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Abstract: For the past several years, modal controllersaadely studied and used in
the field of vibration or vibro-acoustics contrdlhey are efficient but not robust, because
these methods involve a reconstructor based on @alntouncation. When the dynamic
behavior of the structure change, the controlled eetonstructor must be updated to cope
with the changes in the structure behavior, in orle maintain both performance and
robustness. A solution is adaptive control but Hpproach needs some specific information
not generally available particularly in the caseuntlergone modifications. This paper deals
with a self-adaptive modal control based on a tiea- identifier, which avoid the need of
specific information. The identifier permits to wgtd the controller and the reconstructor
according to the changes of modal characteristicinoe-varying structures. A classical
algorithm of identification is used to obtain atst@pace model with an unspecified state
vector. Thenbased on this model, a well adapted transformasocarried out to get the
modal characteristics from the expression of compledes, including the mode shapes. As a
criterion of running identification, the value ofdriance-accounted for” (VAF) is employed
to carry out the identifier only when the initiat previous model is not enough exact. A
Linear Quadratic Gaussian Algorithm is employeduch a way that the control and observer
can be optimized according to the updated modaleindy this way, a self-adaptive modal
control is completed and can demonstrate some gr@perties. The proposed methodology
is carried out on a simple but representative ttalgring mechanical discrete structure. An
inertia modification leads not only to low moda¢duency shifts but also to inversion of a

mode shape which is shown to lead to unstable gor#tion when control system is not



updated. The overall procedure will be describedugh simulations and performed for
different operating conditions, which will proveathmode shapes have to be precisely
determined and updated in the controller and oleselxy guarantee a robust modal control
with high performance in spite of the changes afctire.

Keywords:. self-adaptive control / modal control / real-tindentification / mode shape

change / time-varying structures

1 Introduction

In the past decades, active control has been stualel widely applied to many
applications in vibration control. In the case laifble structures, two main types of control
strategy emerge. For the first approach, a coldmtaactuator/sensor control ensures
unconditional asymptotic stabilifit] when actuator and sensor are ideal. Even $ ¢ontrol
is robust, it requires a lot of actuator/sensorsp@ get a high performance control on several
modes due to its local actuation area. On the ofgasctive modal control is based on a
model and recognized for efficiency but it is nosered to be robu$2]. This global control
can target specific modes with a few actuatorssamsorg3] and permits to reduce external
actuation energy, on-board mass and volume of &e1dH],[5].

The boundary conditions or structural variation cgenerate changes of modal
characteristics like natural frequencies, modal giag coefficients, but what's more on mode
shapes. Therefore, in order to improve the robgstioé active control, several methods have
been proposed, which can be used in the case afthrhehaviour change.

First of all, robust control can deeply improve ustness of controlled structuji@ but
it reduces the overall performances. Robust comrabt well adapted to mod&drmulation
which is widely used in the mechanical field. Moren for a dynamical behaviour with large
modifications like mode shape inversion, robusttadncan be inefficient and not well

adapted.



Other methods have been developed considering rpeafice and robustness at the
same time. Nonlinear control is established andabldé for large modifications and
nonlinearities of the dynamical behaviour. In tbase, the system can be nonlinear, time-
variant, or both of then|7]. This solution is only functional for particulacases of
nonlinearities and designed for a given structi@.be efficient, nonlinear control needs
some supplementary information to reconstruct ttenge of structure.

Adaptive control has been extensively studied al#st decades. As nonlinear control,
relevant information is needel®] and should be known a priori or measured. lheot
methods like Multiple Model Adaptive Contrfd], the limits of behaviour change should be
known to design a set of controllers which can ledingdd on the different linearized
behaviours of the nonlinear structure. Adaptive at@wntrol offers a trade-off between high
performances and robustne$s0]. The drawback of this approach is the need of
supplementary information concerning the charasties for update the control. Without this
information, all methods in the field of adaptiventrol will be ineffective.

Recently, the idea of control-oriented identificat{11] has been proposed where the
model of actual structure is used to design a peramzed controller. Then the error between
the measured output and the output of the controtéerence model is minimized to realize a
parameter optimization problem. These identifiedapeeters can be used to update the
controller, offering constant performances evenhwactual structure modifications.
Consequently, an approach based on an iterativdifidation and control is developdd?2]
where an identified model is obtained by using tlesed-loop data through online
measurements in order to update controller. Sclteed-loop identification is developed to
reconstruct a model with behaviour changes, likeatj indirect, joint input-outpytL3] and
extended instrumental variable (IV) methdd4]. For indirect approaches, in the case of
strongly damped structures thanks to the controitemtification methods will not present

enough accuracy. Another approach is Iterative bagd Tuning (IFT)[15], where an



optimization is carried out directly on the conkeolparameters without the identification step
altogether. But in the above methods, the contitadlgstem is required to be stable. In such
black box approaches, the causes of instabilitpyotbe known due to the lack of modelling.

On the contrary, direct identification approaché@ssaat finding a model of the structure

which is lightly damped. Therefore, identificatioresults can be accurate and this
corresponding model reconstruction also permitsidentify changes which can induce

instability for the controlled structure.

A particularly performing model in the case of &bon control is based on modal
description which limits the number of sensors antliators and the model si@}. Modal
characteristics like natural frequencies, modal piam ratio, and especially mode shapes
need to be known to design modal controller.

However, modal control can be instable if the modeésn't correspond to actual
structure particularly when the structure is chaggiAs an example, mass or stiffness
configuration modifies modal characteristics likatural frequencies and especially mode
shapes. In this case, the adaptive modal controbeaa solution. These changes need to be
known to update the modal controller but need d$gednformation allowing the
reconstruction of characteristic change. Recehtly,and De Angeligl6] provided a unified
framework to reconstruct model by some methodsideriag a full or a non-full set of
sensors or actuators. By their approach, the mddahcteristics can be deduced based on the
complex modes stemming from an identified statespaodel.

For actual control system, identification shoulddaeried out only when the model is
not enough exact. So the value of “Variance-Accednor” (VAF) [17] is employed to
evaluate the difference between the identified rhoded the actual structure and
consecutively to carry out identification procedsew needed.

Based on the above mentioned principles, self-adgaptodal control for time-varying

structures is proposed in this paper. Combiningnenteal-time identification and adaptive



modal control, this method can be used in ordelegign an effective and stable controller for
time-varying structures.

First of all, the modal description of a structisepresented in section 2, and then a
modal control combining a real-time identificationhich can be triggered from a specific
criterion, is proposed as self-adaptive modal @dn8ection 3 is devoted to the description of
the proposed method through a simple mechanicattste. The chosen example is a 3
Degrees of Freedom (DoF) mechanical structure irclwinertia of the third DoF can be
changed with time, inducing frequency shifts andrengpecifically mode shape inversion.

Results of simulation are presented and a conclusieummarized in the last section.

2 Self-adaptive modal control

The proposed self-adaptive modal control deals tighcontrol of structure subjected
to variation of its physical characteristics. It sspposed that these changes can not be
measured or known a priori and they induce a vanabtf dynamical behaviour. This
dynamical behaviour can be described in a modah fas a simplified model of a complex
structure. Instability of such a controlled struetean be induced by modification in eigen
frequencies, modal damping ratio and especiallyargithpes. Some conventional algorithms
of modal control and modal identification used st paper are recalled and then the
principle and realization of self-adaptive modahttol are proposed as the kernel of this

method.

2.1 Modal control
Actual structure can be modelled by Degrees of Freedom (DoF), so second-order
differential equation is presented to describe striscture as:
Mé+Td+Kd=F (1)
whereM , ', K are mass, damping and stiffness matrices, respgcto and F are the

displacement of DoF and the external force vectaspectively. After the classical modal
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change of variablé = ®q, equation (1) can be transformed to a state spackel| in modal

basis:

Ko ABa [—dia;)(af)] [—zdie:qaam]{gHaﬂF @

y =Cx+Du
where @y are eigen frequencies aifd modal damping ratiosA ,B,Cand D are dynamic,

input, output and feedthrough matrix respectivalyis the control vector. The modal
displacement vectay and the mode shape matdx can be reduced to modes, which are
supposed to be sufficiently decoupled and the dagnpy be proportional and weadp is
normalized as:

O'M® = | 3
wherel is identity matrix.

In this paper, the control algorithm is chosen ptimize the control gains from the
modal model in equation (2). So, the classical am@uadratic (LQ) algorithm is used for
realizing the modal control which can be updatedubh the change knowledge Af and B
via the optimization is obtained thanks to Riceattjuations:

SA+ATS+Q-SBR™'B'S=0 (4)
whereQ andR are weighting matricess is the solution of the associated Riccati’'s equmatio
In this paperQ andR are chosen to be constant and defined from thmlirstate of the
structure. The optimal linear matrix gaih is obtained by the minimization of the energy

guadratic performance function:

J_ =I:(XTQX+UTRU)dt (5)

min

Then the optimal control is obtained as:
u=-Gx (6)

whereG = R"B’S is the optimized matrix gain.



The modal state vector can’t be obtained or measured directBo it is estimated
thanks to a Luenberger observer which deliversribdal state estimation
X =AX+Bu+L(y-CX-Du) 7)

whereL is the optimized observer gain.

2.2 ldentification of modal model

In order to obtain the observer mod&l, B,C,D and compute the controller and
observer gain matrixc andL from A, B,C,D, subspace method is chosen for getting a
general state space model from input-output ddie iBlentification method can be extended
to closed-loop system as direct approadii&$ where an open-loop identification method is
directly applied to identify the model of structdrem the measured input signals which are
necessary for the identification, the measured robrsignals, and response signals of the
controlled structure. N4SID identification algontt{18] is chosen for its convergence (non-
iterative method) and numerical stability, regasdl®f zero and non-zero initial states. By
this algorithm, discrete state space matricesifoe k can be estimated by the least-squares

method[13], with I/O datauandy :

Ac B [[Xea [ X TYTX T X T
ERIEN TNy N
klk K|k K|k Kk

where X - ,X,, L_JkIk ,\_Kklk are the estimates of state vector, measured amqibutput vectors

after timek. A,, B,, C', D' are the state space discrete identified matrithen classical

method like matrix logarithm is used to transfoimstidentified discrete state space matrices

A,, B, into continuous state space matriges B, and get the eigen value to deduge
and ¢ . But since the state space basis is unspecified,B. can not be directly used to

reconstruct complex mode of structure, which isdleeleto get mode shape in equation (2).



According to the different positions of actuatodasensor with at least one collocated

pair, a transformation matrix can be got from eigen vectogs of A_ by [16]:

CE(1,:)pr? = (o7 BE(I))' ©)
wherel is the node of co-located actuator and sensor Bairand CF are the expanded
versions ofB, andC'. Based onr, complex modes of the structuge can be calculated
from ¢ . As mode shapes are supposed to be sufficientguded and damping is supposed

to be weak, a mode shage can be estimated §¥9]:

@, =y, \[2w,1-&,j=1-N (10)

wherey,, is the complex mode corresponding to eigen valje ¢« +i1/1—£jch which

is obtained from the identified continuous statacgomodel. It must be noticed that equation

(10) implies that®, is normalized as in equation (3).

2.3 Principle of self-adaptive modal control

In this approach, the time-varying structure istoaied by the help of a feedback
control loop combining an identifier. This prinagpls described in Figurel: output signals
from the time-varying structure (a) are comparedhwthose of the initial or previous
identified model by a criterion (b). According tug criterion, if this model is too far from the
actual system, an online modal parameter identifina(c) is carried out to identify this
structure. The identifier needs three types ofaiga random signal chosen for an efficient

identification and the control inputas excitations, output datgas response signals of the

controlled structure. This identified model (d)uised for updating the model of the observer
() and also to optimize and update the observansgéh) and controller gains (g). The
controller and observer gains are optimized thaak<Q (e) and LQG (f) algorithms with the

updated modal state space model and this modddeatso used in criterion (b).



The updating time period of the self-adaptive cantnust be linked to the rate of the
structure changes and to the first eigen frequefdiie structure at initial state for obtaining
good identification performancd®0]. Moreover the control step time is definednfrahe
highest frequency to be controlled. The weightipgroization matrices of the controller and
observer are defined from the initial model of gtaucture and are kept for the following

updates of the control system.

2.3.1 Excitation for identifying the model

In this type of identification chosen for a modaldating, the identifier is supplied with
an I/O data directly connected to the structureesehinput and output data are correlated due
to the feedback control. In order to balance thisbjem, the relation between signal for
identification and the disturbance should be cargd as follows.

A white noise signal is added to the input signal (Figure.1). The level of this white
noise signalr is chosen in order to get an efficient identificatand not to disturb the
performance of the control. This level is also @mws$o be greater than the environmental
disturbance noise introduced on the structure asFigure.l. Since this paper focuses on the
simulation, the level of the disturbance noisean be defined but remains realistic. Then the
level ratioa defined as:

I;rzdt

a =0
'[Ovzdt

(11)

is considered as the level of energy between thetification signalr and the disturbance
noisev . So, @ must be sufficiently large to ensure a correct ifieation.

The correlation of input and output data can b&ecefd by a correlation between the

input signalu+r and the response signal, as covariance function, =Cov(u+r,y) . If
¢, =0, the correlation is weak and results of identiftwa are considered to be accurate.
Therefore,a has to be sufficiently low to ensure that the elation of signals is weak and

9



acceptable. For different structure, some simutatbtw experiment is needed to find an

optimal a for which c, can be close to zero and the identificationeffective in spite of

disturbance noise. In addition, the disturbanaessiclered in this paper are assumed not to

modify the operating dynamic behaviour in a peesismanner.

2.3.2 Criterion for identification

Firstly, a systematic online real-time identificatiis proposed. The first step of the
process is the collection of I/O data with a carrate to describe the highest frequency mode.
When the collection is large enough to describelalest frequency mode in order to get a
correct state space model], the identification is carried out to updatedal model and
consecutively the controller and observer. Thigiiee procedure is then performed on new
I/O data without overlapping points over the idéodition windows. This method is well
adapted in the case of slow and smooth changée isttucture behaviour.

But for actual control system, identification shibdle carried out only when the initial
or previous identified model is far from the curtrand actual behaviour. Comparing with the
above proposed systematic online real-time ideatiibn which is taken as reference,
identification with a criterion can be proposedisTtriterion can be used both to trigger the
identification and to update the control system.

For example, Modal Assurance Criterion (MARLL] has been proposed over the last
twenty years to determine the exactness of identifnode shape. But for getting an updated
mode shape which is combined with the previous neb@ge to calculate the MAC value, a
systematic identification is still needed. So thA®Ican only be used as a criterion to trigger
control changes.

The simplest way is to use a criterion based orothtput signals of model and actual
structure. For example the value of Variance-ActedrFor (VAF)[17] is proposed. The

VAF is defined as:
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var(y-Y)

VAF(y.y) = max{l— var(y)

,o} x 100% (12)

where y is an output obtained by simulating the identifieddel andy is the corresponding
output of the actual changing structure as showFRigure.1. Then the trigger for running
identification and updating the control systemiigeg when the criterion of VAF (shown in

Figure.l) is less than or equal to a thresholdevglualifying the updating sensitivity.

3 Application to time-varying structures

3.1 Description of structure with 3 pendulums

A 3 DoF discrete structure is chosen to illustithie previous process of self-adaptive
modal controlThe 3 pendulums' mechanical structure is present&dgure.2 where the'3
pendulum mass can be moved over the axial direcliba mass displacement permits eigen
frequency shifts and an inversion of mode shapes. cHaracteristics of this structure are

summarized in Table 1.

Table 1: Physical and modal characteristics of theture (initial state)

Mass of pendulums  Stiffness of Length of stems Mass of stems
(Kg) spring (N/m) (m) (Kg)
m;=2.61 k1:l3182 Lt,=0.414 Mt,=0.305
m,=2.61 k,=13182 Lt,=0.414 Mt,=0.305
ms=0.875 k3:l3182 Lts=0.431 Mt3=1.205
Modal damping ratios Initial eigen frequencies
(3 pendulum mass at the bottom location)
£,=2.6.10° f,= 6.44 Hz
£,=2.6.10° f,=17.5 Hz
£=2.6.10° f3=23.9 Hz

3.2 Instability induced by mode shape inversion

In this example, a regulation problem is considearedvhich a controller is used to
reject the non collocated disturbance applied am gtructure. When the position of! 3

pendulum mass changes, some minor frequency s¥ilftsccur and the 2 mode shape will
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be inverted by the change of the sign of tfi& @mponent of the "2 mode shape (see
Figure.7c,d).

From equation (2)the dynamic behaviour of the structure can be esga@ in modal
coordinates with a state space form:

X=Ax+Bu+2Zv
(13)
y =Cx+Du+Hv
wherev represents the unknown external disturbance akdawn environmental nois€
and H are disturbance matrices. Combining equation${®)and (13), the modal state space

form of the controlled /observed structure is gitgn

I S e R ™ I

(14)
X
y=[C-DG DG]{ A}Hv

X =X
If the force of control is applied to th8%&tem and outputs are measured by the help of

the accelerations on each stem, matriBe<€C and D are written as:

B= [lea @21 d’zz ¢23]T L (!‘f (15)
C=|-diag(ef) -2diadée)] (16)
D= (D[¢21 CZ>22 CZ>23]T LJ—f (17)

where @,  is therth component ofth mode shape.

The poles of the observed and controlled structteegaverned byA -LC, A-BG
respectively. For the controller, the inversiomaideshape involved in matriB is effective
when the control force is applied to th& &tem and then affects the poles of the controller.
For the observer, the inversion of mode shapenaya involved in its poles location.

The control gains and the observer gai@s (L ,) are adjusted by LQG algorithm with

weighting matriceQ and R chosen in order to get a high performance wH&mpénhdulum
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mass is located at the bottom location. Thanksit@limobustness and damping of controlled
structure, the structure is stable befare; = 0.28m. But with this control adjustment

(G,,L, ) when the?pendulum is moved from the bottom to tlup,the controlled

structure becomes unstable since the mass loaatiess than 0.29 m as shown in Figure.3.
This instability is clearly due to the mode shapemion as mentioned [22].

What's more for an actual time-varying structutee thanges of modal characteristics
like mode shape inversion can not be known a pand measured. Therefore the real-time

identification is necessary to update modal moddl@nsecutively the controller.

3.3 Self-adaptive control implementation

This section is devoted to the validation of theatpd) principle of the controller and
observer gains, of the observer model. In a fingisection, the changes of gains and model
are expected to be safe and do not introduce sbmptachanges when a systematic updating
process is chosen. Then, the updating scheme isowegrby introducing a criterion on
outputs which triggers the identification and theamges in the controlled structure. The last
investigation focuses on the speed of the massadisment in order to validate the robustness
of VAF identification with external noise and didtance. Acceleration and force signals are
sampled at 1000 Hz and filtered, focusing the feeqy bandwidth of interest to [2Hz -
50Hz]. The length of the identification window ist $e 500 points (see justifications on the

same device if20]) .

3.3.1 Validation of the updating principle
In this section, the same weighting matri€@gsand R as in section3.2 are used by
LQG to optimize the controller and the observer. &ntrast with sectior3.2, when the
location of & mass is changed, the gaiBs(of the controller) and. (of the observer) and
the observer model are updated according to thsifelel modal model A, B, C, D). This

update is carried out systematically without anyedon. The updating time between two
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successive changes is set to 0.5s in accordanbeheitfrequency bandwidth and the speed of
the moving mass. This self-adaptive control is lgrggsted in quasi static behaviour (in fact
very slow motion conditions: mass velocity of 0.@Im/s). These successive poles of
observed and controlled systems are presentedyurd-é4 and can be considered almost as
same as estimations at different fixed location8®fmass. Like in sectioB.2, the poles of
the controller move to the right, but after $m0.29m, the poles move back to the left due to
the updating process. All the poles remain in #@if¢ $ide of complex plane with enough
damping. So the stability of observed and contdoditeucture is then guaranteed.

Moreover, the performed modifications in spite oEcstate to the other are sufficiently
continuous to guarantee that the effect of cons@mooth and continuous in the updated
time as shown in Figure 5a,b. In [65.0s-65.5s]eakpvalue of control force is induced by a
bad precision of the identified model due to thekveagnitude of response signals near the

mode shape inversion which occurs at 67.09s.

3.3.2 Alternative updating by criterion

In order to verify the ideal performances of comdial identification, firstly disturbance
and environmental disturbance noisare not applied to the structure and tfieriss moves
also from Lm = 0.342m to Lnp = 0.234m with the velocity of 3.6 mni28]. SinceG andL
are updated according to the identified modal mathel control system is self-adapted to the
changing structure. The threshold value of VAF foe ' pendulum acceleratiois set to
95% under which identification is carried out. Thelcalation of VAF is assumed to be
carried out on a large enough window with the saate as systematic identification taken as
reference for comparison (i.e. 500 points sampldd@0Hz as shown in Figure.6).

With these operating condition®, ./®, . and frequencies are identified by systematic

and VAF identification as modal characteristics anthpared to their theoretical values from

the simulated structure. The values of VAF and saidemtified results asp,,/®,, and
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frequencyw, are shown in Figure 7a-d. For the 3 pendulumesthanical structure, th&%2

mode is of significance, so only the critical chaesistics of the % mode are presented® 1
and 3! modal characteristics being always identified veitbrecision under 5%.

In the Figure 7, some instants when the differdoesveen identified and theoretical
response is large enough to produce a value of ¥ABP% are reported. At these instants the
identification is carried out to update the chasastics of modal model of the structure,
leading or not to an improvement of VAF criteridn. the Figure 7b, the second eigen
frequency values are presented in comparison wskematic identification. As mentioned
before, the value of VAF is calculated only on firet pendulum acceleration. Therefore
attention must be paid to this global indicatoremlnto account all the modal characteristic
changes, but only the second mode characterigticprasented. It must be noticed that this
indicator is sufficiently sensitive to ensure rolmess of the modal adaptive control of the
proposed application.

At time t=3s, the initial model is not coincidenitvthe structure, the difference on

®,,/®,, is great than 20% as shown in Figure 7d (the othef @, ; are less than 5%) and

the VAF is 92.12 %.Then identification is carried and the model and the gains are updated.
At time t=3.5s, there is still some difference beéw identified and simulated results during
[3s-3.5s], but not mainly on the second mode chearistics. Again an identification and a
model update are carried out again at time t=3rska time t=4s. As the updated value of
VAF is 97.79% at time t=4.5s, the identificatiordahe updating process are stopped.

After time t=13.42s, instant when the inversionnadde shape occurs, the value VAF
decreases suddenly as depicted in Figure 7a. Adght identification steps are necessary to
recover a VAF larger than 95%. This means that aensbdpe inversion is associated with a
difficulty to recover a modal model of this partiaustructure. Indeed, when th&'Znode

shape is close to be inverted, @&, =0, the acceleration of"2 pendulum mass is near to
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zero. Then the identifier can not get enough infative outputs leading to bad identified
modal characteristics. A full study devoted to thisblem is out of the scope of the present
paper.

When the inversion occurs, the VAF identified moieless exact than systematically
identified model, but is sufficient to update thentroller and the observer, therefore
improving the efficiency of control system. Duritlie movement of '3mass, the necessary
noise for the identification leads to unwanted ispment and controlled force. As shown in

Figure 8a-b as an example, the displacemxgand the controller force are smooth, weak and

stable over the time interval. So, this self-adagptontrol system yielding abrupt changes in

model and gains does not introduce instability.

3.3.3 VAF identification robustness

The effect of VAF identification is affected by tilspeed of variation of time-varying
structure. For this 3 DoF structure, this variatisngoverned by the velocity of thé®3
pendulum mass. To investigate this influence ondbatified results, a velocity shape is used
for simulation and shown in Figure 9a. By this shajhe changes on the identified results
induced by velocity and by mode shape inversionbzdistinguished. The resulting position
of the 3% pendulum is moved from L= 0.342m to Lrg = 0.230m as shown in Figure 9b.

All the other conditions are the same as in sec8ié?2 and corresponding values of
VAF and identified modal characteristics are shanvkRigure 10a-c.

Due to a higher velocity of 6.5 mm/s, the initiabdel is not coincident with the
structure at time t=2s as shown in Figure 10chsditst detection with the VAF criterion, the
identification and the update process occur eathian that in sectio.3.2.

Before the mode shape inversion occurring at ti®eli3s, the smallest value of VAF is
29.48% at time t=6s (Figure 10a), as it's 63.38%hwionstant velocity of 3.6mm/s (Figure

7a). This is induced by:
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(a) the velocity is 4.5 mm/s (Figure 9a) which is grimatn 3.6mm/s.

(b) the position of % pendulum is 0.306m, more close to the positiomeéision than

that of constant velocity 3.6mm/s, as shown in Féddb by the two red points.

Close to the time of mode shape inversion, theoiglas 2.94 mm/s which is less than
the constant velocity 3.6mm/s, so the identifieddeidsee Figure 10b-c) is more precise than
results presented in sectiBrB.2 (Figure 7b-c ). After the mode shape inverstbe value of
VAF is restored to 95% after a longer time (16 tiferation steps) due to lower velocity in
this time period. With a lower velocity, th& pendulum mass spends a long time to leave the
position of inversion. When the mass velocity rescl® m/s at time t=15s, the identified
results are almost equal to the theoretical valédter time t=25s when velocity reaches
5 mm/s, the identification occurs more frequently.

The sample time and the length of the identificatiandow are constant and obviously
the variation speed of time-varying structure \afflect its dynamic behaviour. If the speed is
null, then the accuracy is optimal. In the casen@ss movement, the accuracy of the
identification depends on the magnitude of the geamf dynamic behaviour in this
identification window, so depends on the mass spéewl a trade-off between update
frequency and exactness of identified modal modaebktnbe found by setting the VAF

threshold value.

As described insection3.3.2, the displacement, and the controller force remain

always smooth, weak and stable. The VAF identifocatis robust since it offers the
possibility to adjust the density of update andegavsuitable identified model, according to

different levels of variation of time-varying sttuce.

3.4 Results of self-adaptive modal control

From the above results, the self-adaptive contasl been shown to work properly, but

an updated control system has to be efficient jectesome disturbances on the structure. As

17



the disturbance does not affect the dynamic belavtbe identification process is expected
to be not seriously affected by this disturbancer §etting changes of identified results
induced by disturbance, a impulsive force of 50sNaa example of the unknown disturbance
is applied at the end of®3stem at arbitrary time t=20.22 s and during 20 fitsis time
location is chosen to clearly distinguish effedtglisturbance from changes induced by mode

shape inversion. The environmental white neise also introduced in the system in order to
simulate external disturbance noise. For this streca >10° is chosen to get, =0. Other

operating conditions are kept the same as in se8ti®.2. The same parameters are tracked

(value of VAF, identified®, ,/®, ,, and frequencyu,) and shown in Figure 11a-c.

For the value of VAF reported in Figure 11a, befibve disturbance occurs, it is almost
the same value as in secti8rB8.2. As the disturbance induces changes on respan the
time interval [20 s; 20.5 s], the value of VAF degses at time t=20.5s. As the force of

control is applied as input of the model which s&di to calculatéy, but theforce of control

applied on the structure is used to reject theepfdece, so the value of VAF remains close to
zero more than 40s after the disturbance. Aftee tin64.5s, VAF reaches again the threshold
value of 95%. In comparison with the mode shapernsien, an unknown disturbance induces
higher difficulties to overcome for having a precidentified model.

From Figure 11b-c, comparison between systematientification and VAF
identification shows a very small difference betwége two proposed approaches. Obviously,
near the time t=20.22s where the disturbance octliese is a greater difference between
theoretical and identified value of mode shapefaemliencies, in time interval [20.5s-215].

Even if the identified modal model is not exactidgrthe time interval [20.5s-21.0s],
thanks to updated gains and to the observer mtuelgontrolled system remains stable. A

high performance can be got to reject the effeclistuirbance as shown in Figure 12a-b.
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So, self-adaptive modal control system with systeara VAF identification is verified
to be robust and to keep a high performance fonging structures with smooth and weak
variation. And thorough VAF identification, the dom system can demonstrate some smart

propriety.

4 Conclusion

The aim of this paper is to propose a self-adapthadal control including both
identification and control update in real-time. §method is particularly suitable for time-
varying structures. It can overcome the instabiityich is induced by the variation of modal
characteristics, especially the inversion of madapg. In the same time, this approach leads
to a global robustness and keeps high performagieen by control optimisation.

A classical LQG algorithm has been chosen herethritmethod can be extended to
other control algorithms using a model of the dtitee VAF method is employed as a
criterion for determining the exactness of the nhoBeen if this criterion is only based on
one response signal, it is demonstrated to beartdwer describing exactness of the identified
model. This conditional identification represents @nteresting alternative to modal
comparison like MAC criterion which requires a €ysttic identification. For getting an
updated model of the structure when behaviour absragcur, N4SID is used as a direct
approach of identification of the structure undentcol to reach a modal state space model.
Thanks to this identified model, the control systeam be updated in agreement with the
modal characteristics of the structure: frequeraydwidth and identification window length.

Through the simulation of a 3-DoF structure, sorammeters like window length and
sample frequency are governed by modal properfigbeostudied structure. Moreover, the
VAF threshold is shown to be a good adjustmentrpatar to deal with the trade-off between
exactness and frequency of updates, improvingffimemcy of the self-adaptive control. The

proposed identification process can be carriedrotime domain and this method can exactly
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identify almost all modal characteristics with a%tSrecision at leasObviously when a
modal inversion and/or a high and sudden distubaccur, the exactness of identified mode
shapes is reduced. But due to the updated contsbémm, the stability can be guaranteed.
Thorough this application, the self-adaptive modantrol with VAF identification
demonstrates a global robustness and some smaerpes. In the same time, it allows to
keep the high performance of optimized controls LG in spite of the changes of structure.
Thanks to VAF criterion, this self-adaptive modahtrol system demonstrates some smart

properties.
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Figure 8: In the case of updated controller G and observer L with VAF identification, and
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Figure 11 The value of VAF and identified results with disturbance: (a) VAF value
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Figure 12 In the case of updated controller G and observer L with VAF identification, with
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Tablel: Physical and modal characteristics of thecgire (initial state)

Mass of pendulums  Stiffness of Length of stems Mass of stems
(Kg) spring (N/m) (m) (Kg)
m;=2.61 k1:l3182 Lt,=0.414 Mt,=0.305
m,=2.61 k,=13182 Lt,=0.414 Mt,=0.305
ms=0.875 k3:l3182 Lts=0.431 Mt3=1.205
Modal damping ratios Initial eigen frequencies
(3 pendulum mass at the bottom location)
§,=2.6.10° f,= 6.44 Hz
£,=2.6.10° f,=17.5 Hz
£=2.6.10° f3=23.9 Hz
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