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Abstract. Limiting laws, as t → ∞, for Brownian motion penalised by the longest length of excursions up to t , or up to the last
zero before t , or again, up to the first zero after t , are shown to exist, and are characterized.

Résumé. Il est prouvé que les lois limites, lorsque t → ∞, du mouvement brownien pénalisé par la plus grande longueur des
excursions jusqu’en t , ou bien jusqu’au dernier zéro avant t , ou encore jusqu’au premier zéro après t , existent. Ces lois limites sont
décrites en détail.
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1. Introduction

(a) Let (Ω, (Xt , t ≥ 0), (Ft , t ≥ 0), (Px, x ∈ R)) denote the canonical realisation of the Wiener process, i.e. Ω =
C([0,∞),R); (Xt , t ≥ 0) is the coordinate process on Ω ; (Ft , t ≥ 0) denotes its natural filtration, and F∞ = ∨

t≥0 Ft .
(Px, x ∈ R) is the family of Wiener measures such that Px(X0 = x) = 1, for every x ∈ R. We write simply P for P0.

(b) Let (Γt , t ≥ 0) denote an R+-valued, (Ft ) adapted process defined on Ω , which satisfies: 0 < Ex(Γt ) < ∞ for
every t ≥ 0, and every x ∈ R. With the help of this process Γ – which we call the penalisation process – we define the
family of probabilities P

(t)
x by:

P (t)
x (Λt ) = Ex(1Λt Γt )

Ex(Γt )
(Λt ∈ Ft ). (1.1)

In several preceding papers ([11–13,15–17], see also [14] for a survey), we have shown that for many penalisation
processes (Γt , t ≥ 0), the following holds:

(i) limt→∞ P (t)
x (Λs) exists, for every fixed s ≥ 0, and Λs ∈ Fs . (1.2)

(ii) This limit is of the form Ex(1Λs M
Γ
s ), where (MΓ

s , s ≥ 0) is a (Fs ,Px) positive martingale. (1.3)

Here is our main tool to prove (1.2) and (1.3).

Theorem 1.1. Assume that:

(i)
E(Γt |Fs)

E(Γt )
−→
t→∞Ms a.s.,
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(ii) E(Ms) = 1, for every s ≥ 0.

Then,

(1) ∀s ≥ 0, ∀Λs ∈ Fs ,
E(1Λs Γt )

E(Γt )
−→
t→∞E(1Λs Ms),

(2) (Ms, s ≥ 0) is a (Fs ,P ) positive martingale.

The proof of this Theorem 1.1 is quite elementary. It hinges on Scheffé’s lemma (see [9], p. 37, Theorem 21).
(c) Assume that the hypotheses of Theorem 1.1 are satisfied, and define, for s ≥ 0, and Λs ∈ Fs :

Q(Λs) := E(1Λs Ms). (1.4)

Then, (1.4) induces a probability Q on (Ω, F∞). In [11–13,15–17], we have described precisely the main properties
of the canonical process (Xt , t ≥ 0) under Q.

(d) The aim of the present paper is to show the existence of the limit P (t)(Λs), as t → ∞, s being fixed, and to
study the canonical process (Xt , t ≥ 0) under Q – the Wiener measure P penalized by the process (Γt , t ≥ 0) – when
(Γt , t ≥ 0) is defined in terms of lengths of excursions. Let us be more precise and fix notation: For t ≥ 0, we denote
by gt (resp. dt ) the last zero of (Xu,u ≥ 0) before time t , resp.: the first zero after time t :

gt = sup{s ≤ t;Xs = 0}, (1.5)

dt = inf{s > t;Xs = 0}. (1.6)

Hence, (dt − gt ) is the length of the excursion which straddles t . We also introduce:

Σt ≡ Σgt = sup{ds − gs;ds ≤ t}, (1.7)

Σ∗
t ≡ Σdt = sup{ds − gs;gs ≤ t}. (1.8)

Thus, Σt is the length of the longest excursion before gt , whereas Σ∗
t is the length of the longest excursion before dt .

Consequently:

Σ∗
t = Σt ∨ (dt − gt ). (1.9)

We denote by (At , t ≥ 0) the so-called age process:

At := t − gt and A∗
t := sup

s≤t
As.

Hence:

A∗
t = Σt ∨ (t − gt ) and Σt ≤ A∗

t ≤ Σ∗
t ; Σ∗

t = A∗
t ∨ (dt − gt ).

The aim of this article is to study the effects on Brownian motion of penalisations induced by the following processes
(Γt , t ≥ 0):

(i) Γt := 1(Σt≤x) (x > 0, fixed). This is studied in Section 2.
(ii) Γt := h(Σt ), where h is an “integrable function.” This study extends that made in (i), and is developed in

Section 3;
(iii) Γt := 1{A∗

t ≤x} (x > 0, fixed), and Γt = 1{Σ∗
t ≤x} (x > 0, fixed). This is studied in Section 4.

However, in this case, we have not been able to obtain a full proof of the existence of the penalised measure; we
present a conjecture (4.5) upon which the existence rests.
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(e) Some prerequisites relative to the Brownian meander.
As Σt is Fgt -measurable, it turns out that certain features of the part of the trajectory of our Brownian motion

(Xs, s ≥ 0) between times gt and t play some important role throughout the discussion. We now gather a few useful
facts about the Brownian meander:(

m̃(t)
u = 1√

t − gt

Xgt+u(t−gt ),0 ≤ u ≤ 1

)
,

which is a well-defined process, whose law, thanks to the scaling property of Brownian motion does not depend on
t > 0. (Here, we slightly depart from the classical Brownian terminology, for which it is m(t) ≡ (|m̃(t)

u |, u ≤ 1) which
is called the Brownian meander.)

The simple fact, obtained by Brownian scaling, that the law of m̃(t) does not depend on t , can be further extended
as follows.

Proposition 1.2. Let T be a finite {Fgt } stopping time, such that: P(XT = 0) = 0. Then:

(i) the process (m̃
(T )
u , u ≤ 1) is independent from FgT

, and its law does not depend on T ;
(ii) for any Borel function f : R → R+, one has:

E
[
f (XT )|FgT

] = Kf (AT ), (1.10)

where K denotes the Markov kernel defined by:

Kf (y) = 1

2

∫ ∞

−∞
|z|
y

exp

{
− z2

2y

}
f (z)dz (y ∈ R+).

In particular, if T = T A
a = inf{t : At > a}, for a > 0, then XT A

a
and Fg

T A
a

are independent; hence, XT A
a

and T A
a are

independent, and:

P(XT A
a

∈ dz) = |z|
2a

exp

{
− z2

2a

}
dz. (1.11)

(iii) Let Ψ1,x(z) =
√

2
πx

|z| and Ψ2,b(z) = Φ(
|z|√

b
) for some x > 0, and b > 0, where

Φ(y) =
√

2

π

∫ ∞

y

du e−u2/2 = P
(|G| > y

)
, (1.12)

for G a standard Gaussian variable. Then,

KΨ1,x(y) =
√

y

x
, KΨ2,b(y) = 1 −

√
y

b + y
.

We note that:

KΨ1,x(y) + KΨ2,x−y(y) = 1 for all y < x. (1.13)

Proof.

• Points (i) and (ii) are very classical; they are proven and applied in [1–3,10].
• Point (iii) follows from elementary computations. Indeed:

KΨ1,x(y) =
√

2

πx

(
1

2

)∫ ∞

−∞
z2

y
e−z2/(2y) dz =

√
y

x
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whilst:

KΨ2,b(y) = 1

2

∫ ∞

−∞
|z|
y

e−z2/(2y)Φ

( |z|√
b

)
dz

=
√

2

π

∫ ∞

0
dz

z

y
e−z2/(2y)

∫ ∞

z/
√

b

e−u2/2 du

= 1

y

√
2

π

∫ ∞

0
e−u2/2 du

∫ u
√

b

0
ze−z2/(2y) dz (by Fubini)

=
√

2

π

∫ ∞

0
e−u2/2(1 − e−{u2/(2y)}b)du

= 1 −
√

y

b + y
. �

2. Penalisation induced by Γt = 1(Σt≤x)

Here, x > 0 is fixed.

Theorem 2.1.
(1) For every s ≥ 0, and Λs ∈ Fs ,

Q(Λs) := lim
t→∞

E(1Λs 1{Σt≤x})
E(1{Σt≤x})

exists. (2.1)

(2) This limit induces a probability Q on (Ω, F∞) such that:

Q(Λs) := E(1Λs M̃s1{Σs≤x}) = E(1Λs Ms), (2.2)

where:

Ms := M̃s1(Σs≤x), (2.3)

M̃s := |Xs |
√

2

πx
+ Φ

( |Xs |√
x − As

)
1(As≤x) (2.4)

with Φ given by (1.12). Moreover, (Ms, s ≥ 0) is a continuous, positive martingale, such that M0 = 1.
(3) Under Q, the process (Xt , t ≥ 0) satisfies:

(a) Σ∞ ≤ x a.s., and
√

Σ∞
x

is uniformly distributed on [0,1]; (2.5)

(b) A∗∞ = ∞ a.s.; (2.6)

(c) Let g = sup{t : Xt = 0}. Then, Q(0 < g < ∞) = 1, and the law of g is given by:

Q(g ≥ t) = E

[√
At∧T A

x

x

]
, (2.7)

where T A
x := inf{t ≥ 0 : At = x}.

(d) Let 0 ≤ y ≤ x, and denote T A
y := inf{t ≥ 0: At = y}. Then:
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(i) The process (Au,u ≤ T A
y ) is identically distributed under P and Q;

(ii) (Au,u ≤ T A
y ) and XT A

y
are independent under either P or Q;

(iii) The density of the distribution of XT A
y

under Q equals:

f
Q
X

T A
y

(z) = |z|
2y

e−z2/(2y)

(
|z|

√
2

πx
+ Φ

( |z|√
x − y

))
(2.8)

(iv) Q(g > T A
y ) = 1 −

√
y
x

;

(v) The process (Au,u ≤ T A
y ) and the event (g > T A

y ) are independent under Q.

(4) Moreover, under Q:

(a) The processes (Xu,u ≤ g) and (Xg+u,u ≥ 0) are independent;
(b) The process (Xg+u,u ≥ 0) is positive, resp.: negative, with probability 1

2 , and (|Xg+u|, u ≥ 0) is a BES(3)
process;

(c) Denoting by (Lt , t ≥ 0) the local time process of X at level 0, then:

•
√

2
πx

L∞ is exponentially distributed, with mean 1;
• Conditionally on L∞ = �, the process (Xu,u ≤ g) is a Brownian motion B stopped at τ� := inf{t : Lt > �}, and

conditioned on {Στ�
≤ x}.

Remark 2.2. Obviously, the probability measure Q defined by (2.1) and the martingale (Ms) depend on the parame-
ter x. In this section, since x is fixed, there is no ambiguity. A generalisation of Theorem 2.1 will be given in Section 3
and we shall denote Q(x) (resp. Mx

s ) the p.m. (resp. the martingale) defined by (2.1) (resp. (2.3)).

Proof of Theorem 2.1.
(1) We begin with the following lemma.

Lemma 2.3.

P(Σt ≤ x) = P

(
Σ1 ≤ x

t

)
∼

t→∞

√
x

t
(2.9)

(the equality in (2.9) follows from the scaling property).

Proof. We might use the computation in Exercise 4.19 of [10], p. 507, which discusses a result of Knight [7], but we
shall proceed from scratch by showing that:

(a) if Sβ denotes an independent exponential time, with parameter β , then:

β

∫ ∞

0
e−βtP (Σt ≤ x)dt = P(ΣSβ ≤ x) = E[sinh(

√
2β|XT A

x
|)]

E[cosh(
√

2βXT A
x

)] . (2.10)

Let us admit this result for one moment; then, as β → 0, we obtain:

P(ΣSβ ≤ x) ∼ √
2βE

[|XT A
x

|].
Using (1.11), we have

E
[|XT A

x
|] = 1

2

∫ ∞

−∞
z2

x
exp

(
− z2

2x

)
dz =

√
πx

2
.
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Thus, we have obtained:∫ ∞

0
e−βtP (Σt ≤ x)dt ∼

β→0

√
πx

β
. (2.11)

(b) We now prove formula (2.10): we first note that:

{ΣSβ ≤ x} = {
gSβ ≤ T A

x

} = {Sβ ≤ dT A
x

}, (2.12)

hence:

P(ΣSβ ≤ x) = 1 − E
[
e
−βd

T A
x

]
.

Let (θu) denote the usual family of time-translation operators:

Xs ◦ θu = Xs+u (s, u ≥ 0). (2.13)

Since: dT A
x

= T A
x + T0 ◦ θT A

x
, we obtain:

P(ΣSβ ≤ x) = 1 − E
[
e−βT A

x EX
T A
x

[
e−βT0

]]
,

P (ΣSβ ≤ x) = 1 − E
[
e−βT A

x e
−√

2β|X
T A
x

|]
.

Next, we use the independence of T A
x and XT A

x
, recalled in Proposition 1.2(ii), which yields:

P(ΣSβ ≤ x) = 1 − E
[
e−βT A

x
]
E

[
e
−√

2β|X
T A
x

|]
.

Formula (2.10) now follows from Wald’s identity:

E
[
e
√

2βX
T A
x

]
E

[
e−βT A

x
] = 1 (2.14)

(where we have used again the independence of T A
x and XT A

x
) together with the symmetry of the distribution of

XT A
x

. �

(2) We now show relations (2.1) and (2.3).
Let T0 = inf{s ≥ 0;Xs = 0} and t ≥ s ≥ 0. First, we observe:

{Σt ≤ x} = {Σs ≤ x} ∩ ({ds > t} ∪ {
ds ≤ t ∧ (s − As + x),Σt−ds ◦ θds ≤ x

})
. (2.15)

Hence:

P(Σt ≤ x|Fs) = (1) + (2),

where

(1) = 1{Σs≤x}P
({ds > t}|Fs

)
,

(2) = 1{Σs≤x}P
({

ds ≤ t ∧ (s − As + x),Σt−ds ◦ θds ≤ x
}|Fs

)
.

We now study the asymptotic behavior of (1), then (2), as t → ∞.
As is well known:

Py(T0 ≥ t) = P0

(
|G| ≤ |y|√

t

)
∼

t→∞

√
2

π
|y| 1√

t
, (2.16)
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where G denotes a standard N (0,1) Gaussian variable.

Since ds = s + T0 ◦ θs , the equivalence (2.16) implies:

(1) = 1{Σs≤x}PXs (T0 > t − s) ∼
t→∞

(√
2

π
|Xs |1{Σs≤x}

)
1√
t
. (2.17)

As for the term (2), we apply both the strong Markov property at time ds and Lemma 2.3:

(2) ∼
t→∞ 1{Σs≤x}

√
x

t
P

({ds ≤ s − As + x}|Fs

)
.

From the Markov property at time s, together with (1.12) and (2.16) we deduce:

(2) ∼
t→∞ 1{Σs≤x}

√
x

t
1{As≤x}Φ

( |Xs |√
x − As

)
.

Finally

P(Σt ≤ x|Fs) ∼
t→∞

1√
t

√
x

(
|Xs |

√
2

πx
+ Φ

( |Xs |√
x − As

)
1{As≤x}

)
1{Σs≤x}

∼
t→∞

√
x√
t
M̃s1{Σs≤x} =

√
x√
t
Ms.

It is clear that (2.9) implies that:

P(Σt ≤ x|Fs)

P (Σt ≤ x)
∼

t→∞
Ms

E[Ms] = Ms,

since E[Ms] = 1 follows from the next point.
(3.a) We begin with the following lemma.

Lemma 2.4.

(1) Let f : (y, a) → f (y, a) be a C 2,1
(y,a) function, from R × R+ to R. Then, (f (Xt ,At ), t ≥ 0) is a ((Ft ),P )

semi-martingale, which decomposes as:

f (Xt ,At ) = f (0,0) +
∫ t

0

∂f

∂y
(Xs,As)dXs +

∫ t

0

(
1

2

∂2f

∂y2
+ ∂f

∂a

)
(Xs,As)ds

+
∑
s≤t

(
f (0,As) − f (0,As−)

)
.

In particular, if:

(i) f (0, a) does not depend on a ≥ 0;

(ii)
1

2

∂2f

∂y2
+ ∂f

∂a
= 0,

then, (f (Xt ,At ), t ≥ 0) is a ((Ft ),P ) local martingale, with Itô representation:

f (Xt ,At ) = f (0,0) +
∫ t

0

∂f

∂y
(Xs,As)dXs.

(2) Likewise, let f : (y, a) → f (y, a) be a C 2,1
(y,a)

function defined on R+ × R+.
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Then, (f (|Xt |,At ), t ≥ 0) is a ((Ft ),P ) semimartingale, which decomposes as:

f
(|Xt |,At

) = f (0,0) +
∫ t

0

∂f

∂y

(|Xs |,As

)
sgn(Xs)dXs

+ ∂f

∂y
(0,0)Lt +

∫ t

0

(
1

2

∂2f

∂y2
+ ∂f

∂a

)(|Xs |,As

)
ds

+
∑
s≤t

(
f (0,As) − f (0,As−)

)
,

where (Lt , t ≥ 0) denotes the local time of (Xt , t ≥ 0) at level 0.
In particular, if f satisfies (i) and (ii) above, as well as:

(iii)
∂f

∂y
(0,0) = 0,

then (f (|Xt |,At ), t ≥ 0) is a ((Ft ),P ) local martingale, with Itô representation:

f
(|Xt |,At

) = f (0,0) +
∫ t

0

∂f

∂y

(|Xs |,As

)
sgn(Xs)dXs.

Proof.
(a) Since the process (At , t ≥ 0) has bounded variation, we may apply Itô’s formula to f (Xt ,At ) to obtain:

f (Xt ,At ) = f (0,0) +
∫ t

0

(
∂f

∂y
(Xs,As)dXs + 1

2

∂2f

∂y2
(Xs,As)ds

)
+ γt ,

where

γt =
∫ t

0

∂f

∂a
(Xs,As)ds +

∑
s≤t

(
f (0,As) − f (0,As−)

)
since the continuous part (Ac

t ) of (At ) is equal to t , and moreover if ΔAs �= 0, then Xs = 0, and As = 0.
(b) We use similar arguments, together with the Tanaka decomposition:

|Xt | =
∫ t

0
sgn(Xs)dXs + Lt , t ≥ 0,

where (Lt , t ≥ 0) denotes the local time of X at 0.
We then use the fact that the support of dLs is {s: Xs = 0}, and if s is a zero of X then: As = 0.
Thus:∫ t

0

∂f

∂y

(|Xs |,As

)
dLs = ∂f

∂y
(0,0)Lt .

�

(3.b) We now show that (Ms, s ≥ 0) is a local martingale.
We define:

T A
y := inf{t ≥ 0: At ≥ y} and T Σ

y := inf{t ≥ 0: Σt ≥ y} (y > 0).

Clearly, one has:

T Σ
x = dT A

x
= T A

x + T0 ◦ θT A
x

.
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We denote:

M̂s := 1{s≤T A
x }

(
|Xs |

√
2

πx
+ Φ

( |Xs |√
x − As

))
(2.18)

+ 1{s>T A
x }

√
2

πx
(sgnXT A

x
)Xs.

Then, clearly:

Ms = M̃s1{Σs≤x} = M̃s1{s≤T Σ
x } = M̂s∧T Σ

x
. (2.19)

Thus, it remains to prove that (M̂s, s ≥ 0) is a local martingale, and, for this purpose, it suffices to apply point (2) of
Lemma 2.4 to the function:

f (y, a) = y

√
2

πx
+ Φ

(
y√

x − a

)
(y ≥ 0, x > a ≥ 0).

We note that (i), (ii) and (iii) of Lemma 2.4 hold:

(α) f (0, a) = Φ(0) = 1
(
hence, (i) is satisfied

)
.

(β)
∂2f

∂y2
(y, a) =

√
2

π

y

(x − a)3/2
e−y2/(2(x−a));

∂f

∂a
(y, a) = −1

2

√
2

π

y

(x − a)3/2
e−y2/(2(x−a)),

so that:
1

2

∂2f

∂y2
+ ∂f

∂a
= 0

(
hence, (ii) is satisfied

)
.

(γ )
∂f

∂y
(y, a) =

√
2

πx
−

√
2

π

1√
x − a

e−y2/(2(x−a)),

so that:
∂f

∂y
(0,0) = 0

(
hence, (iii) is satisfied

)
.

Finally, one has:

Ms = 1 +
∫ s∧T Σ

x

0

{√
2

πx
+ 1√

(x − Au)+
Φ ′

( |Xu|√
(x − Au)+

)}
sgn(Xu)dXu, (2.20)

with the natural convention:

Φ

(
y

z

)
= 0 and

1

z
Φ ′

(
y

z

)
= 0, if z = 0 and y > 0. (2.21)

(3.c) We now show that (Ms, s ≥ 0) is a true martingale.
Since T Σ

x is a finite stopping time, the identity (2.19) and Doob’s optional stopping theorem imply that (Ms, s ≥ 0)

is a martingale as soon as (M̂s, s ≥ 0) is a martingale.
Due to (2.21), we have:

M̂s = |Xs |
√

2

πs
+ Φ

( |Xs |√
(x − As)+

)
. (2.22)
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From the preceding (3.b), since (M̂s, s ≥ 0) is a positive local martingale, in order to prove that it is a true martin-
gale, it suffices to show: E[M̂s] = 1. One has: E(M̂s) = (1) + (2), with:

(1) = E

[
1{s≤T A

x }

(
|Xs |

√
2

πx
+ Φ

( |Xs |√
x − As

))]
,

(2) =
√

2

πx
E

[
1{s>T A

x }(sgnXT A
x

)Xs

]
.

Since T A
x is a (Fgs ) stopping time, {s ≤ T A

x } belongs to Fgs . Using now Proposition 1.2, we get:

(1) = E

[
1{s≤T A

x }E
[
|Xs |

√
2

πx
+ Φ

( |Xs |√
x − As

)∣∣∣Fgs

]]
= E

[
1{s≤T A

x }
(
KΨ1,x(As) + KΨ2,x−As (As)

)]
= E

[
1{s≤T A

x }

(√
As

x
+ 1 −

√
As

x

)]
= P

(
s ≤ T A

x

)
.

As for (2), we use again Proposition 1.2:

(2) =
√

2

πx
E

[
1{s>T A

x }(sgnXT A
x

)(XT A
x

+ Xs − XT A
x

)
]

=
√

2

πx
E

[
1{s>T A

x }|XT A
x

|]
=

√
2

πx
P

(
s > T A

x

)
E

[|XT A
x

|]
= P

(
s > T A

x

)
KΨ1,x(x) = P

(
s > T A

x

)
.

Finally:

E(M̂s) = P
(
s ≤ T A

x

) + P
(
s > T A

x

) = 1. (2.23)

This ends the proof of point (2) in Theorem 2.1.

(4) We now show that, under Q,
√

Σ∞
x

is uniformly distributed on [0, 1].
(4.a) We have:

Q(Σs ≤ x) = lim
t→∞

P(Σs ≤ x,Σt ≤ x)

P (Σt ≤ x)
= P(Σt ≤ x)

P (Σt ≤ x)
= 1.

Thus:

Q(Σ∞ ≤ x) = 1. (2.24)

(4.b) Proof of point (3.a) (of Theorem 2.1).
Let y ∈ [0, x], and s > 0. According to (2.2) and Doob’s optional stopping theorem, we have:

Q(Σs > y) = Q
(
T Σ

y < s
) = E[1{T Σ

y <s}Ms] = E[1{T Σ
y <s}MT Σ

y
].

Consequently:

Q(Σ∞ > y) = Q
(
T Σ

y < ∞) = E[MT Σ
y

]. (2.25)
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However:

MT Σ
y

=
{

1, if the length of the 1st excursion of length ≥ y is smaller than x,
0, otherwise.

(2.26)

To compute E(MT Σ
y

), we use the excursions theory for Brownian motion (see, for instance, [10], Chapter XII). Let
e = (es, s > 0) be the excursion process related to (Xt ) under P . We introduce, for any excursion ε, its duration ζ(ε),
and let

U = {
ε; ζ(ε) ≥ y

}
, Γ = {

ε;y ≤ ζ(ε) ≤ x
}

(y < x) (2.27)

and NU
t the number of excursions starting before time t , and belonging to the set U :

NU
t =

∑
s≤t

1{es∈U}.

We now consider the (Fτl
) stopping time Sy :

Sy = inf
{
l > 0; ζ(el) ≥ y

} = inf
{
t > 0;NU

t > 0
}
,

where τl = inf{t ≥ 0;Lt > l}.
From [10], Lemma 1.13, Chapter XII and (2.25), one has:

E[MT Σ
y

] = P
(
ζ(eSy ) ∈ U

) = n(Γ )

n(U)
,

with n denoting Itô’s excursion measure.
It is easy to compute n(Γ ) and n(U):

n(Γ ) = 1√
2π

∫ x

y

dr√
r3

= 2√
2π

(
1√
y

− 1√
x

)
, n(U) = 2√

2π

1√
y

.

Consequently:

Q(Σ∞ > y) = 1 −
√

y

x
. (2.28)

This ends the proof of point (3.a) in Theorem 2.1.
(4.c) We determine the density function of L∞ under Q.
Let a > 0. We have:

Q(L∞ > a) = Q(τa < ∞) = lim
t→∞Q(τa < t),

where τa = inf{s;Ls ≥ a}.
According to (2.2), (2.3) and the optimal stopping theorem, we get:

Q(τa < t) = E[1{τa<t}Mt ] = E[1{τa<t}Mτa ] = P(τa < t,Στa ≤ x).

Consequently, using notation introduced in (4.b) above, we obtain:

Q(L∞ > a) = P(Στa ≤ x) = exp
(−an(ζ ≥ x)

)
.

Since:

n(ζ ≥ x) =
∫ ∞

x

dr√
2πr3

=
√

2

πx
,



432 B. Roynette, P. Vallois and M. Yor

we get:

Q(L∞ > a) = exp

{
−a

√
2

πx

}
(a > 0). (2.29)

This proves the first part of point (4.c) in Theorem 2.1.
(5) We show that, for any y < x, E[MT A

y
] = 1.

According to identity (2.3), we have:

MT A
y

= |XT A
y

|
√

2

πx
+ Φ

( |XT A
y

|
√

x − y

)
. (2.30)

From Proposition 1.2, we deduce:

E[MT A
y

] = KΨ1,x(y) + KΨ2,x−y(y) =
√

y

x
+ 1 −

√
y

x
= 1. (2.31)

We note that the preceding computation yields another proof of (2.28).
(6) We now show: Q(A∗∞ = ∞) = 1.
Let 0 < η < 1. We will prove that Q(A∗∞ = ∞) ≥ √

1 − η, which will yield the result.
Similarly to the proof of point (4.b) one has: Q(T A

y < ∞) = E[MT A
y

], for any y ∈ [0, x[. Identity (2.31) implies

that Q(T A
y < ∞) = 1.

From point (3.a) of Theorem 2.1:

Q(Σ∞ < x − xη) = √
1 − η.

Consequently:

Q
({Σ∞ < x − xη} ∩ {

T A
y < ∞}) = √

1 − η, where x − xη < y < x.

Let us observe that on the set {Σ∞ < x(1 − η} ∩ {T A
y < ∞}, Xt does not vanish after time T A

y . In particular, one has:
A∗∞ = ∞. Consequently Q(A∗∞ = ∞) ≥ √

1 − η.
We also observe that Σ∞ < ∞ and A∗∞ < ∞, Q a.s. imply that:

Q(g < ∞) = 1, (2.32)

where

g = sup{t : Xt = 0}. (2.33)

(7) We then prove simultaneously that the process (Au,u ≤ T A
y ) has the same distribution under P and Q, and

that it is independent from the r.v. XT A
y

under Q (and under P ), and we compute the density of XT A
y

under Q.
(7.a) From the definition (2.2) of Q, for every positive functional F , and every Borel function h : R → R+, we

have:

EQ

[
F

(
Au,u ≤ T A

y

)
h(XT A

y
)
] = E

[
F

(
Au,u ≤ T A

y

)
h(XT A

y
)MT A

y

]
. (2.34)

Note that MT A
y

is a function of XT A
y

, and recall that from Proposition 1.2, XT A
y

and (Au,u ≤ T A
y ) are P -independent.

Thus:

EQ

[
F

(
Au,u ≤ T A

y

)
h(XT A

y
)
] = E

[
F

(
Au,u ≤ T A

y

)]
E

[
h(XT A

y
)MT A

y

]
. (2.35)

(7.b) Now, taking h ≡ 1, and using (2.31), we obtain:

EQ

[
F

(
Au,u ≤ T A

y

)] = E
[
F

(
Au,u ≤ T A

y

)]
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thus proving the first point announced in (7).
(7.c) We may now write (2.35) as follows:

EQ

[
F

(
Au,u ≤ T A

y

)
h(XT A

y
)
] = EQ

[
F

(
Au,u ≤ T A

y

)]
E

[
h(XT A

y
)MT A

y

]
= EQ

[
F

(
Au,u ≤ T A

y

)]
EQ

[
h(XT A

y
)
]
,

thus proving the independence of (Au,u ≤ T A
y ) and XT A

y
under Q.

(7.d) We now compute the density of XT A
y

under Q.
One has:

EQ

[
h(XT A

y
)
] = E

[
h(XT A

y
)MT A

y

]
. (2.36)

Hence, from formulae (2.30) and (1.11) we get:

Q(XT A
y

∈ dz) = |z|
2y

e−z2/(2y)

(
|z|

√
2

πx
+ Φ

( |z|√
x − y

))
dz. (2.37)

(8) We show the independence under Q of (Au,u ≤ T A
y ) and of the set {g > T A

y }, and we compute Q(g > T A
y ).

For every positive functional F , one has:

EQ

[
1{g>T A

y }F
(
Au,u ≤ T A

y

)] = EQ

[
F

(
Au,u ≤ T A

y

)
Q

(
g > T A

y |FT A
y

)]
.

We now admit for an instant the result of Lemma 2.5, which will be proved below:

Q(g > t |Ft ) = Φ

( |Xt |√
(x − At)+

)
1

Mt

1{A∗
t ≤x}. (2.38)

Replacing t by the (Ft )-stopping time T A
y , we get:

Q
(
g > T A

y |FT A
y

) = Φ

( |XT A
y

|
√

x − y

)
1

MT A
y

. (2.39)

Since the right-hand side of (2.39) only depends on XT A
y

, we deduce from the above point (7) that:

EQ

[
1(g>T A

y )F
(
Au,u ≤ T A

y

)] = Q
(
g > T A

y

)
EQ

[
F

(
Au,u ≤ T A

y

)]
.

Hence the desired independence property.
Also, from (2.39), (2.34) and Proposition 1.2, we deduce:

Q
(
g > T A

y

) = EQ

[
Φ

( |XT A
y

|
√

x − y

)
1

MT A
y

]
= E

[
Φ

( |XT A
y

|
√

x − y

)]
= 1 −

√
y

x
.

(9) To end the proof of Theorem 2.1, we shall now use the technique of progressive enlargement of filtration
(see [6]). We have proven (see point (6) above) that Q(g < ∞) = 1, where g is defined by (2.33). We denote by
(Gt , t ≥ 0) the smallest filtration which contains (Ft , t ≥ 0), and which makes g a (Gt , t ≥ 0) stopping time. In order
to use the technique of enlargement of filtration, we need the following lemma.

Lemma 2.5. (i) For any t > 0, we have:

Zt := Q(g > t |Ft ) = Φ

( |Xt |√
x − At

)
1

Mt

1{A∗
t ≤x}. (2.40)
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(ii) Let (ks) be a predictable and non-negative process; then

EQ[kg] =
√

2

πx
E

[∫ ∞

0
ks1{s≤T A

x } dLs

]
. (2.41)

Proof.

(i) For every Λt ∈ Ft , one has:

Q
(
Λt ∩ {g > t}) = Q

(
Λt ∩ {dt < ∞}) = E[1Λt Mdt ] = P

(
Λt ∩ {Σdt ≤ x,Adt ≤ x}).

Observe that:

{Σdt ≤ x,Adt ≤ x} = {
A∗

t ≤ x, dt − t ≤ x − At

} = {
A∗

t ≤ x,T0 ◦ θt ≤ x − At

}
.

Applying the Markov property at time t and identity (2.16) leads to:

Q
(
Λt ∩ (g > t)

) = E

[
1Λt 1{A∗

t ≤x}Φ
( |Xt |√

x − At

)]
= EQ

[
1Λt 1{A∗

t ≤x}Φ
( |Xt |√

x − At

)
1

Mt

]
.

(ii) Replacing t in (2.40) by any (Ft ) finite stopping time T , taking the expectation, and using (2.3), we get:

Q(g ≤ T ) = EQ

[
1[0,T ](g)

] = 1 − E

[
1{A∗

T ≤x}Φ
( |XT |√

x − AT

)]

=
√

2

πx
E

[|XT ∧T A
x

|] =
√

2

πx
E

[∫ ∞

0
1[0,T ](s)1{s<T A

x } dLs

]
.

Point (ii) now follows by an application of the monotone class theorem. �

We now indicate how to make use of Lemma 2.5.
Our study in (3.c) and in particular (2.20) imply that:

Mt = E (J )t := exp

{∫ t

0
Js dXs − 1

2

∫ t

0
J 2

s ds

}
, t < T Σ

x , (2.42)

with

Js =
(√

2

πx
+ 1√

x − As

Φ ′
( |Xs |√

x − As

))
sgnXs

Ms

, s < T Σ
x . (2.43)

From Girsanov’s theorem, there exists a ((Ft , t ≥ 0),Q) Brownian motion (βt , t ≥ 0) such that:

Xt = βt +
∫ t

0

(√
2

πx
+ 1√

(x − As)+
Φ ′

( |Xs |√
(x − As)+

))
sgnXs

Ms

ds (2.44)

and the enlargement formulae imply that there exists a ((Gt )t≥0,Q) Brownian motion (β̃t , t ≥ 0) such that:

βt = β̃t +
∫ t∧g

0

d〈Z,β〉u
Zu

−
∫ t

t∧g

d〈Z,β〉u
1 − Zu

. (2.45)

Once we shall have computed explicitly d〈Z,β〉u, these formulae (2.44) and (2.45) will help us to describe the process
(Xt , t ≥ 0) under Q (see points (11) and (12) below).
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(10) We compute the law of g under Q.
Note that from our convention (2.21) we have:

Φ

( |Xt |√
(x − At)+

)
= Φ

( |Xt |√
x − At

)
1{At<x}. (2.46)

Since {A∗
t < x} = {A∗

gt
< x, t − gt < x}, from (2.40), we have:

Q(g ≥ t) = E

[
1{A∗

t <x}Φ
( |Xt |√

x − At

)]

= E

[
1{A∗

t <x}E
{
Φ

( |Xt |√
x − At

)∣∣∣Fgt

}]
.

Using Proposition 1.2 we get:

Q(g ≥ t) = E
[
1{A∗

t <x}KΨ2,x−At (At )
] = E

[
1{A∗

t <x}

(
1 −

√
At

x

)]
.

This yields formula (2.7).
(11) We now show that, under Q, (|Xg+u|, u ≥ 0) is a three-dimensional Bessel process, which is independent from

(Xu,u ≤ g).
From formulae (2.44) and (2.45), we have, for t ≥ g:

Xt = β̃t −
∫ t

g

d〈Z,β〉u
1 − Zu

+
∫ t

0

(√
2

πx
+ 1√

(x − Au)+
Φ ′

( |Xu|√
(x − Au)+

))
sgnXu

Mu

du. (2.47)

However, due to Itô’s formula, (2.20), (2.3) and Lemma 2.5, the martingale part Z̃ of Z, satisfies:

dZ̃t = − 1

M2
t

Φ

( |Xt |√
(x − At)+

)

×
{√

2

πx
+ 1√

(x − At)+
Φ ′

( |Xt |√
(x − At)+

)}
(sgnXt)dXt

+ 1

Mt

1√
(x − At)+

Φ ′
( |Xt |√

(x − At)+

)
(sgnXt)dXt

= 1

M2
t

√
2

πx
(sgnXt)

{ |Xt |√
(x − At)+

Φ ′
( |Xt |√

(x − At)+

)

− Φ

( |Xt |√
(x − At)+

)}
dXt . (2.48)

Hence, with the help of (2.44):

d〈Z,β〉t = 1

M2
t

√
2

πx
(sgnXt)

{ |Xt |√
(x − At)+

Φ ′
( |Xt |√

(x − At)+

)

− Φ

( |Xt |√
(x − At)+

)}
dt. (2.49)
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On the other hand, from Lemma 2.5, (2.3) and (2.4), we have:

1

1 − Zt

= Mt

Mt − Φ(|Xt |/
√

(x − At)+)
=

√
πx

2

Mt

|Xt | . (2.50)

Since Xg = 0, plugging now (2.49) and (2.50) into (2.47) leads, after simplification:

Xt+g = β̃t+g − β̃g +
∫ t

0

sgnXs+g

Ms+g

(√
2

πx
+ 1

|Xs+g|Φ
( |Xs+g|√

(x − As+g)+

))
ds

= β̃t+g − β̃g +
∫ t

0

sgnXs+g

|Xs+g| ds
(
from (2.3) and (2.4)

)
. (2.51)

It now remains to note that sgn(Xs+g) is constant under Q, and that:

Q
(
sgn(Xs+g) = 1,∀s > 0

) = Q
(
sgn(Xs+g) = −1,∀s > 0

) = 1

2
.

We also note that the independence of (Xu,u ≤ g) and (Xt+g, t ≥ 0) follows classically from the fact that the modi-
fication of equation (2.51) written for | Xt+g |, t ≥ 0, admits only one strong solution.

(12) We now describe the law of (Xu,u ≤ g) under Q.
From (2.41), we deduce that for any R+-valued predictable process (F (Xu,u ≤ s), s ≥ 0), and any Borel function

h ≥ 0:

EQ

[
F(Xu,u ≤ g)h(Lg)

]
=

√
2

πx
E

[∫ ∞

0
F(Xu,u ≤ s)h(Ls)1{A∗

s ≤x} dLs

]

=
√

2

πx
E

[∫ ∞

0
F(Xu,u ≤ τ�)h(�)1{A∗

τ�
≤x} d�

]
(2.52)

with τ� = inf{s ≥ 0: Ls > �}.
Taking F = 1 in (2.52), we deduce that the density function of Lg = L∞ under Q is√

2

πx
P

(
A∗

τ�
≤ x

)
.

Consequently:

EQ

[
F(Xu,u ≤ g)h(Lg)

] =
∫ ∞

0
E

[
F(Xu,u ≤ τ�)|

(
A∗

τ�
≤ x

)]
h(�)Q(L∞ ∈ d�).

Thus, the law under Q of (Xu,u ≤ g), conditioned on {L∞ = �}, is that of Brownian motion stopped at τ�, and
conditioned by the event {A∗

τ�
≤ x} = {Στ�

≤ x}.
This ends up the proof of Theorem 2.1. �

Remark 2.6. The technique of enlargement of filtration, applied before g (see (2.44) and (2.45), with t ≤ g), yields:

Xt = β̃t +
∫ g∧t

0

d〈Z,β〉u
Zu

+
∫ g∧t

0

{√
2

πx
+ 1√

(x − Au)+
Φ ′

( |Xu|√
(x − Au)+

)}
sgnXu

Mu

du.
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Hence with (2.49) and (2.3)–(2.4), we obtain:

Xt = β̃t +
∫ g∧t

0

1√
(x − Au)+

Φ ′

Φ

( |Xu|√
(x − Au)+

)
sgnXu du. (2.53)

We note that, in this equation, the drift term tends to −∞ (resp: +∞) when u → T A
x , with Xu > 0 (resp: Xu < 0).

(2.53) shows that ((Xt ,At ), t ≤ g) is Markov. We would like to point out that the theory of enlargement of filtrations
is very helpful here since it permits to determine the law of ((Xt ,At ), t ≤ g) – as expressed in Theorem 2.1, point (4.c)
– although it seems rather difficult to do it only from (2.53).

3. Penalisation with a function of Σt

The aim of this section is to extend the results of the preceding section, by replacing the penalisation functional
1{Σt≤x} by a functional of the form h(Σt). We shall use the following notation: let ψ : R+ → R+ be a function which
is almost surely differentiable and such that:∫ ∞

0
ψ(x)dx = 1.

In particular, ψ is a probability density on R+. We also introduce:

h(x) := 2
√

xψ(x) (x ≥ 0), (3.1)

Ψ1(x) :=
∫ x

0
ψ(y)dy (x ≥ 0), (3.2)

h1(x) := 2xψ(x) + 1 − Ψ1(x) (x ≥ 0). (3.3)

We assume that:

xψ(x)−→
x→0

0 (3.4)

as well as:

xψ(x) −→
x→∞ 0 (3.5)

and ∫ ∞

0
x
∣∣ψ ′(x)

∣∣dx < ∞. (3.6)

We shall now take h(Σt ) as our penalisation functional. Note that Theorem 2.1 corresponds to the following choice
of ψ :

ψ(u) = 1

2
√

ux
1[0,x](u) (x fixed). (3.7)

Remark 3.1. We note that the definition and assumptions (3.1) to (3.6) imply that:∫ ∞

0

√
x
∣∣h′(x)

∣∣dx < ∞, (3.8)

h1(x) = −
∫ ∞

x

√
yh′(y)dy (3.9)
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and

h1(0) = 1. (3.10)

Indeed:

−
∫ ∞

x

√
yh′(y)dy = −[

2yψ(y)
]∞
x

+
∫ ∞

x

ψ(y)dy

= 2xψ(x) + 1 − Ψ1(x).

Theorem 3.2.

1. For any s ≥ 0, and every Λs ∈ Fs :

lim
t→∞

E[1Λs h(Σt )]
E[h(Σt )] exists. (3.11)

2. This limit is equal to:

Qψ(Λs) := E
[
1Λs M

ψ
s

]
(3.12)

with:

Mψ
s =

√
2

π
h(Σs)|Xs | + h1(Σs)Φ

( |Xs |√
(Σs − As)+

)

+
√

2

π

∫ |Xs |/
√

(Σs−As)+

0
h1

(
As + X2

s

v2

)
e−v2/2 dv; (3.13)

the function Φ has been defined by (1.12) and the convention (2.21) holds.
Moreover, (M

ψ
s , s ≥ 0) is a continuous positive martingale such that M

ψ

0 = 1.
3. The formula (3.12) induces a probability on (Ω, F∞).
4. Under Qψ , the canonical process (Xt , t ≥ 0) satisfies:

(a) Σ∞ is finite a.s., and admits ψ as its density.
(b) A∗∞ is a.s. infinite.
(c) Let g := sup{s: Xs = 0}. Then: Qψ(0 < g < ∞) = 1, and for every t ≥ 0:

Qψ(g > t) = −
∫ ∞

0
h′(x)E

[√
At∧T A

x

]
dx. (3.14)

(d) The processes (Xt , t ≤ g) and (Xg+t , t ≥ 0) are independent.
(e) With probability 1/2, (Xg+t , t ≥ 0) is positive (resp. negative), and (|Xg+t |, t ≥ 0) is the 3-dimensional Bessel

process starting from 0.
(f) Conditionally on L∞(= Lg) = �, and Στ�

≤ x, the law of (Xu,u ≤ g) is that of Brownian motion B considered
until τ�, i.e.: (Bu,u ≤ τ�), and conditioned on Στ�

≤ x.

Remark 3.3. It seems, when first looking at the definition of M
ψ
s (see (3.13)) that there might be some ambiguity

concerning the definition of M
ψ
s at the times s, which are ends of excursions; but, a careful inspection shows that

there is no ambiguity.

Remark 3.4. (1) The martingale (M
ψ
s , s ≥ 0) defined by (3.13) is equal to:

Mψ
s = −

∫ ∞

0

√
xh′(x)Mx

s dx, (3.15)
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where (Mx
s , s ≥ 0) is the martingale defined in Theorem 2.1 by (2.3) (see also Remark 2.2).

Indeed, we have:

−
∫ ∞

0

√
xh′(x)Mx

s dx = (1) + (2), (3.16)

with:

(1) = −
√

2

π
|Xs |

∫ ∞

Σs

h′(x)dx =
√

2

π
h(Σs)|Xs |

(
from (3.5)

)
(3.17)

and:

(2) = −
∫ ∞

Σs

1{As<x}Φ
( |Xs |√

x − As

)√
xh′(x)dx

= −
√

2

π

∫ ∞

Σs∨As

dx
√

xh′(x)

∫ ∞

|Xs |/√x−As

e−v2/2 dv

= −
√

2

π

∫ ∞

0
e−v2/2 dv

∫
Σs∨(As+X2

s /v2)

√
xh′(x)dx (by Fubini)

=
√

2

π

∫ ∞

0
e−v2/2 dv h1

(
Σs ∨

{
As + X2

s

v2

})
dv

(
from (3.9)

)
=

√
2

π

∫ ∞

0
h1(Σs)1{v≥|Xs |/

√
(Σs−As)+}e

−v2/2 dv

+
√

2

π

∫ ∞

0
h1

(
As + X2

s

v2

)
1{v<|Xs |/

√
(Σs−As)+}e

−v2/2 dv

= h1(Σs)Φ

( |Xs |√
(Σs − As)+

)

+
√

2

π

∫ |Xs |/
√

(Σs−As)+

0
h1

(
As + X2

s

v2

)
e−v2/2 dv. (3.18)

Thus, the validity of relation (3.15) now follows immediately from the conjunction of (3.17) and (3.18).
(2) From (3.15), we get:

Qψ(Λ) = −
∫

Q(x)(Λ)
√

xh′(x)dx (Λ ∈ F∞) (3.19)

with Q(x)(Λ) the probability measure defined via (2.2) (see Remark 2.2). The reader may have been surprised to find
that, in the disintegration formula (3.15) of the martingale Mψ , the representing measure (−√

xh′(x)dx) is not in
general positive; nonetheless, it has total integral equal to 1, i.e.:

−
∫ ∞

0

√
xh′(x)dx = 1. (3.20)

We shall discuss the positivity of Q(x)(Λ) and the martingale Mψ in Theorem 3.5 below.

Proof of Theorem 3.2. (1) To prove this theorem, it suffices, thanks to Remark 3.4, to prove point (1) of the the-
orem (which we shall do in the second step in this proof). From now, we use the representation (3.19) to compute
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Qψ(Σ∞ > a):

Qψ(Σ∞ > a) = −
∫ ∞

0

√
xh′(x)Q(x)(Σ∞ > a)dx

= −
∫ ∞

0

√
xh′(x)Q(x)

(√
Σ∞
x

>

√
a

x

)
dx

= −
∫ ∞

0

√
xh′(x)1{a<x}

(
1 −

√
a

x

)
dx (3.21)

(
from point (3.a) in Theorem 2.1

)
= −

∫ ∞

a

h′(x)
(√

x − √
a
)

dx. (3.22)

Hence, Σ∞ is a finite r.v. under Qψ with density function:

− 1

2
√

a

∫ ∞

a

h′(x)dx = 1

2
√

a
h(a) = ψ(a), (3.23)

from (3.5) and (3.1).
�

(2) We now show point (1) in Theorem 3.2.
(a) We first estimate E[h(Σt)]. We have:

E
[
h(Σt )

] = −E

[∫ ∞

Σt

h′(u)du

] (
since h(∞) = 0

)
= −

∫ ∞

0
h′(u)P (Σt < u)du

= −
∫ ∞

0
h′(u)P (tΣ1 < u)du

= − 1√
t

∫ ∞

0
h′(u)ρ

(
u

t

)√
udu, (3.24)

where ρ(y) = P(Σ1 < y)√
y

, y > 0, and we have used the scaling property:

Σt
(d)= tΣ1 (under P ).

From (2.9), limy→0 ρ(y) = 1 and ρ is bounded on ]0,∞[. The dominated convergence theorem implies that:

E
[
h(Σt )

] ∼
t→∞ − 1√

t

∫ ∞

0
h′(u)

√
udu = h1(0)√

t
= 1√

t

(
from (3.10)

)
. (3.25)

(b) We now write:

E
[
1Λs h(Σt )

] = E
[
1Λs E

(
h(Σt )|Fs

)]
.

In order to estimate:

Δ := E
[
h(Σt)|Fs

]
(s < t) (3.26)

two cases need to be studied:

(b.i): ds = s + T0 ◦ θs > t and (b.ii): s + T0 ◦ θs < t.
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We then write: Δ = Δ1 + Δ2 with:

Δ1 := E
[
h(Σt )1{s+T0◦θs>t}|Fs

]
, Δ2 := E

[
h(Σt)1{s+T0◦θs<t}|Fs

]
,

which we study separately.
(b.i) On the set: {s + T0 ◦ θs > t}, one has: Σs = Σt ; hence relation (2.16) implies:

Δ1 = h(Σs)P|Xs |(T0 > t − s) ∼
t→∞h(Σs)

√
2

π

|Xs |√
t

. (3.27)

(b.ii) On {s + T0 ◦ θs < t} = {ds < t}, the r.v. Σt may be decomposed as follows: Σt = Σ̃ ∨ Σ ′, with Σ̃ :=
Σs ∨ (As + ds − s) and Σ ′ := Σt−ds ◦ θds .

We first take the conditional expectation with respect to Fds :

E
[
h(Σt )1{ds<t}|Fds

] = H(Σ̃, t − ds)1{ds<t} (3.28)

with

H(u,v) = E
[
h(u ∨ Σv)

]
, u, v ≥ 0. (3.29)

Let h̃(y) := h(u ∨ y), y ≥ 0 with u > 0 fixed. Then

h̃1(x) := −
∫ ∞

x

√
y(̃h)′(y)dy = −

∫ ∞

x∨u

√
yh′(y)dy.

Using (3.25) we get, with the help of (3.9):

H(u,v) ∼
v→∞

1√
v
h̃1(0) = − 1√

v

∫ ∞

u

√
yh′(y)dy = h1(u)√

v
. (3.30)

Then we have successively:

E
[
h(Σt )1{ds<t}|Fds

] ∼
t→∞

h1(Σ̃)√
t

1{ds<t},

Δ2 ∼
t→∞

1√
t
E

[
h1

(
Σs ∨ (As + ds − s)

)
1{ds<t}|Fs

]
= 1√

t
E

[
h1

(
Σs ∨ (As + T0 ◦ θs)

)
1{s+T0◦θs<t}|Fs

]
.

According to the well-known identity:

Py(T0 ∈ du) = y√
2πu3

exp

{
− y2

2u

}
1{u>0} du, (3.31)

we deduce:

Δ2 ∼
t→∞

1√
t

∫ ∞

0
h1

(
Σs ∨ (As + u)

) |Xs |√
2πu3

e−X2
s /(2u) du. (3.32)

We then write the integral on the RHS, as:∫ (Σs−As)+

0
h1(Σs)

|Xs |√
2πu3

e−X2
s /(2u) du +

∫ ∞

(Σs−As)+
h1(As + u)

|Xs |√
2πu3

e−X2
s /(2u) du

= h1(Σs)Φ

( |Xs |√
(Σs − As)+

)
+

√
2

π

∫ |Xs |/
√

(Σs−As)+

0
h1

(
As + X2

s

v2

)
e−v2/2 dv (3.33)
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(after the change of variables X2
s

u
= v2).

Thus, we finally obtain:

E[h(Σt)|Fs]
E[h(Σt )] = Δ1 + Δ2

E[h(Σt)] ∼
t→∞Mψ

s ,

from (3.13), (3.27), (3.32), (3.33) and (3.25).
(3) End of the proof of Theorem 3.2.
We observe that identity (3.15) of Remark 3.4 and (3.12) imply item (3) of Theorem 3.2. We claim that point (4)

of Theorem 3.2 may be directly deduced from this property and Theorem 2.1. Indeed as an illustration we prove that
(Xt , t ≤ g) and (Xg+t , t ≥ 0) are independent under Qψ .

Let F1 and F2 denote two positive functionals. Then:

EQψ

[
F1(Xt , t ≤ g)F2(Xg+t , t ≥ 0)

]
= −

∫ ∞

0

√
xh′(x)dxEQ(x)

[
F1(Xt , t ≤ g)F2(Xg+t , t ≥ 0)

]
= −

∫ ∞

0

√
xh′(x)dxEQ(x)

[
F1(Xt , t ≤ g)

]
EQ(x)

[
F2(Xg+t , t ≥ 0)

]
from Theorem 2.1, (4.a).

But, from Theorem 2.1, (4.b), the law of (Xg+t , t ≥ 0), under Q(x), does not depend on x, hence it is equal to its
law under Qψ since −√

xh′(x)dx is a finite measure on [0,∞), whose integral is equal to 1.
Consequently, we deduce from the preceding identity that:

EQψ

[
F1(Xt , t ≤ g)F2(Xg+t , t ≥ 0)

]
= EQψ

[
F1(Xt , t ≤ g)

]
EQψ

[
F2(Xg+t , t ≥ 0)

]
.

We now take care of the drawback of positivity of Qψ and Mψ by “changing the parametrisation.” Indeed, as in
the proof of Theorem 3.5 below, it is more convenient to write the penalisation process h(Σt ) as h0(

√
Σt). Note that

in the context of Theorem 2.1, which is a particular case of Theorem 3.2, the distribution of
√

Σ∞ is simpler than that
of Σ∞ since it is equal to a uniform distribution.

This leads us to present more naturally point (3) of Theorem 3.2.

Theorem 3.5. The hypotheses and notation are those found in Theorem 3.2. Consider, for any probability density ψ

on R+, the disintegration of Qψ with respect to the random variable Σ∞, which admits the density ψ :

Qψ(Λ) =
∫ ∞

0
Qψ(Λ|Σ∞ = y)ψ(y)dy (Λ ∈ F∞). (3.34)

Then: dy a.e., Qψ(Λ|Σ∞ = y) does not depend on ψ .
Thus, if one defines, for y > 0,

Q̂(y)(Λ) := Qψ0(Λ|Σ∞ = y) (3.35)

for some probability density ψ0(y) > 0 everywhere, one obtains:

Qψ(Λ) =
∫ ∞

0
Q̂(y)(Λ)ψ(y)dy (Λ ∈ F∞), (3.36)

Q̂(y)(Σ∞ = y) = 1 ∀y ≥ 0, (3.37)

and, furthermore:

Q(x) = 1√
x

∫ ∞

0

dy

2
√

y
Q̂(y). (3.38)
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Proof. (1) In order to take into account the penalisation by
√

Σt , we set:

h(x) = h0
(√

x
)
, x ≥ 0. (3.39)

Consequently the penalisation process h(Σt) equals h0(
√

Σt).
It is clear that our assumptions and notation related to h and ψ may be interpreted in terms of h0 in the following

way:

ψ(x) = 1

2
√

x
h0

(√
x
)
, x ≥ 0, (3.40)

∫ ∞

0
h0(x)dx = 1, (3.41)

xh0(x) → 0, as x → 0 or x → ∞, (3.42)∫ ∞

0
y
∣∣h′

0(y)
∣∣dy < ∞. (3.43)

Consequently:

Qψ(Λ) = −
∫ ∞

0

√
xh′(x)Q(x)(Λ)dx = −1

2

∫ ∞

0
h′

0

(√
x
)
Q(x)(Λ)dx

= −
∫ ∞

0
h′

0(y)yQ(y2)(Λ)dy, (3.44)

for any Λ ∈ F∞.
Let k : R+ → R+, with compact support and of C∞ class; applying (3.44) with h0 = k/c and c := ∫ ∞

0 k(y)dy, we
get:

−
∫ ∞

0
k′(y)yQ(y2)(Λ)dy =

(∫ ∞

0
k(y)dy

)
Qψ(Λ), (3.45)∫ ∞

0
k(y)d

(
yQ(y2)(Λ)

) =
(∫ ∞

0
k(y)dy

)
Qψ(Λ), (3.46)

where d(yQ(y2)(Λ)) denotes the differential in the distribution sense of yQ(y2)(Λ).

The relation (3.46) implies that d(yQ(y2)(Λ)) is a non-negative measure which is absolutely continuous with
respect to the Lebesgue measure. We set:

Q̂(y2)(Λ) := d

dy

(
yQ(y2)(Λ)

)
. (3.47)

We observe that, in this definition, Q̂(y2)(Λ) is only defined a.e. in y. But, it follows from [4] that the quasi-kernel
(Λ,y) → Q̂(y2)(Λ) may be “regularized” as a kernel, so that the definition (3.47) holds for every Λ, a.e.

(2) Coming back to (3.44) and using (3.47) and (3.40) we obtain:

Qψ(Λ) =
∫ ∞

0
h0(y)Q̂(y2)(Λ)dy = 2

∫ ∞

0
yψ

(
y2)Q̂(y2)(Λ)dy

=
∫ ∞

0
ψ(z)Q̂(z)(Λ)dz. (3.48)
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Let x > 0 fixed and ψx(y) := 1
2
√

xy
1[0,x](y). Then

Qψx (Λ) = −
∫ ∞

0

√
yh′

x(y)Q(y)(Λ)dy

= −
∫ ∞

0

√
y

d

dy

(
2
√

yψx(y)
)
Q(y)(Λ)dy

= Q(x)(Λ).

Using (3.48) we obtain:

√
xQ(x)(Λ) =

∫ x

0
Q̂(y)(Λ)

dy

2
√

y
, x > 0. (3.49)

(3) Let us prove that: Q̂(x)(Σ∞ = x) = 1.
Recall that, from item (3.a) of Theorem 2.1, we have:

Q(x)(Σ∞ > a) = 1 −
√

a

x
, ∀a ∈]0, x]. (3.50)

Hence, for any ϕ : R+ → R+, Borel, we have:

√
xQ(x)

[
ϕ(Σ∞)

] =
∫ x

0

dy

2
√

y
ϕ(y).

Comparing with (3.49), we deduce: Q̂(y)[ϕ(Σ∞)] = ϕ(y), dy a.e. and it follows that Q̂(y)(Σ∞ = y) = 1, dy a.e.
(4) We may now conclude. Indeed, for ψ a probability density, one has

Qψ(Λ) =
∫ ∞

0
Qψ(Λ|Σ∞ = y)ψ(y)dy (3.51)

and, from (3.48):

Qψ(Λ) =
∫ ∞

0
Q̂(y)(Λ)ψ(y)dy. (3.52)

Since Q̂(x) charges only {Σ∞ = x}, we deduce from (3.51) and (3.52) that:

Qψ(Λ|Σ∞ = y) = Q̂(y)(Λ). (3.53)

This ends the proof of Theorem 3.5. �

4. Penalisation by 1{A∗
t ≤x}

Let x > 0 be fixed. The aim of this section is to study the penalisation of Wiener measure with the functional Γt =
1(A∗

t ≤x).
In fact, because of the non-availability of a Tauberian argument in this case, we need to make a conjecture (see

(4.5)), which, if valid, implies the existence of the penalised probability (see Theorem 4.3).
We recall that:

A∗
t = sup

s≤t
As = Σt ∨ (t − gt ) = Σt ∨ At . (4.1)
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To prepare for the statement of our conjecture, let, for λ ≥ 0:

θ(λ) = λe−λ

∫ 1

0

eλz dz√
z

. (4.2)

From [8], p. 266, formula (9.11.1), the function θ defined above may be expressed in terms of a confluent hypergeo-
metric function, namely:

θ(λ) = 2λe−λΦ

(
1

2
,

3

2
, λ

)
. (4.3)

We begin with the following lemma.

Lemma 4.1. The function 1 − θ(λ) admits a first strictly positive zero λ0.

Proof. Setting z = 1 − u
λ

in (4.2) and integrating by parts, we get:

θ(λ) = 2λ

(
1 −

∫ λ

0

√
1 − u

λ
e−u du

)
.

From the asymptotic expansion:√
1 − u

λ
= 1 − u

2λ
− u2

8λ2
+ o

(
1

λ2

)
(u fixed),

it is easy to deduce:

θ(λ) = 1 + 1

2λ
+ o

(
1

λ

)
(λ → ∞).

As 1 − θ(0) = 1, the lemma is proven. �

Before we state the conjecture, we note that, from the scaling property of Brownian motion:

T A
y

(law)= yT A
1 , A∗

t

(law)= tA∗
1, T A

1
(law)= 1

A∗
1
. (4.4)

Conjecture. There exists a constant C, such that:

P

(
T A

1 ≥ t

x

)
= P

(
A∗

t ≤ x
) ∼

t→∞Ce−λ0t/x, (4.5)

where λ0 denotes the first positive zero of 1 − θ(·), as defined in Lemma 4.1.

Remark 4.2. We note that Theorem 3.1 of Hu–Shi [5] which contains – among other results – an asymptotic estimate
of P(A∗

1 ≤ x) as x → 0 is in agreement with our conjecture. However, Hu–Shi use a refinement of the Tauberian
theorem (their Theorem 3.2) which, in all rigor, does not imply the equivalence (4.5) above.

We are now in a position to state the following theorem.

Theorem 4.3. Let x > 0 be fixed, and λ0 > 0 be defined as in Lemma 4.1.

(1) Assuming the validity of the conjecture (4.5),
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(a) for every s > 0, and Λs ∈ Fs , the limit:

Q∗(Λs) := lim
t→∞

E[1Λs 1(A∗
t ≤x)]

P(A∗
t ≤ x)

exists. (4.6)

(b) This limit is equal to:

Q∗(Λs) := E
[
1Λs M

∗
s

]
, (4.7)

where:

M∗
s = eλ0s/x1(A∗

s ≤x)

∫ x−As

0

|Xs |√
2πu3

e−{X2
s /(2u)}+λ0u/x du. (4.8)

(2) (a) (M∗
s , s ≥ 0) is a positive continuous martingale such that M∗

0 = 1.
(b) Q∗ induces a probability measure on (Ω, F∞), such that, under Q∗, the process (Xt , t ≥ 0) satisfies:

A∗∞ = x a.s. and T A
x = inf{t : At = x} = ∞ a.s. (4.9)

We begin with a preliminary result.

Lemma 4.4. For every λ ≥ 0 and y > 0:

λ

∫ ∞

0
e−λtP

(
A∗

t ≤ y
)

dt =
eλyλ

√
y
∫ y

0
e−λv dv√

v

1 + eλyλ
√

y
∫ y

0
e−λv dv√

v

. (4.10)

Equivalently, the complement to 1 of the above expression equals:

E
[
e−λT A

y
] = 1

1 + eλyλ
√

y
∫ y

0 e−λv dv√
v

= 1

1 − θ(−λy)
. (4.11)

Proof. We compute E[e−λT A
y ], with the help of the independence property of XT A

y
and T A

y . Namely according to
Wald’s identity (2.14) we have:

E
[
e
λX

T A
y

]
E

[
e−{λ2/2}T A

y
] = 1. (4.12)

As for the calculation of E[eλX
T A
y ] we use Proposition 1.2, and:

E
[
e
λX

T A
y

] = 1

2

∫ ∞

−∞
|z|
y

e−{z2/(2y)}+λz dz = 1

2

∫ ∞

−∞
|z|e−{z2/2}−λz

√
y dz

= e{λ2/2}y

2

∫ ∞

−∞
|z|e−{1/2}(z+λ

√
y)2

dz = eλ2y/2

2

∫ ∞

−∞
∣∣z − λ

√
y
∣∣e−z2/2 dz

= e{λ2/2}y

2

[∫ λ
√

y

−∞
(
λ
√

y − z
)
e−z2/2 dz +

∫ ∞

λ
√

y

(
z − λ

√
y
)
e−z2/2 dz

]

= e{λ2/2}y

2

[
λ
√

y

{∫ λ
√

y

−∞
e−z2/2 dz −

∫ ∞

λ
√

y

e−z2/2 dz

}
+ 2e−λ2y/2

]

= 1 + λ
√

ye{λ2/2}y
∫ λ

√
y

0
e−z2/2 dz. (4.13)
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Hence, from (4.12) and (4.13), and after changing λ in
√

2λ, we get:

E
[
e−λT A

y
] = 1

1 + eλy
√

2λy
∫ √

2λy

0 e−z2/2 dz
(4.14)

= 1

1 + eλyλ
√

y
∫ y

0 e−λv dv√
v

(4.15)

after making the change of variables: z2 = 2λv. Now, Lemma 4.4 follows from (4.15). �

It follows from the scaling property of Brownian motion (and this is confirmed by (4.15)) that:

T A
y

(law)= yT A
1 (4.16)

and

A∗
t

(law)= tA∗
1. (4.17)

Proof of Theorem 4.3. (1) We prove point (1).
For every s + x ≤ t , one has:

1{A∗
t ≤x} = 1{A∗

s ≤x}1{As+ds−s≤x,ds<t}1{A∗
t−ds

◦θds ≤x}. (4.18)

Hence, from conjecture (4.5), after conditioning on Fds , we get:

E[1{A∗
t ≤x}|Fs] ∼

t→∞C1{A∗
s ≤x}E

[
1{As+ds−s≤x,ds<t}e−λ0/x(t−ds)|Fs

]
. (4.19)

Recall that ds = s + T0 ◦ θs , and:

P(Tz ∈ du) = |z|√
2πu3

e−z2/(2u) du, (4.20)

where Tz denotes the first hitting time of z by Brownian motion.
Therefore relation (4.19) implies:

E[1{A∗
t ≤x}|Fs] ∼

t→∞Ce−λ0t/x

(
1{A∗

s ≤x}eλ0s/x

∫ x−As

0

|Xs |√
2πu3

e−{X2
s /(2u)}+λ0u/x du

)
. (4.21)

It is clear that

lim
t→∞

E[1{A∗
t ≤x}|Fs]

P(A∗
t ≤ x)

= M∗
s (4.22)

follows from (4.21) and conjecture (4.5) (recall that M∗
s has been defined by (4.8)).

It will be shown below (see (2)(e)) that E[M∗
s ] = 1. Therefore point (1) of Theorem 4.3 is a direct consequence of

Theorem 1.1.
(2) We now show that (M∗

s , s ≥ 0), as defined in (4.8) is a martingale. Note that the results stated in point (2) of
Theorem 4.3 hold without assuming (4.5).

(a) We first remark that we may write M∗
s , with the help of the change of variables: X2

s

u
= v2, as:

M∗
s = 1{A∗

s ≤x}eλ0s/x

√
2

π

∫ ∞

|Xs |/√x−As

e−v2/2+{λ0X
2
s /(xv2)} dv (4.23)

without assuming the validity of the conjecture.
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We also note that 1{A∗
s ≤x} = 1{T A

x ≥s}, and that, for s < T A
x : M∗

s > 0.
Thus, (M∗

s , s ≥ 0) is stopped at its first zero. Moreover, we have:

0 ≤ M∗
s ≤

√
2

π
eλ0s/x1(A∗

s ≤x)

∫ ∞

|Xs |/√x−As

exp

(
−v2

2
+ λ0X

2
s (x − As)

xX2
s

)
dv

≤ eλ0s/xeλ0 . (4.24)

Thus, to show that (M∗
s , s ≥ 0) is a martingale (under P ), it suffices to see that it is a local martingale.

Note that the relation (4.23) implies that M∗
0 = 1 a.s.

(b) Define:

f (y, a) =
∫ ∞

y/
√

x−a

e−v2/2+{λ0/(xv2)}y2
dv (y ≥ 0,0 < a ≤ x) (4.25)

so that:

M∗
s = eλ0s/x1(A∗

s ≤x)

√
2

π
f

(|Xs |,As

)
. (4.26)

To prove that (M∗
s , s ≥ 0) is a local martingale, we shall apply Lemma 2.4 or more precisely, a slight variant of

Lemma 2.4, due to the presence of the factor eλ0s/x .
In fact, it suffices to show that the function f considered as a function of (y, a) satisfies:

(i) f (0, a) does not depend on a (a > 0); in fact, from (4.25): f (0, a) = √
π/2;

(ii)
∂f

∂a
+ 1

2

∂2f

∂y2
+ λ0

x
f = 0;

(iii)
∂f

∂y
(0,0) = 0.

(c) We show (iii).
This follows from:

∂f

∂y
(0,0) = − 1√

x
eλ0 +

∫ ∞

y/
√

x

2λ0y

xv2
e−v2/2+{λ0/(xv2)} dv

∣∣∣∣
y=0

= − 1√
x

eλ0 + λ0√
x

∫ 1

0

du√
u

e−{y2/(2xu)}+λ0u

∣∣∣∣
y=0(

after making the change of variables
y2

2v2
= u

)
= − eλ0

√
x

(
1 − θ(λ0)

) = 0,

from the definition of λ0.
(d) We show point (ii) above. We start computing the two first derivatives ∂f

∂y
(y, a) and ∂f

∂a
(y, a).

From (4.25), we have:

∂f

∂a
(y, a) = − y

2(x − a)3/2
e−{y2/(2(x−a))}+{λ0/x}(x−a) (4.27)

and

∂f

∂y
(y, a) = − 1√

x − a
e−{y2/(2(x−a))}+{λ0/x}(x−a) +

∫ ∞

y/
√

x−a

2λ0y

xv2
e−v2/2+{λ0y

2/(xv2)} dv (4.28)
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so that, after making the change of variables y2

xv2 = u:

∂f

∂y
(y, a) = − 1√

x − a
e−{y2/(2(x−a))}+{λ0/x}(x−a) + λ0√

x

∫ 1−a/x

0

1√
u

e−{y2/(2ux)}+λ0u du. (4.29)

Consequently:

∂2f

∂y2
(y, a) = y

(x − a)3/2
e−{y2/(2(x−a))}+{λ0/x}(x−a) − λ0y

x3/2

∫ 1−a/x

0
e−{y2/(2ux)}+λ0u

du

u3/2
. (4.30)

On the other hand, we write f , after making the change of variables: y2

xv2 = u in (4.25), as:

f (y, a) = y

2
√

x

∫ 1−a/x

0
e−{y2/(2ux)}+λ0u

du

u3/2
. (4.31)

We then gather (4.27), (4.29), (4.30) and (4.31) to deduce (ii).
Moreover:

M∗
s = 1 +

√
2

π

∫ s∧T A
x

0
eλ0u/x ∂f

∂y

(|Xu|,Au

)
sgn(Xu)dXu. (4.32)

Hence, (M∗
s ) is a local martingale, which, as we have seen earlier, implies it is a martingale; in particular, E[M∗

s ] = 1.
(3) We now prove point (2)(b) of Theorem 4.3.
(a) It is clear that, Q a.s.: A∗∞ ≤ x, since, for every s ≥ 0:

Q∗(A∗
s ≤ x

) = lim
t→∞

P({A∗
s ≤ x} ∩ {A∗

t ≤ x})
P (A∗

t ≤ x)
= 1. (4.33)

On the other hand, we get, for every y < x:

Q∗(A∗
t > y

) = Q∗(T A
y < t

) = E
[
1{T A

y <t}M∗
t

] = E
[
1{T A

y <t}MT A
y

]
.

Taking the limit t → ∞, we get:

Q∗(A∗∞ > y
) = E

[
M∗

T A
y

]
. (4.34)

However, from (4.32):

M∗
T A

y ∧s
= 1 +

√
2

π

∫ T A
y ∧s

0
eλ0u/x ∂f

∂y

(|Xu|,Au

)
sgn(Xu)dXu, s ≥ 0, 0 < y < x. (4.35)

Next, we deduce from the form of ∂f
∂y

given by (4.29) the existence of a constant k such that:∣∣∣∣∂f∂y (|Xu|,Au

)∣∣∣∣ ≤ k, 0 ≤ u ≤ T A
y . (4.36)

Identity (4.11) implies that, for λ > 0, small enough:

E
[
eλT A

y
] = 1

1 − λye−λy
∫ 1

0 eλyv dv√
v

= 1

1 − θ(λy)
. (4.37)

From Lemma 4.1 we deduce:

E
[
eλT A

y
]
< ∞ ∀λ <

λ0

y
. (4.38)
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Combining Burkholder–Davis–Gundy inequality, (4.35), (4.36) and the fact that E[eλ0T
A
y /x] < ∞, shows that

(M∗
s∧T A

y
) belongs to H 1 (i.e., E[sups≥0 |M∗

s∧T A
y

|] < ∞). Hence: E[M∗
T A

y
] = 1 and finally, from (4.34): Q∗(A∗∞ ≥

y) = 1 for any 0 ≤ y < x. Using moreover (4.33) we can conclude that A∗∞ = x, Q∗ a.s.
(b) We show that: T A

x = ∞, Q∗ a.s.
Since M∗

t = 0, for any t ≥ T A
x , then, for any y < x, one has:

Q∗(T A
y > t

) = E
[
1(T A

y >t)M
∗
t

]−→
y↑x

E
[
1(T A

x ≥t)M
∗
t

] = E
[
M∗

t

] = 1.

Hence,

lim
y↑x

Q∗(T A
y ≤ t

) = 0.

This implies:

Q∗(T A
x ≤ t

) = lim
y↑x

Q∗(T A
y ≤ t

) = 0 ∀t ≥ 0

which proves that T A
x = ∞, Q∗ a.s.

�

Remark 4.5. Let us come back to (4.10). By an analytic continuation argument, relation (4.10) may be extended as
follows:

∫ ∞

0
eλtP

(
A∗

t ≤ x
)

dt =
e−λx

√
x

∫ x

0
eλv dv√

v

1 − λ
√

xe−λx
∫ x

0
eλv dv√

v

=
e−λx

√
x

∫ x

0
eλv dv√

v

1 − θ(λx)
, (4.39)

for any λ < λ0. Since the first positive zero λ0 of 1 − θ is simple, a formal application of classical results about the
Mellin–Fourier transformation yield to (4.5). However we have not been able to justify this approach.

Remark 4.6. Let ϕ(y) := P(A∗
1 < 1

y
) = P(T A

1 > y) (y > 0). Since A∗
t ≤ t , we have:

P
(
A∗

t < y
) = P

(
tA∗

1 < y
) = ϕ

(
t

y

)
,

ϕ(a) = 1 if a < 1,

ϕ(a) −→
a→∞ 0.

The aim of the present remark is to show that ϕ satisfies the following equation:

ϕ(a) = −
∫ 1

0
ϕ′(a + v)

dv√
1 − v

, a ≥ 1. (4.40)

Since (−ϕ′) is the density function of T A
1 , (4.40) may equivalently be presented as:

P
(
T A

1 > a
) = E

[
1√

a + 1 − T A
1

1{a<T A
1 <a+1}

]
. (4.41)
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Indeed, to prove (4.40), we rewrite (4.10) in the form:(
e−λx

λ
+ √

x

∫ x

0

e−λv dv√
v

)(∫ ∞

0
e−λtϕ

(
t

x

)
dt

)
= 1

λ

(√
x

∫ x

0

e−λvdv√
v

)
. (4.42)

We denote:

μx(s) = √
x1[0,x](s)

1√
s

+ 1[x,∞](s) (4.43)

so that (4.42) becomes, for every t ≥ 0:(
ϕ

( ·
x

)
∗ μx

)
(t) = √

x

∫ t

0
1[0,x](s)

ds√
s

= 2
√

x
√

x ∧ t . (4.44)

In particular, when t ≥ 2x we have:

2x =
∫ t

0
ϕ

(
t − s

x

)
μx(s)ds.

Since ϕ( t−s
x

) = μx(s) = 1 for s ≥ t − x, then the previous relation can be reduced to:

x =
∫ t−x

0
ϕ

(
t − s

x

)
μx(s)ds. (4.45)

Hence, differentiating with respect to t , one gets:

ϕ(1)μx(t − x) + 1

x

∫ t−x

0
ϕ′

(
t − s

x

)
μx(s)ds = 0,

which implies, since ϕ(1) = 1, and μx(t − x) = 1 for t ≥ 2x:

0 = 1 + 1√
x

∫ x

0
ϕ′

(
t − s

x

)
ds√

s
+ 1

x

∫ t−x

x

ϕ′
(

t − s

x

)
ds.

However:

1

x

∫ t−x

x

ϕ′
(

t − s

x

)
ds = ϕ

(
t − x

x

)
− ϕ(1) = ϕ

(
t − x

x

)
− 1.

Hence:

ϕ

(
t − x

x

)
= − 1√

x

∫ x

0
ϕ′

(
t − s

x

)
ds√

s
= −

∫ 1

0
ϕ′

(
t

x
− v

)
dv√

v
.

Closely related computations are found in [7].

Remark 4.7. With the help of Girsanov’s theorem, together with (4.7) and (4.32), there exists a Q∗-Brownian motion
(βt , t ≥ 0) such that:

Xt = βt +
∫ t

0

∂f /∂y

f

(|Xs |,As

)
sgn(Xs)ds. (4.46)

From (4.25), we deduce that for y > 0:

f (y, a) ∼
a↑x

√
x − a

y
e−y2/(2(x−a)),

∂f

∂y
(y, a) ∼

a↑x
− 1√

x − a
e−y2/(2(x−a)).
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Consequently:

lim
a↑x

∂f /∂y

f
(y, a) = −∞ and

∂f /∂y

f

(|Xs |,As

)
sgn(Xs)

goes to −∞, resp.: +∞, as As approaches x, and Xs > 0, resp.: Xs < 0. In other terms, when the age of X ap-
proaches x, the process X is strongly pushed towards 0.

This explains intuitively why, under Q∗, A∗∞ = x and T A
x = ∞, a.s.

Remark 4.8. The rates of decay of P(A∗
t ≤ x) and P(Σt ≤ x) as t → ∞ are radically different. The first one is

exponential (see (4.5)), whereas the second one is polynomial (see Lemma 2.3). We already observed such a difference
when we studied (see [13]) the penalisations of Wiener measure by, on one hand, 1{X∗

t ≤x} (exponential decay) and, on
the other hand, 1{St<x} (polynomial decay), where we denote X∗

t = sups≤t |Xs | and St = sups≤t Xs .
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