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Computing High-Frequency Scattered Fields by

Beam Propagation Methods: A Prospective

Study

Xavier ANTOINE∗ Yuexia HUANG† Ya Yan LU‡

Abstract

This paper presents some theoretical and numerical investigations

concerning the fast computation of an exterior wave field to a scatterer

by the Beam Propagation Method (BPM). Different models are pre-

sented and compared. It appears that the approach is able to correctly

model the propagation of the propagative modes of the wave field while

inaccuracies still remain for the evanescent and transition modes.

Keywords: acoustic scattering; beam propagation methods; one-way equa-

tions.

1 Introduction

The aim of this paper is to prospect the possible application of the Beam

Propagation Method (BPM) for solving high-frequency scattering problems.

To focus our study on special features of the BPM, we rather restrict our de-

velopments to the sound-soft scattering problems but extensions could also be

considered to more general problems like sound-hard or impedance problems.
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Hence, the wave field u satisfies the Helmholtz equation in the unbounded

domain exterior to the cylinder and can be decomposed as

u = u(i) + u(s),

where u(i) is the given incident wave, u(s) is the unknown scattered wave solu-

tion to the boundary-value problem



















∆u(s) + k2u(s) = 0, in Ω+,

u(s) = −u(i), on ∂Ω,

lim
r→∞

√
r

(

∂u(s)

∂r
− iku(s)

)

= 0,

where Ω is the cross-section of the cylinder, Ω+ is the domain exterior to Ω,

∂Ω is the boundary of Ω, r is the radial variable in the polar coordinate system

and k = 2π/λ is the wavenumber. The radiation condition at infinity ensures

the uniqueness of the solution. A brief illustration of the problem is given on

Figure 1.

W
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Figure 1: Scattering by a two-dimensional obstacle.

Various numerical methods have been developed over the past decades to

solve the time-harmonic acoustic problem. One well-known possible approach

is to truncate the unbounded domain Ω+ with an Artificial Boundary Con-

dition (ABC) and to use the Finite Element Method (FEM) in a bounded

domain [15]. This method can handle scatterers with complicated boundaries.

Another important method is the Boundary Integral Equation (BIE) method

[3, 4, 5]. The problem is then reformulated as an integral equation defined

on ∂Ω and solved through techniques combining an iterative linear algebra

solver [14] and compression algorithms like e.g. the Fast Multilevel Multipole
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(FMM) technique[13]. In many applications, the angular frequency ω is ex-

tremely high, the wavenumber k = ω/c is large and the wavelength λ = 2π/k

is much smaller than the characteristic length of the scatterer. Then, both

the ABC-FEM and the BIE have difficulties in solving such large scale prob-

lems since, in particular, the associated linear systems have a very large size.

Moreover, these two methods require that an integral must be evaluated at

any exterior point where the solution is desired. Both these two methods re-

quire more than O(N) operations for each point where N is the number of

grid points used to discretize the boundary. When N is large, this is quite

expensive.

The Beam Propagation Method (BPM) is an efficient approximation method

widely used in optical waveguide modelling. Under the assumption that the

wave field is dominated by its forward component, the BPM gives rise to

one-way equations that approximate the Helmholtz equation. It is useful for

waveguides that change slowly in the propagation direction. The one-way

equations have only a first order derivative in the propagation direction and

can be efficiently solved as an initial value problem. Operator rational approx-

imations are involved in solving the one-way models. There are various types

of rational approximations to the one-way equations. For example, the BPMs

can be solved by rational approximations to the square root operator [9, 10, 12]

or rational approximations to the exponential of the square root operator, i.e.

the propagator [11, 17].

In this paper, an attempt is made to apply the BPM method to the scatter-

ing problem. We develop an approximate method which can efficiently solve

the scattered wave field. Our method requires only O(1) operations for each

point where the solution is desired.

The plan of the paper is the following. In Section 2, we use a curvilin-

ear coordinate system to rewite the scattering problem following the parallel

surfaces to the scatterer. We then explain in details in the third Section the

approach by Beam Propagation Methods, developing different models and ap-

proximations as well as rational approximations for more efficiency. Section 4

proposes some numerical simulations and investigations to see how the method

applies in terms of efficiency and accuracy. Finally, the last Section gives some

conclusions.
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2 Curvilinear coordinate system

The scattering problem is different from the propagation problem in waveg-

uides and in particular, the geometry itself must be treated with special atten-

tion. In the following, we first develop a coordinate transformation to apply

the BPM method in the new coordinate system.

We assume that the boundary of the scatterer ∂Ω is given by

x = f(s), y = g(s), 0 ≤ s ≤ l,

where s is the arclength and l is the total length of ∂Ω. Using the counter-

clockwise direction as the direction of increasing s, we have an outward unit

normal vector given by

~n(s) = (g′(s),−f ′(s)) . (1)

As illustrated in Figure 2, any point (x, y) in the exterior domain Ω+ (assuming

x0

x

l

s

O

s

x
W

Figure 2: The curvilinear coordinate transform.

that Ω is convex) can be written as

{

x = f(s) + ξg
′

(s)

y = g(s)− ξf
′

(s),
(2)

for 0 ≤ s ≤ l and 0 ≤ ξ ≤ +∞. Under the new coordinate system (ξ, s), the

Helmholtz equation becomes

uξξ +
γξ
γ
uξ +

1

γ
(
1

γ
us)s + k2u = 0,

where γ = 1+ξκ(s) and κ is the curvature of the boundary ∂Ω. For u = γ−1/2v,

we have

vξξ +

(

1

γ2
vs

)

s

+

(

k2 +
γ2ξ
4γ2

− γss
2γ3

+
γ2s
4γ4

)

v = 0. (3)
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For convenience, we define an operator L by

L(ξ) =
∂

∂s

(

1

γ2
∂

∂s

)

+ k2 +
γ2ξ
4γ2

− γss
2γ3

+
γ2s
4γ4

. (4)

It acts on functions of s and it depends on ξ as a parameter.

3 The BPM approach

In the new coordinate system, the scattered wave propagates outwards in the

increasing ξ direction. This suggests that the scattered field may be approx-

imated by one-way models that are first order in ξ. Following the BPM for

optical waveguides, we first approximate equation (3) by one-way equations

and then apply operator rational approximations.

There are a few different one-way models used in the BPM. One possibility

is to approximate equation (3) by vξ = i
√

L(ξ)v using the square root operator
√

L(ξ). Here, we adopt the Energy-Conserving model [7, 8, 16] which gives

improved accuracy for slowly varying waveguide. The energy-conserving model

can be derived from the continuity of the power flux and it involves a transform

using the fourth root of the operator L. We have
{

φξ = i
√
Lφ,

φ = 4
√
Lv, φ(0) = 4

√
Lv(0).

(5)

In terms of the original function v, the energy-conserving one-way model is

vξ =

(

i
√
L− L−1/4d(L

1/4)

dξ

)

v.

Notice that the original boundary value problem of the Helmholtz equation for

u is now approximated by an initial value problem for φ. As in the standard

BPM, the square root (and the fourth root) of L must be approximated. For

this purpose, we introduce the operator X by

L = k20(1 +X),

where k0 is a reference wavenumber. Then, equation (5) becomes
{

φξ = ik0
√
1 +Xφ

φ(0) = − 4

√

L(0)u(i).

Formally, for the step from ξj to ξj+1 = ξj + h, we have

φj+1 = Pφj, P = eik0h
√
1+Xφj, (6)
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where P is the one-way propagator and X is evaluated at the midpoint ξ =

ξj + h/2.

The propagator P can be approximated by rational functions of X. For

waveguide problem, the standard [p/p] Padé approximation provides a good

approximation for the propagating modes but fails to suppress the evanescent

modes, while the [(p−1)/p] Padé approximant can damp the evanescent modes

but gives less accurate results for the propagating modes. For the current scat-

tering problem, a proper treatment of the evanescent modes appears necessary.

The propagator-θ method [6] combines the [p/p] and [(p− 1)/p] Padé approx-

imants by a parameter θ. With a suitable choice of p and θ, the propagator-θ

method gives a better balance for approximating both the propagating and

evanescent modes.

The propagator-θ approximant of degree p takes the following form

P ≈ Rp(θ) =
1 + α1X + . . .+ αp−1X

p−1 + αpX
p

1 + β1X + . . .+ βp−1Xp−1 + βpXp
(7)

=

p
∏

k=1

1 + ckX

1 + bkX
= 1 +

p
∑

k=1

akX

1 + bkX
(8)

= d0 +

p
∑

k=1

dk
1 + bkX

. (9)

It is related to the following [p/p] and [(p− 1)/p] Padé approximants

Rp−1,p =
1 + α

(0)
1 X + . . .+ α

(0)
p−1X

p−1

1 + β
(0)
1 X + . . .+ β

(0)
p−1X

p−1 + β
(0)
p Xp

(10)

Rp,p =
1 + α

(1)
1 X + . . .+ α

(1)
p−1X

p−1 + α
(1)
p Xp

1 + β
(1)
1 X + . . .+ β

(1)
p−1X

p−1 + β
(1)
p Xp

. (11)

The coefficients {α(0)
i }, {β(0)

i }, {α(1)
i } and {β(1)

i } can be solved from a linear sys-

tem of equations assuming that the Taylor coefficients of the function eihk0
√
1+X

is available. The coefficients {αi} and {βi}, i = 1, 2, ..., p, can be calculated

from

αi = θα
(1)
i + (1− θ)α

(0)
i , βi = θβ

(1)
i + (1− θ)β

(0)
i ,

where α
(0)
p = 0 and θ ∈ [0, 1]. The expression (9) is more convenient for

numerical implementation than the standard form (7). The coefficients ck and

bk are first obtained by factorizations of the dominator and numerator of (7).
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Coefficients ak and dk can be calculated from

ak = (ck − bk)
∑

j 6=k

cj − bk
bj − bk

, (12)

dk = −ak
bk
, d0 = 1−

p
∑

k=1

dk. (13)

With the rational approximation (9), the propagation step (6) is approximated

by

φj+1 = Pφj ≈ eihk0

(

d0 +

p
∑

k=1

dk
1 + bkX

)

φj

= eihk0

(

d0φj +

p
∑

k=1

dkwk

)

, (14)

where wk is solved from

(1 + bkX)wk = φj, k = 1, 2, ..., p. (15)

Since X is related to L as in (4), the discretized form of (15) is a periodic

tridiagonal system. If N is the number of grid points for discretizing the s

variable, the required number of operations in each step is O(N). Therefore,

the number of operations required for each point is only of O(1).

The 4-th root operator 4
√
L =

√
k0

4
√
1 +X must be evaluated when the

unknown function v is transformed to φ, or vice versa. If the scattered wave

field is required in the entire computational domain, this operator should be

evaluated after each marching step of φ. In order to keep O(1) operations, a

rational approximation for 4
√
1 +X is used.

For a constant ν, the function q(x) = (1 + x)ν has a continued fraction

expansion as

q(x) = 1 +
σ1x

1 + σ2x

1 +
σ3x

1 +
. . .

(16)

where σ1 = ν and

σ2k =
k − ν

2(2k − 1)
, σ2k+1 =

k + ν

2(2k + 1)
, (17)

for k = 1, 2, · · · . Let qm(x) be the truncation of (16) up to the term σmx, we

have

q2m(x) = Rm,m(x), (18)
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where Rm,m is the [m,m] Padé approximant of q(x). Furthermore, the sequence

{q2m(x)} converges to q(x) for all complex x, except for −∞ < x < −1 [10].

For practical computation we rearrange q2m(x) as

q2m(x) = 1 +
σ1x

1 + · · ·
1 +

σ2mx

1 + iτ

=
m
∏

k=1

1 + c̃kx

1 + b̃kx
= 1 +

m
∑

k=1

ãkx

1 + b̃kx
(19)

= d̃0 +
m
∑

k=1

d̃k

1 + b̃kx
. (20)

The coefficients {b̃k} and {c̃k} can be calculated from a tridiagonal matrix

related to the coefficients {σk}, and we can use the same formulas (12) and

(13) to calculate coefficients {ãk} and {d̃k}.
For our case, we set ν = 1/4. The initial value of φ can be approximately

evaluated by

φ0 =
√

k0(1 +X)1/4v0 ≈
√

k0(d̃0 +
m
∑

k=1

d̃k

1 + b̃kX
)v0

=
√

k0(d̃0v0 +
m
∑

k=1

d̃kηk), (21)

where the operator X is evaluated at ξ = 0 and wk is solved from

(1 + b̃kX)ηk = v0, k = 1, 2, ...,m. (22)

The transformation from φ to v, i.e.

vj+1 = k
−1/2
0 (1 +X)−1/4φj+1 (23)

can be implemented similarly. As in (14) and (15), the total number of opera-

tions needed in these approximations is also of O(N). As far as the scattered

wave field is concerned, the number of operations spent on each point is only

of O(1).

4 Numerical results

We consider the scattering problem of a circular cylinder centered at the origin

with radius a as shown in Figure 3. The boundary of the circular cross-section
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is given by x = a cos θ and y = a sin θ. The outward unit normal vector is

~n(s) = (cos θ, sin θ). In terms of ξ and s, the coordinate of a point (x, y) in Ω+

are

x = (a+ ξ) cos
s

a
, y = (a+ ξ) sin

s

a
.

Note that r = a+ ξ for this case. The operator L(ξ) becomes

L(ξ) =
a2

(a+ ξ)2
∂2

∂s2
+ k2 +

1

4(a+ ξ)2
. (24)

The incident plane wave u(i) is given by

u(i) = − exp (ik(x cosψ + y sinψ)), (25)

where ψ is the incident angle. In the following, we assume that a = 1, ψ = 0

a

y

x

O

Incidence u( )i

Figure 3: The scattering problem of a circular cylinder.

and k = 35. Numerical results at ξ = 8, i.e. r = 9, calculated by BPM are

given in Figure 4. These results are obtained with N = 400, h = 0.1, p = 3,

θ = 0.8 and m = 6. The analytic solution given in the Mie series is plotted

for comparison. It is clear that the BPM solution is a good approximation in

the interval where the scattered wave is strong, and it is less accurate in other

locations. In particular, the BPM solution has some undesirable oscillations.

For another example, we consider the scattering of an elliptical cylinder.

The incident plane wave has an incident angle ψ = 35o (as shown in Figure 5).

The cross-section of the elliptical cylinder has semi-axis a = 1 and b = 0.25.

The boundary is discretized by N = 1600 points. A reference solution is

obtained by the BIE method. In figure 6, we compare the reference solution

with the BPM solutions at r = 9. The BPM solutions are obtained with two

different stepsizes: h = 0.1 and h = 0.01. Both BPM solutions are good
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Figure 4: Magnitude of the scattered wave of a circular cylinder at r = 9.

approximations when the scattered wave is strong, but they produce incorrect

oscillations when the scattered wave is weak.

a

y

x

O

y

b

Incidence u( )i

Figure 5: The scattering problem of an elliptic cylinder for plane incident wave with an

incident angle ψ.

To understand the limitation of our method, we expand the plane incident

wave u(i) in a series of Bessel functions as follows:

u(i) = − exp(ikr cos(θ − ψ))

= −
+∞
∑

m=−∞
imJm(kr) exp(im(θ − ψ)) =

+∞
∑

m=0

u(i)m ,



11

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r=9(ξ=8)

θ

A
B

S

 

 

BPM h=1/10
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Figure 6: Magnitude of the scattered wave of an elliptic cylinder for a plane incident

wave with ψ = 35o.

where

u(i)m = imcmJm(kr) cos(m(θ − ψ))

with c0 = 1 and cm = 2 for m = 1, 2, .... For this scattering problem, each

term u
(i)
m gives rise to its scattered wave

u(s)m = cm
Jm(ka)

H
(1)
m (ka)

H(1)
m (kr) cos(m(θ − ψ)),

where H
(1)
m is the Hankel function of the first kind. Therefore, the exact scat-

tered wave for the plane incident wave can be written in the following Mie

series:

u(s) =
+∞
∑

m=0

u(s)m . (26)

The above infinite sum can be truncated as follows:

u(s) ≈ u(s),M =
M
∑

m=0

u(s)m .

In Figure 7, we plot the absolute values of u
(s)
m for θ = 0, m = 0, ..., 60 and

at r = 2 and r = 9. We observe that the first 40 (a quantity slightly larger
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than ka) terms are significant. Therefore, M should be at least 40 if u(s),M

is to be a good approximation of u(s). This suggests that to obtain a BPM

solution with acceptable accuracy at least the same number of terms should

be properly modelled.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

m

|u
(s

)

m
|

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

m

|u
(s

)

m
|

Figure 7: The magnitude of u
(s)
m for m = 0, . . . , 60 at r = 2 (the upper one) and r = 9

(the lower one).

For this example, the E-C model can be solved analytically. In fact, the

exact solution um = u
(s)
m is separable and

L(ξ)um =

[

−m2a
2

r2
+ k2 +

1

4r2

]

um =

[

1− 4m2

4r2
+ k2

]

um.

That is, the operator L(ξ) becomes a scalar multiplicator on um. Thus, its

square root can be evaluated directly (without using rational approximations).

Following the decomposition of the exact solution (26), we can decompose φ

(of the E-C model) as

φ =
∞
∑

m=0

φm.
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Then, the propagation step from ξj to ξj+1 is reduced to:

φm,j+1 ≈ exp
(

ih
√

L(ξj+1/2)
)

φm,j

= exp

(

ih

√

1− 4m2

4(a+ ξj+1/2)2
+ k2

)

φm,j.

The transformation between φ and v can be implemented in a similar manner.

Next, we compare the truncated analytic solution u(s),M with the analytic

solution (E-C) of the E-C model and the fully numerical E-C BPM solution

(RAtoEC). The solution E-C is also truncated to M terms and the numerical

solution RAtoEC follows a starting field corresponding to the incident field

truncated toM terms. These solutions are compared forM = 30 andM = 40.

For M = 30, Figure 8 indicates that both E-C and RAtoEC coincide with the

exact solution u(s),30 at r = 2 and r = 9. This, however, is not the case for

M = 40 as shown in Figure 9. It appears that the one-way E-C equation

cannot accurately model the modes u
(s)
m for large m.

To gain a better understanding, we compare the solutions for a single

m. That is, we compare u
(s)
m with the corresponding analytic solution of

the E-C model and the fully numerical E-C BPM solution (with a single

mode incident wave). In Figure 10-12, we compare these solutions u
(s)
m for

m = 32, 34, 35, 36, 37 and 40 for r ∈ [1, 9]. It is clear that the solutions of

the E-C model are quite different from u
(s)
m for m = 34 and m = 35, and

the rational approximations used with the E-C model give poor results for

m ≥ 36. A possible explanation is that u
(s)
m has a strong evanescent behavior

near the scatterer and this is difficult to model by the E-C equation and ra-

tional approximations. In conclusion, the accuracy of E-C one-way model is

limited, since it fails to approximate all the modes that are important in the

scattered wave. Nevertheless, the method does give a rough approximation

very efficiently.

5 Conclusion

In this paper, we develop and implement the Beam Propagation Method for

2-D scattering problems associated with acoustic sound-soft cylinders . This is

an approximate method for scattering problems in the high frequency regime.

The method is very efficient, since the required number of operations isO(1) for
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Figure 8: Magnitude of the scattered wave of a circular cylinder for the incident field

truncated to 30 terms.
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Figure 9: Magnitude of the scattered wave of a circular cylinder for the incident field
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each point where a solution is calculated. However, the accuracy of this method

is limited. The BPM approach cannot accurately compute the scattered wave

from a circular cylinder. Nevertheless, the methods may be useful to large

scale scattering problems for which a more accurate solution is difficult to get.

Moreover, these new propagation models can be helpful in building efficiently

an approximate exterior wave field used in the background of FEM for reducing

pollution effects like e.g. in [1, 2]. In particular, access to high-order one-way

exterior models would be valuable for accuracy improvement.
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Figure 10: Magnitude of the scattered waves u
(s)
m (along a certain direction) for a circular

cylinder with m = 32 and 34.
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Figure 11: Magnitude of the scattered waves u
(s)
m (along a certain direction) for a circular

cylinder with m = 35 and 36.
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Figure 12: Magnitude of the scattered waves u
(s)
m (along a certain direction) for a circular

cylinder with m = 37 and 40.


