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1.  Introduction 

Empirical evidence has shown that financial time series are not always "well 

behaved".  They may have an unpredictable variance, underscoring departures from 

the "random walk hypothesis".  These effects have been recognized and have been the 

subject of considerable research under the heading of ARCH and GARCH related 

models (Engle, 1987, Bollerslev, 1986, Bollerslev, Engle and Nelson 1994) focusing 

on the estimation of an underlying process variance.  A related effort based on 

samples range of a constant volatility random walk was pointed out by Parkinson 

(1980) however.  Explicitly, using Feller's result (1957) Parkinson's volatility 

estimator is given by: 
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= −  is the ith sample range, n is the number of intervals 

iI , i=1,2…,n over which the range is estimated, T is the length of the interval while 

X(t) is assumed to be a normal process with volatility σ .  An adjustment to this 

estimate, based on the transformation of Parkinson's samples is suggested by 

Kunitomo (1992), providing thereby an estimate which is equivalent to the estimates 

based on samples variances.  Range based estimates in econometric have been studied 

and applied further by Martens and van Dijk (2007) as well as Alizadeh et al. (2002) 

and Brandt and Diebold (2006) who claim that the daily range in financial data is a 

more robust estimator against the effects of microstructure noise than the realized 

variance.   By contrast, in the study of data with long memory, the Hurst index based 

on a range to standard deviation statistic provide the means to estimate a latent long 

run memory in long time series (for example, Tapiero and Vallois, 1996). 

 

The purpose of this paper is to provide volatility estimators in stationary random 

volatility models using instead an inverse range process statistic which will be defined 

here.  The intent of the paper is to indicate the importance of such a (range) process to 

estimate directly the functional parameters of an unknown underlying volatility and 

provide statistical estimates for this volatility.  Unlike the ARCH-GARCH approach 

which is used to counter the effects of heteroscedasticity in linear regressions (where 

volatility is random), and uses specific models of volatility to negate their statistical 

effects, our approach is based on the information that a range process can provide to 
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estimate the underlying process volatility.  Our approach therefore is not a substitute 

to ARCH and GARCH estimation techniques but complements it when the volatility 

is unknown or is indirectly observable.  Of course, if the process can be directly 

observed and measured, such an estimate can be used in addition to the standard 

maximum likelihood techniques applied in estimating directly the volatility.  For 

example, random (stationary) volatility (and variance) distributions such as the 

exponential, the lognormal, Cauchy (fat tail) and other distributions can be used as 

hypotheses regarding an underlying volatility process and the parameters estimated by 

an observation of the range.   

 

Unlike papers by Feller 1951, Vallois 1996, Vallois and Tapiero 1995, 1997a, 1997b, 

we assume that the random walk process volatility is characterized by a known 

probability distribution and calculate its essential statistics (although approximations 

can be reached when such a distribution is not specified). Both discrete and 

continuous time observation of a given range may be used in our calculations.  As a 

result, both random walk and random Wiener processes are considered here.   

 

Problems related to volatility (variance) estimation are particularly important in 

finance.  For example, an investor—a buyer of options, may have only a probabilistic 

assessment of the underlying stock volatility, which is essential for option's pricing.  

Random volatility tests are also an indicator of markets’ incompleteness and therefore 

important to detect arbitrage opportunities.  Similarly, volatility estimates are used in 

control charts to determine control limits (often based as well on sample ranges which 

assume that samples are iid).  In such cases, process range statistics might be used to 

test the validity of a given set of control limits.  We begin by developing estimators 

for a random volatility random walk and obtain an explicit expression to estimate the 

parameters of the volatility distribution.  Subsequently, a random volatility Wiener 

process is considered and specific cases (volatility distributions and estimators) are 

resolved. 

  

2.  A Random Volatility Random Walk 

Consider the symmetric random walk, initiated at zero: 

 (1)  0

1

0, ,  1
n

n i

i

X X nε
=

= = ≥∑  



 

  4

where ( )i i n
ε

≥  is a series of independently distributed random variables with 

( )1 1/ 2iP ε = ± = .  We define as well the random (volatility) parameter, 0α >  

independent of the random walk ( )
0n n

X
≥

 and consider the following process: 

 (2)  ( ) ;  0.n nX X n
α α= ≥  

Such a process implies that the underlying random walk (a price for example) 

increases or decreases by increments of size α .  When α  is unknown, we then have 

a constant volatility process—albeit its parameters are unknown and therefore 

presumed to be defined by a probability distribution.  When α  is a stochastic process, 

say a Bernoulli process assuming values a with probability p and zero otherwise, the 

underlying process (2) becomes a trinomial random walk with unknown parameters 

(a,p) that may be determined in the same manner that α  is estimated in this paper. 

However, such extensions and some of their difficulties are discussed in the appendix 

and provide an area for further research. In particular, while the trinomial random 

walk is the sum of independent random variables, the random walk with a Bernoulli 

mixture results in a mixture distribution where the random increments are dependent.  

For our current purpose, we rewrite (2) as follows: 

 (3)  nnn XX αεαα += −
)(
1

)(   or  (3’)  nnn zXX += −
)(
1

)( αα  where n nz αε=  

Where 0α >  is assumed to be a square integrable random variable.  A priori, the 

process ( )1;
)( ≥nX n

α  is not a random walk however, except when 0α >  is constant, in 

which case it assumes the discrete values: .., 3 , 2 , ,0, , 2 ,3 ,....α α α α α α− − − .as stated 

above.  Due to the independence of 0α >  and ( )
0n n

X
≥

, it is easy to show that 

( ) 0
)( =α

nXE  and  ( ) ( )( ) 2 ;  1nVar X nE n
α α= ≥ .      

 

Thus, an unknown volatility, or non-perfectly observable process over a given period 

of time, can lead to uncertainty regarding a process evolution.  Of course, if  0α >  is 

defined by a known probability distribution, the range derived statistics can then be 

used to test hypotheses regarding the underlying process and estimate the process 

volatility.  The intent of this paper is to provide some results that can be used to such 

ends.   
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Consider first the inverse range process ( )aαθ  which denotes the first time the range 

for a random walk of the type (3) is greater than a given level “a”.  The volatility 

being a-priori unknown.  Both the first two moments and the probability distributions 

are determined.  Let ( )aθ  be the first time the amplitude of process ( )
0n n

X
≥

  crosses 

the value a>0; 

 (4)  ( ) { }
0 0

inf 0;max min ,  0i i
i n i n

a n X X a aθ
≤ ≤ ≤ ≤

= ≥ − ≥ ≥ . 

In an analogous manner we define: 

 (5)  ( ) { }( ) ( )

0 0

inf 0;max min ,  0.i i
i n i n

a n X X a a
α α

αθ
≤ ≤ ≤ ≤

= ≥ − ≥ ≥  

 α  being positive, then 

 ( )

0 0

max maxi i
i n i n

X X
α α

≤ ≤ ≤ ≤

=  and ( )

0 0

min mini i
i n i n

X X
α α

≤ ≤ ≤ ≤

= .   

Since ( )
0≥iiX   is a process with values in � , we have: 

 (6)  ( )
0 0

0 0

inf 0;max min ,if /

inf 0;max min 1 ,  if /

i i
i n i n

i i
i n i n

a
n X X a

a
a

n X X a

α

α
α

θ

α
α

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

  
≥ − ≥ ∈ 

 
= 

   ≥ − ≥ + ∉     

�

�

 

where [ ]..  denotes the entry whole number.  Thus, 

 (7)  ( )
,   if 

1 ,   

a a

a
a

otherwise

α

θ
α α

θ

θ
α

  
∈ 

 
= 

   +     

�

 

Explicitly we can also write: 

 (8)  ( )( 1) ;    ( 1),  0,1,2,3,...m a m a m mαα α θ θ< ≤ + = + =  

With these definitions on hand, we calculate some of the properties of the perturbed 

random walk inverse range process.  We consider first the mean and the variance. 

 

 Proposition 1: 

 Let the amplitude 0a > ,  0α >  be the volatility (independent of ( )
1n n

X
≥

) , and 

(.)F  be the function ( )( ) ;  0F x P x xα= < ≥ .  Then: 
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 (9)  ( )
1

1
( 1)

2 1n

a a
E a n n F F

n n
αθ

≥

    
= + −        −    
∑  

       (10)  ( )2 2

1

1
( 1)(2 2 1)

6 1n

a a
E a n n n n F F

n n
αθ

≥

      = + + − −      −    
∑  

with the convention that / 0a = ∞  and ( ) 1F +∞ = .  Further: 

(11)  ( ) ( )
1

( ) ( )
1n

a a
P a k P n k F F

n n
αθ θ

≥

    
= = = −    −    

∑ , 

(12)  ( ) 1, 1 ,( ) n k n kP n n kθ + −= + = Λ − Λ  

with: 

  (13) 

( ) ( ) ( ) ( )1 1

, , 1 , , 1 ,

1

, , , , ,

0 / 2 0 / 2

1 ( 1) 1 ( 1) 1 ( 1) 1 ( 1)

1 1
(cos( )) ,  ( 1) (cos( )) ,  

n k n k k k

n k n k n k n k n k

n kn k m

n k n m n k n m n m

m n m n

m

n n n

π
ξ ξ ξ

+ + + + − −
− −

++ − +

< < < <

Λ = + − Γ + + − Γ + + − Γ + + − Γ

Γ = Γ = − =∑ ∑
 

 

 Proof:  (see Proposition 13, Vallois, 1996, p. 1026) 

This proposition clearly defines the random (unknown) volatility distribution 

( )( )P a kαθ =  in terms of the non-random volatility distribution ( )( )P n kθ =  

calculated by Vallois and Tapiero in several papers (Vallois, 1996, Vallois and 

Tapiero 1995, 1997a, 1997b) and the a-priori defined probability distribution of the 

volatility ( )*F . First, note that calculations of the first two moments can be 

simplified if we consider instead the distribution of the reciprocal volatility 
1

β
α

=  

with distribution function ( )( )G x P xβ= ≤ .  In this case, we have instead of (9) and 

(10):  

(14)  ( )
1

1 1
( 1)

2 n

n n
E a n n G G

a a
αθ

≥

 −    
= + −       

    
∑  

(15)  ( )2 2

1

1 1
( 1)(2 2 1)

6 n

n n
E a n n n n G G

a a
αθ

≥

 −      = + + − −          
∑ . 

And using Proposition 1, we can write as well: 

 (16)  

( )( ) ( )( )

( )( )

1

1

1

1
                     

n

n

a a
P a k P n k F F

n n

n n
P n k G G

a a

αθ θ

θ

≥

≥

    
= = = −    −    

 −    
= = −    

    

∑

∑
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For approximation purposes, equations (14) and (15) provide an initial estimate for 

confidence intervals.  For example, using Tchebycheff's inequality, we have: 

 (17)  ( ) ( )( )
( )

2

var a
P a E a T

T

α

α α

θ
θ θ

  − ≥ ≤    

providing an approximate test periods for the unknown volatility random walk.  

Further, let the maximum likelihood is defined by the product probabilities of the 

amount of time that an amplitude a  has been reached for the first time, at time 

, ( )j aαθ  which equals the observed sample jk  , with j, denoting the sample number. 

These probabilities are then given by the product of   ( )( )
j

P n kθ =  (where a non-

volatile random walk will attain the amplitude n for the first time at time jk , 

multiplied by the probabilities 
1

a a
F F

n n

    
−    −    

.  In other words, the likelihood of 

a random volatility set of samples  observed 
1 2 3, , ,..., Mk k k k  is given as follows: 

 (18)  ( ) ( ),

11 1

( ) ( )
1

M M

j j j

nj j

a a
P a k P n k F F

n n
αθ θ

≥= =

    
= = = −    −    

∑∏ ∏  

Given, 1 2 3, , ,..., Mk k k k  as well as the theoretically derived probabilities ( )( )
j

P n kθ = , 

the parameters implied in the volatility distribution can then be derived by maximum 

likelihood.  In other words, maximizing the ML below provides alternative estimators 

to the volatility of the random walk. 

 (19) ( )
(.)

11

( )
1

M

j
F

nj

a a
Max P n k F F

n n
θ

≥=

    
= −    −    

∑∏  

Of course, this is most likely a difficult expression to optimize.  Simple cases can be 

handled easily while approximations based on moments estimators can also be 

reached.  Using equation (16), we have by have: 

 (20)  ( )( ) ( )( )
1

1
j j

n

n n
P a k P n k G G

a a
αθ θ

≥

 −    
= = = −    

    
∑  

Where ( )( )jP n kθ =  is given by (12) where jk n≥ : 

     (21)  ( ) 1, 1 ,( )
j jj n k n n k nP n kθ + − − −= = Λ − Λ  

 

Example 1:   

Let β  assume an exponential distribution with parameter µ .  Then,  
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 ( )( ) 1 xG x P x e µβ −= ≤ = −  

After some tedious manipulations (verified as well by Maple), we have: 

 ( )
( )

2
/

1

1
a

E a
e

α
µ

θ
−

=  
−

;  ( )
( )

( )

/ /

4
/

6

1

a a

a

e e
Var a

e

µ µ

α
µ

θ
− −

−

+
=  

−
. 

Of course, if ( ) ( ) ( ),1 ,2 ,, ,..., na a aα α αθ θ θ  is a sample of ( )aαθ  then the estimator ˆ
nµ  

for the parameter µ  is a solution of: 

 
( ) ( ) ( )

( )
2

ˆ,1 ,2 , /
...

1 nn a
a a a

e
n

α α α µθ θ θ −
−+ + +

= −  

When the distribution of ( )aαθ is calculated explicitly, we can calculate as well the 

time rate at which range growth occurs.  This rate is given by:  

  
( )
( )

( )

,

( )
,

( )
a k

P a k

P a k

αα

α

θ
λ

θ

=
=

≥
 

where  

 

( ) ( )

( )

( )

( )

1

1

1

1

( ) ( )
1

1
                   ( )

                   ( )

                   1 ( )

n

n

n n

a a

n

n

a a

n

a a
P a k P n k F F

n n

n n
P n k G G

a a

P n k e e

e P n k e

α

µ µ

µ
µ

θ θ

θ

θ

θ

≥

≥

−
− −

≥

− −

    
= = = −    

−    

 −    
= = −    

    

 
= = − 

 

 
= − = 
 

∑

∑

∑

1≥

∑

 

We have : 

 ( ) { } { }1 1,

1 1

( ) 1 1
k

k k k k

Rn n

a a a
n R R n R R

n n

P n k e E e E e

µ
µ µ

θ
− −

− − −

= < >
≥ ≥

  
= = =   

   
∑ ∑  

Thus,  

 ( ) { }1
( ) 1

k

k k

R

a
R R

P a k E e
µ

αθ
−

−

>

 
= =  

 
 

Furthermore,  

 ( ) ( ) { }1

1

( ) ( ) 1
i

i i

R

a
R R

n i k i k

P a k P a i E e
µ

α αθ θ
−

−

>
≥ ≥ ≥

 
≥ = = =  

 
∑ ∑ ∑  

In these expressions, note that (see Figure 1  as well): 

 { } { } { }1 1 1 1 1 1 1 and 1   and 1k k k k k k k k k kR R X S X X X I X X− − − − − − −> = = = + ∪ = = −  
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With  

 max , mink i k i
i ki k

S X I X
≤≤

= =  

n

n-1 +

iR

1k − k

1( ) ,  k i kn k R n R nθ −= ⇔ = <

i

 

Figure 1 

 

 Example 2: 

Say that the volatility is distributed between [ ]1/ , ;  1b b∞ ≥  and β  assumes a 

uniform distribution on [ ]0, ;b  being an integer, 1b ≥ .  Then: 

   

  ,   

  ,   1

n n n
If b G

a a ab

n n
If b G

a a

 
≤ = 

 

 
> = 

 

 

Note that 
1 1

;  1
n n

G G n ab
a a ab

−   
− = ≤ ≤   

   
 .  It can be verified that: 

( )
1

1 1 ( 1)( 2)
( 1)

2 6

ab

n

n n ab ab
E a n n

ab ab
αθ

=

− + + 
= + − =     
∑   

Similarly for the variance, we have (verified by Maple as well): 

 ( )
( 1)( 1)( 2)(7 16)

180

ab ab ab ab
Var aαθ

− + + +
=   . 

Reasoning as in Example 1, it can be proved that:  

 ( ) ( )1

1
( ) k kP a k P R R ab

ab
αθ −= = ≤ ≤  

Which can be used to calculate as shown previously, 
( )
( )

( )

,

( )

( )
n k

P n k

P n k

αα

α

θ
λ

θ

=
=

≥
 .  Again, as 

in Example 1, note that: 

 
( ) ( ) ( ),1 ,2 ,

ˆ ˆ... (1 )(2 )

6

n n n
a a a ab ab

n

α α αθ θ θ+ + + + +
=  
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where ˆ
nb  is an estimator of b.  If we consider the case 1 or 2α =  we can also verify that :   

 

( ) { } ( ) { } ( )

( ) ( ) ( ) ( )

( ) ( )

1 2
2 1 2 1

                  2 1 2

( 1)
                  (2 1) 1 2

2

E a E a E a

E a P E a P

a a
a a P P

α α αθ θ θ

θ α θ α

α α

= =
   = + =      

= = + =      

+
= + = + =

 

Set  ( )1 1p P α= =  for convenience.  Since  ( ) ( ) 12 1 1 1P P pα α= = − = = − , we 

have : 

 

[ ] ( )1 1

1

( 1)
(2 ) (2 1) 1

2

( 1) (3 1)
                

2 2

a a
E a a a p p

a a a a
p

αθ
+

= + + −

+ +
= +

 

And therefore an estimate 1
ˆ n
p  for the probability 1p   is given by: 

 
( ) ( ) ( ),1 ,2 ,

1

... ( 1) (3 1)
ˆ

2 2

n n
a a a a a a a

p
n

α α αθ θ θ+ + + + +
= + . 

If the volatility parameter assumes k values, our analysis will be more complex, 

however if we let the amplitude a varies, we can obtain a linear system of equations 

by using the probabilities ( ) ( ) ( )( )1 2, ,..., kP P Pα α α α α α= = =  of the volatility. 

 

3.  The Random Volatility Wiener Process 

Extension to a Wiener processes can be pursued in a similar manner.  Imhof (1985) 

has calculated the probability generating function ( )( )a
E e

λθ− of the range process 

explicitly.  Thus, if we consider a random volatility Wiener process, the inverse range 

process is defined by ( ) ( )a aαθ θ β= .  Noting that in distribution (Vallois, 1996): 

 (21)  
( )

2( ) ( )
d

a aθ β β θ=  

We also note that the Laplace transform is (Imhof, 1985): 

 (22)  ( ) ( )2( ) ( )

2

1
= , 0,

( / 2)

a a
E e E e

ch a

λθ β λβ θ λ
β λ

− −= ≥
 
 

 

and ( ) ( )
2 4

( ) ;  var ( )
2 12

a a
E a aθ θ= = .  As a result, the mean and the variance of the 

time to attain a range a, is: 

(23)  ( ) ( )
2

2( )
2

a
E a Eαθ β= .   
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Further, since ( ) ( )2 4 2
( ) = ( )E a E aαθ β θ , additional manipulations lead to: 

(24)  ( ) ( )( )
4

2
4 2( ( )) 4 3

12

a
Var a E Eαθ β β = −

  
 

The cumulative distribution given by:  

 (25)  ( ) ( )
2

1
( )

a
P a T P T P a Tαθ θ θ

α α

    
≤ = ≤ = ≤    

      

can be determined explicitly.  These results may of course be used to estimate the 

parameters of a random volatility in a Wiener process.   Explicitly, we note that: 

 (26) 
( ) ( )

2

2 1
a a

P E F
T Tα

θ θ
α

    
≤ = −     

       

where ( )2 .F
α

 is the cumulative probability distribution of 2α  which can be used to 

obtain maximum likelihood estimates for the random volatility distribution 

parameters.  We shall consider first an example. 

 

Example 3: 

If we let 2α  be an exponential probability distribution with mean µ .  We 

have in this case: 

   
( ) ( ) ( )

2

2 1 exp
a a a

P E F
T T Tα

θ θ θ
α µ

      
≤ = − = −      

       
 

And therefore, using the Laplace transform of the inverse range process ( )aθ , we 

obtain: 

 ( )( )
2

2
P a T ch a

T
α

µ
θ

−
  

≤ =    
     

And as a result, the density function of the random variable ( )aαθ is:
 

 ( )

3

3/ 2( )
2 2 2

a

a
f T ch a T

Tαθ

µ µ
−

−
    

=        
       

However, using the cumulative distribution calculated above, an estimator associated 

to the sample of size n, ( ) ( ) ( ),1 ,2 ,, ,..., na a aα α αθ θ θ  will provide for a fixed T, the 

following result : 

 { },

2

( )
1

ˆ1
1

2i

n
n

a T
i

ch a
n Tαθ

µ
−

≤
=

  
=    
   

∑
 

We may assume of course other distributions.  For example, volatility might be 

lognormally distributed, Weibull, Cauchy (with infinite variance) etc.  The resulting 

problems will be technically more difficult but these problems problem can be 

handled numerically.   

 



 

  12

4.  Discussion and Applications
 

In this paper we have calculated the statistics of an unknown volatility random walk, 

but with known probability distribution.  The volatility albeit unknown is determined 

when the process can be observed.  If the random volatility has a discrete probability 

distribution, this is equivalent to saying that the underling process may be a binomial 

or multinomial process of various orders.  For example  if (1, 2)α = , each with an 

appropriate probability, (implying that the underlying process is a simple binomial or 

a quadrinomial model).  Randomizing a simple binomial model by two random values 

leads of course, to a trinomial model.  Explicitly, set  ( ,0)α σ=  with probability p .  

Then our equation (3) is reduced to: 

 ( ) ( )

1n n nX X
α α σζ−= +    

where 
nζ  is a trinomial random walk defined by : 

 

1
1

2

0 1

1
1

2

n

wp p

wp p

wp p

ζ


+


= −

−


 

Such a process and its inverse range process has been studied extensively by Vallois 

(1996) and Vallois and Tapiero (2001) and its results carry over to the case treated 

here (namely of unknown volatility).  Such a case requires however further research 

due to the dependence which is introduced by the unknown volatility.   

 

When α  has a continuous probability distribution, the number of potential and 

underlying processes is very large.  In this sense, the inverse-range process can be 

used as a statistic to reveal the process departure from an underlying process with a 

specified volatility.   
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Appendix 1:  Proof of Proposition 1 

 

 α  being positive, relation (7) implies: 

  ( )
1

1 1

( ) 1 ( ) 1
a a

n n n
n n

E a E n E nα

α α

θ θ θ
   

= − < <   ≥ ≥   

   
= +      

      
∑ ∑  

Since α  is independent of ( )
1n n

X
≥

, then: 

 ( ) [ ] [ ]
1 1

( ) ( ) 1
n n

a a
E a E n P n E n P n nαθ θ θ

α α≥ ≥

   
= = + − < <      

   
∑ ∑  

Or 

 ( ) [ ]
1

( ) 1
n

a
E a E n P n nαθ θ

α≥

 
= − < ≤    

 
∑  

But 

 1 ;  1 
1

a a a
n n n

n n
α

α

   
− < ≤ = ≤ < ≥   

−   
 

 { }0 1
a

aα
α

 
< ≤ = ≥ 

 
 

Let  F  be the function ( )( ) ; 0.F x P x xα= < ≥   Recall that the distribution function 

of  α  is ( ).x P xα→ ≤   It coincides with F  if α  has no atom.  According to Vallois 

(1996): 

 ( )
( 1)

2

a a
E aθ

+
=    

Consequently,  

 ( )
1

1
( 1)

2 1n

a a
E a n n F F

n n
αθ

≥

    
= + −        −    
∑  

By the same token, 

 ( ) ( )
2 2

1 1n

a a
E a E n F F

n n
αθ θ

≥

       = −        −    
∑  

But,  

{ }
2

2 ( 1)(2 2 1)
( )

6

n n n n
E nθ

+ + −
=   

and therefore: 
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 ( )
2 2

1

1
( 1)(2 2 1)

6 1n

a a
E a n n n n F F

n n
αθ

≥

      = + + − −      −    
∑  

The distribution of ( )aαθ  is similarly given by: 

 ( ) ( )
1

( ) ( )
1n

a a
P a k P n k F F

n n
αθ θ

≥

    
= = = −    −    

∑  

Recall (Vallois, 1996, Proposition 15 and Vallois and Tapiero (1997, p.331): 

 ( ) , 1,( ) 1 n k n kP n kθ −≥ + = Γ − Γ  

with: 

 
1

1 1 2

, , , ,2
0 / 2 ,
   1

1 ( 1)
cos ( )sin ( );  /

(1 cos( ))

n m
k n k

n k n m n m n m

m n n m

m n
n

ε

ε
ε ξ ξ ξ π

ε ξ

+
+ − −

< <
=±

+ −
Γ = =

−
∑  

Proposition 1 follows immediately. 

         �  
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ABSTRACT 
 

The purpose of this paper is to study  the mean, the variance, the probability 

distribution and the hazard rate of the inverse range process of an a-priori unknown 

volatility random walk.  Motivation for this process arises when it is necessary to 

obtain statistics that pertain to a process volatility in addition to the usual variance 

statistics.  As a result, range process statistics are indicated as an additional source of 

information in the study of processes' volatility.  Examples and applications are 

considered. 

 

 

 

 


