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Abstract

We present a new clustering algorithm by proposing a convex relaxation of hierarchical clustering, which

results in a family of objective functions with a natural geometric interpretation. We give efficient algorithms

for calculating the continuous regularization path of solutions, and discuss relative advantages of the parameters.

Our method experimentally gives state-of-the-art results similar to spectral clustering for non-convex clusters,

and has the added benefit of learning a tree structure from the data.
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1 Introduction

In the analysis of multivariate data, cluster analysis is a family of unsupervised learning techniques that allows

identification of homogenous subsets of data. Algorithms such as k-means, Gaussian mixture models, hierarchical

clustering, and spectral clustering allow recognition of a variety of cluster shapes. However, all of these methods

suffer from instabilities, either because they are cast as non-convex optimization problems, or because they rely on

hard thresholding of distances. Several convex clustering methods have been proposed, but some only focus on the

2-class problem [XNLS04], and others require arbitrary fixing of minimal cluster sizes in advance [BH08]. The

main contribution of this work is the development of a new convex hierarchical clustering algorithm that attempts

to address these concerns.

In recent years, sparsity-inducing norms have emerged as flexible tools that allow variable selection in penal-

ized linear models. The Lasso and group Lasso are now well-known models that enforce sparsity or group-wise

sparsity in the estimated coefficients [Tib96, YL06]. Another example, more useful for clustering, is the fused

Lasso signal approximator (FLSA), which has been used for segmentation and image denoising [TS05]. Further-

more, several recent papers have proposed optimization algorithms for linear models using ℓ1 [CKL+10, SH10]

and ℓ2 [VB10] fusion penalties. This paper extends this line of work by developing a family of fusion penalties

that results in the “clusterpath,” a hierarchical regularization path which is useful for clustering problems.

1.1 Motivation by relaxing hierarchical clustering

Hierarchical or agglomerative clustering is calculated using a greedy algorithm, which for n points in R
p recur-

sively joins the points which are closest together until all points are joined. For the data matrix X ∈ R
n×p this

suggests the optimization problem

min
α∈Rn×p

1

2
||α−X||2F

subject to
∑

i<j

1αi 6=αj
≤ t,

(1)

where ||·||2F is the squared Frobenius norm, αi ∈ R
p is row i of α, and 1αi 6=αj

is 1 if αi 6= αj , and 0 otherwise. We

use the notation
∑

i<j =
∑n−1

i=1

∑n
j=i+1 to sum over all the n(n−1)/2 pairs of data points. Note that when we fix

t ≥ n(n−1)/2 the problem is unconstrained and the solutions are αi = Xi for all i. If t = n(n−1)/2−1, we force

one pair of coefficients to fuse, and this is equivalent to the first step in hierarchical clustering. Furthermore, when

t = 0, the solutions are clearly αi = X̄ =
∑n

i=1 Xi/n. In general this is a difficult combinatorial optimization

problem.

Instead, we propose a convex relaxation, which results in the family of optimization problems defined by

min
α∈Rn×p

1

2
||α−X||2F

subject to Ωq(α) =
∑

i<j

wij ||αi − αj ||q ≤ t,
(2)

where wij > 0, and || · ||q, q ∈ {1, 2,∞} is the ℓq-norm on R
p, which will induce sparsity in the differences of the

rows of α. When rows fuse we say they form a cluster, and the continuous regularization path of optimal solutions

formed by varying t is what we call the “clusterpath.”

This parameterization in terms of t is cumbersome when comparing datasets since we take 0 ≤ t ≤ Ωq(X),
so we introduce the following parametrization with 0 ≤ s ≤ 1:

min
α∈Rn×p

1

2
||α−X||2F

subject to Ωq(α)/Ωq(X) ≤ s.

(3)

The equivalent Langrangian dual formulation will also be convenient for optimization algorithms:

min
α∈Rn×p

fq(α,X) =
1

2
||α−X||2F + λΩq(α). (4)

Equivalent parameter values and their solutions for the ends of the path are compared in Table 1.
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Table 1: Parameters and solutions for the ends of the clusterpath. Note that in general, there is no closed form

expression for λmax, and X̄ =
∑n

i=1 Xi/n.

t s λ α∗

i

Ω(X) 1 0 Xi

0 0 λmax X̄

The above optimization problems require the choice of predefined, pair-specific weights wij > 0, which can

be used to control the geometry of the solution path. In most of our experiments we use weights that decay with

the distance between points wij = exp(−γ||Xi −Xj ||
2
2), which results in a clusterpath that is sensitive to local

density in the data. Another choice for the weights is wij = 1, which allows efficient computation of the ℓ1
clusterpath (§2.2). Choosing weights based on some supplemenary data space wij = exp(−γ||Yi − Yj ||

2) could

also be interesting. For example, for clustering pixels of an image into objects, we could take X ∈ R
n×2 to be the

matrix of pixel positions, and Y ∈ R
n×p to be the matrix of visual features for each pixel.

1.2 Visualizing the geometry of the clusterpath

This optimization problem has an equivalent geometric interpretation (Figure 1). For the identity weights wij = 1,

the solution corresponds to the closest points α to the points X , subject to a constraint on the sum of distances

between pairs of points. For general weights, we constrain the total area of the rectangles of width wij between

pairs of points.

In this work we develop dedicated algorithms for solving the clusterpath which allow scaling to large data,

but initially we used cvxmod for small problems [MB08], as the authors do in a similar independent formulation

[LOL11].

We used cvxmod to compare the geometry of the clusterpath for several choices of norms and weights (Fig-

ure 2). Note the piecewise linearity of the ℓ1 and ℓ∞ clusterpath, which can be exploited to find the solutions using

efficient path-following homotopy algorithms. Furthermore, it is evident that the ℓ2 path is invariant to rotation of

the input data X , whereas the others are not.

Identity weights, t = Ω(X)

ℓ2
ℓ2

ℓ2

ℓ1

ℓ1 ℓ1

ℓ1

ℓ1

ℓ1

ℓ∞

ℓ∞

ℓ∞

X1

X2

X3

Decreasing weights, t = Ω(X)

w12

w13

w23

X1

X2

X3

Decreasing weights after join, t < Ω(X)

w12
w13

X1

X2

X3

α1

αC = α2 = α3

Figure 1: Geometric interpretation of the optimization problem (2) for data X ∈ R
3×2. Left: with the identity

weights wij = 1, the constraint Ωq(α) =
∑

i<j wij ||αi − αj ||q ≤ t is the ℓq distance between all pairs of points,

shown as grey lines. Middle: with general weights wij , the ℓ2 constraint is the total area of rectangles between

pairs of points. Right: after constraining the solution, α2 and α3 fuse to form the cluster C, and the weights are

additive: w1C = w12 + w13.
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2 Optimization

2.1 A homotopy algorithm for the ℓ1 solutions

For the problem involving the ℓ1 penalty, we first note that the problem is separable on dimensions. The cost

function can be written as

f1(α,X) =
1

2
||α−X||2F + λΩ1(α)

=
1

2

n
∑

i=1

p
∑

k=1

(αik −Xik)2 + λ
∑

i<j

wij

p
∑

k=1

|αik − αjk|

=

p
∑

k=1





1

2

n
∑

i=1

(αik −Xik)2 + λ
∑

i<j

wij |αik − αjk|





=

p
∑

k=1

f1(α
k, Xk),

where αk ∈ R
n is the k-th column from α. Thus, solving the minimization with respect to the entire matrix X

just amounts to solving p separate minimization subproblems:

min
α∈Rn×p

f1(α,X) =

p
∑

k=1

min
αk∈Rn

f1(α
k, Xk).

For each of these subproblems, we can exploit the FLSA path algorithm [Hoe09]. This is a homotopy algorithm

similar to the LARS that exploits the piecewise linearity of the path to very quickly calculate the entire set of

solutions [EHJT04].

norm = 1

X̄

X̄

norm = 2

X̄

X̄

norm =∞

X̄

X̄

γ
=

0
γ

=
1

Figure 2: Some random normal data X ∈ R
10×2 were generated (white dots) and their mean X̄ is marked in

the center. The clusterpath (black lines) was solved using cvxmod for 3 norms (panels from left to right) and 2

weights (panels from top to bottom), which were calculated using wij = exp(−γ||Xi − Xj ||
2). For γ = 0, we

have wij = 1.
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In the LARS, variables jump in and out the active set, and we must check for these events at each step in

the path. The analog in the FLSA path algorithm is the necessity to check for cluster splits, which occur when

the optimal solution path requires unfusing a pair coefficients. Cluster splits were not often observed on our

experiments, but are also possible for the ℓ2 clusterpath, as illustrated in Figure 4. The FLSA path algorithm

checks for a split of a cluster of size nC by solving a max-flow problem using a push-relabel algorithm, which has

complexity O(n3
C) [CLRS01]. For large data sets, this can be prohibitive, and for any clustering algorithm, splits

make little sense.

One way around this bottleneck is to choose weights w in a way such that no cluster splits are possible in the

path. The modified algorithm then only considers cluster joins, and results in a complexity of O(n log n) for a

single dimension, or O(pn log n) for p dimensions. One choice of weights that results in no cluster splits is the

identity weights wij = 1, which we prove below.

2.2 The ℓ1 clusterpath using wij = 1 contains no splits

The proof will establish a contradiction by examining the necessary conditions on the optimal solutions during a

cluster split. We will need the following lemma.

Lemma 1. Let C = {i : αi = αC} ⊆ {1, ..., n} be the cluster formed after the fusion of all points in C. At any

point in the regularization path, the slope of its coefficient is given by

vC =
dαC

dλ
=

1

|C|

∑

j 6∈C

wCj sign(αj − αC). (5)

Proof. Consider the following sufficient optimality condition, for all i = 1, . . . , n:

0 = αi −Xi + λ
∑

j 6=i

αi 6=αj

wij sign(αi − αj) + λ
∑

j 6=i

αi=αj

wijβij ,

with |βij | ≤ 1 and βij = −βji [Hoe09]. We can rewrite the optimality condition for all i ∈ C:

0 = αC −Xi + λ
∑

j 6∈C

wij sign(αC − αj) + λ
∑

i 6=j∈C

wijβij .

Furthermore, by summing each of these equations, we obtain the following:

αC = X̄C +
λ

|C|

∑

j 6∈C

wCj sign(αj − αC),

where X̄C =
∑

i∈C Xi/|C| and wCj =
∑

i∈C wij . Taking the derivative with respect to λ gives us the slope vC

of the coefficient line for cluster C, proving Lemma 1.

We will use Lemma 1 to prove by contradiction that cluster splitting is impossible for the case wij = 1 for all

i and j.

Theorem 1. Taking wij = 1 for all i and j is sufficient to ensure that the ℓ1 clusterpath contains no splits.

Proof. Consider at some λ the optimal solution α, and let C be a cluster of any size among these optimal solutions.

Denote the set C = {i : αi > αC} the set of indices of all larger optimal coefficients and C = {i : αi < αC} the

set of indices of all smaller optimal coefficients. Note that C ∪ C ∪ C = {1, . . . , n}.
Now, assume C splits into C1 and C2 such that α1 > α2. By Lemma 1, if this situation constitutes an optimal

solution, then the slopes are:

vC1
=

1

|C1|





∑

j∈C

wjC1
−

∑

j∈C2

wjC1
−

∑

j∈C

wjC1





vC2
=

1

|C2|





∑

j∈C

wjC2
+

∑

j∈C1

wjC2
−

∑

j∈C

wjC2



 .
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For the identity weights, this simplifies to

vC1
= |C| − |C2| − |C|

vC2
= |C|+ |C1| − |C|.

Thus vC1
< vC2

which contradicts the assumption that α1 > α2, forcing us to conclude that no split is possible

for the identity weights.

Thus the simple FLSA algorithm of complexity O(n log n) without split checks is sufficient to calculate the

ℓ1 clusterpath for the identity weights, as shown in Figure 3.

Furthermore, since the clusterpath is strictly agglomerative on each dimension, it is also strictly agglomerative

when independently applied to each column of a matrix of data. Thus the ℓ1 clusterpath for a matrix of data is

strictly agglomerative, and results in an algorithm of complexity O(pn log n). This is an interesting alternative to

hierarchical clustering, which normally requires O(pn2) space and time for p > 1. The ℓ1 clusterpath can be used

when n is very large, and hierarchical clustering is not feasible.

The proposed homotopy algorithm only gives solutions to the ℓ1 clusterpath for identity weights, but since the

ℓ1 clusterpath in 1 dimension is a special case of the ℓ2 clusterpath, the algorithms proposed in the next subsection

also apply to solving the ℓ1 clusterpath with general weights.

2.3 An active-set descent algorithm for the ℓ2 solutions

For the ℓ2 problem, we have the following cost function:

f2(α,X) =
1

2
||α−X||2F + λΩ2(α),

A subgradient condition sufficient for an optimal α is for all i ∈ 1, ..., n:

0 = αi −Xi + λ
∑

j 6=i

αj 6=αi

wij
αi − αj

||αi − αj ||2
+ λ

∑

j 6=i

αj=αi

wijβij ,

with βij ∈ R
p, ||βij ||2 ≤ 1 and βij = −βji. Summing over all i ∈ C gives the subgradient for the cluster C:

GC = αC − X̄C +
λ

|C|

∑

j 6∈C

wCj
αC − αj

||αC − αj ||2
, (6)

where X̄C =
∑

i∈C Xi/|C| and wCj =
∑

i∈C wij .

To solve the ℓ2 clusterpath, we propose a subgradient descent algorithm, with modifications to detect cluster

fusion and splitting events (Algorithm 1). Note that due to the continuity of the ℓ2 clusterpath, it is advantageous

to use warm restarts between successive calls to SOLVE-L2, which we do using the values of α and clusters .

λ

α

-3

-2

0

3

5

X̄

0 1 2 3 4 5

Figure 3: The ℓ1 clusterpath calculated using the homotopy algorithm (lines) and cvxmod (points) for an X ∈ R
5

and wij = 1.
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Algorithm 1 CLUSTERPATH-L2

Input: data X ∈ R
n×p, weights wij > 0, starting λ > 0

α← X
clusters ← {{1}, ..., {n}}
while | clusters | > 1 do

α, clusters ← SOLVE-L2(α, clusters, X,w, λ)
λ← λ× 1.5
if we are considering cluster splits then

clusters ← {{1}, ..., {n}}
end if

end while

return table of all optimal α and λ values.

Surprisingly, the ℓ2 path is not always agglomerative, and in this case to reach the optimal solution requires

restarting clusters = {{1}, ..., {n}}. The clusters will rejoin in the next call to SOLVE-L2 if necessary. This takes

more time but ensures that the optimal solution is found, even if there are splits in the clusterpath, as in Figure 4.

We conjecture that there exist certain choices of w for which there are no splits in the ℓ2 clusterpath. However,

a theorem analogous to Theorem 1 that establishes necessary and sufficient conditions on w and X for splits in

the ℓ2 clusterpath is beyond the scope of this article. We have not observed cluster splits in our calculations of the

path for identity weights wij = 1 and decreasing weights wij = exp(−γ||Xi − Xj ||
2
2), and we conjecture that

these weights are sufficient to ensure no splits.

SUBGRADIENT-L2 calculates the subgradient from (6), for every cluster C ∈ clusters .

We developed 2 approaches to implement SUBGRADIENT-STEP. In both cases we use the update α← α−rG.

With decreasing step size r = 1/ iteration , the algorithm takes many steps before converging to the optimal

solution, even though we restart the iteration count after cluster fusions. The second approach we used is a line

search. We evaluated the cost function at several points r and picked the r with the lowest cost. In practice, we

observed fastest performance when we alternated every other step between decreasing and line search.

DETECT-CLUSTER-FUSION calculates pairwise differences between points and checks for cluster fusions,

returning the updated matrix of points α and the new list of clusters. When 2 clusters C1 and C2 fuse to produce

α1

α
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1
2

3

4

1.5 2.0 2.5 3.0 3.5 4.0

λ cvxmod

0.010

0.035

0.060

0.085

0.110

descent

solver

split

no split

Figure 4: An example of a split in the ℓ2 clusterpath for X ∈ R
4×2. Data points are labeled with numbers, the

CLUSTERPATH-L2 is shown as lines, and solutions from cvxmod are shown as circles. w12 = 9, w13 = w24 =
20, and wij = 1 for the others (best seen in color).
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Algorithm 2 SOLVE-L2

Input: initial guess α, initial clusters , data X , weights w, regularization λ
G← SUBGRADIENT-L2(·)
while ||G||2F > ǫopt do

α← SUBGRADIENT-STEP(·)
α, clusters ← DETECT-CLUSTER-FUSION(·)
G← SUBGRADIENT-L2(·)

end while

return α, clusters

a new cluster C, the coefficient of the new cluster is calculated using the weighted mean:

αC =
|C1|αC1

+ |C2|αC2

|C1|+ |C2|
. (7)

We developed 2 methods to detect cluster fusions. First, we can simply use a small threshhold on ||αC1
− αC2

||2,

which we usually take to be some fraction of the smallest nonzero difference in the original points ||Xi −Xj ||2.

Second, to confirm that the algorithm does not fuse points too soon, for each possible fusion, we checked if the cost

function decreases. This is similar to the approach used by [FHHT07], who use a coordinate descent algorithm

to optimize a cost function with an ℓ1 fusion penalty. Although this method ensures that we reach the correct

solution, it is quite slow since it requires evaluation of the cost function for every possible fusion event.

2.4 The Frank-Wolfe algorithm for ℓ∞ solutions

We consider the following ℓ∞ problem:

min
α∈Rn×p

f∞(α,X) =
1

2
||α−X||2F + λΩ∞(α). (8)

This problem has a piecewise linear regularization path which we can solve using a homotopy algorithm to exactly

calculate all the breakpoints [RZ07, ZRY09]. However, empirically, the number of breakpoints in the path grows

fast with p and n, leading to instability in the homotopy algorithm.

Instead, we show show that our problem is equivalent to a norm minimization over a polytope, for which an

efficient algorithm exists [FW56].

Using the dual formulation of the ℓ∞ norm, the regularization term is equal to:

Ω∞(α) =
∑

i<j

wij max
sij∈Rp

||sij ||1≤1

sT
ij(αi − αj).

Denoting by ri =
∑

j>i sijwij −
∑

j<i sjiwij ∈ R
p, and byR the set of constraints over R = (r1, . . . , rn) such

that the constraints over sij are respected, we have:

Ω∞(α) = max
R∈R

tr
(

RT α
)

.

SinceR is defined as a set of linear combinations of ℓ1-ball inequalities,R is a polytope. Denoting by Z = X−λR
and Z = {Z | 1

λ (X − Z) ∈ R}, it is straightforward to prove that problem (8) is equivalent to:

min
α∈Rn×p

max
Z∈Z

H(α,Z) = ‖α− Z‖2F − ‖Z‖
2
F ,

where strong duality holds [BV03]. For a given Z, the minimum of H in α is obtained by α = Z, leading to a

norm minimization over the polytope Z .

min
Z∈Z

1

2
‖Z‖2F . (9)

This problem can be solved efficiently by using the Frank-Wolfe algorithm [FW56]. This algorithm to min-

imize a quadratic function over a polytope may be used as soon as it is possible to minimize linear functions in

closed form. It is also known as the minimum-norm-point algorithm when applied to submodular function min-

imization [FHI06]. In practice, it is several orders of magnitude faster than other common discrete optimization

algorithms, but there is no theoretical guarantee on its complexity [KG09].
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3 The spectral clusterpath: a completely convex formulation of spectral

clustering

For spectral clustering, the usual formulation uses eigenvectors of the normalized Laplacian as the inputs to a

standard clustering algorithm like k-means [NJW01]. Specifically, for several values of γ, we compute a pairwise

affinity matrix W such that Wij = exp(−γ||Xi − Xj ||
2
2) and a Laplacian matrix L = D − W where D is a

diagonal matrix such that Dii =
∑n

j=1 Wij . For each value of γ, we run k-means on the normalized eigenvectors

associated with k smallest eigenvalues of L, then keep the γ with lowest reconstruction error.

Some instability in spectral clustering may come from the following 2 steps. First, the matrix of eigenvectors

is formed by hard-thresholding the eigenvalues, which is unstable when several eigenvalues are close. Second, the

clusters are located using the k-means algorithm, which attempts to minimize a non-convex objective. To relax

these potential sources of instability, we propose the “spectral clusterpath,” which replaces (a) hard-thresholding

by soft-thresholding and (b) k-means by the clusterpath.

Concretely, we call (Λi)1≤i≤n the nontrivial eigenvalues sorted in ascending order, and we write the matrix

of transformed eigenvectors to cluster as V E, where V is the full matrix of sorted nontrivial eigenvectors and E
is the diagonal matrix such that Eii = e(Λi), and e : R → R ranks importance of eigenvectors based on their

eigenvalues. Standard spectral clustering takes e01(x) = 1x≤Λk
such that only the first k eigenvalues are selected.

This is a non-convex hard-thresholding of the full matrix of eigenvectors. We propose the exponential function

eexp(x) = exp (−νx), with ν > 0, as a convex relaxation. This smooth decreasing function continuously scales

the eigenvectors based on the eigenvalues.

4 Results

Our model poses 3 free parameters to choose for each matrix to cluster: norm, weights, and regularization. On

one hand, this offers the flexibility to tailor the geometry of the solution path and number of clusters for each data

set. On the other hand, this poses model selection problems as training clustering models is not straightforward.

Many heuristics have been proposed for automatically choosing the number of clusters [TWH01], but it is not

clear which of these is applicable to any given data set.

In the experiments that follow, we chose the model based on the desired geometry of the solution path and

number of clusters. We generally expect rotation invariance in multivariate clustering models, so we chose the ℓ2
norm with Gaussian weights to encourage sensitivity to local density.
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Table 2: Mean and standard deviation of performance and timing of several clustering methods on identifying 20

simulations of the half-moons in Figure 5. Ng et al. uses L̃ = I − D−1/2WD−1/2 rather than L = D −W as

discussed in the text. Large Rand means good clustering.

Clustering method Rand SD Seconds SD

eexp spectral clusterpath 0.9967 0.0073 8.4920 2.6474

eexp spectral kmeans 0.9967 0.0073 3.1078 0.0848

clusterpath 0.9580 0.1262 29.4738 2.3122

e01 Ng et al. kmeans 0.9538 0.1911 7.3772 0.4222

e01 spectral kmeans 0.9149 0.1978 3.2647 0.2129

Gaussian mixture 0.4254 0.1334 0.0783 0.0051

average linkage 0.4047 0.1341 0.0557 0.0009

kmeans 0.2668 0.0466 0.0011 0.0002

4.1 Verification on non-convex half-moon clusters

To compare our algorithm to other popular methods in the setting of non-convex clusters, we generated data in the

form of 2 interlocking half-moons (Figure 5), which we used as input for several clustering algorithms (Table 2).

We used the original data as input for k-means, Gaussian mixtures, average linkage hierarchical clustering, and

the ℓ2 clusterpath with γ = 2. For the other methods, we use the eigenvectors from spectral clustering as input.

Each algorithm uses 2 clusters and performance is measured using the normalized Rand index, which varies from

1 for a perfect match to 0 for completely random assignment [HA85].

In the original input space, hierarchical clustering and k-means fail, but the clusterpath is able to identify the

clusters as well as the spectral methods, and has the added benefit of learning a tree from the data. However, the

clusterpath takes 3-10 times more time than the spectral methods. Of the methods that cluster the eigenvectors,

the most accurate 2 methods use eexp rather than e01, providing evidence that the convex relaxation stabilizes the

clustering.

Figure 5: Typical results for 5 clustering algorithms applied to 2 half-moon non-convex clusters. The ℓ2 clusterpath

tree learned from the data is also shown. Spectral clustering and the clusterpath correctly identify the clusters,

while average linkage hierarchical clustering and k-means fail.
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Table 3: Performance of several clustering methods on identifying a grid of Gaussian clusters. Means and standard

deviations from 20 simulations are shown.

Clustering method Rand SD

kmeans 0.8365 0.0477

clusterpath 0.9955 0.0135

average linkage hierarchical 1.0000 0.0000

4.2 Recovery of many Gaussian clusters

We also tested our algorithm in the context of 25 Gaussian clusters arranged in a 5×5 grid in 2 dimensions (Figure

6). 20 data points were generated from each cluster, and the resulting data were clustered using k-means, hierar-

chical clustering, and the weighted ℓ2 clusterpath. The clusterpath performs similarly to hierarchical clustering,

which exactly recovers the clusters, and k-means fails. Thus, the clusterpath may be useful for clustering tasks

that involve many clusters.

Figure 6: A grid of gaussian clusters breaks k-means but not the clusterpath. The weighted ℓ2 clusterpath is shown

as grey lines.
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4.3 Application to clustering the iris data

To evaluate the clusterpath on a nontrivial task, we applied it and other common clustering methods to the scaled

iris data (Figure 7). We calculated a series of clusterings using each algorithm and measured performance of each

using the normalized Rand index (Figure 8).

The iris data have 3 classes, of which 2 overlap, so the Gaussian Mixture Model is the only algorithm capable

of accurately detecting these clusters when k = 3. These data suggest that the clusterpath is not suitable for

detecting clusters with large overlap. However, performance is as good as hierarchical clustering, less variable

than k-means, and more stable as the number of clusters increases.

Additionally, Figure 8 shows that the clusterpath classification accuracy on the moons data increases as we

increase the weight parameter γ.
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Figure 7: The 4-dimensional iris data were scaled, and the ℓ2 clusterpath was calculated using Gaussian weights

with γ = 1, and plotted using grey lines. The mean of the data is shown as a black dot.
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5 Conclusions

We proposed a framework for clustering using linear models and several convex pairwise fusion penalties, which

lead to efficient algorithms for optimization (Table 4). The ℓ1 path-following homotopy algorithm easily scales

to thousands of points. The other proposed algorithms can be directly applied to hundreds of points, and could

be applied to larger datasets by, for example, adding a preprocessing step using k-means. The algorithms were

implemented in R, C++, and MATLAB, and will be published soon.

Our experiments demonstrated the flexibility of the ℓ2 clusterpath for the unsupervised learning of non-convex

clusters, large numbers of clusters, and hierarchical structures. We also observed that relaxing hard-thresholding

in spectral clustering is useful for increasing clustering accuracy and stability. For the iris data, the clusterpath

performed as well as hierarchical clustering, and is more stable than k-means.

We proved that the identity weights are sufficient for the ℓ1 clusterpath to be strictly agglomerative. Establish-

ing necessary and sufficient conditions on the weights for the ℓ2 problem is an avenue for further research.

To extend these results, we are currently pursuing research into optimizing a linear model with a non-identity

design matrix and the clusterpath penalty. We note that there could be a future application for the algorithms

presented in this article in solving the proximal operator, which is the same as (4) for the clusterpath penalty.
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2-11 clusters. The weighted ℓ2 clusterpath was calculated using 3 different Gaussian weight parameters γ, and we

compare with Gaussian Mixture Models (GMM), Hierarchical Clustering (HC), and k-means.
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Table 4: Algorithms proposed to solve the clusterpath.

Norm Properties Algorithm Complexity Problem sizes

1 piecewise linear, separable homotopy O(pn log n) large ≈ 105

2 rotation invariant active-set descent O(n2p) medium ≈ 103

∞ piecewise linear Frank-Wolfe unknown medium ≈ 103
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