CONCLUSION

In this paper, a new algorithm which jointly estimates path
Complex Amplitudes (CA) and Carrier Frequency Offsets
(CFO) in MIMO environments has been presented. The al-
gorithm is based on a parametric channel model or equivalent
discrete channel model. Within one OFDM symbol, each time-
varying CA is approximated by a Basis Expansion Model
(BEM) representation. The dynamics of the BEM coefficients
and that of the CFO parameters are modeled by first-order
auto-regressive processes. Parameter estimation is performed
by Extended Kalman Filtering and the data recovery is carried
out by means of a QR-equalizer. Compared to the conventional
algorithm, simulation results show the good robustness of our
algorithm to fading rate for normalized Doppler frequency val-
uesfdT up to0.1. For this very high mobility, the performance
of the joint estimation algorithm in terms of Bit Error Rate is
close to the performance obtained with perfect knowledge of
channel and CFO as long as 3 BEM coefficients are used with
either the GCE-BEM or the DKL-BEM.

APPENDIX

In this section, we detail the computation of the state noise
varianceσ2

uν
. For the sake of simplicity, only the scalar case

is performed. Thevectorial case can be easily extended from
this. The scalar version of (23) is as follows:

νn = a · νn−1 + uνn
(38)
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First, let us define the correlation function ofν:

Rν [m] = E [νnνn−m] (39)

Using (38) in (39) yields:

Rν [m] = a ·Rν [m− 1] + E [uνn
νn−m] (40)

Then, we compute (40) form = 1 andm = 0, yielding:

Rν [1] = a ·Rν [0] (41)

Rν [0] = a ·Rν [−1] + σ2
uν

(42)

Note that the expectation E[uνn
νn−m] equals zero form = 1

sinceνn−1 only depends onuνn−1
(and not onuνn

) on the one
hand, and on the other handuνn

is zero-mean white Gaussian
noise.

Combining (41) and (42) yields:

σ2
uν

=
(
1− a2

)
Rν [0] (43)

sinceRν [−1] = Rν [1].
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