
HAL Id: hal-00591558
https://hal.science/hal-00591558

Submitted on 10 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint publication on adapting industrial simulations to
obtain virtual experiments for learning

Denis Gillet, Nalin Navarathna, Carla Martin-Villalba, Alfonso Urquia,
Sebastián Dormido

To cite this version:
Denis Gillet, Nalin Navarathna, Carla Martin-Villalba, Alfonso Urquia, Sebastián Dormido. Joint
publication on adapting industrial simulations to obtain virtual experiments for learning. 2007. �hal-
00591558�

https://hal.science/hal-00591558
https://hal.archives-ouvertes.fr

Page 1 of 4

Network of Excellence Professional Learning

PROLEARN
European Sixth Framework Project

D.10.11
Joint publication on adapting industrial simulations to obtain virtual
experiments for learning

Work Package WP10

Document Number 10.11.2

Author(s): Associated partners from UNED

Editor (Internal reviewer) Denis GILLET

Status Final

Date of draft Month 48 (Dec 2007)

Page 2 of 4

Summary

The development of online experiments and especially virtual laboratories (i.e.
interactive simulation of real equipments) is a complex and resource-consuming
process. Their availability is however a prerequisite to any serious learning activities in
sciences and engineering.

The trend for reducing the implementation overhead for educators is to rely on
professional simulation packages on top of which technology-enhanced learning layers
are added. The first type of professional simulation packages used in education
includes game development engines that provide suitable functionalities for effectively
defining scenarios and rendering complex entities. The difficulty in this case is to
develop the dynamical model of the scientific or technical objects to be simulated. The
second type of professional simulation packages includes professional model libraries
targeting at specific application domains. The difficulty here is related to the
development of the interactive user interfaces (views).

In the framework of the PROLEARN network of excellence, core and associated
partners have developed and shared best practices for the development and the
implementation of virtual laboratories relying on the EasyJava Simulations framework
(http://www.um.es/fem/Ejs/), which is part of the Open Source Physics project. The
EasyJava Simulations framework especially facilitates the design of virtual laboratories
with highly interactive user interfaces (views).

The present document presents a recent extension of this work that takes advantage of
the freely available, object-oriented modelling language Modelica that strongly
facilitates the reuse of industrial models in educational virtual laboratories, while
keeping the benefits of the EasyJava Simulations. It corresponds to a state-of-the-art
approach shared by PROLEARN partners.

This document is the preprint of an article accepted for publication in the Mathematical
and Computer Modelling of Dynamical Systems Journal (copyright Taylor & Francis)
that is available online at http://journalsonline.tandf.co.uk/.

Page 3 of 4

The PROLEARN Consortium
1. Universität Hannover, Learning Lab Lower Saxony (L3S), Germany

2. Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI), Germany

3. Open University (OU), UK

4. Katholieke Universiteit Leuven (K.U.Leuven) / ARIADNE Foundation, Belgium

5. Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. (FHG), Germany

6. Wirtschaftsuniversität Wien (WUW), Austria

7. Universität für Bodenkultur, Zentrum für Soziale Innovation (CSI), Austria

8. École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

9. Eidgenössische Technische Hochschule Zürich (ETHZ), Switzerland

10. Politecnico di Milano (POLIMI), Italy

11. Jožef Stefan Institute (JSI), Slovenia

12. Universidad Polictécnica de Madrid (UPM), Spain

13. Kungl. Tekniska Högskolan (KTH), Sweden

14. National Centre for Scientific Research “Demokritos” (NCSR), Greece

15. Institut National des Télécommunications (INT), France

16. Hautes Etudes Commerciales (HEC), France

17. Technische Universiteit Eindhoven (TU/e), Netherlands

18. Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Germany

19. Helsinki University of Technology (HUT), Finland

20. information – multimedia – communication AG (imc), Germany

21. Open University of the Netherlands (OUNL), Netherlands

22. University of Warwick (UW), UK

Page 4 of 4

Document Control

Title: Joint publication on adapting industrial simulations to obtain virtual
experiments for learning

Editor: Denis GILLET

E-mail: denis.gillet@epfl.ch

AMENDMENT HISTORY

Version Date Author Description/Comments

1.0 24.11.2007 Nalin Navarathna Initial version proposed by KTH

2.0 12.12.2007 Carla Martin-Villalba

Alfonso Urquia

Sebastian Dormido

New version from UNED

2.1 12.01.2008 Denis Gillet Minor changes in the Summary

2.2 13.01.2008 Denis Gillet Comment from KTH taken into account

Legal Notices
The information in this document is subject to change without notice.

The Members of the PROLEARN Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Members of the PROLEARN Consortium shall not be held liable for errors contained herein or direct,
indirect, special, incidental or consequential damages in connection with the furnishing, performance, or
use of this material.

An approach to virtual-lab implementation using Modelica

CARLA MARTIN-VILLALBA∗, ALFONSO URQUIA and SEBASTIAN DORMIDO

Departamento de Informática y Automática, UNED

Juan del Rosal 16, 28040 Madrid, Spain

A novel approach to the implementation of interactive virtual-labs is proposed. The virtual-lab is completely described in Modelica
language and translated using Dymola. To achieve this goal, a systematic methodology to transform any Modelica model into a formulation
suitable for interactive simulation has been developed. In addition, VirtualLabBuilder Modelica library has been programmed. This library
contains a set of Modelica models of visual interactive elements (i.e., containers, animated geometric shapes and interactive controls)
that allows easy creation of the virtual-lab view (i.e., the model-to-user interface).

This approach has two strong points. Firstly, it allows taking advantage of the Modelica capabilities for multi-domain modelling and
model reuse. In particular, existing Modelica libraries for modelling of physical systems can be reused in order to build the virtual-lab
models. Secondly, VirtualLabBuilder library allows describing the virtual-lab view with Modelica, which facilitates its development,
maintenance and reuse. The proposed approach is discussed in this manuscript and it is illustrated by means of the following case study:
a virtual-lab describing the thermodynamic behaviour of a solar house.

VirtualLabBuilder library can be freely downloaded from http://www.euclides.dia.uned.es/

Keywords: Modelica; Virtual laboratory; Control education; Interactive simulation; Simulation animation

AMS Subject Classification: 97U04; 93A04; 93C04

1. Introduction

A virtual-lab is a distributed environment of simulation and animation tools, intended to perform the
interactive simulation of a mathematical model. Virtual-labs supporting interactive simulations are effective
educational resources [1]. During the interactive simulation run, students can change the value of some
selected inputs, parameters and state variables of the model, perceiving instantly how these changes affect
the model dynamic. An arbitrary number of actions can be made on the model during a given simulation
run. Virtual-labs allow students to play an active role in their learning process and this promotes their
motivation to study the subject.

Virtual-labs are composed of introduction, model and view. The introduction is the documentation (fre-
quently a set of HTML pages) discussing the concepts and phenomena illustrated by the virtual-lab, how to
experiment with the lab, and also proposing some activities or exercises [2]. The model is the mathematical
model representing the relevant behaviour of the system under study. The view is the user-to-model inter-
face. It is intended to provide a visual representation of the simulated model behaviour and to facilitate
the user’s interactive actions on the model during the simulation run. The graphical properties of the view
elements are linked to the model variables, producing a bi-directional flow of information between the view
and the model. Any change of a model variable value is automatically displayed by the view. Reciprocally,
any user interaction with the view automatically modifies the value of the corresponding model variable.

There are many software tools specifically intended to facilitate the implementation of virtual-labs. Two
of them are Easy Java Simulations [3, 4] and Sysquake [5]. The strong point of these tools is that they
allow easy creation of the virtual-lab view. Their weak point is the model definition, that requires explicit
state models (ODE). This restriction strongly conditions the modelling task, which requires a considerable
effort from the virtual-lab developer.

Modelica [6] is a freely available, object-oriented modelling language that supports the physical modelling
paradigm [7]. Models are mathematically described by differential and algebraic equations (DAE), and

∗Corresponding author. Email: carla@dia.uned.es

1

2 C. Martin-Villalba, A. Urquia and S. Dormido

discrete equations. Modelica supports a declarative (i.e., non-causal) description of the model. Therefore,
the use of Modelica reduces considerably the modelling effort and permits better reuse of the models.
In addition, a number of free and commercial Modelica libraries in different domains are available [6],
including electrical, mechanical, thermo-fluid and physical-chemical.

However, neither Modelica language nor Modelica simulation environments (i.e., Dymola [8], OpenMod-
elica [9], etc.) support interactive simulation. As a consequence, extending Modelica capabilities in order
to facilitate interactive simulation (i.e., virtual-lab implementation) is an open research field [10–13]. Pre-
vious work on this topic addresses the combined use of Modelica/Dymola and other software tools [11–13]:
the virtual-lab model is described using Modelica and the virtual-lab view is implemented using software
tools suited for building interactive user interfaces. In particular, the combined use of Modelica/Dymola,
Matlab and Easy Java Simulations is proposed in [11–13]; and the combined use of Modelica/Dymola and
Sysquake is proposed in [12].

The goal of the work discussed in this manuscript is to facilitate the description of virtual-labs using
Modelica language. To achieve this goal, the following two tasks have been completed [14]:

(i) A systematic methodology to transform any Modelica model into a formulation suitable for interactive
simulation has been proposed. Modelica models adapted according to this methodology can be used
to set up interactive virtual-labs.

(ii) VirtualLabBuilder Modelica library has been designed and programmed. It includes Modelica models
implementing graphic interactive elements, such as containers, animated geometric shapes and inter-
active controls. These models allow the virtual-lab developer: (1) to compose the view; and (2) to link
the visual properties of the virtual-lab view with the model variables. The interactive graphic interface
is automatically generated during the model initialization process. The components of the library con-
tain the code required to perform the bidirectional communication between the view and the model. In
addition, VirtualLabBuilder library supports including in the virtual-lab an introductory part, which
is composed of HTML pages.

An overview of the proposed approach to virtual-lab implementation using Modelica is provided in
section 2. The methodology to transform any Modelica model into a formulation suitable for interactive
simulation is discussed in section 3. The architecture and use of VirtualLabBuilder library is described
in section 4. Finally, the application of the proposed approach is illustrated by means of the following
case study: the implementation of a virtual-lab describing the thermodynamic behaviour of a solar house
(section 5). Other case studies can be found in [14,15].

2. Overview of the proposed approach

The virtual-lab definition includes the description of the introduction, the model, the view, and the bidi-
rectional flow of information between the model and the view. Next, the virtual-lab definition process is
outlined.

(i) Virtual-lab model. Any Modelica model can be transformed into another Modelica model suitable
for interactive simulation. A systematic methodology to perform this transformation is proposed in
section 3. Essentially, it consists in modifying the model so that all the variables that need to be
changed interactively during the simulation (i.e., the interactive variables) are formulated as state
variables. In particular, parameters are redefined as time-dependent variables whose time-derivative is
equal to zero. Input variables are reformulated analogously in order to become interactive variables.
Modelica’s when clause and reinit operator allow describing instantaneous changes in the value of the
state variables. This feature is exploited in order to perform the instantaneous changes in the value of
the interactive variables produced by the user’s interaction. Some of these model manipulations could
be performed automatically by a software tool. However, at the present time, they have to be carried
out manually by the virtual-lab developer.

(ii) Virtual-lab view. The virtual-lab developer has to define a Modelica class describing the virtual-lab
view. This class has to extend another class, named PartialView, that is included in VirtualLabBuilder

An approach to virtual-lab implementation using Modelica 3

a)

b)

c)

d)

Figure 1. VirtualLabBuilder library: a) General structure; and Classes within the following packages: b) InteractiveControls;
c) Drawables; and d) Containers.

library (see figure 1a). PartialView class contains a pre-defined component: the root element for the view
description. The classes describing the graphic components are within the InteractiveControls, Drawables

and Containers packages of VirtualLabBuilder library (see figures 1b, 1c and 1d respectively). The virtual-
lab designer has to compose the virtual-lab view class by instantiating and connecting the required
graphic components. The graphic components have to be connected forming a structure, whose root
is the root element. The connections among the graphic components determine their layout in the
virtual-lab view. VirtualLabBuilder’s graphic components and their connection rules are discussed in
section 4.

(iii) Virtual-lab set up. The virtual-lab developer has to define a Modelica class describing the complete
virtual-lab. This class has to extend the VirtualLab class, which is within the VirtualLabBuilder library
(see figure 1a). VirtualLab class has two parameters: the class describing the virtual-lab model, and the
class describing the virtual-lab view. These two classes have been programmed in Steps (i) and (ii)
respectively. The virtual-lab designer has to set the value of these parameters by writing the name of
these two classes. In addition, he has to specify how the variables of the model and the view Modelica
classes are linked. This is accomplished by writing the required Modelica equations inside the Modelica
class defining the complete virtual-lab.

(iv) Virtual-lab translation and execution. The virtual-lab developer needs to translate using Dymola
[8] an instance of the Modelica class defined in Step (iii) into an executable file (i.e., dymosim.exe file).
The virtual-lab is started by executing this file.

(v) Automatic code generation and run. At the beginning of the simulation run, some calculations are
performed in order to solve the model at the initial time. The initial sections of the Modelica model
describing the virtual-lab are evaluated. In particular, the initial sections of the interactive graphic
objects composing the virtual-lab view class and of the PartialView class are executed. These initial

sections contain calls to Modelica functions, which encapsulate calls to external C-functions. These
C-functions are Java-code generators. As a result, during the model initialization, the Java code of the
virtual-lab view is automatically generated, compiled, packed into a jar file and executed. Also, the
communication procedure between the model and the view is automatically set up. This communication
is based on a client-server architecture: the C-program generated by Dymola [8] (i.e., dymosim.exe, see

4 C. Martin-Villalba, A. Urquia and S. Dormido

��� ��� �����
	
 � �	��
 ��
 ��� ��= −

=
=

=

Figure 2. Model used to illustrate the translation from the physical model to the interactive model.

Step (iv)) is the server and the Java program (which has been automatically generated during the
model initialization) is the client. Once the jar file is executed, the initial layout of the virtual-lab view
is displayed and the client-server communication is established. Then, the model simulation starts.
During the simulation run, there is a bi-directional flow of information between the model and the
view.

3. Model description for interactive simulation using Modelica language

A methodology for transforming any Modelica model into a description suitable for interactive simulation
is proposed in this section. The following terminology will be used. The original model of the system is
called physical model, and its reformulation for interactive simulation is called interactive model.

The model shown in figure 2 will be used to illustrate the discussion. The voltage applied to the pump
(v) is an input variable (i.e., its value is not calculated from the model equations). The cross-sections of
the tank (A) and the outlet hole (a), the pump parameter (k) and the gravitational acceleration (g) are
parameters (i.e., time-independent quantities of the model). The liquid volume (V), the input and output
flows (Fin, F), and the liquid level (h) are time-dependent variables of the physical model.

3.1. Interactive quantities

The virtual-lab design process includes selecting the interactive quantities. These are the model quantities
whose value will be interactively changed by the user during the simulation run. The virtual-lab goal is
illustrating the dependence between the model dynamic behaviour and the value of these quantities.

Interactive quantities can be parameters, input variables, and time-dependent variables of the physical

model. For instance, some interactive quantities of the model shown in figure 2 could be the following:

– Parameters: the cross-sections of the tank (A) and the outlet hole (a), and the pump parameter (k).
– Time-dependent variables: the liquid level (h).
– Input variables: the voltage applied to the pump (v).

The interactive model combines the dynamic behaviour described in the physical model and the abrupt
changes in the value of the interactive quantities produced by the user’s actions:

(i) The evolution in time of the interactive time-dependent quantities is described by the physical model
equations. In addition, their value can change abruptly as a result of the user’s interaction.

(ii) The value of the interactive model parameters can be abruptly changed by the user’s action, remaining
constant between consecutive interactive changes.

(iii) The value of the interactive input variables is interactively set by the user. Their values change abruptly
as a result of the user’s action, remaining constant between consecutive changes.

Parameters represent time-independent quantities. Input variables represent boundary conditions which
are not calculated from the model equations. Although they are conceptually different, the dynamic be-
haviour of interactive parameters and interactive input variables is the same. Their values change abruptly

An approach to virtual-lab implementation using Modelica 5

at the interaction instants, remaining constant between consecutive changes. As a consequence, both types
of interactive quantities are described in the same manner in the interactive model.

3.2. Description of the interactive quantities

In order to support abrupt changes in their values during the simulation run, interactive quantities need
to be state variables of the interactive model. The interactive model is obtained from the physical model

by reformulating (when required) the declaration and evaluation of the interactive quantities, so that they
become state variables of the interactive model. To this end, the virtual-lab developer has to perform the
following tasks.

– Time-dependent variables need to be selected as state variables. Modelica 2.0 and Dymola support the
user’s control on the state variables selection, via the stateSelect attribute of Real variables [8, 19–21].
The attribute values include ‘never’ (the variable will never be selected as state variable) and ‘always’
(the variable will always be used as a state). If the number of variables selected as state variables
by setting the value of their stateSelect attribute to ‘always’ is higher than the model order, then an
error message is generated by Dymola. This feature allows the user to select the model state variables
without performing any manipulation on the model equations. The required model manipulations are
automatically performed by Dymola.

– Parameters and input variables are redefined as time-dependent variables with zero time-derivative, and
they are selected as state variables. For instance, the parameter A of the tank model shown in figure 2
should be a Real variable of the interactive model, calculated from the equation der(A) = 0.

model tank
parameter Real Ainitial "Initial value of the tank section";
Real A (start = Ainitial) "Tank section - Interactive quantity";
...

equation
der(A) = 0;
...

end tank;

Let’s consider that all the interactive quantities can be simultaneously selected as state variables (this
condition will be removed in section 3.3). Provided that this restriction is satisfied, the virtual-lab developer
does not need to perform further modifications in the model. In particular, the required code to implement
the user’s changes in the value of the interactive quantities is pre-defined in the interactive control elements
(shown in figure 1b). Changes in the model state are performed as state re-initialization events by using
the Modelica’s reinit(x, expr) operator. It re-initializes an state variable (x) with the value obtained by
evaluating an expression (expr), at the event instant. These changes are triggered using when clauses.

Defining the interactive parameters and input variables as state variables increases the number of state
variables. This has an unwanted effect: it slows down the simulation. We could think of redefining the
interactive parameters and input variables as discrete-time variables or, alternatively, as input variables
whose values are provided by the virtual-lab view. In this way, the number of state variables would not be
increased. However, this is not a valid approach. Dymola automatically performs model manipulations in
order to formulate the model according to the requested state selection. The problem is that these model
manipulations can require differentiating an interactive parameter or input variable, which results in an
error being generated. An example is discussed next.

Consider the model shown in figure 2. It is formulated according to the state selection e1 = {V }. The
model can be manipulated as shown below, in order for h to be a state variable instead of V . The variable
to evaluate from each equation is written within square brackets.

[F] = a
√

2gh (1)

[Fin] = kv (2)

6 C. Martin-Villalba, A. Urquia and S. Dormido

[derV] = Fin − F (3)

[V] = Ah (4)

derV = Ȧh + A
[

ḣ
]

(5)

The time-derivative of the tank cross-section (i.e., Ȧ) appears in Eq. (5). If the interactive quantity A
is defined as an input variable, then an error is produced: Dymola can not differentiate an input variable.
The same problem arises if A is defined as a discrete-time variable. A valid approach is the previously
discussed: defining the interactive parameters and input variables as constant state variables (i.e., Ȧ = 0).
The interactive changes in the value of these quantities are implemented by re-initializing their values.

3.3. Supporting multiple selections of the state variables

In general, different choices of the state variables are possible. For instance, possible choices in the model
shown in figure 2 include:

e1 = {h} e2 = {V } e3 = {F}

where ei represents one particular choice of the state variables. The state variable selection should be made
so that it includes all the interactive quantities. For instance, if the user wants to change interactively the
level value (h), the appropriate choice is e1 = {h}. Likewise, if the user wants to change the liquid volume,
then the right choice is e2 = {V }; and if he wants to change the output flow, then e3 = {F}.

In addition, changes in the value of interactive parameters can have different effects depending on the
state variable choice. Consider a change in the cross-section (A) of the model in figure 2 (for instance, the
user interactively changes A from 1 cm2 to 3 cm2). If the volume (V) is a state variable, then the change
in A produces an abrupt change in the value of the liquid level (h) and flow (F), while the liquid volume
remains constant. On the contrary, if the state variable is the height (h) or the flow (F), these quantity
values would not change as the result of an instantaneous change in A but the volume would.

In some cases, all interactive quantities can be selected as state variables. Then, the description of the
interactive model, as it was proposed in section 3.2, is straightforward. However, this is not always the case.
Consider, for instance, a virtual-lab illustrating the dynamic behaviour of the model shown in figure 2.
This virtual-lab is required to support two ways of describing the interactive changes in the amount of
liquid contained in the tank: changes in the liquid volume (V) and changes in the liquid level (h). Each
time the user needs to change the amount of liquid, he can choose between describing it in terms of the
volume or in terms of the level. Different choices are possible during a given simulation run. However, V
and h can not be simultaneously selected as state variables.

An approach to allow interactive models supporting simultaneously different choices of the state variables
is the following. Modelling the interactive model as composed of several instantiations of the physical model,
each one with a different choice of the state variables. Modelica capability for state selection control (i.e.,
stateSelect attribute) allows the virtual-lab developer to select the state variables without performing any
model manipulation.

Therefore, the interactive model is composed of as many instantiations of the physical model as different
state selections are required. The adequate physical-model instantiation (i.e., that with the required state
selection) is used for executing each interactive action from the user. That is to say, for performing the
abrupt changes in the value of the interactive quantities and for solving the re-start problem. Next, these
calculated values are used to re-initialize the other physical-model instantiations. This action guarantees
that all physical-model instantiations describe the same trajectory. This procedure is briefly discussed
next.

(i) The physical model has to be modified as it was described in section 3.2. In case of the model shown
in figure 2, the physical model could be composed of the connection of three components: (1) the
pump, modelling the input flow of liquid (Fin = kv); (2) the tank, describing the conservation of the
liquid volume (dV/dt = Fin − F) and the relationship between the volume and the level of the liquid

An approach to virtual-lab implementation using Modelica 7

(V = Ah); and (3) the pipe, describing the output flow of liquid (F = a
√

2gh). This physical model
could be modified as it is shown next. It is supposed that three selections of the state variables are
required: e1 = {h}, e2 = {V } and e3 = {F}.

model tank
parameter Boolean hIsState = false;
parameter Boolean VIsState = false;
Real h (stateSelect = if hIsState

then StateSelect.always else StateSelect.never) "Liquid level";
Real V (stateSelect = if VIsState

then StateSelect.always else StateSelect.never) "Liquid volume";
parameter Real Ainitial "Initial value of the tank section";
Real A (start = Ainitial) "Tank section - Interactive quantity";
...

equation
der(A) = 0;
...

end tank;

model pipe
Real F (stateSelect = if FIsState

then StateSelect.always else StateSelect.never) "Liquid flow";
parameter Real aInitial = 1 "Initial value of the pipe section";
Real a (start = aInitial) "Pipe section - Interactive quantity";
...

equation
der(a) = 0;
...

end pipe;

model pump
parameter Real vInitial "Initial value of the applied voltage";
Real v (start = vInitial) "Voltage applied to the pump - Interactive";
parameter Real kInitial "Initial value of the pump parameter";
Real k (start = kInitial) "Pump parameter - Interactive quantity";
...

equation
der(v) = 0;
der(k) = 0;
...

end pump;

partial model physicalModel
parameter Boolean[3] isState;
tank tank1 (hIsState = isState[1],

VIsState = isState[2], ...);
pipe pipe1 (FIsState = isState[3], ...);
pump pump1 (...);
...

end physicalModel;

The boolean vector isState[:], declared in physicalModel, allows controlling the state selection. The size
of this vector is equal to the number of interactive time-dependent quantities. For instance, if isState[:]

is set to the value {false,true,false} when instantiating the physical model, then the liquid volume (V)
is selected as a state variable. Also, the interactive parameters (A, a) and the input variable (v) have
been defined as constant state variables. This first step in the implementation of the interactive model
is represented in figure 3a.

(ii) The setParamVar class is defined (see figure 3b). It inherits from physicalModel, and it contains the
when-clauses required to change the value of the interactive parameters and input variables. These
interactive quantities are represented by the ivars[:] array, and their new values, specified interactively

8 C. Martin-Villalba, A. Urquia and S. Dormido

extends physicalModel

…
Boolean isState [:]

model physicalModel

when { CK, Enabled } then
reinit (ivars [:] , I [:]);

end when;

isState [:]
…

I [:]

CK

Enabled

partial model setParamVar

isState[:]
…

when { CK [1] , Enabled [1] } then
reinit (ivars [:] , I [:]) ;

end when;

when { CKstate[1] , Enabled [1] } then
reinit (state1 [:] , Istate (n11,…,n1M);

end when;

StateSelection1

O [:]

I [:]

CK [1:N]

Enabled [1:N]

CKstate [1:N]

Istate [:]

model interactiveModel

extends setParamVar (isState={ … }) ;

when { CK [N] , Enabled [N] } then
reinit (ivars [:] , I [:]) ;

end when;

when { CKstate [N] , Enabled [N] } then
reinit (stateN [:] , Istate (nN1,…,nNM);

end when;

StateSelectionN

extends setParamVar (isState={ … }) ;

��

�� ��

I [:]

I [:]

CK [1]

CK [N]

Enabled [1]

Enabled [N]

CKstate [1]

CKstate [N]

Istate [:]

Istate [:]

Enabled [1:N]

isState[:]
…

Figure 3. Schematic description of the proposed modelling methodology for interactive simulation.

by the virtual-lab user, are represented by the I[:] array. The size of these arrays is equal to the number
of interactive parameters plus the number of interactive input variables. The when-clauses are triggered
by the boolean variables CK and Enabled. When the value of any of these two variables changes from
false to true, then the ivars[:] array is re-initialized to the value of the I[:] array.

(iii) There are defined as many components (StateSelection1, . . ., StateSelectionN) as different state-variable
choices are required (e1 = state1[:], . . ., eN = stateN[:]). The number of state-variable choices to be sup-
ported by the virtual-lab is represented by N. The class of these components inherits from setParamVar

(see figure 3c). In addition, it contains the when-clauses required to re-initialize its state-variable array
(i.e., state array) to the values interactively set by the user (i.e., Istate array).

The CK[1:N] and Enabled[1:N] arrays trigger the re-initialization of the interactive parameters and
input variables. The CKstate[1:N] and Enabled[1:N] arrays trigger the re-initialization of the interactive
time-dependent quantities. The i − th component of these arrays controls the i − th instantiation of
the physical system (i.e., StateSelectioni).

The array Enabled[1:N] indicates which state-variable selection is enabled. It is used to select which
output is connected to the output variables (O[:]). These are the variables used to refresh the virtual-lab
view.

An approach to virtual-lab implementation using Modelica 9

4. VirtualLabBuilder library

VirtualLabBuilder library is composed of the packages shown in figure 1a. Some of them are intended
to be used by the virtual-lab developers (i.e., VirtualLabBuilder users). These are: (1) ViewElements and
VLabModels packages, which contain the classes required to implement the virtual-lab view and to set up
the complete virtual-lab; and (2) Examples package, which contains some tutorial material illustrating the
library use. The documentation of these packages is oriented to the VirtualLabBuilder users.

On the contrary, the classes within the src package are not intended to be directly used by the virtual-lab
developers. The documentation of this package describes the implementation details required to modify
and extend the VirtualLabBuilder library. In fact, the classes within ViewElements and VLabModels packages
inherit from classes defined within src package, inheriting the structure and the behaviour, and adding
only the documentation oriented to the virtual-lab developer.

VLabModels package contains two classes: PartialView and VirtualLab. The purpose of PartialView and Virtu-

alLab classes was briefly described in section 2. They have to be the super-classes of the models defining
the virtual-lab view and the complete virtual-lab respectively. Further details can be found in the Virtu-

alLabBuilder library documentation. ViewElements package is discussed next.

4.1. Interactive graphic elements

ViewElements package contains the graphic elements that can be used to define the view. The initial sections

of these elements contain calls to Modelica functions that perform calls to external C-functions. These C-
functions write the Java code of the elements to a file, generating automatically the Java application (i.e., a
.jar file) that is the virtual-lab view. The three packages included within ViewElements are briefly described
next. A detailed description of these graphic elements and their properties can be found in [14].

– Containers package has those graphic elements that are intended to host other graphic elements. The
container properties are set in the view definition and they can not be modified during the simulation run.
VirtualLabBuilder contains the following five classes of containers: MainFrame, Dialog, Panel, DrawingPanel

and PlottingPanel (see figure 1d).
– Drawables package contains several classes implementing interactive 2-D shapes, whose properties (i.e.,

size, position, rotation angle, aspect ratio, colour, etc.) can be linked to the model variables. They are
intended to be used for building animated and interactive schematic representations of the system. These
classes are: Polygon, Oval, Text, Arrow and Trail (see figure 1c). Objects of Drawables classes must be placed
inside containers that provide a coordinate system (i.e., containers of DrawingPanel and PlottingPanel

classes).
In addition to these general-purpose interactive components, other domain-specific components can

be implemented. In order to demonstrate this capability, Mechanics package has been included within
Drawables package. It contains two classes (i.e., Damper and Spring) implementing an interactive damper
and an interactive spring.

– InteractiveControls package contains classes that allow modifying interactively the value of model variables.
These are: Slider, NumberField, RadioButton, Button1Action, Button2Actions, Label and Checkbox. In addition,
the PauseButton class creates a button that allows the user to pause and resume the simulation by clicking
on it. The InfoButton class creates a button that allows the user to show and hide a window displaying
HTML pages. This feature allows including documentation in the virtual-lab. That is to say, it supports
the implementation of the virtual-lab introduction.

4.2. Connection rules

The interface of the interactive graphic components is composed of connectors, which facilitate the con-
nection among the components. Four connector types have been defined. Each one has a distinctive icon.
Connector icons are square or circular, empty or filled. The following two types of interfaces have been
defined (see figures 1b, 1c & 1d):

10 C. Martin-Villalba, A. Urquia and S. Dormido

�� ��
Figure 4. Tank process: a) Modelica description of the virtual-lab view; and b) virtual-lab.

– Interface of container components. It has three connectors (see figure 1d). Two placed on one side (called
‘left connectors’) and the third one (called ‘right connector’) placed on the opposite side.

– Interface of interactive controls and drawable elements. It has two connectors (called ‘left connectors’):
one filled and one empty (see figures 1b & 1c).

The virtual-lab programmer must observe the following three rules when connecting the graphic elements:

(i) Only connectors with the same shape (circular or square) can be connected.
(ii) Each filled connector must be connected to one and only one empty connector.
(iii) Each empty connector can be left unconnected or can be connected to one and only one filled connector.

The meaning of the connections among the graphic components is as follows:

– If two components are connected using their ‘left connectors’, then both components are hosted within
the same container. The component position in the chain of connected elements determines its insertion
order within the container.

– If two components are connected using the ‘right connector’ of the first component and a ‘left connector’
of the second component, then the second component is hosted within the first component.

The following example tries to illustrate how the graphic elements can be used to compose the view of
a virtual-lab. In particular, the view of the tank process described in section 3. The Modelica description
of the virtual-lab view and the obtained virtual-lab are shown in figure 4. In this case, the model of the
tank process has only one state selection and one state variable (the liquid level).

The mainFrame and dialog components are hosted inside root. The dPanel, panelS and panelN components
are hosted inside mainFrame. The C component is hosted inside panelN. The pipe, vase, liqPipe and liquid

components are hosted inside dPanel. The a, A, v and h components are hosted inside panelS. The plot

component is hosted inside dialog. Finally, the component trail of Trail class is hosted inside plot.
The window showing the component parameters is displayed by double clicking on the component icon.

The parameter windows of the components trail, a and mainFrame are shown in figures 5a, b & c respectively.

An approach to virtual-lab implementation using Modelica 11

a) b)

c)

Figure 5. Parameter window of the components: a) trail; b) a; and c) mainFrame.

5. Case study: virtual-lab of a solar house

The implementation of a virtual-lab intended to illustrate the thermodynamics of a solar house is discussed.
This virtual-lab allows the user to: (1) change the thermodynamic properties of the slab, the outer and
inner walls, and the roof; (2) turn on and off the air conditioning, which is placed in the living room;
and (3) set the parameters of the air conditioning control system (i.e., the setpoints for the minimum and
maximum values of the temperature).

The virtual-lab view contains the floor plan of the house (see figure 8b). The room colours change
between blue and red as a function of the temperature inside the room. The heat flow through the outer
walls are represented by arrows. The width and orientation of the arrow are functions of the magnitude
and the direction of the heat flow, respectively. Also, the virtual-lab view contains plots of some selected
quantities (see figure 11).

5.1. The Modelica model of the solar house

This solar house model is included within the Bondlib library [22]. The model describes the thermodynamic
behaviour of an experimental house located near the airport in Tucson, Arizona, with a passive solar heating

12 C. Martin-Villalba, A. Urquia and S. Dormido

�� ��
Figure 6. ExWallView class: a) diagram; and b) generated view.

system. The house has four rooms: two bedrooms, a living room and a solarium that collects heat during
the winter and releases it during the summer. The living room has an air conditioning unit.

The four rooms are composed using models that describe the outer and inner walls, the roofs, the
windows and the slabs. The bond graph technique is used to model the physical laws of heat transfer
between the basic components of the house, regarding conduction, convection and radiation. A detailed
description of the model can be found in [23,24].

5.2. Composing the virtual-lab

The solar house model has been adapted to suit interactive simulation. Interactive parameters and input
variables have been re-defined as constant state variables (i.e., with zero time-derivative).

The Modelica description of the virtual-lab view has been developed modularly, by extending and con-
necting the required graphic components of the VirtualLabBuilder library. Modelica classes have been
programmed to describe the view associated to an inner wall (InWallView), an outer wall (ExWallView), a
slab (SlabView) and a roof (RoofView). These are described next:

– The diagram of the ExWallView Modelica class is shown in figure 6a and the graphic interface generated
is shown in figure 6b. The ExWallView class contains instances of graphic elements contained in Virtual-

LabBuilder library (i.e., Dialog, DrawinPanel, Panel, Polygon, Text and Slider). The connection among these
elements determines the layout of the graphic interface. The graphic interface consists of a window that
contains a set of sliders at the bottom and at the top (see figure 6b). These sliders allow the user to
modify the temperature and thermodynamic properties of the wall, including the specific thermal con-

An approach to virtual-lab implementation using Modelica 13

a) b)

Figure 7. BedRoom1View class: a) diagram; and b) generated view.

ductivity of the dry wall, the thickness of the conduction layer, the specific heat capacity, the density,
the thickness of the outer wall, and absorption coefficient. The centre of the window contains a graphical
representation of the wall model, which is composed of three conducting layers.

– InWallView class contains sliders that allow the user to change the temperature and thermodynamic
properties of the wall (i.e., specific thermal conductivity of the dry wall, thickness of the conduction
layer, specific heat capacity, density and thickness).

– RoofView class contains sliders that allow the user to change the thermodynamic properties (i.e., specific
thermal conductivity, thickness, specific heat capacity and density) of the three conducting layers that
compose the roof.

– SlabView class contains sliders that allow the user to change the slab thermodynamic properties (i.e.,
specific thermal conductivity, thickness of the slab, specific heat capacity, density and thickness of the
conduction layer).

Modelica classes have been composed using VirtualLabBuilder to describe the view associated to the
house (HouseView), the living room (LivingRoomView), and bedrooms 1 and 2 (BedRoom1View and Bed-

Room2View). These are briefly described next:

– The diagram of the BedRoom1View class is shown in figure 7a, and the generated graphic interface is shown
in figure 7b. This model contains instances of SlabView, RoofView, ExWallView and InWallView classes. The
view consists of a window that has a set of checkboxes at the bottom and the floor plan of the room at
the centre (see figure 7b). The checkboxes allow the user to show and hide the windows associated to
each building component of the room (outer and inner walls, slab and roof).

– The diagram of the HouseView class is shown in figure 8a, and the generated graphic interface is shown in

14 C. Martin-Villalba, A. Urquia and S. Dormido

a) b)
Figure 8. HouseView class: a) diagram; and b) generated view.

Figure 9. Introduction of the solar house virtual-lab.

figure 8b. The view consists of a window that has a set of checkboxes and two buttons at the bottom and
a diagram of the house floor plan in the centre (see figure 8b). The checkboxes allow the user to show and
hide the windows associated to the bedrooms 1 and 2, and to the living room. The two buttons allow the
user: (1) to pause and resume the simulation; and (2) to show and hide the virtual-lab documentation
(see figure 9). Each room of the floor plan has a colour, that change from blue to red depending on the
room temperature. The arrows shown in the floor plan represent the heat flow through the outer walls
(see figure 8b). The width and orientation of the arrows depend on the magnitude and the direction of
the heat flow, respectively.

An approach to virtual-lab implementation using Modelica 15

Figure 10. Modelica diagram of the complete virtual-lab view.

Figure 11. Dynamic response of some selected quantities.

The Modelica description of the complete view (i.e, class View) is shown in figure 10. This model extends
the PartialView class and contains instances of the VirtualLabBuilder library components describing plots.
These plots are used to display the time evolution of the heat flow and the temperature in the rooms of
the house.

5.3. Virtual-lab set up and launch

The virtual-lab description is obtained as discussed in section 3. It is translated using Dymola and executed.
Then, the jar file containing the Java code of the virtual-lab view is automatically generated and executed.

The dynamic response of the solar house when the air conditioning is turned off is shown in figure 11.
This change has been interactively performed by the virtual-lab user at the simulated time 100 h. The
following six plots are shown in figure 11: (1) the heat flow rate in bedroom 2; (2) the heat flow rate
of the air conditioning; (3) the living room temperature and the setpoint value for the minimum and
maximum temperatures; (4) the bedroom 1 temperature; (5) the bedroom 2 temperature; and (6) the
ambient temperature.

16 C. Martin-Villalba, A. Urquia and S. Dormido

6. Conclusions

A novel approach to virtual-lab implementation using Modelica language has been proposed and it has been
successfully applied. The proposed approach has several advantages. Firstly, the virtual-lab is completely
described using Modelica language, an object-oriented modelling language aimed to be a de facto standard
for representing models and to support model exchange. Secondly, existing Modelica libraries for modelling
of physical systems can be reused in order to build the virtual-lab models. Finally, the virtual-lab view is
modelled using the object-oriented paradigm, which facilitates its development, maintenance and reuse.

In order to support the application of this approach, the following two tasks have been completed: (1)
the proposal of a modelling methodology intended to transform any Modelica model into a description
suitable for interactive simulation; and (2) the design and implementation of a Modelica library, named
VirtualLabBuilder, supporting the description of the virtual-lab view and the bi-directional communication
between the model and the view.

This modelling methodology, and the architecture and use of VirtualLabBuilder have been discussed.
The proposed approach has been illustrated by means of a case study: the virtual-lab describing the
thermodynamic behaviour of a solar house. The model describing the solar-house has been adapted to suit
the interactive simulation. The virtual-lab view has been implemented using VirtualLabBuilder.

Acknowledgements

This work has been supported by the Spanish CICYT, under DPI2004-01804 grant, and by the IV PRICIT
(Plan Regional de Ciencia y Tecnologia de la Comunidad de Madrid, 2005-2008), under S-0505/DPI/0391
grant.

References

[1] Dormido, S., 2004, Control learning: Present and Future. Annual Reviews in Control, 28, 115–136.
[2] Euler, M. and Müller, A., 1999, Physics learning and the computer: A review, with a taste of meta-analysis. In: Proceedings of the

2nd International Conference of the European Science Education Research Association, Kiel, Germany.
[3] Esquembre, F., 2004, Easy Java Simulations: a Software Tool to Create Scientific Simulations in Java. Computer Physics Commu-

nications, 156, 199–204.
[4] Easy Java Simulations website: http://fem.um.es/Ejs/
[5] Sysquake website: http://www.calerga.com/
[6] Modelica Association website: http://www.modelica.org/

[7] Åström, K., Elmqvist, H. and Mattsson, S. E., 1998, Evolution of Continuous-Time Modeling and Simulation. In: Proceedings of the
12th European Simulation Multiconference, Manchester, UK, pp. 9–18.

[8] Dynasim AB, 2006, Dymola. User’s Manual, Lund, Sweden.
[9] The OpenModelica Project website: http://www.ida.liu.se/ pelab/modelica/OpenModelica.html/
[10] Engelson, V., 2000, Tools for Design, Interactive Simulation, and Visualization of Object-Oriented Models in Scientific Computing.

PhD Thesis, Linkping University, Sweden.
[11] Martin, C., Urquia, A., Sanchez, J., Dormido, S., Esquembre, F., Guzman, J.L. and Berenguel, M., 2004, Interactive Simulation

of Object-Oriented Hybrid Models, by Combined use of Ejs, Matlab/Simulink and Modelica/Dymola. In: Proceedings of the 18th

European Simulation Multiconference, Magdeburg, Germany, pp. 210–215.
[12] Martin, C., Urquia, A. and Dormido, S., 2005, Object-oriented modelling of interactive virtual laboratories with Modelica. In:

Proceedings of the 4th International Modelica Conference, Hamburg, Germany, pp. 159-168.
[13] Martin, C., Urquia, A. and Dormido, S., 2005, Object-Oriented Modeling of Virtual Laboratories for Control Education. In: Pro-

ceedings of the 16th IFAC World Congress, Prague, Czech Republic, paper code Th-A22-TO/2.
[14] Martin, C., Urquia, A. and Dormido, S., 2006, An Approach to Virtual-lab Implementation using Modelica, In: Proceedings of the

20th Annual European Simulation and Modelling Conference, Toulouse, France, pp. 137–141.
[15] Martin, C., Urquia, A. and Dormido, S., Implementation of Interactive Virtual Laboratories for Control Education Using Modelica,

2007, In: Proceedings of European Control Conference 2007, Kos, Greece, pp. 2679–2686.
[19] Otter, M. and Olsson, H., 2002, New features in Modelica 2.0. In: Proceedings of the 2nd International Modelica Conference,

Oberpfaffenhofen, Germany, pp. 7.1–7.12.
[20] Mattsson, S.E., Olsson, H. and Elmqvist, H., 2000, Dynamic Selection of States in Dymola. In: Proceedings of the Modelica Workshop,

Lund, Sweden, pp. 61–67.
[21] Fritzson, P., 2004, Principles of Object-Oriented Modeling and Simulation with Modelica 2.1, IEEE Press - Wiley, John & Sons.
[22] Cellier, F.E. and Nebot, A., 2006, The Modelica Bond-Graph Library. In: Proceedings of the 4th International Modelica Conference,

Hamburg, Germany, pp. 57–65.
[23] Weiner, M., 1992, Bond Graph Model of a Passive Solar Heating System. MS Thesis, University of Arizona, Tucson, Arizona.
[24] Weiner, M. and Cellier, F.E., 1993, Modeling and Simulation of a Solar Energy System by Use of Bond Graphs. In: Proceedings of

the 1st SCS International Conference on Bond Graph Modeling, San Diego, California, pp. 301–306.

