
HAL Id: hal-00591552
https://hal.science/hal-00591552

Submitted on 10 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PLQL - The ProLearn Query Language
Alex Campi, Stefano Ceri, Erik Duval, Sam Guinea, David Massart, Stefaan

Ternier

To cite this version:
Alex Campi, Stefano Ceri, Erik Duval, Sam Guinea, David Massart, et al.. PLQL - The ProLearn
Query Language. 2007. �hal-00591552�

https://hal.science/hal-00591552
https://hal.archives-ouvertes.fr

 Page 1 of 27

Network of Excellence in Professional Learning

 PROLEARN
European Commission Sixth Framework Project (IST-507310)

Deliverable D4.6 PLQL - The ProLearn Query Language

Editor A. Campi, S. Ceri, E. Duval, S. Guinea, D. Massart,
S. Ternier

Work Package WP 4

Status Draft

Date 27/04/2007

The PROLEARN Consortium
1. Universität Hannover, Learning Lab Lower Saxony (L3S), Germany
2. Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI), Germany
3. Open University (OU), UK
4. Katholieke Universiteit Leuven (K.U.Leuven) / ARIADNE Foundation, Belgium
5. Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. (FHG), Germany
6. Wirtschaftsuniversität Wien (WUW), Austria
7. Universität für Bodenkultur, Zentrum für Soziale Innovation (CSI), Austria
8. École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
9. Eigenössische Technische Hochschule Zürich (ETHZ), Switzerland
10. Politecnico di Milano (POLIMI), Italy
11. Jožef Stefan Institute (JSI), Slovenia
12. Universidad Polictécnica de Madrid (UPM), Spain
13. Kungl. Tekniska Högskolan (KTH), Sweden
14. National Centre for Scientific Research “Demokritos” (NCSR), Greece
15. Institut National des Télécommunications (INT), France
16. Hautes Etudes Commerciales (HEC), France
17. Technische Universiteit Eindhoven (TU/e), Netherlands
18. Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Germany
19. Helsinki University of Technology (HUT), Finland
20. imc information multimedia communication AG (IMC), Germany
21. Open Universiteit Nederland (OU NL), Netherlands
22. University of Warwick

 Page 2 of 27

Document Control

Title: The ProLearn Query Language

Author/Editor: A. Campi, S. Ceri, E. Duval, S. Guinea, D. Massart, S. Ternier

E-mail: Campi/Ceri@elet.polimi.it

Amendment History

Version Date Author/Editor Description/Comments

1 27/04/2007 Sam Guinea The document is opened and organized

2 17/05/2007 Alex Campi Specification of PLQL

3 4/06/2007 Stefaan Ternier PLQL implementation and experimentation

4 6/06/2007 Stefano Ceri Consolidation

5 6/06/2007 Alex Campi Format fixing

6 11/06/2007 David Massart Addition of SQL mapping and EUN experience

7 11/06/2007 Stefano Ceri Final pass prior to peer review submission

8 10/07/2007 Alex Campi First revision due to first reviewer’s comments

9 15/07/2007 Alex Campi Second revision due to second reviewer’s
comments

10 18/07/2007 Stefano Ceri Further revision of the document

11 22/07/2007 Stefaan Ternier Final fix of examples

12 24/07/2007 Erik Duval Final iteration over conclusion

Legal Notices

The information in this document is subject to change without notice.

The Members of the PROLEARN Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. The Members of the PROLEARN Consortium shall not be held liable for
errors contained herein or direct, indirect, special, incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

 Page 3 of 27

1. Introduction
This deliverable provides the definition of the ProLearn Query Language (PLQL), a
“query language for repositories of learning objects” defined in the context of the
ProLearn Network of Excellence (WP4).

Previous to PLQL, ProLearn has produced the definition of SQI, "Simple Query
Interface", a query transport standard that is becoming widely used within the e-learning
community. One of SQI’s distinguishing features is to be (on purpose) agnostic about
query languages; as such, it can be used together with any query language, but does
not include any provision for expressing the query semantics. Going beyond SQI
requires adding support to a specific query language, designed with the specific
objective of retrieving learning objects (LOs) from collections of possibly heterogeneous
learning object repositories.

PLQL aims at covering such gap. It is primarily a “query interchange format”, used by
source e-learning applications (or PLQL-clients) for querying LOs repositories (or PLQL-
servers); each LO can be described by means of metadata, which may be compliant to
the most popular standards, such as Dublin Core, LOM, or Mpeg. For submitting the
query and retrieving the results, the application can use the SQI protocol as well as
other interoperability standards. It is up to the PLQL-client to define user interfaces;
these can range from highly sophisticated interfaces to simple keyword-based forms. It
is up to the PLQL-server to build PLQL-adapters to the local repository engines. The
PLQL-client addresses its queries to one PLQL-server at a time; the application logics,
including data integration if needed, should be programmed within the system hosting
the PLQL-client.

In defining PLQL, we aim at combining exact search, used for selecting LOs by using
their metadata, and approximate search, used for extracting LOs by means of
approximate descriptions of their content (e.g., obtained by indexing text of the learning
object itself). Thus, a query in PLQL contains both "exact clauses" and "approximate
clauses", where each clause is syntactically well-defined; typically, exact clauses query
metadata of known structure, while approximate clauses perform ranked retrieval,
typically by using document indexing based upon their content.

The result of a PLQL query is normally a set of URI pointing to documents, possibly
augmented with meta-information describing them; the actual retrieval of each
document is a task that should be performed by the PLQL-client. If the query includes
approximate clauses, then the result is an ordered set; ordering of result URIs is
determined by the PLQL-server and takes into account their matching against
approximate clauses. We give a precise description of the language's semantics
concerning both kinds of clauses and their mutual relationship; such semantics is
classic when a query contains only clauses of one kind. The most challenging aspect of
the language's semantics was to define the meaning of a query with both query
aspects. We anticipate that exact search prevails, and that ranking occurs among all
result elements which satisfy the exact search criteria..

PLQL is based upon existing language paradigms, and actually aims at minimizing the
need of introducing new concepts. Specifically, we have borrowed approximate search

 Page 4 of 27

concepts from CQL [CQL], a well-established language used for library search. Given
that an XML description is available for all dominant metadata standards of learning
objects, we have next decided to express exact search by using object-oriented paths to
navigate hierarchies, easily translated to Xpath when needed.

The implementation of PLQL can therefore use existing technology for both exact
search (using, e.g., XML-based or relational technology) and approximate search
(using, e.g., information retrieval engines). We envision language implementations that
consist primarily in syntax-directed translators of the two kinds of clauses to the
corresponding engines, while the adopters of PLQL will not be concerned with "query
optimization". Sophisticated query processing capability is instead supported by existing
products; for instance, database engines may get high performances (e.g. through
parallelism), while search engines may go much beyond keyword matching, (e.g. by
measuring semantic distance between keywords or using fuzzy word matching).

2. PLQL Levels
In designing PLQL, we aim at supporting also very simple repositories. Thus, one of the
main concerns of the language design is providing progressive levels, supporting
increasingly expressive power, so that even simple repositories can support the lower
levels. The structure of the result returned by a PLQL query is also defined by levels,
and it will be described in a dedicated section of this document.

Level 0

Level zero is very basic and corresponds to simple approximate search. Level two is the
richest level; future versions of the specifications may address levels beyond two, if
additional complexity will be required by the applications. For each level we indicate: 1.
expressive power, 2. syntax, 3. Examples

Expressive power

This layer enables the expression of conjunctive approximate queries. The target must
contain all the search terms specified in the query, which can be present either in the
metadata descriptions, or in the LO as represented through suitable information retrieval
structures (e.g., indexes). When several approximate clauses are presented in the
same query, they are considered in conjunction, therefore LOs must have all the
keywords presented within an approximate clause in order to be selected; selected LOs
are ranked according to the cumulative relevance of the keywords, the ranking is
performed by the search engine supported on the server.

Layer zero offers the same expressive power as VSQL [VSQL], a very simple (and
limited) query language commonly supported by many SQI targets. VSQL belongs to
some of the authors’ body of background work. As a language, it has achieved in being
a common denominator for SQI targets, and can be considered a motivation for the
introduction of PLQL. As an example, a VSQL query looks like:

 Page 5 of 27

 <simpleQuery>
 <term>learning object</term>
 <term>dog</term>
 </simpleQuery>

Syntax

Following is the Backus Naur Form (BNF) definition [BNF] for level 0.

0-1: PLQLQuery ::= approximateClause

0-2: approximateClause ::= operand | '(' approximateClause ')' | approximateClause 'and'
approximateClause

0-3: operand ::= term1 | term2 | integer | real

0-4: term1 ::= charString1

0-5: term2 ::= charString2

0-6: charString1 ::= Any sequence of characters that does not include

any of the following:

 * whitespace

 * tab

 * ((open parenthesis)

 *) (close parenthesis)

 * =

 * <

 * >

 * '"' (double quote)

 * /

 * \

 * .

If the final sequence is the reserved word 'OR' (case insensitive), its token is returned instead (in
order to avoid the improper use of this logical connector).

0-7 charString2 ::= Double quotes enclosing a sequence of any characters except double quote
(unless preceded by backslash (\)). Backslash escapes the character following it. The resultant
value includes all backslash characters except those releasing a double quote (this allows other
systems to interpret the backslash character). The surrounding double quotes are not included.

0-8: integer ::= [0-9]+

0-9: real ::= [0-9]*\.[0-9]+

Each PLQL level is identified by a URI, allowing a SQI target to specify its degree of
PLQL support. In this case, level 0 is identified with the following URI:
http://www.prolearn-project.org/PLQL/l0.

 Page 6 of 27

Examples

1. Correct queries

The following queries are correct PLQL level zero expressions:

 "dog"

 "learning object" and dog

 dog and cat and jaguar

 (dog and cat) and jaguar

 "Lom.general.title" and "my dog"

 1.2 and dog

 test and 1024

 "12.25 dog"

 "\"hello\" he said"

2. Incorrect queries

These examples are incorrect expressions (that cannot be submitted to a repository
using PLQL level 0):

 "learning object" or "dog" // or is not allowed here

 "learning object" dog // connector missing

 Lom.general.title = "dog" // paths not allowed here

 Lom.general.title or dog // paths and or not allowed here

 wrong\"

Level 1

Expressive Power

In level one, in addition to the approximate searches supported by level 0, PLQL
queries can express exact searches on metadata fields. The latter are denoted by
means of paths. Level 1 supports paths as simple concatenations of elements
(separated by dots), starting from the root, with no omission; expressions and
parentheses are not allowed.

Level 1 only supports the following roots (lowercase): 'dc' (Dublin Core Metadata
Element Set [3]), 'lom' (Leaning Object Metadata [4]), and 'mpeg' (Moving Picture
Experts Group [5]). Generic namespaces are not supported.

This level is unaware of “types”, and attribute values cannot be composed. However,
encoded strings that represent diverse datatypes are allowed, given that their meanings
can be clarified by referencing URI-identified meta-schemas. Similarly, we allow for the
meaning of certain expressions to be clarified by referring to these meta-schemas.

 Page 7 of 27

When several exact clauses are presented in the same query, they are considered in
conjunction. When both exact and approximate clauses are present in a single query, it
is assumed that the exact search has a higher priority than the approximate search. The
semantics of PLQL when both exact and approximate clauses are present is to apply
the exact clauses first to build an initial result set, then to apply the approximate clauses
to the initial result set. This produces a final result set.

However, exact queries might not parse correctly against the metadata available at the
storage server. When some exact clauses cannot be parsed by the server, a return
code should indicate each of them as "not executed". In particular, if no exact clauses
can be parsed in the repository metadata, then the effect of the exact search is null; the
repository should operate on the entire set of LOs as if no exact search had been
performed.

As a variant to this semantics, requested by the application at query presentation time,
the repository could be allowed to use the constant values in the exact clauses that are
not parsed correctly as free keywords, so as to perform an approximate search based
upon the terms indicated in the exact clauses; a return code should then indicate to the
application that this case has occurred. Such variant should be evaluated
experimentally, to see if it can be useful at least in certain contexts. Note that a
repository unable to process exact queries against certain metadata could always resort
to such query interpretation.

Syntax

Note that productions with the same number as productions at lower levels substitute
for them, e.g. production 1-1 substitutes (generally extends) production 0-1.

1-1: PLQLQuery ::= exactclause | approximateclause | exactclause ';' approximateclause

1-10: exactclause ::= pathexpr |'(' exactclause ')' | exactclause 'and' exactclause

1-11: pathexpr ::= standard '.' path operator operand

1-12: path ::= term1 | path '.' path

1-13: operator ::= '='

1-14: standard ::= 'dc' | 'Lom' | 'mpeg'

This level of PLQL is identified with the following URI: http://www.prolearn-
project.org/PLQL/l1

Examples

1. Correct queries

The following queries are correct PLQL level 1 expressions:

 Page 8 of 27

dc.title = “SQL” and Lom.general.title = “SQL”

Lom.general.title = "Design Patterns" and Lom.general.language = "en"

Lom.general.title = "Design Patterns" and Lom.technical.format = "video/mpeg"

 and Lom.technical.duration = "PT1H" and Lom.rights.cost="no"

Lom.general.title = "Design Patterns" and Lom.educational.intendedEndUserRole

= "learner" and Lom.educational.typicalAgeRange = "15-18"

((Lom.general.title = abc) and (Lom.general.language="fr")) ; test

tiger

keyword1 and keyword2 and (Lom.general.language = "fr")

and (Lom.educational.ageRange="10-12")

keyword1 and keyword2 and (Lom.general.language=en)and(Lom.educational.ageRange=10-12)

2. Incorrect queries

The following queries are incorrect PLQL level 1 expressions:

dc = 12

Lom.general.title // incomplete

Lom.general.(title = "abc") // uses parenthesis as only allowed at level 2

Lom.general.(title = "abc" and language="fr") // uses parenthesis as only allowed at level 2

tiger or Lom.general.title = "abc" // uses disjunction

Level 2

Expressive Power

Compared to levels 0 and 1, level 2 increases the expressive power of supported
queries, by enabling disjunction in addition to conjunction; moreover, clauses may use
arbitrary comparison predicates. With approximate search, we use the "=" symbol to
denote the 'includes' operator and the "exact" symbol to denote exact string matching.
Level 2 enables a limited amount of structuring of exact clauses, by supporting
parenthesization within path expressions; in this way, it is possible to descend a
hierarchical structure up to given nodes and then build conditions which are based upon

 Page 9 of 27

the properties of several descendants of that node. Finally, level 2 opens to generic
namespaces.

Syntax

2-2: approximateClause ::= operand | '(' approximateClause ')' | approximateClause boolean
approximateClause

2-10: exactclause ::= pathexpr |'(' exactclause ')' | exactclause boolean exactclause

2-11: pathexpr ::= (standard .)? path operator operand | pathExp

2-13: operator ::= '=' | '>', '>=', '<', '<=', 'exact'

2-14: standard ::= 'dc' | 'Lom' | 'mpeg' | term1

2-15: pathExp ::= path '.' pathExp | '(' selector boolean selector ')'

2-16: selector ::= path operator operand | selector boolean selector | '(' selector ')' | '(' selector
boolean selector ')'

2-17: boolean ::= 'and' | 'or'

This level of PLQL is identified with the following URI: http://www.prolearn-
project.org/PLQL/l2

Examples

1. Correct queries

Lom.general.identifier.(catalog=isbn and entry=xxxxx)

Lom.general.(title = "Design Patterns" and (language = "it" or language = "en"))

Lom.general.title = "Design Patterns" and Lom.technical.(format = "video/mpeg"

and duration <= "PT1H") and Lom.rights.cost="false"

Lom.general.title = "Design Patterns" and

 Lom.educational.(intendedEndUserRole = "learner" or typicalAgeRange = "15-18")

2. Incorrect queries

The following queries are incorrect PLQL level 2 expressions:

Lom.general.(title = "abc") // abuse of parenthesis

Lom.general.title = ("abc" and tiger) // incorrect clause

 Page 10 of 27

3. Query Results

The result produced after invoking PLQL on a repository also is built by means of
“levels”; the information returned by the server may include just the number of selected
items in the results up to more specific meta-information about each item. Currently in
PLQL we support four levels (ranging from 0 to 3).

1. Input

Any query issued in PLQL should be associated with (through the query transport
method) an input parameter (ResultLevel:0-3) indicating to the target repository the
level of the result that should be returned by the query. In addition, three optional
parameters can specify:

• the maximum cardinality (MaxCard:integer) of the result;

• the name of the search method (Method:string) to be used at server side for result
extraction, when the client has such choice.

• the name of the standard (Standard:'dc'|'Lom'|'mpeg') used for returning meta
information about the items in the results

2. Result

Results are defined, as with the queries, by means of progressive levels (the higher
levels include the lower ones).

At level zero, sources return at least the cardinality of the result.

At level one, sources return in addition at least the list of URIs of the elements which
are extracted by the query. Retrieving the actual object referenced through the URI is
left to the application. If the result is ranked, the best results must appear first. This is
identified by the presence of an appropriate XML attribute (added to the result) called
“rankingValue”.

At level two, sources return in addition some specific metadata of the requested
metadata format (e.g., Lom, dc, etc.). We do not define the metadata as part of the
PLQL standard, but we expect them to include the title, author, and language.

At level three, sources return in addition a numeric ranking value, and if the source
supports it a reference (identifier) to the ranking method.

This information is summarized below:

ResultLevel 0: result.cardinality type integer - size of result

ResultLevel 1: result.list type array of 0-MaxCard ranked records
 result.list[i].URI URI of selected resource

ResultLevel 2: result.list[i].meta record of metadata fields
 normally: position,title, language,author

ResultLevel 3: result.method type string - method used for scoring
 result.list[i].rankingValue type integer - in 0-100 range, giving matching score

 Page 11 of 27

We expect most sources to be able to support at least level one (i.e., to return URI
ordered according to their ranking).

 Syntax

Using the method setResultFormat of SQI, a source can use a URI to inform a target of
the expected level of the result. Optionally, the URI also indicates also the expected
format of metadata. Its BNF is:

1: PLQLRES ::= 'http://www.prolearn-project.org/PLRF/' level ‘/’ standard [/ 'method']

2: level ::= '0'|'1'|'2'|'3'

3: standard ::= 'dc'| 'Lom' | 'mpeg'

4: method ::= string

 Result examples

The examples below illustrate result data in XML format.

Result level 0

Suppose that a source wants the following PLQL level 1 query to return level 2 ranked results:

Lom.general.(title = "Design Patterns" and (language = "it" or language = "en"))

For such a query one would first set the query language (setQueryLanguage in SQI) to

http://www.prolearn-project.org/PLQL/l2

Next, the method setResultsFormat of SQI sets the format to the following URI:

http://www.prolearn-project.org/PLRF/0

0 indicates the level and specifies that only the amount of results should be returned. It is hence
not necessary to specify a metadata standard in the results format.

Finally, after this query is submitted using the synchronousQuery method, the target could
return the following example:

<?xml version="1.0" encoding="UTF-8"?>
<Results xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.prolearn-project.org/PLQLRES/
<?xml version="1.0" encoding="UTF-8"?>
<Results xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.prolearn-project.org/PLRF/ http://www.cs.kuleuven.be/~stefaan/plql/plql.xsd
 http://ltsc.ieee.org/xsd/LOM http://ltsc.ieee.org/xsd/lomv1.0/lom.xsd"
 xmlns="http://www.prolearn-project.org/PLRF/">
 <ResultInfo>
 <ResultLevel>http://www.prolearn-project.org/PLRF/0</ResultLevel>
 <QueryMethod>http://www.prolearn-project.org/PLQL/l2</QueryMethod>
 <Cardinality>38</Cardinality>
 </ResultInfo>
</Results>

 Page 12 of 27

Result level 1

Suppose that one wants to execute a PLQL query with the following configuration:

Query Language: http://www.prolearn-project.org/PLQL/l0

Result format: http://www.prolearn-project.org/PLRF/1/lom

Query: "learning object" and dog

After submitting the query and results format, the result would now looks as follows:
<?xml version="1.0" encoding="UTF-8"?>
<Results xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.prolearn-project.org/PLRF/ http://www.cs.kuleuven.be/~stefaan/plql/plql.xsd
 http://ltsc.ieee.org/xsd/LOM http://ltsc.ieee.org/xsd/lomv1.0/lom.xsd"
 xmlns="http://www.prolearn-project.org/PLRF/">
 <ResultInfo>
 <ResultLevel>http://www.prolearn-project.org/PLRF/1/lom</ResultLevel>
 <QueryMethod>http://www.prolearn-project.org/PLQL/l0</QueryMethod>
 </ResultInfo>
 <Record>
 <Metadata>
 <lom xmlns="http://ltsc.ieee.org/xsd/LOM">
 <general>
 <identifier>
 <entry>ARID43_12395</entry>
 <catalog>ARIADNE</catalog>
 </identifier>
 </general>
 </lom>
 </Metadata>
 </Record>
 <Record>
 <Metadata>
 <lom xmlns="http://ltsc.ieee.org/xsd/LOM">
 <general>
 <identifier>
 <entry>ARID43_12395</entry>
 <catalog>ARIADNE</catalog>
 </identifier>
 </general>
 </lom>
 </Metadata>
 </Record>
…
</Results>

Note that that, as http://www.prolearn-project.org/PLRF/1/lom was given as a resultsFormat,
the URI’s are encoded as LOM identifiers.

Result level 2

Given are the following query parameters:

 Page 13 of 27

Query Language: http://www.prolearn-project.org/PLQL/l0

Result format: http://www.prolearn-project.org/PLRF/2/dc

Query: “Germany and its Tribes” and Tacitus

As a result, the target can return the following:

<?xml version="1.0" encoding="UTF-8"?>
<Results xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xsi:schemaLocation="
 http://www.prolearn-project.org/PLRF/ http://www.cs.kuleuven.be/~stefaan/plql/plql.xsd
 http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/simpledc20021212.xsd
 http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"
 xmlns="http://www.prolearn-project.org/PLRF/">
 <ResultInfo>
 <ResultLevel>http://www.prolearn-project.org/PLRF/2/dc</ResultLevel>
 <RankingMethod>NrOfDownloads</RankingMethod>
 <QueryMethod>http://www.prolearn-project.org/PLQL/l0</QueryMethod>
 </ResultInfo>
 <Record position="1">
 <Metadata>
 <oai_dc:dc>
 <dc:title>Germany and its Tribes</dc:title>
 <dc:creator>Tacitus</dc:creator>
 <dc:language>en</dc:language>
 <dc:source>Complete Works of Tacitus. Tacitus. Alfred John Church. William Jackson
 Brodribb. Lisa Cerrato. edited for Perseus. New York: Random House, Inc. Random
 House, Inc. reprinted 1942. </dc:source>
 <dc:identifier>http://www.perseus.tufts.edu/cgi-
bin/ptext?doc=Perseus:text:1999.02.0083</dc:identifier>
 </oai_dc:dc>
 </Metadata>
 </Record>
…
</Results>

Result level 3

Given are the following query parameters:

Query Language: http://www.prolearn-project.org/PLQL/l1

Result format: http://www.prolearn-project.org/PLRF/3/lom

Query: lom.general.language = “en”; code

As a result, the following can be returned by the target.

<?xml version="1.0" encoding="UTF-8"?>
<Results xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.prolearn-project.org/PLRF/ http://www.cs.kuleuven.be/~stefaan/plql/plql.xsd
 http://ltsc.ieee.org/xsd/LOM http://ltsc.ieee.org/xsd/lomv1.0/lom.xsd"
 xmlns="http://www.prolearn-project.org/PLRF/">

 Page 14 of 27

 <ResultInfo>
 <ResultLevel>http://www.prolearn-project.org/PLRF/3/lom</ResultLevel>
 <RankingMethod>NrOfDownloads</RankingMethod>
 <QueryMethod>http://www.prolearn-project.org/PLQL/l1</QueryMethod>
 <Cardinality>5</Cardinality>
 </ResultInfo>
 <Record position="1" rankingValue="80">
 <Metadata>
 <lom xmlns="http://ltsc.ieee.org/xsd/LOM">
 <general>
 <identifier>
 <entry>ARID43_12395</entry>
 <catalog>ARIADNE</catalog>
 </identifier>

 <title>
 <string language="en">The Da Vinci Code</string>
 </title>
 <language>en</language>
 </general>
 <technical>
 <location>http://ariadne.cs.kuleuven.be/AWS/files/davincicover.jpg</location>
 </technical>
 </lom>
 </Metadata>
 </Record>
…
</Results>

More examples are available at: http://www.cs.kuleuven.be/~stefaan/PLQL/

4. Mapping PLQL to metadata management systems
This section explains how PLQL can be mapped to the following metadata management
paradigms.

• RDBMS: a mapping from PLQL level 0 to SQL will be contributed.

• Lucene: a mapping from both PLQL level 0 and level 1 to Lucene, a full featured
text search engine will be contributed.

• XML database management systems. Both PLQL level 0 and level 1 have been
mapped to XQuery.

First, an approach for creating compilers using flex/yacc will be outlined. This will give
perspective adopters of PLQL reusable information about how we proceeded in our
implementation. Next, the following 3 subsections will deal with the specific mappings to
SQL, the Lucene query language and XQuery.

 Page 15 of 27

Parsing PLQL with flex/yacc

Flex (fast lexical analyzer generator) is a lexical analyzer generator. These lexical
analyzers can recognize lexical patterns in text (PLQL queries in this case). Flex is often
used in combination with yacc (Yet Another Compiler Compiler) [FlexYacc], a computer
program that can generate parsers. Used together, a lexical analyzer will generate
tokens out of an input stream, which are parsed with a parser (generated with yacc).
This section describes how analyzing and parsing of PLQL queries was done using
flex/yacc technology.

For each level of PLQL, general purpose lexical analyzers have been generated that will
later serve for creation parsers for specific. All this code is open source and available on
the PLQL wiki page:

http://ariadne.cs.kuleuven.be/Lomi/index.php/QueryLanguages_v1.0

A java flex file is organized in three parts, as illustrated below:

User code
%%
options and declarations
%%
lexical rules

The first part (“user code” section) contains text that is copied to the top of the
generated lexer class. The following code illustrates this for the PLQL level 0 lexer:

package org.eun.PLQL.layer0;
import java.io.*;
%%

Next, the “options and declarations” section consists of options that allow customizing
the generated lexer and the declarations of macro’s and lexical states:

%class PLQLLayer0Parser
%byaccj
%unicode

%{

 private String temp;

 public PLQLLayer0Parser(java.io.Reader r, PLQLLayer0Analyzer yyparser) {
 this(r);
 this.yyparser = yyparser; }

%}

CHARSTRING1 = [^ .\t\"()=<>\/\\]+
CHARSTRING =[^\"]
NL = \n | \r | \r\n
AND = [aA][nN][dD]
LEFT_PATENTHESIS = "("
RIGHT_PATENTHESIS = ")"
REAL = [][0-9]*\.[0-9]+[]
INTEGER = [][0-9]+[]

%state STRING2

 Page 16 of 27

%%

The “lexical rules” section contains rules (expressed as regular expressions) and
actions that are to be executed when a scanner matches the associated regular
expression. The following excerpt from the “lexical rules” section illustrates this:

/* Match charString2*/
<YYINITIAL>\" {yybegin(STRING2) ; temp = "" ; }
<STRING2> {
\\\" {temp += "\"" ;}
{CHARSTRING} {temp += yytext() ;}
\" {
 yybegin(YYINITIAL) ;
 yyparser.yylval = new PLQLLayer0AnalyzerVal(temp);
 return PLQLLayer0Analyzer.CHARSTRING2;
 }
 }

The rules presented in this excerpt present how one can parse a charString2 and can
only be matched when the parser is within the lexical state. The lexical state YYINITIAL
is predefined and it is the state in which the lexer begins scanning. When the scanner
matches a double quote, the state is changed using the yybegin method to STRING2
and the variable temp that was defined earlier is reset to an empty string. As long as the
lexer is in this STRING2 state, the following regular expressions can match:

• \\\” matches against backslash-double quote and concatenates this to the temp
variable.

• {CHARSTRING} matches against the CHARSTRING regular, and adds this text to
the temp variable.

• \” The next occurrence of a double quota terminates the charString2. The state is
again set to YYINITIAL. The parsed value is assigned to the yylval field so that it
can be read by read by byacc. Finally, the CHARSTRING2 code is submitted to the
byacc parser.

Mapping to SQL
Using the PLQL syntax for PLQL level 0 described in section 2, it was trivial to write the
parser that turns PLQL 0 queries into SQL (The Parser can be seen in Appendix A).
However, some interoperability issues were due to differences between SQL supported
at the repositories. Unlike the lex-generated tokenizer that can be reused by all the
PLQL parser, only the rule-part of the yacc parser (i.e., the part that describes the
grammar) does not need to be changed. The actions attached to each rule, responsible
for generating repository-specific queries, need to be adapted for each repository.

 Page 17 of 27

Mapping to the Lucene query language
Lucene [Lucene] supports data with fields. Each document that is indexed in Lucene
has a number of fields with corresponding values associated to them. Unlike XML,
Lucene imposes a flat metadata structure on its document which makes full support for
PLQL level 2 very difficult to achieve.

The following table illustrates how a simple LOM metadata instance is mapped on a
Lucene document:

Lom instance Lucene document
<Lom
xmlns="http://ltsc.ieee.org/xsd/LOM">
 <general>
 <title>
 <string language="en">
 Pascal's Law</string>
 </title>
 <language>pl</language>
 <keyword>
 <string language="en">
 piston</string>
 </keyword>
 <keyword>
 <string language="en">
 pressure of a liquid</string>
 </keyword>
 </general>
 </Lom>

Fieldname Value
<Lom.general.title.string>
<Lom.general.title.language>
<Lom.general.language>
<Lom.general.keyword.string>
<Lom.general.keyword.language>
<Lom.general.keyword.string>
<Lom.general.keyword.language>

Pascal’s Law
en
pl
piston
en
pressure of ..
en

As a result of this mapping, the hierarchical structure of the original metadata instance
is lost. However, as this serialization into Lucene documents is straightforward, setting
up a Lucene index that offers native support for level 0 and 1 is now easy to achieve.

The following table exemplifies how PLQL queries can be mapped on this structure.

PLQL
level

PLQL query Corresponding Lucene query

0 “learning object” and dog “learning object” AND “dog”

1 Lom.general.title.string = "Design Patterns"
and Lom.general.title.language = "en"

Lom.general.title.string:”Design Patterns” AND
Lom.general.title.language:”en”

PLQL level 0 is very easy to map to Lucene and only requires the operator to be put in
capitals. In Lucene, a query can consist of different terms combined together with
Boolean operators. A Lucene term can be optionally preceded with the field name,
instructing the Lucene engine to search in the given field only. For PLQL level 1, a path
(eg. Lom.general.title.string) is hence mapped on such a Lucene field, while the
operand is mapped to the Lucene term.

 Page 18 of 27

Mapping to XQuery
This section will deal with the mapping of PLQL level 0 and 1 to XQuery. The advantage
of using an XML database management system with XML support is that translating
PLQL level 2 to XQuery is possible, as suggested by the following examples:

PLQL
level

PLQL query Corresponding XQuery

0 “learning object” and dog xquery version "1.0";
<results> {
 for $Lom in collection("null")/Lom
 where contains($Lom,"learning object")
 and contains($Lom,"dog")
 return $Lom } </results>

1 Lom.general.title = "Design Patterns"
and Lom.general.language = "en"

xquery version "1.0";
<results> {
 for $Lom in collection("null")/Lom
 where contains($Lom/general/title,"Design Patterns")
 and contains($Lom/general/language,"en")
 return $Lom } </results>

The mapping to XQuery is, at the time of writing, still work in progress. Future versions
of this mapping will offer support for:

• Conjunction of exact and approximate clauses as specified by PLQL level 1. The
current implementation is still based on the 0.8 version of the PLQL specification
(http://ariadne.cs.kuleuven.be/Lomi/index.php/QueryLanguages_v0.8)

• PLQL level 2.

• The query+result language that is defined in this deliverable. Currently, this
mapping still results in an XML “result”, listing each individual LOM instance that
matches the query.

5. Experimentation of PLQL
This section sheds light on the current implementations of PLQL; all implementations
were done on IEEE LOM compliant repositories.

PLQL in ARIADNE
PLQL level 0 and 1 have been implemented on top of the ARIADNE repository
component. The source code of this implementation is available on sourceforge:
(http://ariadnekps.svn.sourceforge.net/viewvc/ariadnekps/repository/).

The following figure is part of the ARIADNE’s AriadneNext architecture and presents
the ARIADNE metadata store. The entire architecture is available on:

http://ariadne.cs.kuleuven.be/mediawiki/index.php/AriadneNextArchitecture.

 Page 19 of 27

This metadata store has recently been implemented on top of an eXist XML store that
implements XQuery as a query language. The Query Service and Metadata Obtain
Service are thus implemented as an SQI service that offers support for PLQL level 0
and 1 and incorporates the “PLQL to XQuery” mapping, discussed earlier. The second
interface, the OAI-PMH harvest interface, will be discussed in the next section. The
Metadata Insert & Update Service does not fall within the scope of this deliverable.

OAI-PMH on top of SQI/PLQL
The Open Archives Initiative OAI-PMH is a protocol for metadata harvesting through
which harvesters can copy and obtain the metadata records of a repository.

This protocol can select records based on three features:

• A unique identifier that identifies an item within a (metadata) repository

• A datestamp representing the date when the record was last modified.

• A record can be part of certain sets, that can be used to selectively harvest records
from a repository.

The OAI-PMH interface on the ARIADNE metadata store was conceived such that a
harvesting request can be translated into an SQI/PLQL level 1 request. This strategy
makes this OAI-PMH implementation reusable on other SQI/PLQL metadata stores.
The OAI-PMH verbs that need to be mapped on PLQL are the following:

• GetRecord. This verb is used to retrieve an individual metadata record from a
repository. It takes an identifier as argument and uses that to pull the record out of
the repository. Such an OAI-PMH request is mapped on the following PLQL query
that returns one result:
Lom.metaMetadata.identifier.entry = “someId”

• ListRecords. This verb is used to harvest a repository. Optional arguments such as
from (lower bound for datestamp), until (upper bound for datestamp) and set enable
selective harvesting. For now, only support has been implemented for datestamp-
based selective harvesting. The following example PLQL query is currently used for
this purpose:
Lom.metaMetadata.contribute.date.dateTime > 2000-01-01
 and Lom.metaMetadata.contribute.date.dateTime < 2006-05-05

• ListIdentifiers. This verbs offers similar characteristics to ListRecords but only lists
the header records including the identifier and the datestamp.

 Page 20 of 27

As a query results format, this SQI/PLQL to OAI-PMH gateway uses result level 2. Note
that, not supporting level 2 PLQL queries imposes restrictions on the LOM application
profile that is used at a repository, i.e. a contributed element can appear only once
under the metaMetadata category in LOM.

If two contributed elements were present with the first one having a date lower then the
lower bound and the second one having a date higher then the upper bound, this LOM
record would match against the PLQL query as both contribute elements would match
against one clause. A PLQL level 2 query like the following one, indicates that the
dateTime of one of the contribute elements needs to match against both conditions.

Lom.metaMetadata.contribute.date.(dateTime > 2000-01-01
and dateTime < 2006-05-05)

Although, support for PLQL level 2 has not been implemented yet, this binding has
already been successfully implemented in the MELT eContentPlus project. In this
project, the architecture that is illustrated bellow has been implemented.

O
A
I-

PM
H

Ariadne
Harvested metadata

EUN
Harvested metadata

O
A
I-

PM
H

This architecture is constituted of an intermediate repository, filled with harvested
records from MELT content providers that expose metadata again through an OAI-PMH
target. This OAI-PMH target runs on the ARIADNE PLQL enabled metadata store (see
previous section) and hence implements the gateway, discussed in this section.

PLQL in the EUN Learning Resource Exchange

The EUN Learning Resource Exchange (LRE) is a service that provides the means to
unlock the educational content hidden in digital repositories across Europe and share it
among all partners of the LRE and their users. The service is offered to actors providing
digital content: Ministries of Education, regional educational authorities, commercial
publishers, broadcasters, cultural institutions and other non-profit organisations who are
offering extensive but heterogeneous catalogues and repositories of online content to
schools.

 Page 21 of 27

From a technical standpoint, the LRE is a federation of heterogeneous learning
resource repositories. These repositories rely on technologies as diverse as relational
databases, XML databases, text file indexers and other ad hoc solutions to manage
their metadata. The LRE uses an LRE LOM application profile both as a common
metadata exchange format and as a federated schema (i.e., unified data schema) for
getting access to the federation.

Given the requirements of the LRE users (i.e., teachers, pupils) in terms of learning
resource discovery, a LRE query language should allow for expressing the following 12
basic query types (and their Boolean combinations: and, or, not). Search for:

1. Resources in a given language (LOM 1.3)
2. Resources described by metadata in a given language
3. Resources of a given structure
4. Resources with a given status (e.g., draft)
5. Resources targeting an audience within a given age range
6. Resources with a given creative commons license
7. Resources with a given author
8. Resources of a given "learning resource type"
9. Resources with a given creation date
10. Resources of a given mime-type
11. Resources covering a given curriculum subject (competencies)
12. Resources described with a given thesaurus descriptor

Among them, queries 1, 2, and 10 can be expressed in PLQL layer 1.

Query
Type

Number

Example of Query of This Type Query Example in PLQL Level 1

1 Resources in English lom.general.language=en

2 Resources described by metadata in English lom.metametadata.language=en

10 Gif images lom.technical.format = image/gif

Queries 3, 4, 5, 6, 8 can only be expressed in PLQL layer2.

Query
Type

Number

Example of Query of
This Type

Query Example in PLQL Level 2

3 Atomic resources

lom.general.structure.(source=”LOMv1.0” and
value=”atomic”)

4 Resources that are draft

lom.lifeCycle.status.(source=”LOMv1.0” and
value=”draft”)

5 Resources intended to
pupils from 12 to 13

lom.educational.typicalAgeRange.(string = 12-13 and

 Page 22 of 27

 language = x-t-lre)

6 Attribution share-alike
resources

lom.rights.description.(string = “by-sa” and language =
“x-t-cc”)

8 Exercises lom.educational.learningResourceType.(source=LREv
3.0 and value=”exercise”)

The remaining 4 queries (i.e., 7, 9, 11, and 12) involve constraints between different LOM
elements that cannot be expressed directly with the current version of PLQL. To overcome this
limitation, an LRE Application Profile of PLQL level 2 was created that defines a new ad hoc
“lre” context in addition to the three contexts already supported by PLQL (i.e., “lom”, “dc”, and
“mpeg”). As showed in the table below, the lre context was also used to propose a simplified
alternative for queries only expressible with PLQL level 2.

Query
Type

Number

Examples of
queries of this
type

Query examples expressed in
PLQL Level 2

Query examples
expressed in LRE PLQL

3 Atomic resources

lom.general.structure
(source=”LOMv1.0” and
value=”atomic”)

lre.structure = atomic

4 Resources that are
draft

lom.lifeCycle.status.(source=
”LOMv1.0” and value=”draft”)

lre.status=draft

5 Resources
intended to pupils
from 12 to 13

lom.educational.typicalAgeRange.
(string = 12-13 and language =
x-t-lre)

lre.typicalAgeRange=
12-13

6 Attribution share-
alike resources

lom.rights.description.(string =
“by-sa” and language = “x-t-cc”)

lre.cc=by-sa

7 Resources by
Frans Van Assche

NA lre.author=
”Frans Van Assche”

8 Exercises lom.educational.
learningResourceType.(source=
LREv3.0 and value=”exercise”)

lre.learningResourceType
= “exercise”

9 Resources created
on April 4, 2004

NA lre.creationDate=
2007-04-04

11 Resources
addressing
competency [act_3,
top_5, top_7]

NA lre.competency =
[act_3,top_5,top_7]

12 Resources indexed
with LRE thesaurus
descriptor 195

NA lre.discipline = 195

 Page 23 of 27

As a proof of concept, a first repository supporting the LRE PLQL profile was implemented
using LUCENE and connected to a test instance of the LRE. It can be accessed at
http://stove.test.eun.org:9080/LRE-Search/. Currently, this prototype returns results in layer 0
and strict LOM (the default result format supported by the LRE). The LRE PLQL was presented
in Brussels to the developers of the CALIBRATE project on June 11, 2007 and should be
supported by most of the LRE repositories by the end of September 2007.

6. Related works
The work presented in this deliverable is the result of a long stream of research. A fundamental
step in this research is the ARIADNE project [ARIADNE]. The core of this project is a distributed
network of learning repositories. ARIADNE offers 3 tier architecture: at the bottom a repository
enables searching, publishing and retrieving learning objects; an API, that is bound to web
services, enables loosely coupled manipulation of the bottom layer, applicatons such as the
moodle plugin or the ALOCoM office plugin, make the knowledge pool transparently accessible
from within third party applications. A lot of work [ARIADNE, 2001] was devoted to increase the
interoperability between ARIADNE and other Learning Object Repositories that rely on IEEE
LOM. To achieve this goal, ARIADNE profile has been mapped into the LOM structure. XSLT
has been used in order to transform ARIADNE XML into IEEE LOM XML.

ARIADNE is not the only project devoted to managing learning object metadata. Nowadays,
more and more systems face the problem of mapping and representing metadata according to
some metadata standard [Rehak, D., 2003]. This mapping allows to share and to exchange
learning objects as well as their metadata. Metadata is defined as “information about an object;
be it physical or digital” [Duval, E., 2001], it is used to facilitate search, evaluation, acquisition
and use of learning objects. Typically, Learning objects and their associated metadata are
located in distributed Learning Object Repositories (LOR’s). However, there is more than one
approved standard used to describe the properties of learning objects, for example the Learning
Object Metadata (LOM) standard [IEEE, 2002] and the Dublin Core standard [DCMES, 1999].

Different Learning Object Repositories try to address different needs. Therefore, metadata
designers may select a number of metadata elements as well as their related value sets from
one or more metadata standards [Heery, R., 2000]. The specification of these metadata
elements and value sets is called an “application profile”. For simplicity, we will use the term
‘Profile’ instead of ‘application profile’ in this paper. Profiles are used to adapt metadata
specifications to the requirements of the local community such as multilingual and multicultural
requirements [Duval, E. et al, 2002]. Therefore, each of the Learning Object Repositories uses a
different profile to define learning objects. Examples of such profiles are the metadata sets of
CanCore [CanCore, 2002], SingCore [SingCore, 2002], SCORM [ADL, 2001]. Learning Object
Repositories aim to share and reuse metadata. Therefore, syntax and semantics of metadata
elements, as well as their value sets, should be represented according to a particular metadata
standard. To do so, we need to conceptually map data elements of different profiles and their
related values into elements and values of a standard schema, and represented in a
semantically interoperable [Euzenat, J., 2001] and technically sharable representation such as
XML or RDF [IEEE RDF, 2002].

The Networked Digital Library of Theses and Dissertations (see www.theses.org) is more
limited than ARIADNE in scope, as it is restricted to theses and dissertations from around the
world. Architecturally, it operates on a rather different model from the KPS of loosely coupled

 Page 24 of 27

sites, so searches need to be federated or based on harvesting, as in the Open Archives
Initiative [OAI]. The Computer Science Teaching Center [CSTC] is more similar to the
ARIADNE, as it attempts to build a digital library of computer science teaching resources.
Although its review process is more elaborate, its metadata set is much simpler, and the
number of documents in CSTC today is limited. The U.S.-based Science, Mathematics,
Engineering, and Technology Education initiative is also building a digital library [SMETE].
Registered users can add comments on resources, a feature supported in ARIADNE, but that
has attracted limited user activity. It should be relatively straightforward to establish
interoperability between ARIADNE and SMETE, as the latter generates LOM instances in XML.
The Education Network Australia (EdNA) supports a repository of 10,000 evaluated resources
called EdNA Online (see www.edna.edu.au). Its metadata structure is based on the 15 Dublin
Core metadata elements, extended with nine EdNA-specific elements. These nine elements
relate mainly to meta-metadata and reviews of resources. One pedagogical metadata
element— the “user level”—is included, and searching is supported over only five fields. EdNA
metadata is typically stored in HTML metatags, and items may be suggested by submitting their
URLs.

The metadata structure of the Gateway to Educational Materials (GEM) digital library (see
www.geminfo.org) is also based on the Dublin Core metadata element set but includes more
pedagogical attributes adopted from the IEEE LTSC LOM work. As in EdNA, only a limited
number of elements, in this case five, are searchable. The organizational structure is similar to
ARIADNE’s, requiring consortium members to not only consume but contribute to the resources
accessible through the gateway. Neither EdNA nor GEM include the actual document in the
server.

7. Conclusions
In this deliverable we have presented PLQL, ProLearn's proposal for a query language for
learning object repositories. This work has followed on the heels of previous achievements in
defining SQI (the Simple Query Interface). The interface was born as a unified access point to
possibly distributed and heterogeneous repositories. Therefore, PLQL has to provide a unique
language that can be used regardless of the many underlying repositories actually being
queried. This positions PLQL as a "query interchange format". To accommodate the great
diversity of the different repositories and their capabilities, we have shown that PLQL must be
able to combine exact search and approximate search. This lead us to define the language
hierarchically, using incremental layers of complexity and expressiveness. Moreover, to provide
interoperability we have also provided a detailed query result format.

In order to achieve lasting impact with PLQL, we will combine the following approaches:

• We will continue to collaborate with many of the leading repositories (http://globe-
info.org/) and hope to convince them to adopt PLQL, or at least to provide support for
receiving and sending queries in PLQL as an exchange format.

• We will introduce PLQL as a candidate in either the CEN/ISSS Workshop on Learning
Technologies, the newly formed CEN Technical Committee on Learning Technologies,
or the IEEE Learning Technologies Standards Committee. Preferably, we would initiate
this as a joint activity of both of them, but it remains to be seen if this will be feasible.

 Page 25 of 27

8. Bibliography
[ADL, 2001]. SCORM Metadata set. Available at: http://www.adlnet.org. ARIADNE, 2001. ARIADNE Foundation.
Available at: http://www.ariadne-eu.org/.

[ARIADNE] http://www.ariadne-eu.org/index.php

[ARIADNE 2001] Michael Day, Preservation 2000, report on the International Conference on the Preservation and
Long Term Accessibility of Digital Materials, York, 7-8 December 2000. Ariadne, No. 26, January 2001.
http://www.ariadne.ac.uk/issue26/metadata/

[BNF] http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

[CanCore, 2002]. CanCore Application Profile. Available at: http://www.cancore.ca.

[CQL] Common Query Language: http://www.loc.gov/standards/sru/cql/

[CSTC] www.cstc.org

[DCMES,1999]. Dublin Core Metadata Element Set v1.1, available at:
http://dublincore.org/documents/1999/07/02/dces/.

[Duval, E., 2001]. Metadata Standards: What, Who & Why. Journal of Universal Computer Science, Vol. 7, No. 7, pp
591-601, Special Issue: I-Know 01 - International Conference on Knowledge Management.

[Duval, E. et al, 2002]. Metadata Principles and Practicalities. D-Lib Magazine, Vol. 8, No.3.

[Euzenat, J., 2001]. Towards a principled approach to semantic interoperability. IJCAI 2001 Workshop on ontology
and information sharing, Seattle.

[FlexYacc] Lex and YACC primer/HOWTO, http://ds9a.nl/lex-yacc/cvs/lex-yacc-howto.html

[Heery, R. 2000]. Application profiles: mixing and matching metadata schemas. Ariadne, issue 25. Available at:
http://www.ariadne.ac.uk/issue25/app-profiles/intro.html.

[IEEE, 2002]. IEEE 1484.12.1-2002. IEEE Learning Object Metadata.

[IEEE RDF, 2002]. IEEE Learning Object Metadata RDF binding. at: http://kmr.nada.kth.se/el/ims/mdlomrdf.html

[Lucene] http://lucene.apache.org/java/docs/index.html

[OAI] www.openarchives.org

[Rehak, D., 2003]. Rehak, D. and Mason, R., 2003. Keeping the Learning in Learning Objects. Carnegie: Learning
Systems Architecture Lab, Mellon University. Available at: http://www.lsal.cmu.edu/lsal/expertise/papers/

[SingCore, 2002]. SingCore Application profile. at: http://www.ecc.org.sg/eLearn/MetaData/SingCORE/index.jsp.

[SMETE] www.smete.org

[VSQL] Stefaan Ternier, Ben Bosman, Erik Duval, Connecting OKI And SQI: One Small Piece Of Code, A Giant Leap
For Reusing Learning Objects. In Proceedings of World Conference on Educational Multimedia, Hypermedia and
Telecommunications 2006 (pp. 825-831). Chesapeake, VA: AACE

 Page 26 of 27

Appendix A: Parser for translating PLQL Level 0 into SQL

import java.io.*;
import java.util.StringTokenizer;
%}

%token NL /* newline */
%token <sval> CHARSTRING1 /* First kind of keyword */
%token <sval> CHARSTRING2 /* Second kind of keyword */
%token <sval> AND /* Second kind of keyword */
%token <sval> LEFT_PATENTHESIS /* Second kind of keyword */
%token <sval> RIGHT_PATENTHESIS /* Second kind of keyword */
%token <ival> INTEGER /* Integer number */
%token <dval> REAL /* real number */

%type <sval> plql
%type <sval> clause
%type <sval> keywordClause
%type <sval> operand
%type <sval> term1
%type <sval> term2
%type <sval> charString1
%type <sval> charString2
%type <sval> integer
%type <sval> real

%start plql

%%

/* rule 0-1 */
plql: clause {
 $$ = "SELECT sto.content \n FROM fire_search_tab sea, fire_store_tab sto
\n where \n sea.xml_id = sto.xml_id \n and " + $1;
 query = $$;} ;
/* rule 0-2 */
clause:keywordClause{}
 |LEFT_PATENTHESIS clause RIGHT_PATENTHESIS {

$1 = " (" + $2 + ") ";}
 |clause AND clause {

$1 = $1 + " and " + $3;};
/* rule 0-3 */
keywordClause:operand;

/* rule 0-4 */
operand: term1
 |term2
 |integer
 |real;
/* rule 0-5 */
term1: charString1;
/* rule 0-6 */
term2: charString2;
/* rule 0-7 */
charString1: CHARSTRING1 {
 keyword1 = $1;
 $1 = " \t(\n";
 $1 += "\t\tlower(sea.title) like lower('" + keyword1 + "')\n";
 $1 += "\t\tor\tlower(sea.keywords) like lower('" + keyword1 + "')\n";
 $1 += "\t\tor\tlower(sea.description) like lower('" + keyword1 + "')\n";
 $1 += "\t)";

 Page 27 of 27

 };
/* rule 0-8 */
charString2: CHARSTRING2 {
 keyword1 = $1;
 $1 = " \t(\n";
 $1 += "\t\tlower(sea.title) like lower('" + keyword1 + "')\n";
 $1 += "\t\tor\tlower(sea.keywords) like lower('" + keyword1 + "')\n";
 $1 += "\t\tor\tlower(sea.description) like lower('" + keyword1 + "')\n";
 $1 += "\t)";
 };
/* rule 0-9 */
integer: INTEGER {
 int number = $1;
 $$ = " \t(\n";
 $$ += "\t\tlower(sea.title) like lower('" + number + "')\n";
 $$ += "\t\tor\tlower(sea.keywords) like lower('" + number + "')\n";
 $$ += "\t\tor\tlower(sea.description) like lower('" + number + "')\n";
 $$ += "\t)";
 };
/* rule 0-10 */
real: REAL {
 double number = $1;
 $$ = " \t(\n";
 $$ += "\t\tlower(sea.title) like lower('" + number + "')\n";
 $$ += "\t\tor\tlower(sea.keywords) like lower('" + number + "')\n";
 $$ += "\t\tor\tlower(sea.description) like lower('" + number + "')\n";
 $$ += "\t)";
 };
%%

