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Abstract: For the past several years, modal controllers are widely studied and used in 

the field of vibration or vibro-acoustics control. They are efficient but not robust, because 

these methods involve a reconstructor based on a modal truncation. When the dynamic 

behavior of the structure change, the controller and reconstructor must be updated to cope 

with the changes in the structure behavior, in order to maintain both performance and 

robustness. A solution is adaptive control but this approach needs some specific information 

not generally available particularly in the case of undergone modifications. This paper deals 

with a self-adaptive modal control based on a real-time identifier, which avoid the need of 

specific information. The identifier permits to update the controller and the reconstructor 

according to the changes of modal characteristics of time-varying structures. A classical 

algorithm of identification is used to obtain a state space model with an unspecified state 

vector. Then, based on this model, a well adapted transformation is carried out to get the 

modal characteristics from the expression of complex modes, including the mode shapes. As a 

criterion of running identification, the value of “variance-accounted for” (VAF) is employed 

to carry out the identifier only when the initial or previous model is not enough exact. A 

Linear Quadratic Gaussian Algorithm is employed in such a way that the control and observer 

can be optimized according to the updated modal model. By this way, a self-adaptive modal 

control is completed and can demonstrate some smart properties. The proposed methodology 

is carried out on a simple but representative time-varying mechanical discrete structure. An 

inertia modification leads not only to low modal frequency shifts but also to inversion of a 

mode shape which is shown to lead to unstable configuration when control system is not 
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updated. The overall procedure will be described through simulations and performed for 

different operating conditions, which will prove that mode shapes have to be precisely 

determined and updated in the controller and observer to guarantee a robust modal control 

with high performance in spite of the changes of structure. 

Keywords: self-adaptive control / modal control / real-time identification / mode shape 

change / time-varying structures  

1 Introduction  

In the past decades, active control has been studied and widely applied to many 

applications in vibration control. In the case of flexible structures, two main types of control 

strategy emerge. For the first approach, a collocated actuator/sensor control ensures 

unconditional asymptotic stability  [1] when actuator and sensor are ideal. Even if this control 

is robust, it requires a lot of actuator/sensor pairs to get a high performance control on several 

modes due to its local actuation area. On the opposite, active modal control is based on a 

model and recognized for efficiency but it is not ensured to be robust  [2]. This global control 

can target specific modes with a few actuators and sensors  [3] and permits to reduce external 

actuation energy, on-board mass and volume of amplifier  [4], [5]. 

The boundary conditions or structural variation can generate changes of modal 

characteristics like natural frequencies, modal damping coefficients, but what's more on mode 

shapes. Therefore, in order to improve the robustness of active control, several methods have 

been proposed, which can be used in the case of smooth behaviour change. 

First of all, robust control can deeply improve robustness of controlled structure  [6] but 

it reduces the overall performances. Robust control is not well adapted to modal formulation 

which is widely used in the mechanical field. Moreover, for a dynamical behaviour with large 

modifications like mode shape inversion, robust control can be inefficient and not well 

adapted. 
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Other methods have been developed considering performance and robustness at the 

same time. Nonlinear control is established and suitable for large modifications and 

nonlinearities of the dynamical behaviour. In that case, the system can be nonlinear, time-

variant, or both of them  [7]. This solution is only functional for particular cases of 

nonlinearities and designed for a given structure. To be efficient, nonlinear control needs 

some supplementary information to reconstruct the change of structure. 

Adaptive control has been extensively studied in the last decades. As nonlinear control, 

relevant information is needed  [8] and should be known a priori or measured. In other 

methods like Multiple Model Adaptive Control  [9], the limits of behaviour change should be 

known to design a set of controllers which can be defined on the different linearized 

behaviours of the nonlinear structure. Adaptive modal control offers a trade-off between high 

performances and robustness  [10]. The drawback of this approach is the need of 

supplementary information concerning the characteristics for update the control. Without this 

information, all methods in the field of adaptive control will be ineffective. 

Recently, the idea of control-oriented identification  [11] has been proposed where the 

model of actual structure is used to design a parameterized controller. Then the error between 

the measured output and the output of the controlled reference model is minimized to realize a 

parameter optimization problem. These identified parameters can be used to update the 

controller, offering constant performances even with actual structure modifications. 

Consequently, an approach based on an iterative identification and control is developed  [12] 

where an identified model is obtained by using the closed-loop data through online 

measurements in order to update controller. So the closed-loop identification is developed to 

reconstruct a model with behaviour changes, like direct, indirect, joint input-output  [13] and 

extended instrumental variable (IV) methods  [14]. For indirect approaches, in the case of 

strongly damped structures thanks to the controller, identification methods will not present 

enough accuracy. Another approach is Iterative Feedback Tuning (IFT)  [15], where an 
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optimization is carried out directly on the controller parameters without the identification step 

altogether. But in the above methods, the controlled system is required to be stable. In such 

black box approaches, the causes of instability cannot be known due to the lack of modelling. 

On the contrary, direct identification approaches aims at finding a model of the structure 

which is lightly damped. Therefore, identification results can be accurate and this 

corresponding model reconstruction also permits to identify changes which can induce 

instability for the controlled structure. 

A particularly performing model in the case of vibration control is based on modal 

description which limits the number of sensors and actuators and the model size  [3]. Modal 

characteristics like natural frequencies, modal damping ratio, and especially mode shapes 

need to be known to design modal controller. 

However, modal control can be instable if the model doesn't correspond to actual 

structure particularly when the structure is changing. As an example, mass or stiffness 

configuration modifies modal characteristics like natural frequencies and especially mode 

shapes. In this case, the adaptive modal control can be a solution. These changes need to be 

known to update the modal controller but need specific information allowing the 

reconstruction of characteristic change. Recently, Luş and De Angelis  [16] provided a unified 

framework to reconstruct model by some methods considering a full or a non-full set of 

sensors or actuators. By their approach, the modal characteristics can be deduced based on the 

complex modes stemming from an identified state space model.  

For actual control system, identification should be carried out only when the model is 

not enough exact. So the value of “Variance-Accounted For” (VAF)  [17] is employed to 

evaluate the difference between the identified model and the actual structure and 

consecutively to carry out identification process when needed. 

Based on the above mentioned principles, self-adaptive modal control for time-varying 

structures is proposed in this paper. Combining online real-time identification and adaptive 
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modal control, this method can be used in order to design an effective and stable controller for 

time-varying structures. 

First of all, the modal description of a structure is presented in section 2, and then a 

modal control combining a real-time identification, which can be triggered from a specific 

criterion, is proposed as self-adaptive modal control. Section 3 is devoted to the description of 

the proposed method through a simple mechanical structure. The chosen example is a 3 

Degrees of Freedom (DoF) mechanical structure in which inertia of the third DoF can be 

changed with time, inducing frequency shifts and more specifically mode shape inversion. 

Results of simulation are presented and a conclusion is summarized in the last section. 

2 Self-adaptive modal control 

The proposed self-adaptive modal control deals with the control of structure subjected 

to variation of its physical characteristics. It is supposed that these changes can not be 

measured or known a priori and they induce a variation of dynamical behaviour. This 

dynamical behaviour can be described in a modal form as a simplified model of a complex 

structure. Instability of such a controlled structure can be induced by modification in eigen 

frequencies, modal damping ratio and especially mode shapes. Some conventional algorithms 

of modal control and modal identification used in this paper are recalled and then the 

principle and realization of self-adaptive modal control are proposed as the kernel of this 

method. 

2.1 Modal control 

Actual structure can be modelled by N  Degrees of Freedom (DoF), so second-order 

differential equation is presented to describe this structure as: 

 + + =ɺɺ ɺMδ δ Kδ FΓΓΓΓ  (1) 

where M , ΓΓΓΓ , K  are mass, damping and stiffness matrices, respectively; δ  and F  are the 

displacement of DoF and the external force vectors, respectively. After the classical modal 
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change of variable δ =Φq , equation (1) can be transformed to a state space model in modal 

basis: 

 ( ) ( )2 T
i i idiag 2diagω ξ ω

     = + = +      − −         

= +

ɺ
ɺ

0 I q 0
x Ax Bu F

q Φ

y Cx Du

 (2) 

where iω  are eigen frequencies and iξ  modal damping ratios. A , B , C and D  are dynamic, 

input, output and feedthrough matrix respectively. u  is the control vector. The modal 

displacement vector q  and the mode shape matrix ΦΦΦΦ  can be reduced to n  modes, which are 

supposed to be sufficiently decoupled and the damping to be proportional and weak. ΦΦΦΦ  is 

normalized as: 

 T =Φ MΦ I  (3) 

where I  is identity matrix. 

In this paper, the control algorithm is chosen to optimize the control gains from the 

modal model in equation (2). So, the classical Linear Quadratic (LQ) algorithm is used for 

realizing the modal control which can be updated through the change knowledge of A  and B  

via the optimization is obtained thanks to Riccati's equations: 

 T 1 T+ - −+ =SA A S Q SBR B S 0  (4) 

where Q  and R  are weighting matrices, S  is the solution of the associated Riccati’s equation. 

In this paper, Q  and R  are chosen to be constant and defined from the initial state of the 

structure.  The optimal linear matrix gain G  is obtained by the minimization of the energy 

quadratic performance function: 

 ( )T T
min 0

J dt
∞

= +∫ x Qx u Ru  (5) 

Then the optimal control is obtained as: 

 = −u Gx  (6) 

where -1 TG = R B S  is the optimized matrix gain. 
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 The modal state vector x  can’t be obtained or measured directly. So it is estimated 

thanks to a Luenberger observer which delivers the modal state estimation̂x :  

 ( )ˆ ˆ ˆ= + + − −ɺx Ax Bu L y Cx Du  (7) 

where L  is the optimized observer gain. 

2.2 Identification of modal model 

In order to obtain the observer model A , B , C , D  and compute the controller and 

observer gain matrix G  and L  from A , B ,C ,D , subspace method is chosen for getting a 

general state space model from input-output data. This identification method can be extended 

to closed-loop system as direct approaches  [13] where an open-loop identification method is 

directly applied to identify the model of structure from the measured input signals which are 

necessary for the identification, the measured control signals, and response signals of the 

controlled structure. N4SID identification algorithm  [18] is chosen for its convergence (non-

iterative method) and numerical stability, regardless of zero and non-zero initial states. By 

this algorithm, discrete state space matrices for time k can be estimated by the least-squares 

method  [13], with I/O data u and y  : 

 

1T T

k +1 k k kd d

k k k k k k k k| | | |

−
                     ′ ′              

=
X X X XA B

Y U U UC D
 (8) 

where X k + 1, kX , k k|U , k k|Y  are the estimates of state vector, measured input and output vectors 

after time k. dA , dB , ′C , ′D  are the state space discrete identified matrices. Then classical 

method like matrix logarithm is used to transform this identified discrete state space matrices 

dA , dB  into continuous state space matrices cA , cB  and get the eigen value to deduce iω  

and iξ . But since the state space basis is unspecified, cA , cB  can not be directly used to 

reconstruct complex mode of structure, which is needed to get mode shape in equation (2). 
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According to the different positions of actuator and sensor with at least one collocated 

pair, a transformation matrix τ  can be got from eigen vectors ϕϕϕϕ  of cA  by  [16]:  

  ( ) ( )( )TE 2 1 E
cl ,: :,l−=C τ Bϕ ϕϕ ϕϕ ϕϕ ϕ  (9) 

where l  is the node of co-located actuator and sensor pair. E
cB  and EC  are the expanded 

versions of cB  and ′C . Based on τ , complex modes of the structure ψ  can be calculated 

from ϕϕϕϕ . As mode shapes are supposed to be sufficiently decoupled and damping is supposed 

to be weak, a mode shape jΦ  can be estimated by  [19]: 

 2
j 2 j j j2 1 , 1i j Nω ξ= − = ⋯Φ ψ  (10) 

where 2 jψ  is the complex mode corresponding to eigen value 2
2 j j j j j1iλ ξ ω ξ ω= − + −  which 

is obtained from the identified continuous state space model. It must be noticed that equation 

(10) implies that jΦ  is normalized as in equation (3).  

2.3 Principle of self-adaptive modal control 

In this approach, the time-varying structure is controlled by the help of a feedback 

control loop combining an identifier. This principle is described in Figure1: output signals 

from the time-varying structure (a) are compared with those of the initial or previous 

identified model by a criterion (b). According to this criterion, if this model is too far from the 

actual system, an online modal parameter identification (c) is carried out to identify this 

structure. The identifier needs three types of signal: a random signal r chosen for an efficient 

identification and the control input u as excitations, output data y as response signals of the 

controlled structure. This identified model (d) is used for updating the model of the observer 

(i) and also to optimize and update the observer gains (h) and controller gains (g). The 

controller and observer gains are optimized thanks to LQ (e) and LQG (f) algorithms with the 

updated modal state space model and this model can be also used in criterion (b). 
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The updating time period of the self-adaptive control must be linked to the rate of the 

structure changes and to the first eigen frequency of the structure at initial state for obtaining 

good identification performances  [20]. Moreover the control step time is defined from the 

highest frequency to be controlled. The weighting optimization matrices of the controller and 

observer are defined from the initial model of the structure and are kept for the following 

updates of the control system. 

2.3.1 Excitation for identifying the model 

In this type of identification chosen for a modal updating, the identifier is supplied with 

an I/O data directly connected to the structure. These input and output data are correlated due 

to the feedback control. In order to balance this problem, the relation between signal for 

identification and the disturbance should be considered as follows. 

A white noise signal r is added to the input signal u  (Figure.1). The level of this white 

noise signal r  is chosen in order to get an efficient identification and not to disturb the 

performance of the control. This level is also chosen to be greater than the environmental 

disturbance noise introduced on the structure as v  in Figure.1. Since this paper focuses on the 

simulation, the level of the disturbance noise v  can be defined but remains realistic. Then the 

level ratio α  defined as: 

 
2

0

2

0

t

t

r dt

v dt
α = ∫

∫
 (11) 

is considered as the level of energy between the identification signal r  and the disturbance 

noise ν . So, α must be sufficiently large to ensure a correct identification. 

The correlation of input and output data can be reflected by a correlation between the 

input signal u + r  and the response signaly , as covariance function ( )Cov u r,ycα = + . If 

0cα ≈ , the correlation is weak and results of identification are considered to be accurate. 

Therefore, α  has to be sufficiently low to ensure that the correlation of signals is weak and 
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acceptable. For different structure, some simulation or experiment is needed to find an 

optimal α  for which cα  can be close to zero  and  the  identification  is  effective  in  spite  of 

disturbance noise.  In addition, the disturbances considered in this paper are assumed not to 

modify the operating dynamic behaviour in a persistent manner. 

2.3.2 Criterion for identification  

Firstly, a systematic online real-time identification is proposed. The first step of the 

process is the collection of I/O data with a correct rate to describe the highest frequency mode. 

When the collection is large enough to describe the lowest frequency mode in order to get a 

correct state space model  [20], the identification is carried out to update modal model and 

consecutively the controller and observer. This iterative procedure is then performed on new 

I/O data without overlapping points over the identification windows. This method is well 

adapted in the case of slow and smooth changes in the structure behaviour. 

But for actual control system, identification should be carried out only when the initial 

or previous identified model is far from the current and actual behaviour. Comparing with the 

above proposed systematic online real-time identification which is taken as reference, 

identification with a criterion can be proposed. This criterion can be used both to trigger the 

identification and to update the control system. 

For example, Modal Assurance Criterion (MAC)  [21] has been proposed over the last 

twenty years to determine the exactness of identified mode shape. But for getting an updated 

mode shape which is combined with the previous mode shape to calculate the MAC value, a 

systematic identification is still needed. So the MAC can only be used as a criterion to trigger 

control changes.    

The simplest way is to use a criterion based on the output signals of model and actual 

structure. For example the value of Variance-Accounted For (VAF)  [17] is proposed. The 

VAF is defined as: 
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 ( ) ( )
( )

var
VAF max 1 0 100

var

ˆy y
ˆy,y , %

y

 − = − × 
  

 (12) 

where ̂y  is an output obtained by simulating the identified model and y  is the corresponding 

output of the actual changing structure as shown in Figure.1. Then the trigger for running 

identification and updating the control system is given when the criterion of VAF (shown in 

Figure.1) is less than or equal to a threshold value qualifying the updating sensitivity. 

3 Application to time-varying structures 

3.1 Description of structure with 3 pendulums 

A 3 DoF discrete structure is chosen to illustrate the previous process of self-adaptive 

modal control. The 3 pendulums' mechanical structure is presented in Figure.2 where the 3rd 

pendulum mass can be moved over the axial direction. The mass displacement permits eigen 

frequency shifts and an inversion of mode shapes. The characteristics of this structure are 

summarized in Table 1. 

3.2 Instability induced by mode shape inversion 

In this example, a regulation problem is considered in which a controller is used to 

reject the non collocated disturbance applied on the structure. When the position of 3rd 

pendulum mass changes, some minor frequency shifts will occur and the 2nd mode shape will 

Table 1: Physical and modal characteristics of the structure (initial state) 
Mass of pendulums 

(Kg) 
m1=2.61 
m2=2.61 
m3=0.875 

Stiffness of 
spring (N/m) 

k1=13182 
k2=13182 
k3=13182 

Length of stems 
(m) 

Lt1=0.414 
Lt2=0.414 
Lt3=0.431 

Mass of stems 
(Kg) 

Mt1=0.305 
Mt2=0.305 
Mt3=1.205 

Modal damping ratios 
 

1ξ =2.6.10-3 

2ξ =2.6.10-3 

3ξ =2.6.10-3 

Initial eigen frequencies 
(3rd pendulum mass at the bottom location) 

f1= 6.44 Hz 

f2=17.5 Hz 

f3=23.9 Hz 
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be inverted by the change of the sign of the 2nd component of the 2nd mode shape (see 

Figure.7c,d). 

From equation (2), the dynamic behaviour of the structure can be expressed in modal 

coordinates with a state space form: 

 
= + +
= + +
ɺx Ax Bu Z

y Cx Du H

νννν
νννν

 (13) 

where νννν  represents the unknown external disturbance and unknown environmental noise, Z  

and H  are disturbance matrices. Combining equations(6), (7) and (13), the modal state space 

form of the controlled /observed structure is given by: 

 

[ ]

ˆˆ

ˆ

  −     
= +       − − −−       

 
= − + − 

ɺ

ɺɺ

x A BG BG x Z

0 A LC x x Z LHx x

x
y C DG DG H

x x

νννν

νννν

 (14) 

If the force of control is applied to the 2nd stem and outputs are measured by the help of 

the accelerations on each stem, matrices B , C  and D  are written as: 

 [ ]T

1 3 21 22 23 c fΦ L LΦ Φ×=B 0  (15) 

 ( ) ( )2
i i idiag 2diagω ξ ω = − − C Φ  (16) 

 [ ]T

21 22 23 c fL LΦ Φ Φ=D Φ  (17) 

where r s,Φ  is the rth component of sth mode shape. 

The poles of the observed and controlled structure are governed by −A LC , −A BG  

respectively. For the controller, the inversion of mode shape involved in matrix B  is effective 

when the control force is applied to the 2nd stem and then affects the poles of the controller. 

For the observer, the inversion of mode shape is always involved in its poles location. 

The control gains and the observer gains (0G , 0L ) are adjusted by LQG algorithm with 

weighting matrices Q  and R  chosen in order to get a high performance when 3rd pendulum 
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mass is located at the bottom location. Thanks to initial robustness and damping of controlled 

structure,  the  structure  is  stable  before  Lm3 = 0.28m.  But   with   this   control adjustment  

( 0G , 0L  ) when the 3rd pendulum  is  moved  from  the  bottom  to  the  top, the controlled 

structure becomes unstable since the mass location is less than 0.29 m as shown in Figure.3. 

This instability is clearly due to the mode shape inversion as mentioned in  [22]. 

What’s more for an actual time-varying structure, the changes of modal characteristics 

like mode shape inversion can not be known a priori and measured. Therefore the real-time 

identification is necessary to update modal model and consecutively the controller. 

3.3 Self-adaptive control implementation 

This section is devoted to the validation of the updating principle of the controller and 

observer gains, of the observer model. In a first subsection, the changes of gains and model 

are expected to be safe and do not introduce some abrupt changes when a systematic updating 

process is chosen. Then, the updating scheme is improved by introducing a criterion on 

outputs which triggers the identification and the changes in the controlled structure. The last 

investigation focuses on the speed of the mass displacement in order to validate the robustness 

of VAF identification with external noise and disturbance. Acceleration and force signals are 

sampled at 1000 Hz and filtered, focusing the frequency bandwidth of interest to [2Hz - 

50Hz]. The length of the identification window is set to 500 points (see justifications on the 

same device in  [20]). 

3.3.1 Validation of the updating principle 

In this section, the same weighting matrices Q  and R  as in section  3.2 are used by 

LQG to optimize the controller and the observer. By contrast with section  3.2, when the 

location of 3rd mass is changed, the gains G  (of the controller) and L  (of the observer) and 

the observer model are updated according to the identified modal model (A , B , C , D ). This 

update is carried out systematically without any criterion. The updating time between two 
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successive changes is set to 0.5s in accordance with the frequency bandwidth and the speed of 

the moving mass. This self-adaptive control is firstly tested in quasi static behaviour (in fact 

very slow motion conditions: mass velocity of 0.71 mm/s). These successive poles of 

observed and controlled systems are presented in Figure 4 and can be considered almost as 

same as estimations at different fixed locations of 3rd mass. Like in section  3.2, the poles of 

the controller move to the right, but after Lm3 = 0.29m, the poles move back to the left due to 

the updating process. All the poles remain in the left side of complex plane with enough 

damping. So the stability of observed and controlled structure is then guaranteed.  

Moreover, the performed modifications in spite of one state to the other are sufficiently 

continuous to guarantee that the effect of control is smooth and continuous in the updated 

time as shown in Figure 5a,b. In [65.0s-65.5s], a peak value of control force is induced by a 

bad precision of the identified model due to the weak magnitude of response signals near the 

mode shape inversion which occurs at 67.09s. 

3.3.2 Alternative updating by criterion 

In order to verify the ideal performances of conditional identification, firstly disturbance 

and environmental disturbance noise v  are not applied to the structure and the 3rd mass moves 

also from Lm3 = 0.342m to Lm3 = 0.234m with the velocity of 3.6 mm/s [20]. Since G  and L  

are updated according to the identified modal model, the control system is self-adapted to the 

changing structure. The threshold value of VAF for the 1st pendulum acceleration is set to 

95% under which identification is carried out. The calculation of VAF is assumed to be 

carried out on a large enough window with the same rate as systematic identification taken as 

reference for comparison (i.e. 500 points sampled at 1000Hz as shown in Figure.6). 

With these operating conditions, r s 1 s, ,Φ Φ  and frequencies are identified by systematic 

and VAF identification as modal characteristics and compared to their theoretical values from 

the simulated structure. The values of VAF and some identified results as 2 2 1 2, ,Φ Φ  and 
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frequency 2ω  are shown in Figure 7a-d.  For the  3  pendulums'  mechanical  structure, the 2nd 

mode is of significance, so only the critical characteristics of the 2nd mode are presented, 1st 

and 3rd modal characteristics being always identified with a precision under 5%. 

In the Figure 7, some instants when the difference between identified and theoretical 

response is large enough to produce a value of VAF 95%≤  are reported. At these instants the 

identification is carried out to update the characteristics of modal model of the structure, 

leading or not to an improvement of VAF criterion. In the Figure 7b, the second eigen 

frequency values are presented in comparison with systematic identification. As mentioned 

before, the value of VAF is calculated only on the first pendulum acceleration. Therefore 

attention must be paid to this global indicator takes into account all the modal characteristic 

changes, but only the second mode characteristics are presented. It must be noticed that this 

indicator is sufficiently sensitive to ensure robustness of the modal adaptive control of the 

proposed application. 

At time t=3s, the initial model is not coincident with the structure, the difference on 

2 2 1 2, ,Φ Φ  is great than 20% as shown in Figure 7d (the other r s 1 s, ,Φ Φ  are less than 5%) and 

the VAF is 92.12 %.Then identification is carried out and the model and the gains are updated. 

At time t=3.5s, there is still some difference between identified and simulated results during 

[3s-3.5s], but not mainly on the second mode characteristics. Again an identification and a 

model update are carried out again at time t=3.5s and at time t=4s. As the updated value of 

VAF is 97.79% at time t=4.5s, the identification and the updating process are stopped. 

After time t=13.42s, instant when the inversion of mode shape occurs, the value VAF 

decreases suddenly as depicted in Figure 7a. About eight identification steps are necessary to 

recover a VAF larger than 95%. This means that a mode shape inversion is associated with a 

difficulty to recover a modal model of this particular structure. Indeed, when the 2nd mode 

shape is close to be inverted, i.e 2 2 0,Φ ≈ , the acceleration of 2nd pendulum mass is near to 
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zero. Then the identifier can not get enough informative outputs leading to bad identified 

modal characteristics. A full study devoted to this problem is out of the scope of the present 

paper. 

When the inversion occurs, the VAF identified model is less exact than systematically 

identified model, but is sufficient to update the controller and the observer, therefore 

improving the efficiency of control system. During the movement of 3rd mass, the necessary 

noise for the identification leads to unwanted displacement and controlled force. As shown in 

Figure 8a-b as an example, the displacement 3x and the controller force are smooth, weak and 

stable over the time interval. So, this self-adaptive control system yielding abrupt changes in 

model and gains does not introduce instability. 

3.3.3 VAF identification robustness 

The effect of VAF identification is affected by the speed of variation of time-varying 

structure. For this 3 DoF structure, this variation is governed by the velocity of the 3rd 

pendulum mass. To investigate this influence on the identified results, a velocity shape is used 

for simulation and shown in Figure 9a. By this shape, the changes on the identified results 

induced by velocity and by mode shape inversion can be distinguished. The resulting position 

of the 3rd pendulum is moved from Lm3 = 0.342m to Lm3 = 0.230m as shown in Figure 9b. 

All the other conditions are the same as in section  3.3.2 and corresponding values of 

VAF and identified modal characteristics are shown in Figure 10a-c.  

Due to a higher velocity of 6.5 mm/s, the initial model is not coincident with the 

structure at time t=2s as shown in Figure 10c, so the first detection with the VAF criterion, the 

identification and the update process occur earlier than that in section  3.3.2. 

Before the mode shape inversion occurring at time t=9.13s, the smallest value of VAF is 

29.48% at time t=6s (Figure 10a), as it’s 63.38% with constant velocity of 3.6mm/s (Figure 

7a). This is induced by: 
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(a) the velocity is 4.5 mm/s (Figure 9a) which is great than 3.6mm/s.  

(b) the position of 3rd pendulum is 0.306m, more close to the position of inversion than 

that of constant velocity 3.6mm/s, as shown in Figure 9b by the two red points. 

Close to the time of mode shape inversion, the velocity is 2.94 mm/s which is less than 

the constant velocity 3.6mm/s, so the identified model (see Figure 10b-c) is more precise than 

results presented in section  3.3.2 (Figure 7b-c ). After the mode shape inversion, the value of 

VAF is restored to 95% after a longer time (16 identification steps) due to lower velocity in 

this time period. With a lower velocity, the 3rd pendulum mass spends a long time to leave the 

position of inversion. When the mass velocity reaches 0 m/s at time t=15s, the identified 

results are almost equal to the theoretical values. After time t=25s when velocity reaches 

5 mm/s, the identification occurs more frequently. 

The sample time and the length of the identification window are constant and obviously 

the variation speed of time-varying structure will affect its dynamic behaviour. If the speed is 

null, then the accuracy is optimal. In the case of mass movement, the accuracy of the 

identification depends on the magnitude of the change of dynamic behaviour in this 

identification window, so depends on the mass speed. And a trade-off between update 

frequency and exactness of identified modal model must be found by setting the VAF 

threshold value. 

As described in section  3.3.2, the displacement 3x  and the controller force remain 

always smooth, weak and stable. The VAF identification is robust since it offers the 

possibility to adjust the density of update and give a suitable identified model, according to 

different levels of variation of time-varying structure. 

3.4 Results of self-adaptive modal control 

From the above results, the self-adaptive control has been shown to work properly, but 

an updated control system has to be efficient to reject some disturbances on the structure. As 
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the disturbance does not affect the dynamic behaviour, the identification process is expected 

to be not seriously affected by this disturbance. For getting changes of identified results 

induced by disturbance, a impulsive force of 50 N as an example of the unknown disturbance 

is applied at the end of 3rd stem at arbitrary time t=20.22 s and during 20 ms. This time 

location is chosen to clearly distinguish effects of disturbance from changes induced by mode 

shape inversion. The environmental white noise v is also introduced in the system in order to 

simulate external disturbance noise. For this structure, 610α ≥  is chosen to get 0cα ≈ . Other 

operating conditions are kept the same as in section  3.3.2. The same parameters are tracked 

(value of VAF, identified 2 2 1 2, ,Φ Φ , and frequency 2ω ) and shown in Figure 11a-c. 

For the value of VAF reported in Figure 11a, before the disturbance occurs, it is almost 

the same value as in section  3.3.2. As the disturbance induces changes on responses in the 

time interval [20 s; 20.5 s], the value of VAF decreases at time t=20.5s. As the force of 

control is applied as input of the model which is used to calculate ŷ , but the force of control 

applied on the structure is used to reject the pulse force, so the value of VAF remains close to 

zero more than 40s after the disturbance. After time t=64.5s, VAF reaches again the threshold 

value of 95%. In comparison with the mode shape inversion, an unknown disturbance induces 

higher difficulties to overcome for having a precise identified model. 

From Figure 11b-c, comparison between systematic identification and VAF 

identification shows a very small difference between the two proposed approaches. Obviously, 

near the time t=20.22s where the disturbance occurs, there is a greater difference between 

theoretical and identified value of mode shape and frequencies, in time interval [20.5s-21s]. 

Even if the identified modal model is not exact during the time interval [20.5s-21.0s], 

thanks to updated gains and to the observer model, the controlled system remains stable. A 

high performance can be got to reject the effect of disturbance as shown in Figure 12a-b. 



 

 19 

So, self-adaptive modal control system with systematic or VAF identification is verified 

to be robust and to keep a high performance for changing structures with smooth and weak 

variation. And thorough VAF identification, the control system can demonstrate some smart 

propriety. 

4 Conclusion 

The aim of this paper is to propose a self-adaptive modal control including both 

identification and control update in real-time. This method is particularly suitable for time-

varying structures. It can overcome the instability which is induced by the variation of modal 

characteristics, especially the inversion of mode shape. In the same time, this approach leads 

to a global robustness and keeps high performances given by control optimisation. 

A classical LQG algorithm has been chosen here but the method can be extended to 

other control algorithms using a model of the structure. VAF method is employed as a 

criterion for determining the exactness of the model. Even if this criterion is only based on 

one response signal, it is demonstrated to be relevant for describing exactness of the identified 

model. This conditional identification represents an interesting alternative to modal 

comparison like MAC criterion which requires a systematic identification. For getting an 

updated model of the structure when behaviour changes occur, N4SID is used as a direct 

approach of identification of the structure under control to reach a modal state space model. 

Thanks to this identified model, the control system can be updated in agreement with the 

modal characteristics of the structure: frequency bandwidth and identification window length. 

Through the simulation of a 3-DoF structure, some parameters like window length and 

sample frequency are governed by modal properties of the studied structure. Moreover, the 

VAF threshold is shown to be a good adjustment parameter to deal with the trade-off between 

exactness and frequency of updates, improving the efficiency of the self-adaptive control. The 

proposed identification process can be carried out in time domain and this method can exactly 
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identify almost all modal characteristics with a ±5% precision at least. Obviously when a 

modal inversion and/or a high and sudden disturbance occur, the exactness of identified mode 

shapes is reduced. But due to the updated control system, the stability can be guaranteed. 

Thorough this application, the self-adaptive modal control with VAF identification 

demonstrates a global robustness and some smart properties. In the same time, it allows to 

keep the high performance of optimized controls like LQG in spite of the changes of structure. 

Thanks to VAF criterion, this self-adaptive modal control system demonstrates some smart 

properties. 
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Figure 1: Principle of self-adaptive modal control  
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Figure 3 In the case of non-updated controller 0G  and observer 0L : (a) pole location  
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Figure 3 In the case of non-updated controller 0G  and observer 0L  : (b) details of pole 

location 
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Figure 4 In the case of updated controller G  and observer L : (a) pole location  
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Figure 4 In the case of updated controller G  and observer L : (b) details of pole location 
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Figure 5 Force of control when controller G  and observer L  are updated: (a) overall time 

history  

(mass motion velocity of 0.71 mm/s). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 32 

5 5.5 6 6.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

F
or

ce
  

(N
)

Time (s)  
(b) 

Figure 5 Force of control when controller G  and observer L  are updated: (b) details of some 

updated instants  
(mass motion velocity of 0.71 mm/s). 
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Figure 7: VAF and identified modal characteristics during mass movement at 3.6 mm/s: (a) VAF 

value change 
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Figure 7: VAF and identified modal characteristics during mass movement at 3.6 mm/s: (b) 

second frequency change 
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Figure 7: VAF and identified modal characteristics during mass movement at 3.6 mm/s: (c) 2nd 

component of 2nd mode shape change  
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Figure 7: VAF and identified modal characteristics during mass movement at 3.6 mm/s: (d) 

details of 2nd component of 2nd mode shape change 
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Figure 8: In the case of updated controller G  and observer L  with VAF identification, and 

without disturbance: (a) displacement of 3x   
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(b) 

Figure 8: In the case of updated controller G  and observer L  with VAF identification, and 

without disturbance: (b) force of control 
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Figure 9: (a) Velocity of the 3rd pendulum mass 
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Figure 9: (b) displacement of the 3rd pendulum mass 
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Figure 10 The value of VAF and identified results without disturbance under changing velocity of 

3rd pendulum mass: (a) VAF value change 
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(b) 

Figure 10 The value of VAF and identified results without disturbance under changing velocity of 

3rd pendulum mass: (b) second frequency change  
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(c)  

Figure 10 The value of VAF and identified results without disturbance under changing velocity of 

3rd pendulum mass: (c) 2nd component of 2nd mode shape change 
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Figure 11 The value of VAF and identified results with disturbance: (a) VAF value 
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(b)  

Figure 11 The value of VAF and identified results with disturbance: (b) second frequency 

change 
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(c)    

Figure 11 The value of VAF and identified results with disturbance: (c) 2nd component of 2nd 

mode shape change 
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Figure 12 In the case of updated controller G  and observer L  with VAF identification, with 

disturbance: (a) displacement of x3  
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(b) 

Figure 12 In the case of updated controller G  and observer L  with VAF identification, with 

disturbance: (b) force of control  
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Table1: Physical and modal characteristics of the structure (initial state) 
Mass of pendulums 

(Kg) 
m1=2.61 
m2=2.61 
m3=0.875 

Stiffness of 
spring (N/m) 

k1=13182 
k2=13182 
k3=13182 

Length of stems 
(m) 

Lt1=0.414 
Lt2=0.414 
Lt3=0.431 

Mass of stems 
(Kg) 

Mt1=0.305 
Mt2=0.305 
Mt3=1.205 

Modal damping ratios 
 

1ξ =2.6.10-3 

2ξ =2.6.10-3 

3ξ =2.6.10-3 

Initial eigen frequencies 
(3rd pendulum mass at the bottom location) 

f1= 6.44 Hz 

f2=17.5 Hz 

f3=23.9 Hz 


