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Abstract—In this paper we present an analysis of the use for more details.
of Dempster's rule of combination, its consistency with the Let's consider a frame of discernmeét = {6,...,60,}
probability calculus and its usefulness for combining sowes \yhich corresponds to a finite setofexhaustive and exclusive

of evidence expressed by belief functions in the framework fo - . ; . .
the Mathematical Theory of Evidence, known also as Dempster elements. A basic belief assignment (bba) associated tea gi

Shafer Theory (DST), or as the classical theory of belief fuetions. Source/body of evidend8 is defined [9] as a mappings(.) :

We show that the direct combination of original basic belief 2© — [0, 1]:

assignments of sources of evidence with Dempster's rule is

inconsistent with probability calculus and we explain thisfrom a mp(0)=0  and Z mp(X) =1 1)
simple experimental protocol. We also show how Dempster'sute Xe29

can be reconciled with probability calculus for such exampés he el fh 29 havi . .
if the combination of sources is done differently. In that cae | N€ elements of the power aving a strict positive mass

the notion of conflict between sources of evidence becomesOf belief are called focal elements afs(.). The set of all
meaningless (it just vanishes) because Dempster’s rule ocides focal elements is called the core @iz(.) and is denoted
with the pure conjunctive operator, and the entire fusion process .. Among all possible bba’s one can define 29, there
becomes comparable to simple application of Total Probalily = o icts 4 very particular one called in DST the vacuous bba

Theorem (i.e. the weighted average fusion rule). While a déct d an h | ial role i . f
application of Dempster's rule becomes questionable in thenost denotedny(.) that plays an essential role in DST since from

general case, then arises the need of a methodoloy for orgaiig DS point of view it represents adequately a total ignorant
and implementing the combination rules with respect to the source of evidenceny(.) commits all the mass of belief to

applications. the whole frameO, i.e. my(©) = 1. In DST, several other
Keywords: Dempster-Shafer Theory, Mathematical The- pelief functions (BF) have also been introduced, mainly the
ory of Evidence, Generalized Bayesian Inference, belief credibility function (also called sometimes support oraee
functions. function) Belg(.) and plausibility functionPi;(.) which are

in one-to-one correspondance with the bhg(.). Belp(.) and
Plg(.) are respectively interpreted as lower and upper bounds

The Mathematical Theory of Evidence developed by Shafef unknown probability measures defined®rand compatible
in [9] from Dempster’s works [1]-[3] is considered as one oWith the bbam(.). They are mathematically defined by:
the main paradigms for reasoning under uncertainty than a a
to the elegant introduction of belief functions. This tkworiﬁelB(X) N Z mg(Y) and Ph(X) = Z ms(Y)

. . YCX YNX#D

however has been a source of many debates since its de- ye2® ye2e
velopment both on the interpretation (semantics) of belief (2
functions and on its efficiency for combining or conditiogin Dempster's rule of combination, also called Dempster-
sources of evidence in order to provide pertinent resuitsial  Shafer rule by some authors (or just "DS rule” for short),
applications. Here we show through very simple examples a@i@noted with& symbol, is the key operator in DST proposed
experimental protocol why there is problem when applyini@r combining (or conditioning) several bba's associated t
directly Dempster’s rule of combination as proposed ogtiin distinct bodies of evidences. Dempster’s rule corresponds
in Shafer's milestone book [9]. We want also to clarifjnormalized conjunctive operation. The combination of tus d
some important points about its usefulness with respect tict (independent) sources of evidences characterizeithdoy
what can be obtained from basic probability calculus. Weba'smg, (.) andms,(.) defined on the same common frame
assume the reader already familiar with DST and we just discernment© is done, according to DS reasoning, with
recall the minimal basics required for having a self-cargdi Dempster’s rule as follows: for the empty sef;”; () = 0,
presentation. Readers not familiar with DST must refer fo [@ndvX € 2€ \ {(} one has

I. INTRODUCTION



expressed his doubts on the validity of Dempster’s rule &g or
DS mia(X) inally proposed was Lotfi Zadeh in [11]-[13]. Since Zadeh'’s
M, ,) (X) = [ms, & mg,](X) = T—mn(0) (3) comments, many efforts have been done by researchers either
2 to try to give a clear semantics to BF in DS reasoning, tofyusti

where Dempster’s rule, or to start to develop “better” solutioos t
mia(X) 2 Z ms, (X1)ms, (X2) (4) por_nbme BF in order to circumvent counter-intuitive resydtit
X Xoeo© in light by Zadeh. Surprisingly, few research works seenehav
X1 N X=X been done to verify the consistency of DS reasoning with the

basic probability calculus from a strict application of ttwm-
bination principle based on Dempster’s rule. In ninetiearPe
pointed out the question on the compatibility of DST with
probability calculus in [7], [8], and more recently Gelmaavh
Kis 2 mia(0) = Z mp, (X1)mp,(Xs2) (5) highlighted also this question in [5]. Our recent researohks
X1, X629 done independently supports Pearl's and Gelman’s anddysis
X1NXo=0 are based on different approach with examples drawn from an
Whenm,(0) = 1 the two sources are said in total conflicExperimental protocol in order to validate our conclusidns
and they cannot be combined by Dempster’s rule becausetfiff next section we show why there is an inconsistency of DS
0/0 indeterminacy [9]. Dempter’s rule is commutative and ageasoning with probability calculus if one applies dirgdtie
sociative which makes it very attractive since the comliamst Combination of sources of evidence with Dempster’s rule as
of sources can be done sequentially instead globally and @édinally proposed by Shafer in [9]. Therefore DS reasgnin
order doesn’t matter. For example with three sources, all thannot find its legitimacy from the the probabiliy calculds i
following combinations provide same results with DS rule fot is applied in the classical/original way. This is the anig

corresponds to the conjunctive consensusXbibetween the
two sources of evidencB; andB,. Shafer defines thdegree
of conflictbetween the sources of evidence by

any X € 2° of most of debates about the validity of Dempster’s rule.

The next section will explain what is wrong when applying

[mp, & mp, ® mp,|(X) = [(ms, ©mp,) & mp,](X) Dempster’s rule as suggested by Shafer for combining djrect
= [mg, ® (mp, ® mp,)|(X) sources of evidence, and we will explain the consequences of

= [ms, ® (ms, ®mg,)|(X) (6) such _improper use of Dempster's ru_le. The section llI Will
explain how and what to do to reconcile Dempster’s rule with
The conditioning of a bbans(.) by a conditional element basic probability calculus in order to avoid to fall in thagrof
Z € 29\ {0}, denotedmp(.|Z) and proposed in DST, is inconsistent reasoning under uncertainty. The purposisf t
obtained by Dempster-Shafer rule of combinationnef(.) paper is to put in light and alerting the scientific commuiaity
with the bbamz(.) that is focused only o, i.e. such that this problem in order to prevent miss-use of belief function
mz(Z) = 1. For any elemenfX of the power seR® this is
mathematically expressed by Il. ON THE INCONSISTENCY OFDEMPSTER S RULE

mp(X|Z) = [mp ®&mz](X) = [mz ®@mp](X) (7) In this section we put in light the inconsistency of Demp-

) .. . ster's rule of combination with the probability calculus if
It has been proved by Shafer [9] that this rule of conditigninghe applies Dempster's rule to combine directly (as usually
expressed in terms of plausibility functions yields t0 th§qne) the original bba’s provided by the sources of evidence
following formula: We will prove the following statements on the basis of an

Plg(XNnZ experimental protocol:
Pip(Z) S1: The “conflict” between two sources is not properly man-
The latter formula is very similar to Bayes formula  29€d by Dempster's rule. _ o
P(X|Z)=P(XNZ)/P(Z). S2: Dempster’s rule yields to inconsistent results witfssila

cal probability calculus.

In summary, the elegant way of representing uncertaing3- |n€ associativity property of Dempster’s rule is inésns
thanks to belief functions, the nice “appealing” propertie (€Nt with the probability calculus. _ _
of Dempster's rule and its apparent consistency with Bay&é: The conjunctive operator of bba’s is incompatible with
formula for conditioning include all the ingredients to neak probability calculus. , _ ,
it very attractive for a wide community of researchers ang>- 1he “vacuous” belief function does count in the consis-
engineers faced to problems where not only randomness is t€nt fusion of bba’s.
involved but also where epistemic uncertainty can be ptese
But does this suffice to state that we can use DS reasoning
without problems as originally proposed in Shafer's book? Let's start with a simple generic exemple. Consider a frame
We can’t unfortunately answer positively to this questien af discernment with three elements only, say= {A, B,C}
proved in the following section. The first researcher who hastisfying Shafer's model, i.e. the elements of the frame

A simple generic example



are truly exhaustive and exclusive. Let's consider two nothat the same problem occurs even if we take= 0, i.e.
Bayesian bba’s (i.e. bba’s having not only singletons aslfoave consider onlyC and A U B U C as focal elements of
elements) to combine as given in Table | where [0,1] and mp,(.) (i.e. when focal elements ofng,(.) are nested).

b1,b2 > 0 such thath; + by € [0, 1]. Actually it is easy to construct an infinite family of examgple
generating such irrational behavior as we did already prove
Focal elem\ bba's | mp, () [ ms,() in [4]. Dempster’s rule behavior goes against the common

AG‘B 1 fa b? sense if we combine directly the original bba’s of the sosirce

c 0 1—by — by by Dempster’s rule.
AUBUC 0 ba
Table | Is it a serious flaw or not of Dempster-Shafer Theory? At
INPUT BBA S (.) AND ma(.). least, the intuition usually behind the notion of conflictyma

be questionned. Whatever, from a such generic and abstract
example like the previous one, it may be not obvious for the
Naturally, one has assumed that these two bbas (.) reader to be convinced by the positive answer we give to this
andms, (.) satisfy Dempster's condition of independence qjestion if one adopts the combination of sources as prdpose
sources of evidence in order to apply Dempster's rule @figinally in DST. We will show however in section IIl what
combination as proposed by Shafer. Note that in this simpigjution we propose for combining bba’s in consistent manne
generic and parametric example the focal elementsf(.)  with Dempster's rule. So, let's make the previous example a

are not nested (consonant) and there really does exist a B@more concrete now and let's go deeper in the analysis with
null apparent "conflictt between two sources as it will betye following basic experimental protocol.

shown more explicitly in the derivations. When applying

Dempster’s rule of combination, one gets: B. Experimental protocol and concrete example
1) using at first the conjunctive operator: The context is as follows. We consider a future president
election for a country with only three distinct candidates
mia(A) = a(by + b) 9) y y

(to keep the example simple). Each candidate represents a
mia(AU B) = (1 —a)(by + b2) (10) political party. So we assume a candidate for the Left party

K13 = m12(0) =1 — by — by (conflicting mass) (11) (called L), for the Moderate party (called M) and for the

Right party (called R), so tha® = {L, M, R}. Let consider

also two distinct sets of people allowed to vote in such

election: W is the set of women andM is the set of men

2) and then after the normalization by— K15 = by + bo,
the final result is as follows:

mBS . (4) = mi2(A) and we assum@V| = | M|, i.e. there is the same number of
(B1B2) 1— Ky women and menM and W will in fact play the roles of two
~a(by+0b2) distinct bodies of evidencB, and B; in the sequel.
Cobi+by
=mp, (A) (12) B.1 Experimental protocol
mffgsl&)(A UB) = %;B) The experiment we propose is elementary and can be done
(1- a)(éi +by) easily in practice. It consists in two steps: step 1) one aga®y
=—— = =1-qa the bba’s of the sources of evidences; and step 2) one uses
b1 + by the real consistent/compatible precisiated probabiligasures
=mp, (AU B) (13) expressed by the sources to check if the original DS reagonin

Clearly, our statement (S1) is true since in such exampf consistent with probability calculus. Let's explainstin
Dempster’s rule is indifferent to the level of conflict beape details. We call this protocol the "voting-intention & vog
the sources. Whatever the value of the confligt > 0 is, one €XPeriment” (VIVE for short).
getsm{y s, (-) = ms, (). This behavior is counter-intuitive ~« Step 1 (construction of bba’s):
because in this simple example one of the sources doesn't Before the election day (say 6 months before by
finally count (impact) in the DS result, although none of the example), all people (men and women belonging
sources are vacuous and there does exist a non-null conflict to M and W respectively) are asked to give their

betwen them. ActuallyK;2 > 0 can be either very low or preferences/vote intentichsamong the three given
very high depending of the choice one takes for parameters candidates. We assume that they provide their answer
a, by and by but it doesn’t matter becaus@d — Ki3) is independently of what other people do, say or think.

automatically simplified by the normalization step as we see What is important in step 1 is that men and women are
through our elementary calculus. It can be easily verified allowed to provide not only one name of a candidate,

IHere we use the notion of "Conflict” with the same interpiietatand 2j.e. their belief in who they think is the best candidate todme president
definition given by Shafer in [9]. for their country.



but they are free to give one, two or eventually three
names depending on their own preferences. For example
if a man or a woman declardsuU M as his/her voting
intention it means that he/she will vote either fér

or M. L U M voting intention indicates that he/she
has not yet taken his final choice 6 months before the
election day but it means that he/she is sure that he
will not vote for R in order to maintain a coherence

Vumw and estimate the resulting/combined real proba-
bility P15el(.) computed by the frequentist approach of
probability calculus. So if one draws randomly a ballot
in the box V4, the probability of the outcome will be
governed byPuy(.). The consistency of original DS
reasoning will be satisfied if and only if for any election
result compatible with the expressed voting intentions,
the following inequality is always verified

between what he/she prefers and what he/she will finally
decide at election day. So all men and women are
asked to write on a sheet of paper only one element of
2€ \ {0}. The vote intentions for men and women are
written on sheets of paper and are put into two separate
boxes denotedB,, and B,y. By opening the boxes
and counting the rationa(X)/|M| where na(X)

is the number of voting intentions committed t4,

one can compute the bba assignment,(X) for any

X in 29\ {0}. A similar procedure is done to get _ o -
mw(X) for any X in 2\ {0} too. Fromm.(.) and Of course, the VIVE pro_tocol is not limited to the_z specific
mw(.) we are now able to compute the lower and upp&@Se that we took here with only 2 sources of evidence and
bounds [Belu(.); Pia(.)] and [Belw(.); Ply(.)] of With [©] = 3. It can be applied in general for any number
unknown probabilitiesPy(.) and Pyy(.) based only on ¥ = 2 of sources and any size of frame of discernment
voting intentions in boxe$ v, and Byy. The boxesB,, 9reater or equal to 2. The VIVE protocol is very general and
and B,y can be seen as two independent well-definé@" be used to construct any bba’s and test consistency of
sources/bodies of evidence from which one can compd@senings with belief functions with probability calcslu

the combined bba’s denotéeh 5, (.) with Dempster’s

rule, i.e.m®a,(.) = [mam @ my)(.) and estimate lower B.2 A simple concrete example
and upper probability bound®Bel7 (.); PIRS ()] given
by considering the sources of evidence altogether.

BelXgw(-) < Py () < Pliw()  (14)

If there exists at least one example where inequality
(14) fails, then consequently Dempster’s rule of
combination as used originally in DST to combine
sources of evidences is proved to be inconsistent with
the probability calculus.

Let’s take a simple concrete example, apply VIVE protocol
and go a bit further in details in the analysis to prove
« Step 2 (Precisiation of probabilities of sources of evihe inconsistency of Dempster’s rule result with probapili

dences and verification of DS reasoning consistency): calculus as proposed in DST. We take= {L, M, R}, and

At the election day, the same people (men and womeioy simplicity® of derivations we takeM| = [W| = 100 and

are asked to vote for only one candidate among the three assume that from voting intentions we have obtained the

candidates. No blank vote is allowed. The vote of eadiba’s in Table Il to combine. The table Il means that 45 men

man and woman must be coherent, i.e. the name of thave declared to prefer to vote f&; 55 men have declare to
candidate he/she votes for has to be indeed includptkfer to vote either fol. or for M, 98 women have declared

in the list he/she wrote in their voting intention. Theo prefer to vote forkR and only 2 women were fully uncertain

men and women ballots are put into two separate boxes their preference. From these bba’s one can compute easily

Vi and Vi, From the ballots in each box and basedredibilities and plausibilities of each candidates,the.lower

on classical frequentist calculus of probabilities, we caand upper bounds of the unknown underlying probabilities th

now precisiate the original imprecise probabiltis,(.) will govern the election result. So one gets for each source

and Py (.) of each sources of evidence that were knoweonsidered separately the values given in Tables Il and IV.

to satisfy Pr(.) € [Belm(.); Plam(.)] and Py(.) € The Table Il indicatesPr((R) = 0, i.e. R can never occur

[Belw(.); Ply(.)] according to the voting intentions inbased only of men voting intentions.

boxes B¢ and B,. Clearly if one draws randomly a \When considering the sources of evidences altogether

ballot in the boxV, the probability of the outcome (hased on a mixed population witMW = M U W) and

will follow PM() and if one draws randomly a ballot inbecausmﬁsw(.) = mM() in this example' more precisely

the box 1y, the probability of the outcome will follow m,l/\)/tSW(L) = 0.45 and mDS (L U M) = 0.55, one gets

Py (.). To test the consistency of Dempster’s fuleith  the following lower and upper bounds of unknown probability

the probability calculus it suffices to put all the ballotshat is supposed to really govern the election outcome inE/IV

of boxesV and V) altogether into a single empty boxprotocol.

30ne uses the indexMW to denote the fact that the results take into
account bothM and W.

4as done in DST; that is from the direct Dempster’s combimatiboriginal
bba’s of each source.

SWe take small sizes for men and women voting populations rtiplify
the presentation but the derivations can also be done wihebipopulation
sizes without changing the conclusions of our analysis.



Focal eIeLm'\ bba's %ﬁé‘) m"(‘)’(') woman has finally voted only for one candidate in accordance
LUM 0.55 0 with their vote intentions so that the imprecise probapilit

R 0 0.98 has been finally precisiated by the sources of evidences. We

LUMUR 0 0.02 assume that blank votes are not allowed and all votes do
Table Il count in the election result. So take by example the follgwin

INPUT BBA'S OF SOURCES OF EVIDENCE . .
possible outcome of the election:

e Assume that in men populatiai, forty five (45) men

Candidates Source | Men population A have voted forL and among the fifty five (55) men who
provided imprecise voting intentions, five (5) men did figall
L Pp(L) € [Belm(L); PLy(L)] = [0-45;1] vote for L and the other fifty (50) men did vote fav/. So
M Pp(M) € [Bel g (M); Plag(M)] = [0;0.55] we get using frequentist approach of probability calculus
R Pu(R) € [Belpm(R); PLm(R)] = [0;0] Preel(L) = (45 +5)/100 = 0.5
Prel(M) = 50/100 = 0.5 (16)
Table 11I

P (R) = 0/100 = 0

LOWER AND UPPER BOUNDS OF PROBABILTITY FROM THE SOURCHA.

We see that this probability measuRg5e!(.) is fully com-

Candidates Source | Women population/V patible/consistent with the bbeaua(.) because as expected
from the Table IIl one has
L Py (L) € [Belw(L); Ply(L)] = [0;0.02]
Prsel(L) = 0.5 € [0.45; 1]
M Pw (M) € [Belw (M); Pl (M)] = [0;0.02] P/rve[al(M) =05¢€ [0, 055] (17)
R Pw(R) € [Belw (R); Ply(R)] = [0.98;1] Pisel(R) =0 € [0;0]
Table IV e Assume that in women populatiorV, ninety eight (98)

LOWER AND UPPER BOUNDS OF PROBABILTITY FROM THE SOURCEY.  women did vote forR, and among the two (2) other women
who provided imprecise voting intention, one woman did
really vote for L and the other did vote foM/. So we get

Lower & upper boundd Source| Mixed population MW using basic probability calculus
[BelRS, (L); PIRS (L) [0.45; 1]
A o Prel(L) = 1/100 = 0.01
[BelRS  (M); PIRS, (M)] [0;0.55] Pst (M) = 1/100 = 0.01 (18)
[BelRS, (R); PIRS, (R)] [0: 0] Preal(R) = 98/100 = 0.98
Table V We see that this propability measurgse(.) is also fully
LOWER AND UPPER BOUNDS OF PROBABILITIES OBTAINED FROM compatible/consistent with the bba,, (.) because as expected
DEMPSTER'S RULE. from the Table IV one has
Preel(L) = 0.01 € [0;0.02]
Preal(M) = 0.01 € [0;0.02] (19)

Therefore, according to DS reasoning, one should have

PBS (L) € [0.45;1]

Prét(R) = 0.98 € [0.98; 1]

e Let's now put all the ballots ofVy, and V4, boxes

PLiw(M) € [0;0.55] (15) together in a new empty boky and computeP;sal ()
PPS,(R) € [0;0] using frequentist approach. One obtains:
Clearly from (15), one obtain®{3,,(R) = 0, meaning Préal (L) = (45 +5+ 1)/(100 + 100) = 0.255
that the outcomerR can never occur (according to Dempster- Preal (M) = (50 +1)/(100 4 100) = 0.255 (20)

Shafer interpretation) which is intuitively absurd be@us
at least98% of the women have declared their intentions
to vote for R. Stated differently, women opinions do not These results make intuitively perfect sense because one
count here in Dempster-Shafer reasoning since we detows that at least 98% of women wanted to vote for
finally m%3,,(.) = ma(.). How such very counter-intuitive based on the evidence drawn fram, collected inByy box,

Preel(R) = 98/(100 + 100) = 0.490

behavior of Dempster’s rule can be justified? and expressed imnyy,(.). Clearly Dempster-Shafer’s upper
and lower bounds [BelR5,, (R); PIRS,(R)] = [0;0]
To prove the mathematical inconsistency of DS reasonig not include P;54,(R) = 0.49. This proves the

with probability calculus let's examine what can happen imconsistency of Dempster's rule with the probability
reality at the end of the election day when every man amdlculus when combining directly the original bba’s



mam(.) and myy(.) as proposed in DST. Note also thaC. How to combine bba’s in a consistent manner?

PRisw(L) = 0.255 ¢ [Bel 03y (L); PIRG, (L)) = [0.45; 1] From our previous analyses, one sees that the consis-
tent "combination/fusion” within VIVE protocol oft equi-

From such of very simple concrete example, we ha‘(ﬁeighte(? bba’s m1(.) = Pi(.), ..., mi(.) = Pe(.) must be
really put in light a flaw of Dempster’s rule when combiningyyne by the arithmetic mean &%(.), fori = 1,..., k. More

directly the original bba’'s of sources of evidences becauﬁ?ecisely, the “fusionned” probability?,;,5. ) (.) is obtained
Dempster’s rule is not directly compatible with the calauluy,

of a bba (or a probability) obtained when putting the piedes o
evidences altogether. If we apply Demspter’s rule to combin  Pi2s..1)(-) = (1/k)Pi(.) + ... + (1/k) Pr(.) (22)

.d'reCtlY the original bba's of sources Of ewde_nces, we Q.Etormula (22) corresponds to the application of Total Proba-
inconsistent lower and upper bounds of imprecise proligbili

as shown through VIVE. Therefore, our statement S2 hol 's“ty Theorem using all equal priors. It is easy to provettha

and supports Pearl’s doubts expressed in [7], [8]. e consistency (_)f the reSL_JIts Whgn combining §equent|ally
(or by any grouping/clustering choice) the Bayesian sairce

of evidences is achieved with the proper weighted average of

sources. The weighting factors are computed as the number of
Let’s revisit now Zadeh'’s example [12] but transposed witRoUrees involved in a given group d'VIde\d by the tOt".ﬂ nu_mber

of sources. For example, if one considers 3 equi-weighted

VIVE protocol. We take® = {L, M, R} and the following B ian bba's t bi il get wh bining th
bba’s drawn from men and women populations with| = dayesian bbas to comoine, one wit get when combining these
probability measures altogether

W] = 100:
Prag) () = (1/3)P1() + (1/3)P2() + (1/3)Ps(.)  (23)

B.3 Zadeh’'s example revisited

Focal elem) bba’s | ma(.) | mw(.)
u 0 oo Now if we combine firstP,(.) with P»(.) (assuming that
R 0.1 0.1 one has only these two sources of evidence in hands), one gets
Table VI Paz () = (1/2)P() + (1/2) () (24)

INPUT BBA'S FORZADEH’S EXAMPLE.
Then if a third distinct source of evidence comes in and one
Following similar derivations as previously based on th@ants to combine it withP;2(.), the consistent probability
basic probability calculus, one gets as consistent result  calculus must be done as follows

Pyiw(L) = 90/200 = 0.45 Pazys(-) = (2/3)Pazy () + (1/3)P3(.) (25)
Preal (M) = 90/200 = 0.45 (21)

ol in order to be consistent with,3)(.) obtained when putting
Pigv(R) = (10 +10)/200 = 0.10 all the pieces of evidences together. Clearly the fusiorhef t
whereas the direct Dempster’s combinationrof(.) with 2 sources of evidencé,,y must doubly count with respect
mw(.) provides in such particular "highly conflicting” to the single third source.
examplem5,,(R) = 1, or equivalentlyPLS,,(R) € [1;1],
which is against the common sense as pointed out byBecause non-Bayesian bbais;(.), i = 1,2,...,k can be
Zadeh three decades ago. The "paradox” comes from finéerpreted as classical probabilities defined on the paser
use of Dempster’s rule for combining directly the originabf © (this is how one can obtain them from voting intentions
bba's of the sources. Zadeh's paradox disappears wtienStep 1 of VIVE protocol), the consistent fusion rule of
applying the probability calculus as explained in VIVEprobability calculus (22), i.e. the Total Probability Them,
Actually, the notion of "conflict” between sources appearsan be applied also. This yields to the following simple
totally meaningless when using the probability calculus faonsistent fusion rule for bba’s:

combining the sources of evidence. ver
M5 () = /k)mi () + .+ (1/k)mi(.)  (26)

Of course, it may be argued that our VIVE ana|ySiS is done One sees that this Simp|e fusion rule (arithmetic

with finite pOpulationS of small size so that the estimatidn qnean/average) has a IOW Comp|exity W|th respect to most Of
probabilities based on frequentist approach of probg®ti- previous combination rules developed so far (i.e. Demisster
mation is not precise enough, but fundamentally we can makfle and its alternatives) to combine directly the originaa’s

the same analysis with bigger sizes of populations andostill of the sources of evidence. The averaging technique had been
analysis remains valid. We just take h¢el| = [W| = 100t0  discussed by Murphy in [6] but without clear conclusions,
make the presentation and derivations simpler. Based an thi

analysis, Zadeh's doubts on the validity of Dempster’s rule®Equi-weighting of bba’s means that sources of evidencedased on the

to combine directly original bba’s of the sources are jestifi S&M€ Population size when transposing bba’s in VIVE prdtoco
“For notation concision in formulas, we now usg (.) instead ofmg, (.)

since the_ Inconsistency of DempSter,s rule with the pl’OllII&bl to denote the bba associated with a source of evid&atefined with respect
calculus is proved. to a given frameo, fori = 1,2, ...



nor justifications of its real usefulness. In our analysis wsults in at least a particular case. Therefore the addtyia
give a strong and clear justification of arithmetic mean imith property of Dempster’s rule is inconsistent with the praligb
the VIVE paradigm that is based on the consistency of tlwalculus when combining directly bba’s of sources of evaten
fusion rule with the probability calculus drawn form a direcand our statement S3 holds.
application of the Total Probability Theorem. ) ) o

E. On the conjunctive rule of combination

It is easy to verify that the average fusion rule (26) proside Here we show that the conjunctive operator is inconsistent

consistent results for the concrete example given in Bckedd with probability calculus when combining directly origina
from values of bba’s given in Table I, one will get from (26)bba’s of sources of evidence. To prove this, let's téke=

{A, B}, Shafer's model and the two following bba’s given in

m(‘ﬁ;\,)(L) =0.45/2 = 0.225 the Table VII that could be obtained from Step 1 of VIVE
Aver _ _ .
quMW)(L UM) = 0.55/2 = 0.275 27) protocol
Moy (R) = 0.98/2 = 0.49 Focal elem bbas [ mi() | ma()
Aver _ — A 0.7 0.2
m{im (LU M U R) = 0.02/2 = 0.01 o 0T 02
Therefore the lower and upper bounds of imprecise probabil- Table VII
ities will be given by INPUT BBA'S TO COMBINE.

BelAver ([, ;PZAUET L)|] =10.225;0.51
[Bel(Kiw) (L) PLGSw (D)) = [ ] From the Table VII, the lower and upper bounds of unknown

Aver . Aver — 10-
[Bel(MW) (M)’PZ(MW) (M)] = [0;0.276] (28) Py (.) and P,(.) probability measures are given by (thanks to
[Bel{luin (R); LA (R)] = [0.49;0.50] credibility and plausibility functions):

(MW) (MW)

These (consistent) lower and upper bounds do now include {0_7 <P(A)<1 {0.2 < Py(A) <1 (29)
- - - - 29

the precisiated probabilit;5%,(.) given i_n _(20) and drawn 0< Pi(B) <03 0< Py(B) < 0.8
from step 2 of VIVE protocol, contrariwise to Dempster-
Shafer’s lower and upper bounds given in Table V. In this very simple example, there is no "conflict” between
o i these two sources according to Dempster-Shafer reasoning.
D. On the associativity of a fusion rule Dempster’s rule coincides here with the pure conjunctive ru
From our previous analysis and the Total Probability The@ecause there is no need of normalization since no "conflict”
rem, it becomes clear that the appealing requirement of thecurs. So one gets from the conjunctive fusion rule

associativity of a fusion rule cannot be obtained/constste
{m(’:{%(A) =0.7-0240.7-08+0.2-0.3=0.76

with probability calculus as shown through (25) when sosirce (30)
to combine express different opinions. To explain this lgasi mg%(A UB)=0.3-08=0.24
what is going wrong with associativity property requirernen .
in the fusion is that the sources are not combined with sar%gd the following lower and upper bounds
equal weight depending on how we do their combination. 0.76 < p(ll?QS) (A) <1

For example, let's consider 3 independent sources of ev- 0 < PPS(B) < 0.24 (31)
idence to combine according to a VIVE interpretation, and ) -
defined on the same fran® with bba’'s m,(.), m2(.) and With the consistent (average) fusion rule, one gets
ms(.). We assume that sources have same weights. If we com- Aver
bine them altogether by Dempster’s rules we @gt.s)(.) = myyy (A) = (0.7+0.2)/2 = 0.45 (32)
[my1 ® ma @ ms](.). Now if we combinem(.) andms(.) by m{s (AU B) = (0.3 +0.8)/2 = 0.55
Dempster’s rule (assuming one has only these two sources .
evidence in hands at first), one gtz () = [m & ma)(.). a% the following lower and upper bounds
When fusioningm 12y(.) with the third sourcems through 0.45 < Preal(A) <1
Dempster’rule both sources ;5 (.) (the previous combined pa (33)

(12){- P 0 < Pasl(B) <0.55

bba) andms(.) are still considered to have the same weight
which is obviously wrong because ) (.) is based on more Itis not too difficult with VIVE protocol to get two proba-
evidences thanmn(.) in fact. As shown already in (25), if bilties P;(.) and P»(.) compatible withm; (.) andmy(.) and
we restrict this example to Bayesian bba’s case, i.e. with apply basic probability calculus to see that indeed tlad re
m1(.) = Pi(.), ma(.) = P2(.) andms(.) = P3(.), Pu2y3(.) probability governing the experiment can be out of the lower
cannot be computed just ad/2)P1» + (1/2)P; because and upper bounds given by the pure conjunctive rule. For ex-
otherwise it becomes inconsistent wikh 3) (.). ample, if one considers the compatible probabilitig$A) =

In summary, the associativity requirement of a fusion rule7, Pi(B) = 0.3 and P,(A) = 0.2, P,(B) = 0.8 then the
is incompatible with probability calculus and consequentreal "combined” probability obtained fror?; (.) and P»(.) by
any associative rule of combination will yield to inconsist probability calculus will beP(TfQ“)l(A) =(0.7+0.2)/2 =0.45



and P;5 (B) = (0.3+0.8)/2 = 0.55 = 1 — Pj5j/(A). These
probabilities are out of the lower and upper bounds obtained
with conjunctive rule. In summary, even if the sources to
combine arenot in conflict (in Dempster-Shafer sense), then
Dempster’s rule coinciding with the conjunctive rule rensi
inconsistent with probability calculus if we apply Demp&e
rule to combine directly the bba’s of the sources of evidence
Hence our statement S4 holds.

F. On the vacuous bba

As clearly shown already through VIVE protocol, all bba’s
do count (even the "vacuous” bba of course) if one uses the
consistent fusion rule (average), hence statement S5 .holds
An interesting property is that the consistent fusion rslam
idempotent rule becauseifiy(.) = ma(.) = ... = mg(.) =
m(.) thenmAsr () = £ 20, mi(.) = tk-m() = m(.).
Stated otherwise in VIVE framework, even if all women (or
men) express their total indifference in their voting intens,
their final votes (assumed to be valid and consistent with
the intentions) will obviously count in the final result of
the election and in derivation of lower and upper bounds
of imprecise probabilities. In case of total indifferenae i
voting intentions for both men and women populations, i.e.
mm(LUMUR) = mpy(LUMUR) = 1 any election
result (outcome) is possible because all unknown undeylyin
probabilities are totally imprecise. It is clear that only i
this case Dempster’s result coincides with consistentamer
fusion rule if it is used to combine directly original bbakthe
sources. This remark is however of little interest becawse n
information can be drawn from probability calculus, or from
DS reasoning in such "pathological” case. Indeed, bothsrule
provide m®5, (LUM UR) = m{%(LUMUR) =1as
a result. Thus, S5 holds, and we do think that the definition
and the interpretation of the "vacuous” bba proposed by&haf
should be rethinked in accordance to such result, and itetkla
to the way the fusion process is organized.

IIl. ON THE RECONCILEMENT OFDEMPSTER S RULE WITH *
PROBABILITY CALCULUS

A. General principle for reconcilement

In this section we show how the reconcilement of Demp-
ster’s rule with probability calculus can be achieved on EIV
examples if one combines the sources not directly from

one needs first to work in the Cartesian product (joint)
space@s £ O x B=0 x {By,Bs,...,B;} to combine
the sources of evidences. Since each bba(.), i =
1,2,...,k does in fact only express the opinion/evidence
in the marginal spac®gs, £ © x {B;}, one needs to
extend these bba'’s into the joint spa@g in such a way
that no extra information is brought and the subsets of
Op do not receive more support than justified. The least
committed bba [10] on®g3, such that its conditioning
on B, is mp,(.), is given by the so-called "ballooning”
extension, denoteﬁhgfiﬂ@g(.) and defined as
Op. 1O m(B)TBl (Y) ~
mg (X)) =qif Y COp, st.X =Y UBOp,
0 otherwise
(34)
where©p, is the complement 0, relative to the frame
Op.
Step 3 (combination): The "fusion” of ballooned bba’s
m(gfiﬂ@g(.) given in (34) can now be done with Demp-
ster’s rule and one has

mge () = [ ' @ @mp ")) (35)

Because of the ballooning extension principle, Demp-
ster's rule coincides exactly with the conjunctive rule
since no "conflict” occurs between the focal elements of
these ballooned bba’s. Consequently, the original interes
of Dempster's rule to manage efficiently "conflicting”
information appears quite limited.

Step 4 (optional): If one needs, one can also take into
account (include) in the previous fusion formula (40) our
particular prior belief on the sources represented by a
given bbamg)“(.) expressing no specific information on
0.

Step 5 (marginalization of resulting bba): To express
the final resulting bbam(g“(.), compatible with the
probability calculus, we project this bba into the original
frame ©. This is done by keeping only the components
of focal elements ofngg(.) belonging to®, and it will

be denotedng®®(.)

Dempster's combination of original bba's provided by th@®. Theoretical interpretation

sources, but in a different manner to make it consistent thigh
probabilistic approach. It is inspired from the Total Prioktity

approach for solving the VIVE problems. The principle of the
reconcilement consists in the following steps:

The previously defined process should be compared to what
is obtained from the theory of probability. The protocol \HV
is solved at a Bayesian level as follows:

o Step 1 (Inputs of the fusion problem): We assume a P(y) = Z P(z)P(y|z) forye {L,M,R}, (36)

given finite and discrete frame of discernment sat-
isfying Shafer's model, and: > 2 distinct bodies of

ze{M W}

evidence B, providing their basic belief assignmentgVhich may be depicted along the following steps:

mg, (.) on 2°. The joint evidence space will be denoted
B2 {B,Bs,...,B}.

o Step 2 (ballooning extension of bba’s): In order to
combine the sources of evidence in a consistent manner,

Step a The inputs of the fusion problem are given by
P(ylz) for z € {M, W} andy € {L, M, R},

Step b The prior information on the voters are given by
P(x),



« Step c The fusion is done “conjunctively” on the joint

space:
P(z,y) = P(z)P(ylz) (37)
o Step d The law is marginalized tg:
Ply)= Y  Plzy). (38)
ze{M W}

Actually, Step ashould be compared t8tep 1and Step 2
Step bto Step 4 Step cto Step 3 andStep dto Step 5 Now,
let us apply these steps in details:
« Step alt is given the inputs, which are actually related to
conditional informationsmg,(.) = m(.|B;) defined on
O35,
« Step a For anyi, the inputms,(Y) is prepared for
fusion by means oinformation conservativanapping
into the joint space® x B. This information conser-
vative mapping is obtained actually by the ballooning g

for V1., € (29)%, andZ € 29%5
Then, by fusing with “probabilistic’mg ®, it is
obtained:

Op

mOE(Y; x {B;}) = mo({Bi}k)x

oo > Tms ) @4

Yii-1 Yiprx j=1
m®8(Z) =0 otherwise.

This is equivalently rewritten:

m8 (Y; x {B;}) = mo({B:})ms, (Y:) . (45)

At last, the marginalization implies for arly € 29 :

k
m(Y) =Y mo({Bi})ms,(Y).  (46)
1=1

: OB, 105 .
extensionsmg, (-). Indeed, the ballooning keepstpig property implies that the principle of reconcilement

the information conditionned bys; but keeps also the
vacuous information related B;,

actually applies to the VIVE protocol.

« Step blt is given the priormg(X) defined on25, C. Concrete example revisited

« Step b’ The priormy is also prepared for fusion by means
of information conservativenapping into the joint space
© x B. This mapping is obviously obtained as follows:

Let's apply the general principle described in the previous
section to the concrete example given in section 1I-B where
only two bodies of evidence are involved, i8, = M and

meB (O x X) =my(X) for X € 28 (39) By = W. We follow the five aforementioned steps to make
mg’B(Y) =0 otherwise the presentation as simple as possible.
« Step cAll information are fused in the joint spac@xB:  * Step 1(Inputs of the fusion problem): When expressing
o 05,108 05, 165 explicitly the frames©p, and O3,, the original bba’s
mO8 () =mgB @ mg™ " @ dmg T )() (40) given in Table Il that we need to combine are given as
« Step dAt last, the bban®# is marginalized resulting in in Tables VIII
a final answer: ; ©5, ©5,
Focal elem)\ bba’s mBl () mB2 ()
m(X) = Z m® (2), (L, By) 0.45 0
ZCOxXB:m(Z)=X (41) (L, B1) U (M, By) 0.55 0
where:n(Z) ={zx € 0O, Jye B, (z,y) € Z}, (5 5) . 0o
the functionm being a simple projection frorda®*5 to (L, B2) © (M, B2) U (R, Ba) 0 0.02

29,

Now, we will show that this solution to the VIVE protocol
is coherent with the mean rule derived from the Bayesian
approach.

a) Property: Assume thatmg is probabilistic, that is
S mo({B;}) = 1. Then:

Table VIl
INPUT BBA'S OF THE SOURCE®3; AND Ba>.

o Step 2 (ballooning extension of bba’s): The ballooned
bba’s obtained from (34) are given in Tables IX and X.

a Focal elem) bba's m2151ﬂ(')8(_)
m() = E mO({Bz})mBl() (42) (L, B1) U (L, Bg) U (M, By) U (R, By) 0.45
—1
Z (L, By) U (M, By) U (L, Bg) U (M, Bg) U (R, By) 0.55
Proof

First at all, it noticed thanks to the ballooning exten-

Table IX

BALLOONING OF THE BBA OF THE SOURCH3; .

sion, thatm 2% () = [my™ "* @...omy™"9%)()
is such that:
& & o Step 3(combi8at?(§1): Applyingoth?rgonjunctive rule (40)
E : RO : to combinem;”* " %(.) andm,>>"" °(.), one gets the
m (le X {BZ}) = mp; (le) B Ba ! g
5 <Z_U1 lI:[l (43) result of the Table XI.

mg?(Z) =0 otherwise « Step 4 Two simple choices are possible for using)®



Focal elem\ bba's m

(R, Ba) U (L, B1) U (M, B1) U (R, B1) 0.98
(L, B) U (M, By) U (R, By) U (L, By) U (M, By) U (R, By) 0.02
Table X

BALLOONING OF THE BBA OF THE SOURCH3>.

Focal elem)\ bba's mgB(.)
(L,B1) U (R, Bgy) 0.98 - 0.45 = 0.441
(L,B1) U (M,B1) U (R, By) 0.98 - 0.55 = 0.539
(L, B1) U (L, By) U (M, By) U (R, By) 0.02 - 0.45 = 0.009
(L,B1) U (M, By) U (L, By) U (M,By) U (R,By) | 0.02.0.55=0.011

Table XI
CONJUNCTIVE COMBINATION OF BALLOONED BBASS.

— If one doesn’t assume specific prior information on
the sources, one can take the uninformé&tibba
defined as

m§8 (L, B1) U(M,By)U (R, Bi)
U(L,By) U (M,B2) U (R,B2)) =1 (47)

If one combines with the conjunctive rule this bba
95 () with the resulting bba of Table XI, one still
gets the same results as given in Table XI because
all focal elements ofmgﬁ(.) are included in the
focal element L, B1)U(M, B1)U(R, B1)U(L, B2)U

(M, Bs) U (R, Bz) of m§®(.). So one will have

Focal elem) bba’s [mo(—)B 52 mgB](-)

(L, By) U (R, Bg) 0.441
(L, B1) U (M, By) U (R, Bg) 0.539

(L,B1) U (L, By) U (M, By) U (R, By) 0.009
(L,By) U (M,By) U (L, By) U (M, By) U (R, By) 0.011

Table XII

CONJUNCTIVE COMBINATION OF BALLOONED BBA S AND mg)B(.)

— If one assumes (as done in the probability calculus)
that both sources of evidences have same weights,
then one has to choose as prior bba

m§8 (L, B1) U(M,By)U(R,By)) = 1/2
S5((L,By) U (M,B) U(R,Bs)) =1/2
(48)
If one combines with the conjunctive rule this bba
mg®(.) with the resulting bba of Table XI, one

finally gets the results given in Table XIII.

Focal elem) bba’s [m((;)B 5 MZB](-)

0.441/2 + 0.009/2
0.539/2 + 0.011/2
(R, Ba) 0.441/2 + 0.539/
(L, Bg) U (M, By) U (R, By) 0.009/2 + 0.011/

(L, Bq)
(L, B1) U (M, By)

W N

CONJUNCTIVE COMBINATION OF BALLOONED BBA S AND mO ( )

8called vacuous in DST terminology.

Table XIII

« Step 5 (marginalization of resulting bba): Here are the
final marginalized results based on two possible choices
for prior bba'sm§*(.) of the sources

— If one takes the uninformative bba (47), one finally

obtains
Focal elem) bba’s [771((;)8 @ m;)B]l@(_)
LUR 0.441
LUMUR 0.539 + 0.009 4+ 0.011 = 0.559

Table XIV
FINAL FUSION RESULT MARGINALIZED ON ©

From the Table X1V, one finally gets the following
lower and upper bounds of the underlying unknown
probabilities

[Bel(Ble)(L) Pl(Ble)( )] = [ ) ]
[Bel(Bllsz)( ) Pl B]Bz)(M) = [ 50559]
[0;

[Bel(Bllsz)(R)?Pl(Ble)( )] — Y ]
(49)

These bounds do now include the precisiate proba-
bility (20) but are very wide due to uninformative
prior m§®(.) taken here for the sources, which is
normal in such case.

If one takes the bban§(.) as in (48) to be consis-
tent with the probability calculus, one finally obtains
from the Table XIllI, the following marginalized
result on©:

Focal elem\ bba’s [mo(—)B (] mgB]ie(-)
L 0.225
LuUM 0.275
R 0.49
LUMUR 0.01
Table XV

FINAL FUSION RESULT MARGINALIZED ON ©

The result given in the Table XV is now perfectly
consistent with the result obtained directly from the
probability calculus shown in (27). Therefore the
lower and upper bounds of unknown underlying
probability governing the experiment will be

[361(3132)(L); Pl(3132)(L)] = [0.225; 0.51]
[Bel(BlBg)(M); Pl(B]Bz) (M)] = [0, 0276]
[Bel(BlBg)(R); Pl(B]Bz)(R)] = [049, 050] 50)

These bounds coincide with the bounds computed in
(28) and obtained directly from the simple averaging
of bba’s.

One sees that the results obtained from the probability
calculus can be entirely recovered in using the simple con-

junctive rule of combination applied directly on the baleal
extended bba’s on the joint fusion space. There is no problem
at all to manipulate (combine) sources of evidences folgwi

such very general principle of reconcilement and the notion



of conflict just vanishes on such case. Of course, a similaroof that human reasoning is fully consistent with probgbi
analysis and conclusions can be done and drawn for Zadetedculus, we do easily admit that Approximate Reasoning
example and this is left to readers verification. Theories present some interests of course, but the readérs a
users must be aware of this inconsistency and should use thes
theories always with extreme caution in applications.

In this paper, we have shown through a very simple ex-
amples and through an experimental protocol of verification
the inconsistency of the Mathematical Theory of Evidend&l A.P. DempsterUpper and lower probabilities induced by a multivalued
with the probabilty calculus as soon a5 we apply dircty, NPT Mah Salst 5o po 525 S0 1967, L
Dempster’s rule of combination to the original bba’s predd B 30, pp. 205-247, 1968.
by the distinct and independent sources of evidences' dﬁ]dAP Dempster,The Dempster-Shafer (_:alculus for statisticiamsterna-
even if they are not conflicting. Our conclusions corrob@rah] g?ngggftfnﬂ_ogﬁﬁgrfg\'/g]’gtﬁ Tﬁ:szgwg\’ligf)ogf' Dempster's rule of
the conclusions drawn by some researchers. We have alSOcombination presented during poster session at BFTA 2011, Autrans,
shown that the doubts on the validity of Dempster's rule France, April 4-8, 2011, and available on http://hal.aresiouvertes.fr/
of combination pointed out by Zadeh were well jUStiﬁed[S] RaIG?eolr?;?'?’ﬁé boxer, the wrestler, and the coin flip: a paradox of robust
Of course, this flaw and unsatisfactory behavior of a direct Bayesian inference and belief functionsmerican Statistician, Vol. 60,
use of Dempsters rule of combination doesn't mean th%ﬁ EOMi‘rpr?. g?rﬁ%ﬁ]?n Zggﬁéf functions when evidence conflibtscision
belief functions and combinations rules are useless intiseac shppoft %”ystem& VoL 20, 0. 1.0, 2000,
for modeling uncertainty and fuse them. We just have {@] J. Pearl,Reasoning with belief functions: An analysis of compatyhil
accept the fact that we need to manage them differently (for International Journal of Approximate Reasoning, Vol. 4, Bf3-389,
combination or conditioning) and in a better consistent 'Wabé] J. PéarI,Rejoinder of comments on "Reasoning with belief functions:
otherwise we must be ready to accept inconsistent results an An analysis of compatibility’ International Journal of Approximate
their consequences. In the last part of the paper, we haye Reasoning, Vol. 6, pp. 425-443, 1992. _ _
shown how it is possible to reconcile the conjunctive rule (g?] i;§7s6rl1afer,A Mathematical Theory of Evidenc®rinceton Univ. Press,
combination with the probability calculus but the mechemis[10] P. SmetsThe transferable belief model for quantified belief represe
for dealing with sources of evidences differs obviouslyniro ~ tation, In D.M. Gabbay and P. Smets (Eds.) Handbook of Defeasible
the original approach of the Mathematical Theory of Evidenc ﬁgﬁ]s;?;r;%:nglgﬁgf r;?%;"fggf’eﬂgg_ Systems, Vol.1,tobt, The
In our examples, one needed first to extend the bba’s inMia] L.A. zadeh,On the validity of Dempster's rule of combinatjoklemo
the joint fusion space before combining them with the sim-_M79/24, Univ. of California, Berkeley, USA, 1979. _
ple conjunctive rule of combination; this was equivalent B2 M"égézzir?gf{',’o?o;kNrg_\";Wbpé Eﬂ?ég??ggfl theory of evidendéie Al
combining conditionnal bba’s in a way similar to the Totali3] L.A. Zadeh,A simple view of the Dempster-Shafer Theory of Evidence
Probability approach, which was naturally leaded by therat and its implication for the rule of combinatipiThe Al Magazine, Vol.

. . . 7, No. 2, pp. 85-90, Summer 1986.
of the problems. In the VIVE paradigm, the notion of conflict
between sources becomes just useless and meaninglesg. Usin
our new conjunctive-based approach, the interest in Demp-
ster's rule appears very limited for such problems because i
can be replaced in fact by the simple average of the bba’s
to combine which makes derivations simpler. Whatever, this
approach combining a conditional formalization of the sesr
of information with the combination rules appears as a way
for constructing a coherent framework of implementation of
the combination rules. On this point, we are going closer
to the Bayesian reasoning. A generalization of the approach
involving inversion similar to the Bayesian inversion, gl
provide a complete solution for a coherent implementation
of the combination rules. At last, we don’t claim that the
Mathematical Theory of Evidence as originally developed,
and its extensions (based on other rules of combinatioms) ar
definitely useless in practice, but it seems that the orlgina
Dempster-Shafer theory of belief functions belongs to alfam
of Approximate Reasoning Theories that appear perfectible
they aren'’t, they need to be proved consistent in some well
defined domains of applicability. The imperfections are ttue
the inconsistency of the results drawn from the reasonirtly wi
respect to the results obtained with the probability caisul

validated by our experimental protocol. Since we have no

IV. CONCLUSIONS
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