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Abstract—In this paper we present an analysis of the use
of Dempster’s rule of combination, its consistency with the
probability calculus and its usefulness for combining sources
of evidence expressed by belief functions in the framework of
the Mathematical Theory of Evidence, known also as Dempster-
Shafer Theory (DST), or as the classical theory of belief functions.
We show that the direct combination of original basic belief
assignments of sources of evidence with Dempster’s rule is
inconsistent with probability calculus and we explain thisfrom a
simple experimental protocol. We also show how Dempster’s rule
can be reconciled with probability calculus for such examples
if the combination of sources is done differently. In that case
the notion of conflict between sources of evidence becomes
meaningless (it just vanishes) because Dempster’s rule coincides
with the pure conjunctive operator, and the entire fusion process
becomes comparable to simple application of Total Probability
Theorem (i.e. the weighted average fusion rule). While a direct
application of Dempster’s rule becomes questionable in themost
general case, then arises the need of a methodoloy for organizing
and implementing the combination rules with respect to the
applications.
Keywords: Dempster-Shafer Theory, Mathematical The-
ory of Evidence, Generalized Bayesian Inference, belief
functions.

I. I NTRODUCTION

The Mathematical Theory of Evidence developed by Shafer
in [9] from Dempster’s works [1]–[3] is considered as one of
the main paradigms for reasoning under uncertainty thanks
to the elegant introduction of belief functions. This theory
however has been a source of many debates since its de-
velopment both on the interpretation (semantics) of belief
functions and on its efficiency for combining or conditioning
sources of evidence in order to provide pertinent results for real
applications. Here we show through very simple examples and
experimental protocol why there is problem when applying
directly Dempster’s rule of combination as proposed originally
in Shafer’s milestone book [9]. We want also to clarify
some important points about its usefulness with respect to
what can be obtained from basic probability calculus. We
assume the reader already familiar with DST and we just
recall the minimal basics required for having a self-contained
presentation. Readers not familiar with DST must refer to [9]

for more details.
Let’s consider a frame of discernmentΘ = {θ1, . . . , θn}

which corresponds to a finite set ofn exhaustive and exclusive
elements. A basic belief assignment (bba) associated to a given
source/body of evidenceB is defined [9] as a mappingmB(.) :
2Θ → [0, 1]:

mB(∅) = 0 and
∑

X∈2Θ

mB(X) = 1 (1)

The elements of the power set2Θ having a strict positive mass
of belief are called focal elements ofmB(.). The set of all
focal elements is called the core ofmB(.) and is denoted
KB. Among all possible bba’s one can define on2Θ, there
exists a very particular one called in DST the vacuous bba
denotedmV(.) that plays an essential role in DST since from
DS point of view it represents adequately a total ignorant
source of evidence.mV(.) commits all the mass of belief to
the whole frameΘ, i.e. mV(Θ) = 1. In DST, several other
belief functions (BF) have also been introduced, mainly the
credibility function (also called sometimes support or balance
function) BelB(.) and plausibility functionPlB(.) which are
in one-to-one correspondance with the bbamB(.). BelB(.) and
PlB(.) are respectively interpreted as lower and upper bounds
of unknown probability measures defined onΘ and compatible
with the bbamB(.). They are mathematically defined by:

BelB(X) ,
∑

Y ⊆X

Y ∈2Θ

mB(Y ) and PlB(X) ,
∑

Y ∩X 6=∅
Y ∈2Θ

mB(Y )

(2)
Dempster’s rule of combination, also called Dempster-

Shafer rule by some authors (or just ”DS rule” for short),
denoted with⊕ symbol, is the key operator in DST proposed
for combining (or conditioning) several bba’s associated to
distinct bodies of evidences. Dempster’s rule correspondsto a
normalized conjunctive operation. The combination of two dis-
tinct (independent) sources of evidences characterized bythe
bba’smB1(.) andmB2(.) defined on the same common frame
of discernmentΘ is done, according to DS reasoning, with
Dempster’s rule as follows: for the empty setmDS

(B1B2)
(∅) = 0,

and∀X ∈ 2Θ \ {∅} one has



mDS
(B1B2)

(X) = [mB1 ⊕ mB2 ](X) =
m12(X)

1 − m12(∅)
(3)

where

m12(X) ,
∑

X1,X2∈2Θ

X1∩X2=X

mB1(X1)mB2(X2) (4)

corresponds to the conjunctive consensus onX between the
two sources of evidenceB1 andB2. Shafer defines thedegree
of conflictbetween the sources of evidence by

K12 , m12(∅) =
∑

X1,X2∈2Θ

X1∩X2=∅

mB1(X1)mB2(X2) (5)

Whenm12(∅) = 1 the two sources are said in total conflict
and they cannot be combined by Dempster’s rule because of
0/0 indeterminacy [9]. Dempter’s rule is commutative and as-
sociative which makes it very attractive since the combinations
of sources can be done sequentially instead globally and the
order doesn’t matter. For example with three sources, all the
following combinations provide same results with DS rule for
any X ∈ 2Θ

[mB1 ⊕ mB2 ⊕ mB3 ](X) = [(mB1 ⊕ mB2) ⊕ mB3 ](X)

= [mB1 ⊕ (mB2 ⊕ mB3)](X)

= [mB2 ⊕ (mB1 ⊕ mB3)](X) (6)

The conditioning of a bbamB(.) by a conditional element
Z ∈ 2Θ \ {∅}, denotedmB(.|Z) and proposed in DST, is
obtained by Dempster-Shafer rule of combination ofmB(.)
with the bbamZ(.) that is focused only onZ, i.e. such that
mZ(Z) = 1. For any elementX of the power set2Θ this is
mathematically expressed by

mB(X |Z) = [mB ⊕ mZ ](X) = [mZ ⊕ mB](X) (7)

It has been proved by Shafer [9] that this rule of conditioning
expressed in terms of plausibility functions yields to the
following formula:

PlB(X |Z) =
PlB(X ∩ Z)

PlB(Z)
(8)

The latter formula is very similar to Bayes formula
P (X |Z) = P (X ∩ Z)/P (Z) .

In summary, the elegant way of representing uncertainty
thanks to belief functions, the nice “appealing” properties
of Dempster’s rule and its apparent consistency with Bayes
formula for conditioning include all the ingredients to make
it very attractive for a wide community of researchers and
engineers faced to problems where not only randomness is
involved but also where epistemic uncertainty can be present.
But does this suffice to state that we can use DS reasoning
without problems as originally proposed in Shafer’s book?
We can’t unfortunately answer positively to this question as
proved in the following section. The first researcher who has

expressed his doubts on the validity of Dempster’s rule as orig-
inally proposed was Lotfi Zadeh in [11]–[13]. Since Zadeh’s
comments, many efforts have been done by researchers either
to try to give a clear semantics to BF in DS reasoning, to justify
Dempster’s rule, or to start to develop “better” solutions to
combine BF in order to circumvent counter-intuitive results put
in light by Zadeh. Surprisingly, few research works seem have
been done to verify the consistency of DS reasoning with the
basic probability calculus from a strict application of thecom-
bination principle based on Dempster’s rule. In nineties Pearl
pointed out the question on the compatibility of DST with
probability calculus in [7], [8], and more recently Gelman have
highlighted also this question in [5]. Our recent research works
done independently supports Pearl’s and Gelman’s analysisbut
are based on different approach with examples drawn from an
experimental protocol in order to validate our conclusions. In
the next section we show why there is an inconsistency of DS
reasoning with probability calculus if one applies directly the
combination of sources of evidence with Dempster’s rule as
originally proposed by Shafer in [9]. Therefore DS reasoning
cannot find its legitimacy from the the probabiliy calculus if
it is applied in the classical/original way. This is the origin
of most of debates about the validity of Dempster’s rule.
The next section will explain what is wrong when applying
Dempster’s rule as suggested by Shafer for combining directly
sources of evidence, and we will explain the consequences of
such improper use of Dempster’s rule. The section III will
explain how and what to do to reconcile Dempster’s rule with
basic probability calculus in order to avoid to fall in the trap of
inconsistent reasoning under uncertainty. The purpose of this
paper is to put in light and alerting the scientific communityof
this problem in order to prevent miss-use of belief functions.

II. ON THE INCONSISTENCY OFDEMPSTER’ S RULE

In this section we put in light the inconsistency of Demp-
ster’s rule of combination with the probability calculus if
one applies Dempster’s rule to combine directly (as usually
done) the original bba’s provided by the sources of evidences.
We will prove the following statements on the basis of an
experimental protocol:

S1: The “conflict” between two sources is not properly man-
aged by Dempster’s rule.

S2: Dempster’s rule yields to inconsistent results with classi-
cal probability calculus.

S3: The associativity property of Dempster’s rule is inconsis-
tent with the probability calculus.

S4: The conjunctive operator of bba’s is incompatible with
probability calculus.

S5: The “vacuous” belief function does count in the consis-
tent fusion of bba’s.

A. A simple generic example

Let’s start with a simple generic exemple. Consider a frame
of discernment with three elements only, sayΘ = {A, B, C}
satisfying Shafer’s model, i.e. the elements of the frame



are truly exhaustive and exclusive. Let’s consider two non-
Bayesian bba’s (i.e. bba’s having not only singletons as focal
elements) to combine as given in Table I wherea ∈ [0, 1] and
b1, b2 > 0 such thatb1 + b2 ∈ [0, 1[.

Focal elem.\ bba’s mB1
(.) mB2

(.)
A a 0

A ∪ B 1 − a b1
C 0 1 − b1 − b2

A ∪ B ∪ C 0 b2

Table I
INPUT BBA’ S m1(.) AND m2(.).

Naturally, one has assumed that these two bba’smB1(.)
and mB2(.) satisfy Dempster’s condition of independence of
sources of evidence in order to apply Dempster’s rule of
combination as proposed by Shafer. Note that in this simple
generic and parametric example the focal elements ofmB2(.)
are not nested (consonant) and there really does exist a non
null apparent ”conflict”1 between two sources as it will be
shown more explicitly in the derivations. When applying
Dempster’s rule of combination, one gets:

1) using at first the conjunctive operator:

m12(A) = a(b1 + b2) (9)

m12(A ∪ B) = (1 − a)(b1 + b2) (10)

K12 = m12(∅) = 1 − b1 − b2 (conflicting mass) (11)

2) and then after the normalization by1 − K12 = b1 + b2,
the final result is as follows:

mDS
(B1B2)

(A) =
m12(A)

1 − K12

=
a(b1 + b2)

b1 + b2
= a

= mB1(A) (12)

mDS
(B1B2)

(A ∪ B) =
m12(A ∪ B)

1 − K12

=
(1 − a)(b1 + b2)

b1 + b2
= 1 − a

= mB1(A ∪ B) (13)

Clearly, our statement (S1) is true since in such example
Dempster’s rule is indifferent to the level of conflict between
the sources. Whatever the value of the conflictK12 > 0 is, one
getsmDS

(B1B2)(.) = mB1(.). This behavior is counter-intuitive
because in this simple example one of the sources doesn’t
finally count (impact) in the DS result, although none of the
sources are vacuous and there does exist a non-null conflict
betwen them. ActuallyK12 > 0 can be either very low or
very high depending of the choice one takes for parameters
a, b1 and b2 but it doesn’t matter because(1 − K12) is
automatically simplified by the normalization step as we see
through our elementary calculus. It can be easily verified

1Here we use the notion of ”Conflict” with the same interpretation and
definition given by Shafer in [9].

that the same problem occurs even if we takeb1 = 0, i.e.
we consider onlyC and A ∪ B ∪ C as focal elements of
mB2(.) (i.e. when focal elements ofmB2(.) are nested).
Actually it is easy to construct an infinite family of examples
generating such irrational behavior as we did already prove
in [4]. Dempster’s rule behavior goes against the common
sense if we combine directly the original bba’s of the sources
by Dempster’s rule.

Is it a serious flaw or not of Dempster-Shafer Theory? At
least, the intuition usually behind the notion of conflict may
be questionned. Whatever, from a such generic and abstract
example like the previous one, it may be not obvious for the
reader to be convinced by the positive answer we give to this
question if one adopts the combination of sources as proposed
originally in DST. We will show however in section III what
solution we propose for combining bba’s in consistent manner
with Dempster’s rule. So, let’s make the previous example a
bit more concrete now and let’s go deeper in the analysis with
the following basic experimental protocol.

B. Experimental protocol and concrete example

The context is as follows. We consider a future president
election for a country with only three distinct candidates
(to keep the example simple). Each candidate represents a
political party. So we assume a candidate for the Left party
(called L), for the Moderate party (called M) and for the
Right party (called R), so thatΘ = {L, M, R}. Let consider
also two distinct sets of people allowed to vote in such
election:W is the set of women andM is the set of men
and we assume|W| = |M|, i.e. there is the same number of
women and men.M andW will in fact play the roles of two
distinct bodies of evidenceB1 andB2 in the sequel.

B.1 Experimental protocol

The experiment we propose is elementary and can be done
easily in practice. It consists in two steps: step 1) one computes
the bba’s of the sources of evidences; and step 2) one uses
the real consistent/compatible precisiated probability measures
expressed by the sources to check if the original DS reasoning
is consistent with probability calculus. Let’s explain this in
details. We call this protocol the ”voting-intention & voting
experiment” (VIVE for short).

• Step 1 (construction of bba’s):
Before the election day (say 6 months before by
example), all people (men and women belonging
to M and W respectively) are asked to give their
preferences/vote intentions2 among the three given
candidates. We assume that they provide their answer
independently of what other people do, say or think.
What is important in step 1 is that men and women are
allowed to provide not only one name of a candidate,

2i.e. their belief in who they think is the best candidate to become president
for their country.



but they are free to give one, two or eventually three
names depending on their own preferences. For example
if a man or a woman declaresL ∪ M as his/her voting
intention it means that he/she will vote either forL
or M . L ∪ M voting intention indicates that he/she
has not yet taken his final choice 6 months before the
election day but it means that he/she is sure that he
will not vote for R in order to maintain a coherence
between what he/she prefers and what he/she will finally
decide at election day. So all men and women are
asked to write on a sheet of paper only one element of
2Θ \ {∅}. The vote intentions for men and women are
written on sheets of paper and are put into two separate
boxes denotedBM and BW . By opening the boxes
and counting the rationM(X)/|M| where nM(X)
is the number of voting intentions committed toX ,
one can compute the bba assignmentmM(X) for any
X in 2Θ \ {∅}. A similar procedure is done to get
mW(X) for any X in 2Θ \ {∅} too. FrommM(.) and
mW(.) we are now able to compute the lower and upper
bounds [BelM(.); PlM(.)] and [BelW(.); PlW(.)] of
unknown probabilitiesPM(.) and PW (.) based only on
voting intentions in boxesBM andBW . The boxesBM

and BW can be seen as two independent well-defined
sources/bodies of evidence from which one can compute
the combined bba’s denoted3 mDS

MW(.) with Dempster’s
rule, i.e.mDS

MW(.) = [mM ⊕mW ](.) and estimate lower
and upper probability bounds[BelDS

M (.); PlDS
M (.)] given

by considering the sources of evidence altogether.

• Step 2 (Precisiation of probabilities of sources of evi-
dences and verification of DS reasoning consistency):
At the election day, the same people (men and women)
are asked to vote for only one candidate among the three
candidates. No blank vote is allowed. The vote of each
man and woman must be coherent, i.e. the name of the
candidate he/she votes for has to be indeed included
in the list he/she wrote in their voting intention. The
men and women ballots are put into two separate boxes
VM and VW . From the ballots in each box and based
on classical frequentist calculus of probabilities, we can
now precisiate the original imprecise probabiltiesPM(.)
andPW (.) of each sources of evidence that were known
to satisfy PM(.) ∈ [BelM(.); PlM(.)] and PW(.) ∈
[BelW(.); PlW (.)] according to the voting intentions in
boxesBM and BM. Clearly if one draws randomly a
ballot in the boxVM, the probability of the outcome
will follow PM(.) and if one draws randomly a ballot in
the boxVW the probability of the outcome will follow
PW(.). To test the consistency of Dempster’s rule4 with
the probability calculus it suffices to put all the ballots
of boxesVM andVM altogether into a single empty box

3One uses the indexMW to denote the fact that the results take into
account bothM andW .

4as done in DST; that is from the direct Dempster’s combination of original
bba’s of each source.

VMW and estimate the resulting/combined real proba-
bility P real

MW(.) computed by the frequentist approach of
probability calculus. So if one draws randomly a ballot
in the boxVMW the probability of the outcome will be
governed byPMW(.). The consistency of original DS
reasoning will be satisfied if and only if for any election
result compatible with the expressed voting intentions,
the following inequality is always verified

BelDS
MW(.) ≤ P real

MW(.) ≤ PlDS
MW(.) (14)

If there exists at least one example where inequality
(14) fails, then consequently Dempster’s rule of
combination as used originally in DST to combine
sources of evidences is proved to be inconsistent with
the probability calculus.

Of course, the VIVE protocol is not limited to the specific
case that we took here with only 2 sources of evidence and
with |Θ| = 3. It can be applied in general for any number
k ≥ 2 of sources and any size of frame of discernment
greater or equal to 2. The VIVE protocol is very general and
can be used to construct any bba’s and test consistency of
reasonings with belief functions with probability calculus.

B.2 A simple concrete example

Let’s take a simple concrete example, apply VIVE protocol
and go a bit further in details in the analysis to prove
the inconsistency of Dempster’s rule result with probability
calculus as proposed in DST. We takeΘ = {L, M, R}, and
for simplicity5 of derivations we take|M| = |W| = 100 and
we assume that from voting intentions we have obtained the
bba’s in Table II to combine. The table II means that 45 men
have declared to prefer to vote forL, 55 men have declare to
prefer to vote either forL or for M , 98 women have declared
to prefer to vote forR and only 2 women were fully uncertain
on their preference. From these bba’s one can compute easily
credibilities and plausibilities of each candidates, i.e.the lower
and upper bounds of the unknown underlying probabilities that
will govern the election result. So one gets for each source
considered separately the values given in Tables III and IV.
The Table III indicatesPM(R) = 0, i.e. R can never occur
based only of men voting intentions.

When considering the sources of evidences altogether
(based on a mixed population withMW = M ∪ W) and
becausemDS

MW(.) = mM(.) in this example, more precisely
mDS

MW(L) = 0.45 and mDSMW(L ∪ M) = 0.55, one gets
the following lower and upper bounds of unknown probability
that is supposed to really govern the election outcome in VIVE
protocol.

5We take small sizes for men and women voting populations to simplify
the presentation but the derivations can also be done with bigger population
sizes without changing the conclusions of our analysis.



Focal elem.\ bba’s mM(.) mW(.)
L 0.45 0

L ∪ M 0.55 0
R 0 0.98

L ∪ M ∪ R 0 0.02

Table II
INPUT BBA’ S OF SOURCES OF EVIDENCE.

Candidates\ Source Men populationM

L PM(L) ∈ [BelM(L); P lM(L)] = [0.45; 1]

M PM(M) ∈ [BelM(M); P lM(M)] = [0; 0.55]

R PM(R) ∈ [BelM(R); P lM(R)] = [0; 0]

Table III
LOWER AND UPPER BOUNDS OF PROBABILTITY FROM THE SOURCEM.

Candidates\ Source Women populationW

L PW(L) ∈ [BelW(L); P lW(L)] = [0; 0.02]

M PW(M) ∈ [BelW(M); P lW(M)] = [0; 0.02]

R PW(R) ∈ [BelW(R); P lW(R)] = [0.98; 1]

Table IV
LOWER AND UPPER BOUNDS OF PROBABILTITY FROM THE SOURCEW .

Lower & upper bounds\ Source Mixed populationMW

[BelDS

MW
(L); P lDS

MW
(L)] [0.45; 1]

[BelDS

MW
(M); P lDS

MW
(M)] [0; 0.55]

[BelDS

MW
(R); P lDS

MW
(R)] [0; 0]

Table V
LOWER AND UPPER BOUNDS OF PROBABILITIES OBTAINED FROM

DEMPSTER’ S RULE.

Therefore, according to DS reasoning, one should have










PDS
MW (L) ∈ [0.45; 1]

PDS
MW (M) ∈ [0; 0.55]

PDS
MW (R) ∈ [0; 0]

(15)

Clearly from (15), one obtainsPDS
MW(R) = 0, meaning

that the outcomeR can never occur (according to Dempster-
Shafer interpretation) which is intuitively absurd because
at least98% of the women have declared their intentions
to vote for R. Stated differently, women opinions do not
count here in Dempster-Shafer reasoning since we get
finally mDS

MW(.) = mM(.). How such very counter-intuitive
behavior of Dempster’s rule can be justified?

To prove the mathematical inconsistency of DS reasoning
with probability calculus let’s examine what can happen in
reality at the end of the election day when every man and

woman has finally voted only for one candidate in accordance
with their vote intentions so that the imprecise probability
has been finally precisiated by the sources of evidences. We
assume that blank votes are not allowed and all votes do
count in the election result. So take by example the following
possible outcome of the election:
• Assume that in men populationM, forty five (45) men

have voted forL and among the fifty five (55) men who
provided imprecise voting intentions, five (5) men did finally
vote for L and the other fifty (50) men did vote forM . So
we get using frequentist approach of probability calculus











P real
M (L) = (45 + 5)/100 = 0.5

P real
M (M) = 50/100 = 0.5

P real
M (R) = 0/100 = 0

(16)

We see that this probability measureP real
M (.) is fully com-

patible/consistent with the bbamM(.) because as expected
from the Table III one has











P real
M (L) = 0.5 ∈ [0.45; 1]

P real
M (M) = 0.5 ∈ [0; 0.55]

P real
M (R) = 0 ∈ [0; 0]

(17)

• Assume that in women populationW , ninety eight (98)
women did vote forR, and among the two (2) other women
who provided imprecise voting intention, one woman did
really vote for L and the other did vote forM . So we get
using basic probability calculus











P real
W (L) = 1/100 = 0.01

P real
W (M) = 1/100 = 0.01

P real
W (R) = 98/100 = 0.98

(18)

We see that this probability measureP real
W (.) is also fully

compatible/consistent with the bbamW(.) because as expected
from the Table IV one has











P real
W (L) = 0.01 ∈ [0; 0.02]

P real
W (M) = 0.01 ∈ [0; 0.02]

P real
W (R) = 0.98 ∈ [0.98; 1]

(19)

• Let’s now put all the ballots ofVM and VW boxes
together in a new empty boxVMW and computeP real

MW(.)
using frequentist approach. One obtains:










P real
MW(L) = (45 + 5 + 1)/(100 + 100) = 0.255

P real
MW(M) = (50 + 1)/(100 + 100) = 0.255

P real
MW(R) = 98/(100 + 100) = 0.490

(20)

These results make intuitively perfect sense because one
knows that at least 98% of women wanted to vote forR
based on the evidence drawn fromW , collected inBW box,
and expressed inmW(.). Clearly Dempster-Shafer’s upper
and lower bounds [BelDS

MW(R); PlDS
MW(R)] = [0; 0]

do not include P real
MW(R) = 0.49. This proves the

inconsistency of Dempster’s rule with the probability
calculus when combining directly the original bba’s



mM(.) and mW(.) as proposed in DST. Note also that
P real
MW(L) = 0.255 /∈ [BelDS

MW(L); PlDS
MW(L)] = [0.45; 1].

From such of very simple concrete example, we have
really put in light a flaw of Dempster’s rule when combining
directly the original bba’s of sources of evidences because
Dempster’s rule is not directly compatible with the calculus
of a bba (or a probability) obtained when putting the pieces of
evidences altogether. If we apply Demspter’s rule to combine
directly the original bba’s of sources of evidences, we get
inconsistent lower and upper bounds of imprecise probability
as shown through VIVE. Therefore, our statement S2 holds
and supports Pearl’s doubts expressed in [7], [8].

B.3 Zadeh’s example revisited

Let’s revisit now Zadeh’s example [12] but transposed with
VIVE protocol. We takeΘ = {L, M, R} and the following
bba’s drawn from men and women populations with|M| =
|W| = 100:

Focal elem.\ bba’s mM(.) mW(.)
L 0.9 0
M 0 0.9
R 0.1 0.1

Table VI
INPUT BBA’ S FORZADEH’ S EXAMPLE.

Following similar derivations as previously based on the
basic probability calculus, one gets as consistent result











P real
MW(L) = 90/200 = 0.45

P real
MW(M) = 90/200 = 0.45

P real
MW(R) = (10 + 10)/200 = 0.10

(21)

whereas the direct Dempster’s combination ofmM(.) with
mW(.) provides in such particular ”highly conflicting”
examplemDS

MW(R) = 1, or equivalentlyPDS
MW (R) ∈ [1; 1],

which is against the common sense as pointed out by
Zadeh three decades ago. The ”paradox” comes from the
use of Dempster’s rule for combining directly the original
bba’s of the sources. Zadeh’s paradox disappears when
applying the probability calculus as explained in VIVE.
Actually, the notion of ”conflict” between sources appears
totally meaningless when using the probability calculus for
combining the sources of evidence.

Of course, it may be argued that our VIVE analysis is done
with finite populations of small size so that the estimation of
probabilities based on frequentist approach of probability esti-
mation is not precise enough, but fundamentally we can make
the same analysis with bigger sizes of populations and stillour
analysis remains valid. We just take here|M| = |W| = 100 to
make the presentation and derivations simpler. Based on this
analysis, Zadeh’s doubts on the validity of Dempster’s rule
to combine directly original bba’s of the sources are justified
since the inconsistency of Dempster’s rule with the probability
calculus is proved.

C. How to combine bba’s in a consistent manner?

From our previous analyses, one sees that the consis-
tent ”combination/fusion” within VIVE protocol ofk equi-
weighted6 bba’s7 m1(.) = P1(.), . . . , mk(.) = Pk(.) must be
done by the arithmetic mean ofPi(.), for i = 1, . . . , k. More
precisely, the ”fusionned” probabilityP(123...k)(.) is obtained
by

P(123...k)(.) = (1/k)P1(.) + . . . + (1/k)Pk(.) (22)

Formula (22) corresponds to the application of Total Proba-
bility Theorem using all equal priors. It is easy to prove that
the consistency of the results when combining sequentially
(or by any grouping/clustering choice) the Bayesian sources
of evidences is achieved with the proper weighted average of
sources. The weighting factors are computed as the number of
sources involved in a given group divided by the total number
of sources. For example, if one considers 3 equi-weighted
Bayesian bba’s to combine, one will get when combining these
probability measures altogether

P(123)(.) = (1/3)P1(.) + (1/3)P2(.) + (1/3)P3(.) (23)

Now if we combine firstP1(.) with P2(.) (assuming that
one has only these two sources of evidence in hands), one gets

P(12)(.) = (1/2)P1(.) + (1/2)P2(.) (24)

Then if a third distinct source of evidence comes in and one
wants to combine it withP(12)(.), the consistent probability
calculus must be done as follows

P(12)3(.) = (2/3)P(12)(.) + (1/3)P3(.) (25)

in order to be consistent withP(123)(.) obtained when putting
all the pieces of evidences together. Clearly the fusion of the
2 sources of evidenceP(12) must doubly count with respect
to the single third source.

Because non-Bayesian bba’smi(.), i = 1, 2, . . . , k can be
interpreted as classical probabilities defined on the power-set
of Θ (this is how one can obtain them from voting intentions
in Step 1 of VIVE protocol), the consistent fusion rule of
probability calculus (22), i.e. the Total Probability Theorem,
can be applied also. This yields to the following simple
consistent fusion rule for bba’s:

mAver
(123...k)(.) = (1/k)m1(.) + . . . + (1/k)mk(.) (26)

One sees that this simple fusion rule (arithmetic
mean/average) has a low complexity with respect to most of
previous combination rules developed so far (i.e. Dempster’s
rule and its alternatives) to combine directly the originalbba’s
of the sources of evidence. The averaging technique had been
discussed by Murphy in [6] but without clear conclusions,

6Equi-weighting of bba’s means that sources of evidences arebased on the
same population size when transposing bba’s in VIVE protocol

7For notation concision in formulas, we now usemi(.) instead ofmBi
(.)

to denote the bba associated with a source of evidenceBi defined with respect
to a given frameΘ, for i = 1, 2, . . .



nor justifications of its real usefulness. In our analysis we
give a strong and clear justification of arithmetic mean within
the VIVE paradigm that is based on the consistency of the
fusion rule with the probability calculus drawn form a direct
application of the Total Probability Theorem.

It is easy to verify that the average fusion rule (26) provides
consistent results for the concrete example given in B.2. Indeed
from values of bba’s given in Table II, one will get from (26):























mAver
(MW)(L) = 0.45/2 = 0.225

mAver
(MW)(L ∪ M) = 0.55/2 = 0.275

mAver
(MW)(R) = 0.98/2 = 0.49

mAver
(MW)(L ∪ M ∪ R) = 0.02/2 = 0.01

(27)

Therefore the lower and upper bounds of imprecise probabil-
ities will be given by











[BelAver
(MW)(L); PlAver

(MW)(L)] = [0.225; 0.51]

[BelAver
(MW)(M); PlAver

(MW)(M)] = [0; 0.276]

[BelAver
(MW)(R); PlAver

(MW)(R)] = [0.49; 0.50]

(28)

These (consistent) lower and upper bounds do now include
the precisiated probabilityP real

MW(.) given in (20) and drawn
from step 2 of VIVE protocol, contrariwise to Dempster-
Shafer’s lower and upper bounds given in Table V.

D. On the associativity of a fusion rule

From our previous analysis and the Total Probability Theo-
rem, it becomes clear that the appealing requirement of the
associativity of a fusion rule cannot be obtained/consistent
with probability calculus as shown through (25) when sources
to combine express different opinions. To explain this easily,
what is going wrong with associativity property requirement
in the fusion is that the sources are not combined with same
equal weight depending on how we do their combination.

For example, let’s consider 3 independent sources of ev-
idence to combine according to a VIVE interpretation, and
defined on the same frameΘ with bba’s m1(.), m2(.) and
m3(.). We assume that sources have same weights. If we com-
bine them altogether by Dempster’s rules we getm(123)(.) =
[m1 ⊕m2 ⊕m3](.). Now if we combinem1(.) andm2(.) by
Dempster’s rule (assuming one has only these two sources of
evidence in hands at first), one getsm(12)(.) = [m1 ⊕m2](.).
When fusioningm(12)(.) with the third sourcem3 through
Dempster’rule both sourcesm(12)(.) (the previous combined
bba) andm3(.) are still considered to have the same weight
which is obviously wrong becausem(12)(.) is based on more
evidences thanm3(.) in fact. As shown already in (25), if
we restrict this example to Bayesian bba’s case, i.e. with
m1(.) = P1(.), m2(.) = P2(.) and m3(.) = P3(.), P(12)3(.)
cannot be computed just as(1/2)P12 + (1/2)P3 because
otherwise it becomes inconsistent withP(123)(.).

In summary, the associativity requirement of a fusion rule
is incompatible with probability calculus and consequently
any associative rule of combination will yield to inconsistent

results in at least a particular case. Therefore the associativity
property of Dempster’s rule is inconsistent with the probability
calculus when combining directly bba’s of sources of evidence
and our statement S3 holds.

E. On the conjunctive rule of combination

Here we show that the conjunctive operator is inconsistent
with probability calculus when combining directly original
bba’s of sources of evidence. To prove this, let’s takeΘ =
{A, B}, Shafer’s model and the two following bba’s given in
the Table VII that could be obtained from Step 1 of VIVE
protocol.

Focal elem.\ bba’s m1(.) m2(.)
A 0.7 0.2

A ∪ B 0.3 0.8

Table VII
INPUT BBA’ S TO COMBINE.

From the Table VII, the lower and upper bounds of unknown
P1(.) andP2(.) probability measures are given by (thanks to
credibility and plausibility functions):
{

0.7 ≤ P1(A) ≤ 1

0 ≤ P1(B) ≤ 0.3
and

{

0.2 ≤ P2(A) ≤ 1

0 ≤ P2(B) ≤ 0.8
(29)

In this very simple example, there is no ”conflict” between
these two sources according to Dempster-Shafer reasoning.
Dempster’s rule coincides here with the pure conjunctive rule
because there is no need of normalization since no ”conflict”
occurs. So one gets from the conjunctive fusion rule
{

mDS
(12)(A) = 0.7 · 0.2 + 0.7 · 0.8 + 0.2 · 0.3 = 0.76

mDS
(12)(A ∪ B) = 0.3 · 0.8 = 0.24

(30)

and the following lower and upper bounds
{

0.76 ≤ PDS
(12)(A) ≤ 1

0 ≤ PDS
(12)(B) ≤ 0.24

(31)

With the consistent (average) fusion rule, one gets
{

mAver
(12) (A) = (0.7 + 0.2)/2 = 0.45

mAver
(12) (A ∪ B) = (0.3 + 0.8)/2 = 0.55

(32)

and the following lower and upper bounds
{

0.45 ≤ P real
(12) (A) ≤ 1

0 ≤ P real
(12) (B) ≤ 0.55

(33)

It is not too difficult with VIVE protocol to get two proba-
bilties P1(.) andP2(.) compatible withm1(.) andm2(.) and
to apply basic probability calculus to see that indeed the real
probability governing the experiment can be out of the lower
and upper bounds given by the pure conjunctive rule. For ex-
ample, if one considers the compatible probabilitiesP1(A) =
0.7, P1(B) = 0.3 and P2(A) = 0.2, P2(B) = 0.8 then the
real ”combined” probability obtained fromP1(.) andP2(.) by
probability calculus will beP real

(12) (A) = (0.7 + 0.2)/2 = 0.45



andP real
(12) (B) = (0.3+0.8)/2 = 0.55 = 1−P real

(12) (A). These
probabilities are out of the lower and upper bounds obtained
with conjunctive rule. In summary, even if the sources to
combine arenot in conflict (in Dempster-Shafer sense), then
Dempster’s rule coinciding with the conjunctive rule remains
inconsistent with probability calculus if we apply Dempster’s
rule to combine directly the bba’s of the sources of evidence.
Hence our statement S4 holds.

F. On the vacuous bba

As clearly shown already through VIVE protocol, all bba’s
do count (even the ”vacuous” bba of course) if one uses the
consistent fusion rule (average), hence statement S5 holds.
An interesting property is that the consistent fusion rule is an
idempotent rule because ifm1(.) = m2(.) = . . . = mk(.) =
m(.) then mAver

(12...k)(.) = 1
k

∑k
i=1 mi(.) = 1

k
k · m(.) = m(.).

Stated otherwise in VIVE framework, even if all women (or
men) express their total indifference in their voting intentions,
their final votes (assumed to be valid and consistent with
the intentions) will obviously count in the final result of
the election and in derivation of lower and upper bounds
of imprecise probabilities. In case of total indifference in
voting intentions for both men and women populations, i.e.
mM(L ∪ M ∪ R) = mW(L ∪ M ∪ R) = 1 any election
result (outcome) is possible because all unknown underlying
probabilities are totally imprecise. It is clear that only in
this case Dempster’s result coincides with consistent average
fusion rule if it is used to combine directly original bba’s of the
sources. This remark is however of little interest because no
information can be drawn from probability calculus, or from
DS reasoning in such ”pathological” case. Indeed, both rules
provide mDS

MW(L ∪ M ∪ R) = mAver
MW(L ∪ M ∪ R) = 1 as

a result. Thus, S5 holds, and we do think that the definition
and the interpretation of the ”vacuous” bba proposed by Shafer
should be rethinked in accordance to such result, and is related
to the way the fusion process is organized.

III. O N THE RECONCILEMENT OFDEMPSTER’ S RULE WITH

PROBABILITY CALCULUS

A. General principle for reconcilement

In this section we show how the reconcilement of Demp-
ster’s rule with probability calculus can be achieved on VIVE
examples if one combines the sources not directly from
Dempster’s combination of original bba’s provided by the
sources, but in a different manner to make it consistent withthe
probabilistic approach. It is inspired from the Total Probability
approach for solving the VIVE problems. The principle of the
reconcilement consists in the following steps:

• Step 1 (Inputs of the fusion problem): We assume a
given finite and discrete frame of discernmentΘ sat-
isfying Shafer’s model, andk ≥ 2 distinct bodies of
evidenceBk providing their basic belief assignments
mBk

(.) on 2Θ. The joint evidence space will be denoted
B , {B1,B2, . . . ,Bk}.

• Step 2 (ballooning extension of bba’s): In order to
combine the sources of evidence in a consistent manner,

one needs first to work in the Cartesian product (joint)
spaceΘB , Θ × B = Θ × {B1,B2, . . . ,Bk} to combine
the sources of evidences. Since each bbamBi(.), i =
1, 2, . . . , k does in fact only express the opinion/evidence
in the marginal spaceΘBi , Θ × {Bi}, one needs to
extend these bba’s into the joint spaceΘB in such a way
that no extra information is brought and the subsets of
ΘB do not receive more support than justified. The least
committed bba [10] onΘB, such that its conditioning
on ΘBi is mBi(.), is given by the so-called ”ballooning”
extension, denotedm

ΘBi
⇑ΘB

Bi
(.) and defined as

m
ΘBi

⇑ΘB

Bi
(X) =











m
ΘBi

Bi
(Y )

if Y ⊆ ΘBi s.t. X = Y ∪ Θ̄Bi

0 otherwise
(34)

whereΘ̄Bi is the complement ofΘBi relative to the frame
ΘB.

• Step 3 (combination): The ”fusion” of ballooned bba’s
m

ΘBi
⇑ΘB

Bi
(.) given in (34) can now be done with Demp-

ster’s rule and one has

mΘB

B (.) = [m
ΘB1⇑ΘB

B1
⊕ . . . ⊕ m

ΘBk
⇑ΘB

Bk
](.) (35)

Because of the ballooning extension principle, Demp-
ster’s rule coincides exactly with the conjunctive rule
since no ”conflict” occurs between the focal elements of
these ballooned bba’s. Consequently, the original interest
of Dempster’s rule to manage efficiently ”conflicting”
information appears quite limited.

• Step 4 (optional): If one needs, one can also take into
account (include) in the previous fusion formula (40) our
particular prior belief on the sources represented by a
given bbamΘB

0 (.) expressing no specific information on
Θ.

• Step 5 (marginalization of resulting bba): To express
the final resulting bbamΘB

B (.), compatible with the
probability calculus, we project this bba into the original
frameΘ. This is done by keeping only the components
of focal elements ofmΘB

B (.) belonging toΘ, and it will
be denotedmΘB↓Θ

B (.)

B. Theoretical interpretation

The previously defined process should be compared to what
is obtained from the theory of probability. The protocol VIVE
is solved at a Bayesian level as follows:

P (y) =
∑

x∈{M,W}

P (x)P (y|x) for y ∈ {L, M, R} , (36)

which may be depicted along the following steps:

• Step a The inputs of the fusion problem are given by
P (y|x) for x ∈ {M,W} andy ∈ {L, M, R},

• Step b The prior information on the voters are given by
P (x),



• Step c The fusion is done “conjunctively” on the joint
space:

P (x, y) = P (x)P (y|x) , (37)

• Step d The law is marginalized toy:

P (y) =
∑

x∈{M,W}

P (x, y) . (38)

Actually, Step ashould be compared toStep 1and Step 2,
Step bto Step 4, Step cto Step 3, andStep dto Step 5. Now,
let us apply these steps in details:

• Step aIt is given the inputs, which are actually related to
conditional informations,mBi(.) = m(.|Bi) defined on
ΘBi ,

• Step a’ For any i, the input mBi(Y ) is prepared for
fusion by means ofinformation conservativemapping
into the joint spaceΘ × B . This information conser-
vative mapping is obtained actually by the ballooning
extensionsm

ΘBi
⇑ΘB

Bi
(.). Indeed, the ballooning keeps

the information conditionned byBi but keeps also the
vacuous information related toBi,

• Step b It is given the priorm0(X) defined on2B,
• Step b’ The priorm0 is also prepared for fusion by means

of information conservativemapping into the joint space
Θ × B . This mapping is obviously obtained as follows:

{

mΘB

0 (Θ × X) = m0(X) for X ∈ 2B ,

mΘB

0 (Y ) = 0 otherwise
(39)

• Step cAll information are fused in the joint spaceΘ×B :

mΘB(.) = mΘB

0 ⊕ [m
ΘB1⇑ΘB

B1
⊕ . . .⊕m

ΘBk
⇑ΘB

Bk
](.) (40)

• Step d At last, the bbamΘB is marginalized resulting in
a final answer:

m(X) =
∑

Z⊂Θ×B:π(Z)=X

mΘB(Z),

where:π(Z) = {x ∈ Θ, ∃y ∈ B, (x, y) ∈ Z} ,

(41)

the functionπ being a simple projection from2Θ×B to
2Θ.

Now, we will show that this solution to the VIVE protocol
is coherent with the mean rule derived from the Bayesian
approach.

a) Property: Assume thatm0 is probabilistic, that is
∑k

i=1 m0({Bi}) = 1 . Then:

m(.) =
k
∑

i=1

m0({Bi})mBi(.) (42)

Proof
First at all, it noticed thanks to the ballooning exten-
sion, thatmΘB

B (.) = [m
ΘB1⇑ΘB

B1
⊕ . . .⊕m

ΘBk
⇑ΘB

Bk
](.)

is such that:










mΘB

B

(

k
⋃

i=1

(Yi × {Bi})

)

=
k
∏

i=1

mBi(Yi)

mΘB

B (Z) = 0 otherwise

(43)

for Y1:k ∈ (2Θ)k, andZ ∈ 2Θ×B .
Then, by fusing with “probabilistic”mΘB

0 , it is
obtained:


















mΘB(Yi × {Bi}) = m0({Bi})×
∑

Y1:i−1

∑

Yi+1:k

k
∏

j=1

mBj (Yj)

mΘB(Z) = 0 otherwise.

(44)

This is equivalently rewritten:

mΘB(Yi × {Bi}) = m0({Bi})mBi(Yi) . (45)

At last, the marginalization implies for anyY ∈ 2Θ :

m(Y ) =

k
∑

i=1

m0({Bi})mBi(Y ) . (46)

���

This property implies that the principle of reconcilement
actually applies to the VIVE protocol.

C. Concrete example revisited

Let’s apply the general principle described in the previous
section to the concrete example given in section II-B where
only two bodies of evidence are involved, i.e.B1 = M and
B2 = W . We follow the five aforementioned steps to make
the presentation as simple as possible.

• Step 1 (Inputs of the fusion problem): When expressing
explicitly the framesΘB1 and ΘB2 , the original bba’s
given in Table II that we need to combine are given as
in Tables VIII.

Focal elem.\ bba’s m
ΘB1
B1

(.) m
ΘB2
B2

(.)

(L, B1) 0.45 0

(L, B1) ∪ (M, B1) 0.55 0

(R, B2) 0 0.98

(L, B2) ∪ (M, B2) ∪ (R, B2) 0 0.02

Table VIII
INPUT BBA’ S OF THE SOURCESB1 AND B2 .

• Step 2 (ballooning extension of bba’s): The ballooned
bba’s obtained from (34) are given in Tables IX and X.

Focal elem.\ bba’s m
ΘB1

⇑ΘB

B1
(.)

(L, B1) ∪ (L, B2) ∪ (M, B2) ∪ (R, B2) 0.45

(L, B1) ∪ (M, B1) ∪ (L, B2) ∪ (M, B2) ∪ (R, B2) 0.55

Table IX
BALLOONING OF THE BBA OF THE SOURCEB1 .

• Step 3(combination): Applying the conjunctive rule (40)
to combinem

ΘB1⇑ΘB

B1
(.) and m

ΘB2⇑ΘB

B2
(.), one gets the

result of the Table XI.
• Step 4: Two simple choices are possible for usingmΘB

0



Focal elem.\ bba’s m
ΘB2

⇑ΘB

B2
(.)

(R, B2) ∪ (L, B1) ∪ (M, B1) ∪ (R, B1) 0.98

(L, B2) ∪ (M, B2) ∪ (R, B2) ∪ (L, B1) ∪ (M, B1) ∪ (R, B1) 0.02

Table X
BALLOONING OF THE BBA OF THE SOURCEB2 .

Focal elem.\ bba’s m
ΘB
B

(.)

(L, B1) ∪ (R, B2) 0.98 · 0.45 = 0.441
(L, B1) ∪ (M, B1) ∪ (R, B2) 0.98 · 0.55 = 0.539

(L, B1) ∪ (L, B2) ∪ (M, B2) ∪ (R, B2) 0.02 · 0.45 = 0.009
(L, B1) ∪ (M, B1) ∪ (L, B2) ∪ (M, B2) ∪ (R, B2) 0.02 · 0.55 = 0.011

Table XI
CONJUNCTIVE COMBINATION OF BALLOONED BBA’ S.

– If one doesn’t assume specific prior information on
the sources, one can take the uninformative8 bba
defined as

mΘB

0 ((L,B1) ∪ (M,B1) ∪ (R,B1)

∪ (L,B2) ∪ (M,B2) ∪ (R,B2)) = 1 (47)

If one combines with the conjunctive rule this bba
mΘB

0 (.) with the resulting bba of Table XI, one still
gets the same results as given in Table XI because
all focal elements ofmΘB

B (.) are included in the
focal element(L,B1)∪(M,B1)∪(R,B1)∪(L,B2)∪
(M,B2) ∪ (R,B2) of mΘB

0 (.). So one will have

Focal elem.\ bba’s [m
ΘB
0 ⊕ m

ΘB
B

](.)

(L, B1) ∪ (R, B2) 0.441
(L, B1) ∪ (M, B1) ∪ (R, B2) 0.539

(L, B1) ∪ (L, B2) ∪ (M, B2) ∪ (R, B2) 0.009
(L, B1) ∪ (M, B1) ∪ (L, B2) ∪ (M, B2) ∪ (R, B2) 0.011

Table XII
CONJUNCTIVE COMBINATION OF BALLOONED BBA’ S AND m

ΘB
0

(.)

– If one assumes (as done in the probability calculus)
that both sources of evidences have same weights,
then one has to choose as prior bba
{

mΘB

0 ((L,B1) ∪ (M,B1) ∪ (R,B1)) = 1/2

mΘB

0 ((L,B2) ∪ (M,B2) ∪ (R,B2)) = 1/2
(48)

If one combines with the conjunctive rule this bba
mΘB

0 (.) with the resulting bba of Table XI, one
finally gets the results given in Table XIII.

Focal elem.\ bba’s [m
ΘB
0

⊕ m
ΘB
B

](.)

(L, B1) 0.441/2 + 0.009/2 = 0.225
(L, B1) ∪ (M, B1) 0.539/2 + 0.011/2 = 0.275

(R, B2) 0.441/2 + 0.539/2 = 0.49
(L, B2) ∪ (M, B2) ∪ (R, B2) 0.009/2 + 0.011/2 = 0.01

Table XIII
CONJUNCTIVE COMBINATION OF BALLOONED BBA’ S AND m

ΘB
0

(.)

8called vacuous in DST terminology.

• Step 5 (marginalization of resulting bba): Here are the
final marginalized results based on two possible choices
for prior bba’smΘB

0 (.) of the sources

– If one takes the uninformative bba (47), one finally
obtains

Focal elem.\ bba’s [m
ΘB
0 ⊕ m

ΘB
B

]↓Θ(.)

L ∪ R 0.441
L ∪ M ∪ R 0.539 + 0.009 + 0.011 = 0.559

Table XIV
FINAL FUSION RESULT MARGINALIZED ON Θ

From the Table XIV, one finally gets the following
lower and upper bounds of the underlying unknown
probabilities










[Bel(B1B2)(L); Pl(B1B2)(L)] = [0; 1]

[Bel(B1B2)(M); Pl(B1B2)(M)] = [0; 0.559]

[Bel(B1B2)(R); Pl(B1B2)(R)] = [0; 1]
(49)

These bounds do now include the precisiate proba-
bility (20) but are very wide due to uninformative
prior mΘB

0 (.) taken here for the sources, which is
normal in such case.

– If one takes the bbamΘB

0 (.) as in (48) to be consis-
tent with the probability calculus, one finally obtains
from the Table XIII, the following marginalized
result onΘ:

Focal elem.\ bba’s [m
ΘB
0 ⊕ m

ΘB
B

]↓Θ(.)

L 0.225
L ∪ M 0.275

R 0.49
L ∪ M ∪ R 0.01

Table XV
FINAL FUSION RESULT MARGINALIZED ON Θ

The result given in the Table XV is now perfectly
consistent with the result obtained directly from the
probability calculus shown in (27). Therefore the
lower and upper bounds of unknown underlying
probability governing the experiment will be










[Bel(B1B2)(L); Pl(B1B2)(L)] = [0.225; 0.51]

[Bel(B1B2)(M); Pl(B1B2)(M)] = [0; 0.276]

[Bel(B1B2)(R); Pl(B1B2)(R)] = [0.49; 0.50]
(50)

These bounds coincide with the bounds computed in
(28) and obtained directly from the simple averaging
of bba’s.

One sees that the results obtained from the probability
calculus can be entirely recovered in using the simple con-
junctive rule of combination applied directly on the ballooned
extended bba’s on the joint fusion space. There is no problem
at all to manipulate (combine) sources of evidences following
such very general principle of reconcilement and the notion



of conflict just vanishes on such case. Of course, a similar
analysis and conclusions can be done and drawn for Zadeh’s
example and this is left to readers verification.

IV. CONCLUSIONS

In this paper, we have shown through a very simple ex-
amples and through an experimental protocol of verification,
the inconsistency of the Mathematical Theory of Evidence
with the probability calculus as soon as we apply directly
Dempster’s rule of combination to the original bba’s provided
by the distinct and independent sources of evidences, and
even if they are not conflicting. Our conclusions corroborate
the conclusions drawn by some researchers. We have also
shown that the doubts on the validity of Dempster’s rule
of combination pointed out by Zadeh were well justified.
Of course, this flaw and unsatisfactory behavior of a direct
use of Dempster’s rule of combination doesn’t mean that
belief functions and combinations rules are useless in practice
for modeling uncertainty and fuse them. We just have to
accept the fact that we need to manage them differently (for
combination or conditioning) and in a better consistent way;
otherwise we must be ready to accept inconsistent results and
their consequences. In the last part of the paper, we have
shown how it is possible to reconcile the conjunctive rule of
combination with the probability calculus but the mechanism
for dealing with sources of evidences differs obviously from
the original approach of the Mathematical Theory of Evidence.
In our examples, one needed first to extend the bba’s into
the joint fusion space before combining them with the sim-
ple conjunctive rule of combination; this was equivalent to
combining conditionnal bba’s in a way similar to the Total
Probability approach, which was naturally leaded by the nature
of the problems. In the VIVE paradigm, the notion of conflict
between sources becomes just useless and meaningless. Using
our new conjunctive-based approach, the interest in Demp-
ster’s rule appears very limited for such problems because it
can be replaced in fact by the simple average of the bba’s
to combine which makes derivations simpler. Whatever, this
approach combining a conditional formalization of the sources
of information with the combination rules appears as a way
for constructing a coherent framework of implementation of
the combination rules. On this point, we are going closer
to the Bayesian reasoning. A generalization of the approach,
involving inversion similar to the Bayesian inversion, should
provide a complete solution for a coherent implementation
of the combination rules. At last, we don’t claim that the
Mathematical Theory of Evidence as originally developed,
and its extensions (based on other rules of combinations) are
definitely useless in practice, but it seems that the original
Dempster-Shafer theory of belief functions belongs to a family
of Approximate Reasoning Theories that appear perfectible. If
they aren’t, they need to be proved consistent in some well
defined domains of applicability. The imperfections are dueto
the inconsistency of the results drawn from the reasoning with
respect to the results obtained with the probability calculus
validated by our experimental protocol. Since we have no

proof that human reasoning is fully consistent with probability
calculus, we do easily admit that Approximate Reasoning
Theories present some interests of course, but the readers and
users must be aware of this inconsistency and should use these
theories always with extreme caution in applications.
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