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Why the Colombeau Algebras Cannot Handle Arbitrary Lie Groups ?

It is briefly shown that, due to the growth conditions in their definition, the Colombeau algebras cannot handle arbitrary Lie groups, and in particular, cannot allow the formulation, let alone, solution of Hilbert's Fifth Problem.
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Global Lie Group Actions on PDEs : the Parametric Method

The advantages of being able to define global actions for arbitrary Lie groups are well known for at least six decades by now, as presented systematically in the celebrated text of Chevalley, [START_REF] Chevalley | Theory of Lie Groups I[END_REF], for instance. Yet, even in the case of Lie groups acting on Euclidean spaces, and not on manifolds in general, the customary approach has not been able to go beyond a mere local definition, when it comes to actions on functions by arbitrary Lie groups, see for instance [START_REF] Bluman | Symmetries and Differential Equations[END_REF][START_REF] Ibragimov | CRC Handbook of Lie Group Analysis of Differential Equations[END_REF][START_REF] Olver | Applications of Lie Groups to Differential Equations[END_REF][START_REF] Olver | Equivalence, Invariants and Symmetry[END_REF][START_REF] Olver | Nonassociative local Lie groups[END_REF].

Rather surprisingly, this failure to define globally the action on functions of arbitrary Lie groups is due to an elementary difficulty, which can easily be overcome by a parametric definition of functions, as shown for the first time in [START_REF] Rosinger | Parametric Lie Group Actions on Global Generalized Solutions of Nonlinear Partial Differential Equations and an Answer to Hilberts Fifth Problem[END_REF], see also [START_REF] Rosinger | Arbitrary global Lie group actions on generalized solutions of nonlinear PDEs and an answer to Hilbert's fifth problem[END_REF][START_REF] Rosinger | Genuine Lie semigroups and semi-symmetries of PDEs[END_REF][START_REF] Rosinger | New symmetry groups for generalized solutions of ODEs[END_REF].

This parametric approach proves to have in fact two important advantages, namely, one of calculus, and the other of functorial nature. The calculus advantage relates to the simple and well known fact that the partial derivatives of any order of a parametrically given function can be computed from it, without first having to bring the function to the usual, nonparametric form. The functorial advantage, relating perhaps even to a simpler fact, is the one which will actually allow the most easy, direct and natural global definition of arbitrary Lie group actions on functions. In fact, as shown in [START_REF] Rosinger | Parametric Lie Group Actions on Global Generalized Solutions of Nonlinear Partial Differential Equations and an Answer to Hilberts Fifth Problem[END_REF][START_REF] Rosinger | Arbitrary global Lie group actions on generalized solutions of nonlinear PDEs and an answer to Hilbert's fifth problem[END_REF][START_REF] Rosinger | Genuine Lie semigroups and semi-symmetries of PDEs[END_REF][START_REF] Rosinger | New symmetry groups for generalized solutions of ODEs[END_REF] and mentioned in the sequel, it allows as well for the equally easy global definition of a far larger class of Lie semigroup actions.

As a general remark about the parametric approach to the global definition of arbitrary Lie group actions on functions, it is rather ironic to note that, in an embryonic, partial and local manner, this approach has in fact been in use for a long time by now.

Indeed, suppose given a smooth function f : Ω -→ R, with Ω ⊆ R n nonvoid, open. Further, suppose given an arbitrary Lie group G acting on M = Ω × R according to

G × M -→ M
Then the usual way this Lie group action on M is extended to such functions f , and thus to C ∞ (Ω, R), is as follows. We consider the graph of f , that is, the set

γ f = { (x, f (x)) | x ∈ Ω } ⊆ M
Therefore, for any g ∈ G, we can define point-wise the action gγ f and obtain again a subset of M .

Unfortunately however, in general, it will not be true that

gγ f = γ h
for a certain smooth function h : Ω -→ R, which function h if it existed, it would obviously correspond to the global action of g on f , that is, we would have

gf = h
And then, the usual way to define arbitrary Lie group actions on functions overcomes this difficulty at the cost of no less than a double localization, [START_REF] Olver | Applications of Lie Groups to Differential Equations[END_REF][START_REF] Olver | Equivalence, Invariants and Symmetry[END_REF][START_REF] Olver | Nonassociative local Lie groups[END_REF], namely

• g is restricted to a neighbourhood of the identity e ∈ G, and in addition

• f is restricted to suitable nonvoid, open subsets of Ω.
It is clear, however, that the consideration of the graph γ f of f amounts to replacing f : Ω -→ R by the following special parametric form of it, see (3.3), (3.4) in the sequel, namely f * : Ω -→ M , where Ω x -→ f * (x) = (x, f (x)) ∈ M . Furthermore, in this case gγ f is nothing else but gf * , that is, the action of g on f * , which can always be defined globally, irrespective of the function f , or of the Lie group action G on M .

Thus it becomes clear that the only difficulty we have ever faced when trying to define globally arbitrary Lie group actions on functions is not at all related to Lie groups or functions, but solely to our rather unformulated, and yet quite implacable intent to have gf * retranslated into a usual, nonparametric function h : Ω -→ R.

On the other hand, the parametric approach to Lie group actions introduced in [START_REF] Rosinger | Parametric Lie Group Actions on Global Generalized Solutions of Nonlinear Partial Differential Equations and an Answer to Hilberts Fifth Problem[END_REF][START_REF] Rosinger | Arbitrary global Lie group actions on generalized solutions of nonlinear PDEs and an answer to Hilbert's fifth problem[END_REF][START_REF] Rosinger | Genuine Lie semigroups and semi-symmetries of PDEs[END_REF][START_REF] Rosinger | New symmetry groups for generalized solutions of ODEs[END_REF], is adopted and pursued in its full extent, that is, without any sort of localization, this being the simple and fundamental reason for the fact that arbitrary Lie group actions can be defined globally on smooth functions. Furthermore, as shown in [START_REF] Rosinger | Parametric Lie Group Actions on Global Generalized Solutions of Nonlinear Partial Differential Equations and an Answer to Hilberts Fifth Problem[END_REF][START_REF] Rosinger | Arbitrary global Lie group actions on generalized solutions of nonlinear PDEs and an answer to Hilbert's fifth problem[END_REF][START_REF] Rosinger | Genuine Lie semigroups and semi-symmetries of PDEs[END_REF][START_REF] Rosinger | New symmetry groups for generalized solutions of ODEs[END_REF], this possibility to define globally arbitrary Lie group actions on smooth functions can easily be extended to actions on large classes of generalized functions, and in particular, distributions, one of the effects of such an extension being the first general solution of Hilbert's Fifth Problem, [START_REF] Rosinger | Parametric Lie Group Actions on Global Generalized Solutions of Nonlinear Partial Differential Equations and an Answer to Hilberts Fifth Problem[END_REF][START_REF] Rosinger | Arbitrary global Lie group actions on generalized solutions of nonlinear PDEs and an answer to Hilbert's fifth problem[END_REF]. Also as mentioned and shown briefly in the sequel, one can define globally on functions the action of far larger classes of Lie semigroups. This comes as a rather unexpected bonus, and the effect of the mentioned functorial nature of the parametric approach to Lie group actions which allows the definition of arbitrary smooth -thus typically noninvertible -actions. Such noninvertible actions can, of course, no longer belong to Lie group actions, but only to Lie semigroup actions, [START_REF] Rosinger | Parametric Lie Group Actions on Global Generalized Solutions of Nonlinear Partial Differential Equations and an Answer to Hilberts Fifth Problem[END_REF][START_REF] Rosinger | Arbitrary global Lie group actions on generalized solutions of nonlinear PDEs and an answer to Hilbert's fifth problem[END_REF][START_REF] Rosinger | Genuine Lie semigroups and semi-symmetries of PDEs[END_REF][START_REF] Rosinger | New symmetry groups for generalized solutions of ODEs[END_REF].

Let us mention here in passing that the interest in such Lie semigroups of actions comes from the fact that they range over a significantly larger class of actions than those corresponding to Lie groups. Therefore, when applied to the study of solutions of PDEs -this time as semisymmetries -they can offer new additional insights. Furthermore, as pointed out by P J Olver, semigroups of actions appear quite naturally in several aspects of the classical Lie theory, see for details [21, chap. 13], [???].

Let us briefly illustrate the essence of difficulties with Lie Group actions on usual functions.

Classical Lie Group Actions. For convenience, let us consider the familiar and important setup when Lie group actions are used in the study of PDEs. In such cases, we are given a linear or nonlinear PDEs of the general form

(1.1) T (x, D)U (x) = 0, x ∈ Ω ⊆ R n where Ω is nonvoid open, U : Ω -→ R is the unknown function, while T (x, D) is a C ∞ -smooth linear or nonlinear partial differen- tial operator. The relevant Lie groups G act on the open subset M = Ω × R ⊆ R n+1 , according to (1.2) G × M (g, (x, u)) -→ g(x, u) = (g 1 (x, u), g 2 (x, u)) ∈ M
where x ∈ Ω, u ∈ R are the independent and dependent variables, respectively, and

(1.3) G × M (g, (x, u)) -→ g 1 (x, u) ∈ Ω G × M (g, (x, u)) -→ g 2 (x, u) ∈ R with g 1 and g 2 being C ∞ -smooth.
We note that, given g ∈ G, in view of the Lie group axioms, it follows that the mapping

(1.4) M (x, u) g -→ g(x, u) ∈ M is a C ∞ -smooth diffeomorphism.
A first basic problem in Lie group theory, when applied to PDEs, is how to extend the action in (1. From this point of view, the Lie group actions (1.2), (1.3) are divided in two types, [START_REF] Olver | Applications of Lie Groups to Differential Equations[END_REF][START_REF] Olver | Equivalence, Invariants and Symmetry[END_REF].

The simpler ones, called projectable, or fibre preserving, satisfy the condition, see (1.3)

(1.7) g 1 (x, u) = g 1 (x), g ∈ G, (x, u) ∈ M
The special interest in Lie group actions (1.7) comes from the fact that they allow an easy global extension to action on C ∞ -smooth functions. Indeed, in this case, in view of (1.4), it follows that for g ∈ G, we obtain the C ∞ -smooth diffeomorphism [START_REF] Ibragimov | CRC Handbook of Lie Group Analysis of Differential Equations[END_REF], it is easy to define the respective global Lie group action

(1.8) Ω x g 1 -→ g 1 (x) ∈ Ω Now, given g ∈ G and U in (1.
(1.9) g U = U : = g 1 ( ) -→ R by (1.10) U (g 1 (x)) = g 2 (x, U (x)), x ∈
Indeed, (1.4) implies that in (1.9), we have 

⊆ Ω nonvoid, open, while (1.10) is equivalent with (1.11) U ( x) = g 2 (g -1 1 ( x), U (g -1 1 ( x))),
x = g 1 (x, u) u = g 2 (x, u)
where (x, u), ( x, u) ∈ M. Given now U :

-→ R as in (1.6), the natural way to define the group action gU = U :

-→ R would be by the relation, see (1.12) (1.13) U (g 1 (x, U (x))) = g 2 (x, U (x)), x ∈ which means that U ( x) = u. However, in order that (1.13) be a correct definition, we have to be able to obtain x ∈ as a C ∞ -smooth function of x ∈ , by using the first equation in

(1.14) x = g 1 (x, U (x)) u = g 2 (x, U (x))
and thus by replacing x ∈ in the second equation above, in order to obtain u as a function of x, that is, the relation (1.13). Furthermore, one also has to obtain ⊆ Ω as being nonvoid, open. The crucial issue here is, therefore, the C ∞ -smooth invertibility of the mapping

(1.15) x α -→ g 1 (x, U (x)) ∈ Ω
which obviously depends on g and U . And as seen in the very simple example next, this in general is not possible.

Example 2.1.

Let us consider the following nonprojectable case of the Lie group action (1.2), (1.3), where Ω = R, M = Ω × R = R 2 , G = (R, +), and for = g ∈ G = R, (x, u) ∈ M , we have

x = x + u 2 u = u
Let us take = Ω = R and the simple function

U : -→ R defined by U (x) = x, with x ∈ . Then (1.15) becomes R x α -→ x + x 2 ∈ R
which is not invertible as a function, let alone as a C ∞ -smooth function, except for the trivial group action corresponding to = 0, that is, to the identical group transformation.

The usual way to deal with this situation, [START_REF] Olver | Applications of Lie Groups to Differential Equations[END_REF][START_REF] Olver | Equivalence, Invariants and Symmetry[END_REF], is to consider the group action (1.2), (1.3) as well as the mapping α in (1.15), and therefore the function to be acted upon U : -→ R, only locally, that is, to restrict all of them to such suitable neighbourhoods of the neutral element e ∈ G, as well as of points x ∈ , on which α is C ∞ -smooth invertible.

It is useful to note however that, depending also on the function U in (1.6), the mapping α in (1.15) can sometime happen to have a global, and not only local C ∞ -smooth inverse, even in the case of a nonprojectable Lie group action. For instance, this happens if in the above Example 2.1., we consider x = x + u.

Let us mention what happens when the mapping α in (1.15) is invertible, regardless of the Lie group action being projectable or not, and when its inverse α -1 is also a C ∞ -smooth mapping. Then we can indeed turn to (1.13) in order to define the group action g U = U by 

(1.16) U ( x) = g 2 (α -1 ( x), U (α -1 ( x))),
. This new route will not require the above mentioned traditional localisation of g ∈ G, α or U . In other words, we are able to perform globally arbitrary Lie group actions on functions U defined on the whole of their unrestricted, original domains, as for instance in (1.5) and (1.6). Fortunately, this construction is particularly simple and applicable without any undue restrictions.

A Simple, Basic Observation. To summarize. The basis upon which we can delvelop this global approach is the following rather simple observation :

• The usual impediment which prevents us from extending arbitrary Lie group actions (1.2), (1.3) to global actions on functions (1.5) or (1.6) is not at all related to Lie groups, but to the usual way of representing functions, by discriminating between independent and dependent variables. Once one does away with such a discrimination, by using a parametric representation of functions, the way to a natural and easy global Lie group action on functions is open.

Parametrisation in its essence amounts to the following embedding of the usual definition of a function into a larger concept. Namely, a usual function

(1.18) A x f -→ y = f (x) ∈ B
is actually constrained to be a correspondence from the set A of its independent variable x, to the set B of its dependent variable y.

On the other hand, a parametric representation of f can be given by any pull-back type mapping

(1.19) P p h -→ h(p) = (x(p), y(p)) ∈ A × B
which maps any suitably given parameter domain P into the graph of f , under the following two conditions :

(1.20) y(p) = f (x(p)), p ∈ P and (1.21) P p -→ x(p) ∈ A is surjective
With respect to P , this, in general, only implies that its cardinal is not smaller than that of A.

However, when dealing with Lie group actions, the parameter domain P is required to be a suitable open subset in an Euclidean space, while the parametrisation h is assumed C ∞ -smooth.

It follows that, in general, a parametric representation will introduce an additional variable p, ranging over P , which this time is mapped into the pair (x(p), y(p)) of the original independent and dependent variables, pair which is an element in the cartesian product A × B.

This kind of embedding, obtained by introducing an additional variable, and thus going beyond the constraint of only dealing with the usual independent and dependent variables, proves to have an important and naturally built in advantage. Namely, it allows for the first time -and in a straightforward manner -the global definition of arbi-trary Lie group actions on functions.

In the usual, that is, nonparametric approach, however, when one wanst to define the Lie group action on a function, and obtain again a function, one cannot in general do so, unless at the end one is able to separate the independent and dependent variables, by expressing the latter as a function of the former. And in the nonprojectable case of Lie group actions, this typically is not possible, except locally in the independent variable, and also, near to the trivial, identical Lie group transformation.

On the other hand, if one starts, and ends, with parametrically given functions, then as shown in [START_REF] Rosinger | Parametric Lie Group Actions on Global Generalized Solutions of Nonlinear Partial Differential Equations and an Answer to Hilberts Fifth Problem[END_REF][START_REF] Rosinger | Arbitrary global Lie group actions on generalized solutions of nonlinear PDEs and an answer to Hilbert's fifth problem[END_REF] and seen in the sequel, one has no difficulties at all.

A Solution of Hilbert's Fifth Problem

In [START_REF] Rosinger | Parametric Lie Group Actions on Global Generalized Solutions of Nonlinear Partial Differential Equations and an Answer to Hilberts Fifth Problem[END_REF] a complete solution to Hilbert's Fifth Problem was obtained for the first time in the literature.

The Growth Conditions in Colombeau Algebras Cannot Handle Arbitrary Lie Groups

Let us briefly recall the way growth conditions are essential in defining the Colomebau algebras [START_REF] Colombeau | New Generalized Functions and Multiplication of Distributions[END_REF][START_REF] Grosser | Geometric Theory of Generalized Functions with Applications to General Relativity[END_REF][START_REF] Oberguggenberger | Multiplication of Distributions and Applications to PDEs[END_REF]. For simplicity, we shall consider the case of the domains Ω = R n , and on them, of the general Colombeau algebras first introduced in [START_REF] Colombeau | New Generalized Functions and Multiplication of Distributions[END_REF]. Their construction starts with the auxiliary family of smooth functions

(3.1) Φ m (Ω) =    φ ∈ D(Ω) (i) Ω φ(x)dx = 1 (ii) Ω x p φ(x)dx = 0, p ∈ N n , 1 ≤ |p| ≤ m   
Further, for > 0 and φ ∈ D(Ω), we define φ ∈ D(Ω) by

(3.2) φ (x) = φ(x/ )/ n , x ∈ Ω
Now, our basic space of function will be

(3.2) E(Ω) = (C ∞ (Ω)) Φ(Ω)
which is obviously a differential algebra with the term-wise operations.

The general Colombeau algebra on Ω = R n is constructed in three steps.

First, we consider the differential subalgebra A(Ω) in E(Ω), given by all the functions f ∈ E(Ω) which satisfy the growth condition

(3.3) ∀ compact K ⊆ Ω, p ∈ N n : ∃ m ∈ m ≥ 1 : ∀ φ ∈ Φ m (Ω) :
∃ η, c > 0 :

∀ x ∈ K, ∈ (0, η) : | D p f (φ , x) | ≤ c/ m
Second, we consider in the algebra A(Ω) the ideal I(Ω) given by by all the functions f ∈ A(Ω) which satisfy the growth condition

(3.4) ∀ compact K ⊆ Ω, p ∈ N n : ∃ k ∈ N, k ≥ 1, β ∈ B : ∀ m ∈ N, m ≥ k, φ ∈ Φ m (Ω) :
∃ η, c > 0 :

∀ x ∈ K, ∈ (0, η) : | D p f (φ , x) | ≤ c β(m)-k where (3.5) B =    β ∈ (0, ∞) N (i) β is non-decreasing (ii) lim m→∞ β(m) = ∞   
Third, the general Colombeau algebra of generalized functions on Ω = R n is the quotient algebra

(3.6) G(Ω) = A(Ω)/I(Ω)
The reason for the failure of the 

O(R r ) =    α ∈ C ∞ (R r ) ∀ p ∈ N r : D p α is slowly increasing    where a function β ∈ C ∞ (R r
) is called slowly increasing, if and only if there exist K, c > 0, such that

(3.8) | β(ξ) | ≤ K( 1 + | ξ | ) c , ξ ∈ R r
The mentioned limitation regarding smooth operations on Colombeau generalized functions is described by the following result, [START_REF] Colombeau | New Generalized Functions and Multiplication of Distributions[END_REF][START_REF] Rosinger | Generalized Solutions of Nonlinear Partial Differential Equations[END_REF], :

Given Colombeau generalized functions T 1 , . . . , T m ∈ G(Ω) and α ∈ O(R 2n ), then there exists a Colombeau generalized function α(T 1 , . . . , T m ) ∈ G(Ω), and it is defined by

(3.9) α(T 1 , . . . , T m ) = α(f 1 , . . . , f m ) + I(Ω) ∈ G(Ω)
where (3.10)

T i = f i + I(Ω) ∈ G(Ω), 1 ≤ i ≤ m
The problem here clearly is in the fact that, as soon as a smooth nonlinear operation α is no longer in O(R 2n ), one cannot in general obtain the growth condition (3.3) being satisfied by α(f 1 , . . . , f m ) in (3.9) for all Colombeau generalized functions T 1 , . . . , T m ∈ G(Ω).

In view of the above it is obvious that the Colombeau algebras cannot deal with Lie groups which are associated with a variety of large classes of PDEs.

The Inevitable Infinite Branching in the Multiplication of Singularities

The rather amusing fact, after decades of studies in the nonlinear algebraic theory of generalized functions, see subject 46F30 in the AMS classification, is what appears to be the inability on the part of not a few specialists involved to realize and understand that multiplication of generalized functions does quite inevitably branches when faced with dealing with singularities, [START_REF] Rosinger | Nonlinear Partial Differential Equations, Sequential and Weak Solutions[END_REF][START_REF] Rosinger | Generalized Solutions of Nonlinear Partial Differential Equations[END_REF][START_REF] Rosinger | Nonlinear Partial Differential Equations, An Algebraic View of Generalized Solutions[END_REF][START_REF] Rosinger | Inevitable Infinite Branching in the Multiplication of Singularities[END_REF][START_REF] Rosinger | Survey on Singularities and Differential Algebras of Generalized Functions : A Basic Dichotomic Sheaf Theoretic Singularity Test[END_REF][START_REF] Rosinger | Four Comments on "The Road to Reality[END_REF]. And as seen easily, this branching has most simple algebraic, more precisely, ring theoretic reasons.

As it happens, however, realizing the presence and importance of that branching seems not to be so easy, since it has so far eluded several notable mathematicians, as mentioned for instance in [START_REF] Rosinger | Four Comments on "The Road to Reality[END_REF].

The immediate and most obvious consequence of the mentioned inevitable infinite branching is that a variety of differential algebras of generalized functions should be considered when, for instance, solving nonlinear PDEs, or studying Lie group actions on solutions of such equations. After all, such an approach is in no way a novelty in the solution of PDEs, as for more than seven decades by now a large variety of Sobolev spaces have been used for such a purpose.

As for the Colombeau algebras, they obviously have a number of convenient properties. Moreover, as stressed in [START_REF] Rosinger | Generalized Solutions of Nonlinear Partial Differential Equations[END_REF][START_REF] Rosinger | Nonlinear Partial Differential Equations, An Algebraic View of Generalized Solutions[END_REF], their construction has a rather important natural feature which, however, is seldom mentioned, let alone used in the literature. However, as with all mathematical constructs, so with the Colombeau algebras, they manifest clear limitations in certain important situations.
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(1.12) 
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