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Non-intrusive coupling: an attempt to merge

industrial and research software capabilities

Olivier Allix, Lionel Gendre, Pierre Gosselet and Guillaume Guguin

I have had the great pleasure to cooperate since several years now closely with Pe-

ter Wriggers who has been several times invited in LMT-Cachan. I have always been

impressed by the profound understanding and practical knowledge of Peter regarding

computational and material mechanics. I know that Peter has a deep concern regarding

the application of fundamental researches which is the motivation of this paper. We hope

to connect it more closely in the future to the seminal work of Peter, especially regarding

contact and multiscale stochastic modeling of heterogeneous materials and damage. The

recently accepted International Research Training Group Virtual Material and Struc-

tures and their Validation is therefore an exceptional possibility for us to continue and

reinforce a close relationship with Peter, a great scientist and a great friend.

Abstract In computational mechanics, it is often difficult to test research innova-

tions on industrial problems because of software limitations: many of the commer-

cial finite element packages commonly used in the industry lack flexibility and open-

ness, whereas in-house research developments are usually very specific and may

lack features required for “real-life” industrial simulations. Non-intrusive coupling

is a tentative answer to this problem. It consists in introducing local enhancements

and refinements into an existing industrial problem through a separate nonlinear lo-

cal model that comes with its own solver; the two models are coupled by the means

of an iterative exchange algorithm inspired from domain decomposition methods

and multiphysics solution techniques, using both models and solvers without any

modification. So far, the method has been implemented around the finite element

package Abaqus and has been used to introduce local plasticity and geometric de-

tails into a linear elastic global problem. While current developments include the

simulation of localized damage in slender composite structures, we think that the

method could be adapted to a wide class of problems including hybrid experimental-

simulation approaches.

1 Introduction

In the last decade, many innovative modelling or solution techniques have been

introduced in the field of computational mechanics. These techniques, such as en-

riched finite elements or multiscale models, enable performing complex simulations
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that are out of reach of conventional finite element analysis (FEA) tools, in terms

of computational or human costs. However, although these techniques have proved

their performance by extensive testing on academic applications, they are scarcely

applied on actual industrial problems because they cannot be conveniently imple-

mented into commercial FEA software packages, which are the basis of most indus-

trial computational environments.

Non-intrusive coupling [11, 12] is a tentative answer to these limitations. It takes

advantage of the fact that, in many industrial simulations, sources of difficulties

(which are usually nonlinear phenomena, sometimes occurring at fine scales) are

localized in small regions, and that the innovative techniques mentioned above were

specifically designed to overcome such difficulties efficiently. Thus, the essential

idea of non-intrusive coupling is to enhance an existing industrial simulation, that

involves a complex model data set and a commercial FEA solver, by the means of

a separate local model that is analyzed with its own dedicated solver. This way,

the local model may contain innovative features that cannot be implemented con-

veniently into the commercial solver. The term “non-intrusive” means that in the

process, neither the models nor the solvers need to be modified; they are used as

“black boxes”, and a script is used to run the analyses and exchange displacements

and forces between them.

Of course, this non-intrusive framework also has a significant drawback: one

has to do with the limitations of the commercial FEA solver that is used. This can

impact performance, particularly when using software that are not optimized for im-

plicit solver coupling schemes. However, we believe that this possibly non-optimal

performance is a fair price to pay for the convenience of such a black-box tool;

in addition, depending on the solver, several adjustements can be performed to re-

duce computational costs dramatically. At the moment, the computational efficiency

of such a non-intrusive strategy is still an open question. What is certain is that this

framework provides a way of performing enriched simulations for which no “mono-

lithic” software is available at the present time.

The rest of this chapter is organized as follows. Section 2 reviews the essential

ideas of non-intrusive coupling and the different ways it can be made more efficient.

Section 3 presents an application of this strategy to localized plasticity and first

results on damage problems.

2 The general principles of non-intrusive coupling

The proposed analysis strategy starts from an existing “industrial” model, analyzed

using commercial FEA software; its behaviour is supposed to be completely linear

(linear elasticity under small perturbations without contacts) and static. This model

is called the global model and is schematized on Figure 1(a).

Let us assume that in reality, nonlinear phenomena may occur in a small region

of the structure Ω , denoted ΩI and called the area of interest; in the remaining

region ΩC = Ω \ΩI , called the complement area, the global model is assumed to
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be valid. In order to take those nonlinear phenomena into account, we would like to

use innovative techniques or models that cannot be implemented conveniently into

the global solver, as explained in the introduction. In addition, we suppose those

phenomena may interact with small local details (such as holes or cracks) that were

omitted in the global model.

Therefore, we suggest defining a separate local model, limited to ΩI alone, that

contains all the desired enhancements and is analyzed using its own dedicated non-

linear solver.This model is schematized on Figure 1(b). In this article, it is supposed

to possess a standard finite element formulation and to be geometrically and kine-

matically compatible with the global model on the interface Γ = ΩI ∩ΩC. However,

this is a simplification rather than a fundamental limitation of the method, and non-

compatible discretizations could very well be used as long as appropriate transfer

operators are defined (for example, using mortar techniques [4]).

!C

!I

!

(a) Global

!I

!

(b) Local

!C

!I

!

(c) Reference

Fig. 1 Global, local and reference problems

Starting from these models, a coupling method is then used. The following sec-

tions present the two main ideas of this method.

2.1 Piecewise substitution

Though the two models are overlapping, contrary to classical “patch” methods

[2, 3, 8, 10] which define the solution as a combination of a global and a local

term, we prefer to refer to non-overlapping formulations (as used in fluid-structure

interaction [22], multiscale simulations [25] and nonlinear domain decomposition

methods [7, 21]) which limit the exchanges to surface data and seem more prone to

the separate handling of nonlinearity. Therefore, we wish to eliminate the overlap

from the formulation. For that purpose, the reference problem that we wish to solve

is defined by piecewise substitution of the local model into the global model, as

shown on Figure 1(c). Likewise, the solution to this problem is sought by piecewise
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substitution of the local solution into the global solution, that is:

s|ΩI
= sL and s|ΩC

= sG
|ΩC

(1)

where s is the set of the solution fields (ie. the displacement field and the Cauchy

stress field) and superscripts G and L respectively denote quantities from the global

and the local problems. In other terms, the global solution that lies “under” the local

model is not retained: the overlap is eliminated.

This way, the solution to the reference problem can be obtained from the two

models and solvers by finding two solutions sL and sG such that (see left column):

1.
sL verifies every equation written in ΩI

and its boundary.
hL(wL) = λ L

2.
the restriction of sG to ΩC verifies every

equation written in ΩC and its boundary
SG

C wG −bG
C = λ G

C

3. sL and sG match on Γ
wG = wL

λ G
C +λ L = 0

The right column corresponds to the condensed version of the equation, where w

is the interface nodal displacement and λ the interface nodal reaction force. The

linear operator SG
C is the Schur complement of the complement area (from the global

model) and bG
C is the associated condensed right-hand side vector. The nonlinear

operator hL formally represents the local problem’s reaction to prescribed interface

displacements.

This set of three conditions is called the global-local formulation and its solution

is trivially equal to the reference solution (assuming it is unique). It defines a surface

coupling between the two models. The corresponding equations can be found in [11]

in a continuous form, and in [12] in a discrete, condensed form as above. From a

computational point of view, a crucial advantage of this formulation is the ability

to use a nonlinear local solver to handle local nonlinearity, instead of relying on

global iterations only; this principle, as used in [7, 21] in presence of localized but

pronounced nonlinearity, can lead to huge savings in computational costs.

2.2 Iterative coupling

To enforce this coupling and solve the global/local formulation, several approaches

can be imagined. In order to be both exact and non-intrusive at a reasonable cost,

using an iterative algorithm is the most relevant choice, as suggested in early litera-

ture on global/local analysis [18, 23]. In accordance to the non-intrusive framework,

the algorithm only consists in computing the responses to prescribed loads on the

different models; no direct matrix manipulations are used. To meet those require-

ments, we have chosen a simple modified Newton method on interface quantities.

This method starts from the initial elastic solution, then each iteration goes as fol-

lows.
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1. Local analysis: the local nonlinear problem is solved, with part of the current

global solution prescribed as a boundary condition on Γ . This condition can be

prescribed displacements, prescribed nodal forces or a mixed condition, as it

will be detailed below. For example, when using the displacement condition, we

compute the reaction λ L as:

λ
L = hL(wL) (2)

2. Residual computation: an interface load vector called the residual is computed.

It measures the non-verification of interface coupling equations. Convergence is

tested here: if the residual’s norm is small enough, iterations are stopped. For

example, if prescribed displacements were used, then the residual is the sum of

nodal reaction forces between the two models (which should be zero if they were

balanced):

r = λ
L +λ

G
C (3)

where λ G
C is extracted from the current global solution, either by classical post-

processing using elementary integration of stresses or by using an additional lin-

ear model to get reaction forces to the current global displacements.

3. Global correction: otherwise, the residual is injected into the global problem

as an additional interface load. This is done by first solving a corrective global

problem loaded only with the residual (all other loads and boundary conditions

are set to zero) :

∆wG = (SG
C +SG

I )−1r (4)

This computation is analogous to the linear step of a modified Newton iteration.

Therefore, the effectiveness of the correction step can be improved at no extra

cost by using a quasi-Newton update formula such as SR1 or BFGS [1, 19], writ-

ten in a non-intrusive form as shown in [11]. Finally, the corresponding corrective

solution ∆sG is added to the current global solution before going back to step 1.

This class of algorithms has two important properties. First, if the algorithm con-

verges, it is easy to prove that its limit is the fully coupled solution — that is, the ref-

erence solution [11, 12]. Therefore, the coupling method is reliable: the error can be

estimated through the norm of the residuals and reduced as much as needed. Second,

the method is indeed non-intrusive since the solvers operate as black boxes, and the

model data sets are never modified. It only requires sending boundary conditions to

the local solver or additional loads to the global solver, and reading interface nodal

displacements and forces which are routine FEA operations. As a consequence, the

algorithm’s implementation should be light and can use a high-level scripting lan-

guage as provided by many FEA packages.

2.3 Choice of the interface boundary condition for the local step

The simplest boundary condition that can be used on the local model is prescribed

displacements, the value of which is extracted from the current global solution. This
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choice enables to work with kinematically admissible displacement fields. For that

reason, it is popular in global/local [6, 18, 23] or multiscale analysis [9, 20], and

submodelling with displacement conditions is natively available in many commer-

cial FEA packages. Algorithms using this condition were studied in [11] for local

plasticity.

However, prescribing a displacement field is arguably not the most realistic way

of emulating the influence of the rest of the structure on the local model. Robin

conditions are known to be more efficient. They have been experimented in the

field of global/local analysis [13, 14] and widely studied in domain decomposition

methods [15, 17]. They consist in prescribing a linear combination of displacement

and efforts; the factor that appears in this linear combination is an interface stiffness

matrix. The choice of this matrix has a huge impact on performance. Intuitively,

it emulates the “mechanical impedance” of the rest of the structure, and it is well-

known that it should give a correct approximation of the Schur complement of the

linear region’s contribution. In [12] we proposed a two-scale approximation where

the macro part is evaluated by taking the global model’s response to selected loads

that represent “long-range” effects, whereas the micro part is given by the Schur

complement of a narrow strip of elements adjacent to the interface.

3 Examples using Abaqus/Standard

We consider the 2D toy problem represented on Figures 1(a) and 1(b). The local

problem’s constitutive model is elastic-plastic with linear isotropic hardening; the

load is applied in one single increment because of software constraints, and its in-

tensity is such that the elastic limit is slightly exceeded in the area of interest.

To assess the coupling scheme’s performance, we solved the reference problem

and computed, at each iteration, the relative error on the maximum cumulative plas-

tic strain (with respect to its reference value). This particular quantity was chosen

because it is a common goal of the analysis on many elastic-plastic applications

(such as estimating the lifespan of ductile structures submitted to cyclic loadings)

and because it is highly sensitive to the local model’s boundary condition.

The evolution of this relative error during the iterations is shown on Figure 2,

for four different variants of the algorithm (with prescribed displacements or Robin

conditions, with or without quasi-Newton acceleration). It appears that except for

the simplest version (prescribed displacements without acceleration), all variants

converge very quickly: an error of 10−3 on the maximum plastic strain (which is

a quite strict threshold, by engineering standards) is reached after 2 or 3 iterations.

The corresponding cumulative plastic strain maps are shown on Figure 3, at three

instants of the strategy.

As a first study on damage problems, we also considered the same geometry with

an isotropic damage law (with bounded rate of damage). For moderate damage, the

method behaves the same way (slow convergence for basic displacement approach,

effective acceleration with SR1 and better performance with mixed conditions). The
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Fig. 2 Convergence of maximum plastic strains on the 2D example with localized plasticity

(a) Initial, displacements (b) Initial, mixed (c) Converged (reference)

Fig. 3 Cumulative plastic strain maps at the first iteration and at convergence

softening associated to damage might be the source of many difficulties that we

have to deal with, like localization, instabilities (which require a local control), and

dependency on the interface’s location.

4 Conclusion

We proposed a coupling approach to enhance a global linear model by a local model

with refined geometry and non-linear constitutive equation. The approach is non-

intrusive so that it can link industrial FEA software to in-house research code.

Performance can be improved by using relevant boundary conditions on the local

model and using acceleration techniques, leading to an efficient method which was

validated on large industrial 3D localized plasticity problems. Prospects concern

coupling between plates and 3D models, local treatment of many loading steps,

application to damage problems like delamination in composites and to problems

involving contact [24] in both local and global models.
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