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A parametric directional-based MIMO channel model is presented which takes multipath clustering into account. The directional
propagation path parameters include azimuth of arrival (AoA), azimuth of departure (AoD), delay, and power. MIMO
measurements are carried out in an indoor office environment using the virtual antenna array method with a vector network
analyzer. Propagation paths are extracted using a joint 5D ESPRIT algorithm and are automatically clustered with the K-
power-means algorithm. This work focuses on the statistical treatment of the propagation parameters within individual clusters
(intracluster statistics) and the change in these parameters from one cluster to another (intercluster statistics). Motivated choices
for the statistical distributions of the intracluster and intercluster parameters are made. To validate these choices, the parameters’
goodness of fit to the proposed distributions is verified using a number of powerful statistical hypothesis tests. Additionally,
parameter correlations are calculated and tested for their significance. Building on the concept of multipath clusters, this paper also
provides a new notation of the MIMO channel matrix (named FActorization into a BLock-diagonal Expression or FABLE) which
more visibly shows the clustered nature of propagation paths.

1. Introduction

To meet the ever-increasing requirements for reliable com-
munication with high throughput, novel wireless tech-
nologies have to be considered. A promising approach to
increase wireless capacity is to exploit the spatial structure
of wireless channels through multiple-inputmultiple-output
(MIMO) techniques. High-throughput MIMO specifica-
tions are already being included in wireless standards, most
notably IEEE 802.11n [1], IEEE 802.16e [2], and 3GPP Long-
Term Evolution (LTE) [3]. MIMO is one of the principal
technologies that will be used by 4G communication net-
works.

The potential benefits of implementing MIMO are
highly dependent on the characteristics of the propagation
environment. A lot of progress has been made in the
development of different types of MIMO channel models

for signal processing algorithm testing [4]. In recent years,
the geometry-based stochastic type of channel models, first
proposed in [5], gains research interest. These kind ofmodels
present a statistical distribution for the propagation path
parameters (e.g., direction of arrival, direction of departure,
delay, etc.), while also taking some geometry parameters
of the environment into account (e.g., the location of
scatterers). For the moment, most geometry-based stochastic
channel models use propagation path clusters in their
description. Clustering of propagation paths seems to occur
naturally in wave propagation and as an added benefit helps
to reduce the number of statistical parameters needed to
construct the model. Examples of geometry-based stochastic
channel models can be found in [6–9].

This work investigates the statistics of propagation path
parameters including directions of arrival and departure,
delay, and power in an indoor office environment. For this,
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MIMO channel sounding measurements with a virtual
antenna array are carried out on an office floor. Propa-
gation path parameters are extracted from measurement
data and are subsequently grouped into clusters using an
automatic clustering algorithm. Following, propagation path
parameters are split up into an intercluster part and an
intracluster part; the former is representative for the location
in propagation path parameter space of the cluster to which
the path belongs, while the latter is defined as the propaga-
tion path parameter’s deviation from the intercluster part.
Additionally, a new notational improvement of the wireless
channel matrix is proposed which makes the separation of
propagation path parameters into intercluster and intraclus-
ter parts more visible. This decomposition of the MIMO
channel matrix is named FActorization into a BLock-diagonal
Expression (FABLE), because the decomposition includes a
block-diagonal form of the intracluster parameters.

Next, the intercluster and intracluster dynamics are mod-
elled statistically. Choices for the statistical distributions are
physically and statistically motivated; those types of distribu-
tions are chosen which in our opinion most accurately agree
with the underlying propagation physics and which match
the support of the propagation parameters (e.g., the von
Mises distribution for angular data). Distributional choices
are justified compared to choices made in literature, for
example, the stochastic channel models in [6–9]. The main
emphasis of this paper is on the good statistical treatment
of the data; the soundness of using specific distributions is
validated through statistical hypothesis tests. Care is taken in
the choice of appropriate hypothesis tests that have sufficient
power even at low sample sizes. Additionally, parameter
correlations are calculated and tested for their significance.
For this, a rank correlation coefficient is used. In our
opinion, these kind of tests can be valuable in deciding which
parameter correlations can be neglected to reduce model
complexity.

The outline of this paper is as follows. First, the MIMO
measurements andmeasurement data processing are detailed
in Section 2. Section 3 presents the FABLE construction of
the wireless channel transfer function. The correlations and
statistical distributions of the propagation path parameters
within clusters are discussed in Section 4. The statistical
descriptions of the intracluster and intercluster parameters
are further discussed in Section 5. Finally, a summary of the
work is provided in Section 6.

2. Measurements and Data Processing

2.1. Measurement Setup. The measurement setup for the
MIMO measurements is shown in Figure 1 and is detailed
in the following along with the measurement procedure. A
network analyzer (Agilent E8257D) is used to measure the
complex channel frequency response for a set of transmitting
and receiving antenna positions. The channel is probed
in a 40MHz measurement bandwidth from 3460MHz to
3500MHz. As transmitting (Tx) and receiving antenna
(Rx), broadband omnidirectional discone antennas of type
Electro-Metrics EM-6116 are used. These antennas can
operate in a range from 2 to 10GHz with a nominal gain

of 1 dBi. The gain variation in the measured frequency range
is less than 0.5 dB, which shows a sufficiently flat antenna
frequency response. The vertical half-power beamwidth of
the antenna is 60◦. To be able to perform measurements for
large Tx-Rx separations, one port of the network analyzer
is connected to the Tx through an RF/optical link with an
optical fiber of length 500m. The RF signal sent into the Tx
is amplified using an amplifier of type Nextec-RF NB00383
with an average gain of 37 dB. The amplifier assures that
the signal-to-noise ratio at the receiving port of the network
analyser is at least 20 dB for each measured location of the
Tx and Rx. The calibration of the network analyzer is done at
the connectors of the Tx and Rx antenna and as such includes
both the RF/optical link and the amplifier.

Measurements are performed using a virtual MIMO
array [10]. The virtual array is created by moving the
antennas to predefined positions along rails in two directions
in the horizontal plane. The polarization of both Tx and
Rx is vertical for all measurements. For this, stepper motors
with a spatial resolution of 0.5mm are used. Both Tx and Rx
are moved along 10 by 4 virtual uniform rectangular arrays
(URAs) and are positioned at a height of 1.80m during
measurements (Figure 1). Both antennas were used at the
same height of 1.80m because of practical considerations
with the usage of the measurement system, most importantly
to keep the antennas far enough away from the rails
of the positioning system as possible while also avoiding
vibrations of the antennas. The URA elements are spaced
4.29 cm apart, which corresponds to half a wavelength at the
highest measurement frequency of 3.5GHz and ascertains
that spatial aliasing does not occur when estimating the
directional characteristics of propagation paths [11]. The
stepper motor controllers, as well as the network analyzer,
are controlled by a personal computer (PC).

One important drawback of using a virtual array is that
the surroundings have to remain stationary during the mea-
surement. To assure this, measurements are done at night
in the absence of (people) movement. Furthermore, one
measurement location was done per night with fluorescent
lights switched on only in the hallway. We therefore only
expect a few paths impinging on switched-on lights which
would not be stationary [12]. At each of 1600 (10×4×10×4)
combinations of Tx and Rx positioning along the URAs, the
network analyser measured the S21 scattering parameter ten
times (i.e., 10 time observations). The total measurement
time for a single MIMOmeasurement is about 1 h 30min.

2.2. Measurement Environment. MIMO measurements are
carried out on the first floor of an office building. The office
floor has a rectangular shape with dimensions 57.9m by
14.2m. Figure 2 presents a floor plan of the measurement
environment, along with some relevant dimensions. The
office floor consists of a hallway, which stretches horizontally
in the center of Figure 2 and leads to various offices at the
top and bottom in the figure. All inner walls are plasterboard,
except for the concrete walls between rooms 118 and 120, and
between rooms 115 and 117. Figure 2 also shows locations
of the Tx and Rx during measurements. A total of 9 MIMO
measurements are performed; their Tx and Rx locations
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Figure 1: Measurement setup.

are indicated by couples of Txi and Rxi (i = 1, . . . , 9).
Measurements are executed in both line-of-sight (LoS) and
non-line-of-sight (nLoS) conditions and cover distances
between Tx and Rx from 13 to 45m. Measurement locations
1, 5, and 6 are LoS. Measurements were performed with
the doors of the offices closed. The measurement points
were selected to make the propagation conditions as diverse
as possible in this environment; they include hallway-to-
hallway, hallway-to-room, and room-to-room propagation.
Additionally, the Tx-Rx line sometimes intersects with only
plasterboard walls and sometimes with both plasterboard
and concrete walls.

Figure 3(a) shows a picture of the hallway together with
the receiving virtual array. The hallway is free of any furniture
or clutter otherwise. Figure 3(b) shows a typical office on this
floor together with the transmitting virtual array. The offices
contain clutter comprising (wood and metal) desks, chairs,
desktop PCs, and (metal) filing cabinets.

2.3. Parameter Extraction and Clustering

2.3.1. Extraction of Directional and Delay Properties of
Propagation Paths. The directional azimuth of arrival (AoA)
and azimuth of departure (AoD) parameters and the delay
parameter of propagation paths or multipath components
(MPCs) are extracted from measurement data using a 5D
unitary ESPRIT (estimation of signal parameters via rota-
tional invariance techniques) algorithm [13]. The ESPRIT
algorithm is referred to as 5D, because elevations of arrival
and departure are also incorporated in its data model; this

alleviates the issue of biased azimuthal angle estimates when
only the azimuthal cut is present in the data model [14, 15].
Statistics of the elevation angles are however left out from
further analysis in this paper, as these angles possess the
“above-below” ambiguity inherent to URAs. The ESPRIT
algorithm is used in combination with the simultaneous
Schur decomposition procedure for automatic pairing of
AoA, AoD, and delay estimates [16]. The coordinate system
with respect to which AoA and AoD are defined is shown in
Figure 2.

URAs allow easy application of the spatial smoothing
technique to increase the number of observations while at
the same time increase the detection possibilities of coherent
or correlated MPCs [17]. A downside to the technique is
the reduced estimation accuracy when the dimensions of the
URA subarrays are chosen too small. A possible compromise
chooses sub-URAs with dimensions 2/3 of the length in
each direction of the original 10 by 4 URA (rounded to
the nearest integer), that is, 7 by 3 sub-URAs [18]. In
total at both link ends, 64 different 7 by 3 sub-URAs can
be found, thereby increasing the number of observations
by a factor of 64. Together with the previously mentioned
10 time observations (Section 2.1), the total number of
available observations is 640. Furthermore, in the 40MHz
measurement bandwidth, 10 equally spaced frequency points
are used with the ESPRIT algorithm. Summarizing, 5D
unitary ESPRIT is applied to a 5D vector space of size 7 ×
3 × 7 × 3 × 10 (spatial dimensions of size 7 and 3 following
from each the Tx and Rx URA, and the frequency dimension
of size 10) with 640 observations.
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Figure 2: Floor plan of the measurement environment with Tx and Rx locations.
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Figure 3: Photos of the measurement environment including the virtual arrays.

The ESPRIT algorithm is used to estimate the 100 most
strongest paths from measurement data [9, 19]. Next, the
estimated MPCs are postprocessed in the delay domain by
considering the power delay profile (PDP, i.e., MPC power
versus delay). For a typical PDP, power is concentrated at
small delays while at large delays only the noise floor remains.
In our measurements, the noise floor is set to the power of
the MPC with the largest delay. Following, all MPCs with
power less than the noise floor plus a noise threshold of 6 dB
are omitted from further analysis [9]. For all measurement
locations after postprocessing, between 35 and 87 MPCs are
retained. Figure 4(a) shows an AoA/AoD/delay scatter plot of
MPCs detected at measurement location 1. The power on a
dB scale of each MPC is indicated by a color.

2.3.2. Clustering of Propagation Paths. For our data, auto-
matic joint clustering of AoA, AoD, and delay is performed
using the statistical K-power-means algorithm [20]. The
K-power-means algorithm result is in agreement with the
COST 273 definition of a cluster as a set ofMPCs with similar
propagation characteristics [8]. Because some parameters
for clustering are circular, multipath component distance
(MCD) is used as the distance measure for clustering [21].

A delay scaling factor of 5 was used with the MCD, the same
value as used for clustering in indoor office environments in
[9].

For each measurement location, the number of clusters
for the K-power-means algorithm is varied between 2 and
10. The optimal number of clusters is selected according to
the Kim-Parks index [22]. The Kim-Parks index is preferred
over other more common validity indices that make use of
intracluster and intercluster separation measures, such as
the Davies-Bouldin and Caliñski-Harabasz indices, as these
indices tend to decrease or increase monotonically with the
number of clusters [23]. The Kim-Parks index circumvents
this behavior by normalizing the index by the index values at
the minimum and maximum number of clusters. The Kim-
Parks index is, for example, also used for MPC clustering
in [19]. The number of detected clusters varies from 3
to 8 between measurement locations, and for all MIMO
measurements combined, a total of 45 clusters are found (16
clusters from LoS and 29 clusters from nLoS measurements).
Next, to ease the statistical analysis, clearly outlyingMPCs are
removed from each cluster using the shapeprune algorithm
detailed in [20]. To preserve the cluster’s original power and
shape, outliers are discarded with the restraint that the total



EURASIP Journal on Wireless Communications and Networking 5

cluster power and the cluster rms AoA, AoD, and delay
spreads remain within 10% of their values prior to outlier
removal.

After pruning outliers, the average cluster rms AoA
and AoD spreads amount to 22◦ and 36◦, respectively. For
comparison, cluster rms azimuthal spreads between 2◦ and
9◦ were found in [24]. The main reason for the larger
spread values obtained here is that the clustering for our
measurements takes the delay domain into account, while the
study in [24] restricts clustering to the AoA/AoD domains.
It is also mentioned in their work that restricting clustering
to the azimuthal domains results in more clusters and hence
smaller spread values. The spread values obtained here
compare more to those in the related work of [24], where
values between 22◦ and 27◦ are found. Next, cluster rms
delay spreads vary between 0.5 and 3.4 ns for LoS. For nLoS,
cluster rms delay spreads are between 0.4 and 9.9 ns and are
comparable to spreads between 2 and 15 ns found in [19].
Furthermore, the physical realism of clusters was verified
by visually cross-referencing cluster mean angles and mean
delay (mean propagation distance) with the floor plan in
Figure 2. This verification procedure is similar to the one
applied in [25], although in this work the procedure is
automated with a ray tracer.

Figure 4(b) shows a scatter plot of the clustering result
for measurement location 1. For this measurement, the Kim-
Parks index estimated the number of clusters at 7. MPCs
grouped into different clusters are shown with different
marker shapes and colors.

2.4. Limitations of the Measurement Methodology. This sec-
tion lists the limitations of theMPCmeasurementmethodol-
ogy. These arise from restrictions of the measurement system
in Section 2.1 and could be possible sources of errors in the
discussion of the clustered MPC results in Sections 4 and 5.

(i) A full polarimetric antenna radiation pattern is
not available for calibration. As such, MPC results
presented here include nonchannel antenna effects.

(ii) MPC results are only available for vertical (Tx) to
vertical (Rx) polarization. Horizontal polarization
is thus missing. Additionally, because a full polari-
metric antenna model is lacking, it is not known
if the measurement antennas’ cross-polarization dis-
crimination is large enough to sufficiently limit
power leakage from the horizontal to the vertical
polarization.

(iii) Unambiguous results for the MPC elevation parame-
ter are not available due to the use of planar antenna
arrays. The missing elevation parameter will affect
clustering results; inclusion of an extra parameter will
often result in smaller clusters because of the extra
dimension in which MPCs can be discriminated.

3. Model

3.1. Signal Model. For the analysis of the intracluster and
intercluster propagation path parameters, we use the fol-
lowing basic signal model, based on the double-directional

channel model first proposed in [26]. Contrary to the
double-directional model, the basic signal model described
here includes the Tx and Rx antenna radiation patterns as
part of the channel.

For one of the measurement locations, the complex
received envelope h(φA,φD, τ) is written as function of the
propagation path parameters: φA denotes the AoA, φD is the
AoD, and τ is the path delay. The use of MPC clusters is
reflected in the complex envelope’s notation

h
(
φA,φD , τ

)
=

nC∑

c=1

nP,c∑

k=1
Ac,k · δ

(
φA −ΦA

c,k

)

× δ
(
φD −ΦD

c,k

)
δ
(
τ − Tc,k

)
.

(1)

In (1), nC is the number of clusters and nP,c is the number
of MPCs within cluster c. For the kth propagation path in
cluster c, Ac,k is its received complex amplitude, ΦA

c,k and
ΦD

c,k are its AoA and AoD, respectively, and Tc,k is its delay.
δ(·) denotes the Dirac delta function. We also define Pc,k as
the power of path k in cluster c, that is, Pc,k = E[|Ac,k|2]
where the expectation operator E[·] is taken over all 640
time observations. Instead of directly modelling the statistics
of the complex amplitude Ac,k , the path’s power Pc,k will
be modelled. To allow statistical analysis of propagation
parameters of all measurement locations collectively, the
dependence of power Pc,k and delay Tc,k on distance is
removed. Power is rescaled such that the total received MPC
power equals one, and the origin of the delay axis is set to
coincide with the first arriving MPC. Assuming larger values
of c or k mean later arriving paths

nC∑

c=1

nP,c∑

k=1
Pc,k = 1, T1,1 = 0ns. (2)

We propose to extend the signal model in (1) by
splitting up each of the propagation path parameters into an
intercluster and an intracluster part

Ac,k = √pcac,k,
Pc,k = pc pc,k ,

ΦA
c,k = φA

c + φA
c,k ,

ΦD
c,k = φD

c + φD
c,k ,

Tc,k = τc + τc,k.

(3)

In (3), the parameters pc , φA
c , φD

c , and τc denote
intercluster propagation parameters and are representative
for the location of each cluster in the power/AoA/AoD/delay
parameter space. Also in (3), ac,k, pc,k , φA

c,k, φ
D
c,k, and τc,k

are intracluster propagation parameters. The intracluster
parameters can be seen as the deviations of individual paths
from the cluster’s location as dictated by the intercluster
parameters. The intracluster parameters are therefore fully
determined by the spread of power, AoA, AoD, and delay in
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Figure 4: MPC scatter plot and clustering for measurement location 1 (LoS).

each of the clusters. With the definitions in (3), the signal
model in (1) is rewritten as

h
(
φA,φD , τ

)
=

nC∑

c=1

nP,c∑

k=1

√
pcac,k · δ

(
φA − φA

c − φA
c,k

)

× δ
(
φD − φD

c − φD
c,k

)
δ
(
τ − τc − τc,k

)
.

(4)

Section 4 discusses the statistical distributions of Pc,k , ΦA
c,k,

ΦD
c,k, and Tc,k within each cluster. The most common prob-

ability distributions are location-scale distributions; they are
parameterized by a location parameter, which determines the
distribution’s location or shift, and a scale parameter, which
determines the distribution’s dispersion or spread. These
two types of distributional parameters can fully describe
the intercluster and intracluster propagation parameters, and
hence the signal model in (4); the distributional location
parameter can be identified with the intercluster propagation
parameter, and the distributional scale parameter fully
characterizes the intracluster propagation parameter. The
distributional location and scale parameters are further
discussed in Section 5.

3.2. FABLE Notation. The goal of this section is to provide a
new notation for the MIMO channel matrix. This notation
is named FActorization into a BLock-diagonal Expression or
FABLE [27, 28]. The appeal of the FABLE notation laid
out here is in its future incorporation in the data model
of multipath estimation algorithms. The FABLE notation
further subdivides each of the angular and delay dimensions
into an intra- and intercluster subdimension. This subdivi-
sion has the potential to further reduce the computational
complexity of space-alternating estimation algorithms, as
the harmonic retrieval problem is broken down into more
dimensions. For appropriate antenna arrays at transmit and

receive side, the transformation of (4) to aperture space is
given by

H
(
r, s, f

) =
nC∑

c=1

nP,c∑

k=1

√
pcac,k · e− j2π(r−1)GRx(φAc +φ

A
c,k)

× e− j2π(s−1)GTx(φDc +φ
D
c,k)e− j2π f (τc+τc,k).

(5)

In (5), the variables r, s, and f denote the transform variables
of the Fourier transform of φA, φD, and τ, respectively. Each
(integer) value of r and s can be associated with one of
the antennas of the Rx and Tx antenna array. The variable
f denotes the frequency of the transmitted signal. The
functions GRx(·) and GTx(·) depend on the Rx and Tx array
geometry. For example, GRx(·) = GTx(·) = (d/λ) sin(·) for
uniform linear arrays (ULAs) at receive and transmit side,
where d is the spacing between antenna array elements, and
λ is the wavelength.

In the following, it is assumed that the array geometry
functions GRx(·) and GTx(·) are linear, that is, that in (5) it
holds that GRx(φA

c + φA
c,k) = GRx(φA

c ) + GRx(φA
c,k) and analo-

gously GTx(φD
c + φD

c,k) = GTx(φD
c ) +GTx(φD

c,k). Unfortunately,
this assumption is usually not valid, for example, for the
ULA, URA, and uniform circular array (UCA) geometries.
This can be remedied by transforming the intercluster and
intracluster angular propagation parameters. For example,
for the receive side, the FABLE notation in the following
can be used with ψA

c and ψA
c,k as intercluster and intracluster

AoA, respectively, for which it is satisfied that GRx(ΦA
c,k) =

GRx(ψA
c ) + GRx(ψA

c,k). For example, for a ULA, this can
be shown to hold if ψA

c and ψA
c,k are defined such that

sin(ψA
c ) = sin(φA

c ) cos(φ
A
c,k) and sin(ψ

A
c,k) = cos(φA

c ) sin(φ
A
c,k).

This transformation can be done without consequence as
there an inherent arbitrariness on how the AoA is split
up into its respective inter- and intracluster parts. The
disadvantage of redefining the inter- and intracluster AoA is
thatΦA

c,k /=ψA
c +ψ

A
c,k , contrary to the definition with φ-s in (3).
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This means that, unlike the definition with φ-s, the inter- and
intracluster AoAs defined as ψ-s cannot be quickly related to
the corresponding MPC AoA ΦA

c,k and also depend on the
array geometry function GRx(·) under consideration.

We assume that the Rx and Tx antenna arrays consist of
R and S antenna elements, respectively (r = 1, . . . ,R and s =
1, . . . , S). The MIMO channel transfer function H(r, s, f )
is first rewritten as the MIMO channel matrix H( f ). The
channel matrix H has the common structure where the row
dimension of H is made up from receive elements r and
its column dimension is made up from transmit elements
s (H has dimensions R × S). The channel matrix H( f ) is
decomposed as the product of three matrices

H
(
f
) = BRx( f ) ·W( f ) · BTx. (6)

In (6), BRx( f ) and BTx contain intercluster propagation
parameters associated with the Rx and Tx, respectively.
By choice, the intercluster parameters pc , φA

c , and τc are
considered to be properties of cluster c as seen by the Rx,
while φD

c is considered to characterize cluster c as seen
from the Tx. Because of the choice to house delay τc in
BRx( f ), the elements of this matrix depend on the frequency
f . Also in (6), W( f ) gathers the intracluster propagation
parameters ac,k, φA

c,k , φ
D
c,k , and τc,k . The matrices BRx,W, and

BTx are built from submatrices BRx
c ,Wc, andBTx

c , respectively,
which contain the intercluster and intracluster propagation
parameters solely associated with cluster c. The stacking of
these submatrices is conceived as follows (the f dependency
is left out for better readability):

H = BRx ·W · BTx

=
[
BRx
1 BRx

2 · · · BRx
nC

]
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

W1 0 · · · 0

0 W2 · · · 0

...
...

. . .
...

0 0 · · · WnC

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

BTx
1

BTx
2

...

BTx
nC

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(7)

The stacking of the submatricesWc gives rise to a block-
diagonal form for the intracluster matrix W, from which the
name FABLE is derived.

3.2.1. Intercluster Submatrices BRx
c and BTx

c . For cluster c,
the submatrices BRx

c and BTx
c have the following structure

(diag(·) represents a diagonal matrix with its arguments
along the main diagonal):

BRx
c = √pce− j2π f τc

· diag
(
1, e− j2πGRx(φAc ), . . . , e− j2π(R−1)GRx(φAc )

)
,

BTx
c = diag

(
1, e− j2πGTx(φDc ), . . . , e− j2π(S−1)GTx(φDc )

)
.

(8)

It is clear that BRx
c only contains intercluster propagation

parameters associated with the Rx: the cluster mean AoA
φA
c , the cluster onset τc at receive side, and the cluster

median received power pc . The submatrix BTx
c contains the

intercluster parameter associated with the Tx, that is, the
cluster mean AoD φD

c . The submatrices BRx
c and BTx

c have
dimensions R× R and S× S, respectively.

3.2.2. Intracluster SubmatrixWc. For cluster c, the submatrix
Wc is written as the product of three matrices

Wc = VRx
c ·DRx

c ·VTx
c . (9)

The three matrices VRx
c , DRx

c and VTx
c possess the following

structure

VRx
c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

e− j2πGRx(φA
c,1 ) e− j2πGRx(φA

c,2 ) · · · e− j2πGRx(φA
c,nP,c

)

...
...

. . .
...

e− j2π(R−1)GRx(φA
c,1) e− j2π(R−1)GRx(φA

c,2) · · · e− j2π(R−1)GRx(φA
c,nP,c

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

DRx
c = diag

(
ac,1e

− j2π f (τc,1 ), ac,2e− j2π f (τc,2 ), . . . , ac,nP,c e
− j2π f (τc,nP,c )

)
,

VTx
c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 e− j2πGTx(φD
c,1) · · · e− j2π(S−1)GTx(φD

c,1)

1 e− j2πGTx(φD
c,2) · · · e− j2π(S−1)GTx(φD

c,2)

...
...

. . .
...

1 e− j2πGTx(φD
c,nP,c

) · · · e− j2π(S−1)GTx(φD
c,nP,c

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(10)

VRx
c and VTx

c are Vandermonde matrices which contain
for cluster c the intracluster AoAs φA

c,k and the intracluster
AoDs φD

c,k , respectively, (k = 1, . . . ,nP,c). The diagonal matrix
DRx

c comprises the received intracluster complex amplitude
ac,k and the intracluster delay τc,k (k = 1, . . . ,nP,c). The
matrices VRx

c , DRx
c , and VTx

c have dimensions R× nP,c, nP,c ×
nP,c, and nP,c × S, respectively.

As a closing remark, the FABLE notation in (7) can
intuitively be understood as follows. Firstly, clusters with
their average directional characteristics are created at trans-
mit side by the matrix BTx. Next, the block-diagonal W
matrix introduces several discrete paths into each cluster. The
matrix W can be thought of as the operator which unfolds
each cluster into its discrete paths. Finally, the matrix BRx

c

describes how the clusters’ average directional characteristics
are seen by the Rx when they arrive at receive side.

4. Statistics of the MPC Parameters

This section discusses the statistical distributions within each
cluster of the MPC parameters ΦA

c,k, Φ
D
c,k, Tc,k , and Pc,k.

Preliminarily, the correlations between these four parameters
are investigated to check whether they can be modelled
separately by univariate distributions. A summary of this
section’s results is found in Table 2, near the end of the paper.

4.1. Correlations. In this section, correlations between
azimuthal angles ΦA

c,k and ΦD
c,k, delay Tc,k, and power Pc,k

are calculated. The measure of correlation used is Spearman’s
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Table 1: Average Spearman’s correlation ofMPC parameters within
each cluster and success rates for zero correlation.

Average Spearman’s
correlation [−] Success rates at 5%/1% significance [%]

ΦD
c,k Tc,k Pc,k ΦD

c,k Tc,k Pc,k

ΦA
c,k 0.04 −0.12 0.18 100.0/100.0 88.9/95.6 86.7/95.6

ΦD
c,k −0.01 −0.09 95.6/100.0 95.6/100.0

Tc,k −0.28 80.0/93.3

rank correlation coefficient [29]. This correlation coefficient
is nonparametric in the sense that it does not make any
assumptions on the form of the relationship between the
two variables, other than being a monotonic relationship.
Spearman’s correlation is calculated between the four MPC
parameters on a per-cluster basis. For the MPCs in cluster
c, Spearman’s correlation coefficient ρc(Xc,k,Yc,k) between
MPC parameters Xc,k and Yc,k is given by (Xc,k, Yc,k = ΦA

c,k,
ΦD

c,k, Tc,k, or Pc,k)

ρc
(
Xc,k ,Yc,k

) = 1− 6
∑nP,c

k=1
(
xc,k − yc,k

)2

nP,c
((
nP,c

)2 − 1
) . (11)

In (11), xc,k and yc,k represent the statistical ranks of Xc,k

and Yc,k. Before calculating their ranks, the azimuthal angle
variables are restricted to their principal value in (−π,π] to
avoid the 2π ambiguity.

Table 1 shows average values of ρc(Xc,k,Yc,k) taken over
all 45 clusters detected in the measurement campaign.
Table 1 shows fairly weak average correlations between
the MPC parameters. The strongest correlation is found
between path power Pc,k and path delay Tc,k (negative
average correlation of −0.28). This correlation is expected
and well established by the Saleh-Valenzuela model, where
power decay within a cluster is modeled as a monotoni-
cally decreasing exponential function of delay [30]. For all
ρc(Xc,k,Yc,k), hypothesis tests (nonparametric permutation
tests) are carried out to decide whether or not the correlation
coefficients differ significantly from zero. Table 1 lists the
success rates of these tests, that is, for which percentage
of clusters the test decided in favor of zero correlation,
at both the 5% and 1% significance level. Table 1 shows
that, for most clusters, the MPC parameter correlations can
be assumed to be zero (success rates of more than 80%
and more than 93% at the 5% and 1% significance level,
resp.). As expected, the success rates are the lowest for
correlation between Pc,k and Tc,k, for which the strongest
correlation was found. Concluding, correlations between
MPC parameters within clusters can be assumed to be weak
and often indistinguishable from zero. Therefore, the MPC
parameters ΦA

c,k, Φ
D
c,k, Tc,k, and Pc,k are modelled separately

by univariate distributions in the next sections, without
taking any relationships between them into account.

Alternatively, correlation coefficients can also be calcu-
lated with the parametric circular-linear and circular-circular
correlation coefficients defined in [31]. These correlation
coefficients are designed to work with circular data (in
our case, the azimuthal angles). Using these correlation

coefficients, average correlation values are somewhat larger
than those for Spearman’s correlation in Table 1 and range
from −0.27 to 0.49. Hypothesis tests for zero correlation at
the 5% significance level however still deliver success rates
of more than 84%, supporting the previous decision of
modelling the MPC parameters univariately.

4.2. Azimuths of Arrival ΦA
c,k and Departure ΦD

c,k. In this
section, we discuss the marginal distributions of AoAs ΦA

c,k

and AoDs ΦD
c,k for each individual cluster c. In literature,

various distributions are proposed for the azimuth angles
within a certain cluster. In [9], a normal distribution is
chosen where realisations are mapped to their principal value
in (−π,π]. A Laplacian distribution for the azimuth angles
is first proposed in [32]. Additionally, we consider the von
Mises distribution [33]. The von Mises distribution can be
thought of as an analogue of the normal distribution for
circular data. Special consideration is given to this distri-
bution, because in our opinion, the von Mises distribution
seems natural in describing the statistics of azimuth data;
the support of the von Mises distribution is an interval of
length 2π, the same as the support of azimuth data, while
the support of the normal and Laplacian distribution is an
interval of infinite length. For example, for the AoAs ΦA

c,k in
cluster c, the von Mises probability density function (pdf)
pvM(Φ

A
c,k ; α

A
c ,κ

A
c ) is given as

pvM
(
ΦA

c,k ; α
A
c ,κ

A
c

)
=

exp
(
κAc cos

(
ΦA

c,k − αAc
))

2πI0
(
κAc
) ,

k = 1, . . . ,nP,c.

(12)

In (12), I0(·) is the modified Bessel function of the zeroth
order. The two parameters that characterize the von Mises
pdf are αAc , the circular mean of ΦA

c,k, and κAc , which is a
measure of concentration ofΦA

c,k angles around αAc .
The most fit distributions for the intracluster AoAs and

AoDs are investigated as follows. From the azimuth angles
ΦA

c,k and ΦD
c,k, the maximum likelihood estimators (MLEs)

of the parameters of the normal, Laplacian, and von Mises
pdf are calculated separately for the AoAs and AoDs of
each cluster c. For cluster c, the likelihood of observing the
samplesΦA

c,k (analogouslyΦ
D
c,k) for k = 1, . . . ,nP,c as possible

outcomes under each of the three statistical distributions
(with the MLEs as distributional parameters) is calculated.
The most fit distribution is determined by performing simple
likelihood ratio tests (LRTs); the statistical distribution
which renders the largest likelihood is most appropriate
for describing the azimuth angle statistics for that cluster.
For the 45 clusters in this measurement campaign, all LRTs
decided in favor of the von Mises distribution for both
ΦA

c,k and ΦD
c,k. Figure 5 shows the empirical cumulative

distribution function (CDF) of the AoAs ΦA
c,k of a cluster

at measurement location 5. Also shown are the estimated
CDFs of the Von Mises, normal, and Laplacian distribution.
Visually, it could be concluded from Figure 5 that all three
investigated theoretical distributions provide a reasonable fit
to the empirical data, and that any of these distributions
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Figure 5: CDF plot of ΦA
c,k and estimated theoretical CDFs for a

cluster at measurement location 5.

could be chosen for modelling the AoA. However, the LRTs
allow to quantitativelymeasure the goodness of fit and decide
in favor of the von Mises distribution.

4.3. Delay Tc,k . In this section, the statistics within each
cluster c of the delay parameter Tc,k are discussed. The
marginal distribution of the delay parameter can be modeled
in a number of ways. In [9], MPC delays within a cluster are
assumed to be normally distributed. A possible issue with
this modeling approach is that MPC delays inherently only
take on positive values, which does not match the support
of the normal distribution. To avoid this issue, MPC delays
Tc,k within cluster c are modelled according the principle laid
out by the well-known, cluster-based Saleh-Valuenzuela (SV)
model [30]. Herein, the waiting time between the arrival of
two consecutive MPCs within a certain cluster is modelled
by an exponential distribution. For the MPCs in cluster c
(assuming the delays are ordered such that Tc,1 < Tc,2 <
· · · < Tc,nP,c), the exponential pdf pexp(Tc,k | Tc,k−1;λc) as
function of the delay Tc,k of the kth MPC, given that the
(k − 1)th MPC arrived at known delay Tc,k−1, is written as

pexp
(
Tc,k | Tc,k−1 ; λc

) = 1
λc

exp
(
−Tc,k − Tc,k−1

λc

)
,

k = 2, . . . ,nP,c.

(13)

In (13), the exponential distribution has the parameter
λc which corresponds to the mean waiting time between
consecutive MPCs in cluster c. An additional distributional
parameter θc is defined as the delay of the first arriving path
in cluster c, that is, θc = Tc,1, as Tc,1 does not follow from
(13).

For each cluster c, the mean waiting time λc is estimated
by its MLE following from the exponential distribution. The
plausibility of an exponential distribution for the arrival
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Figure 6: QQ plot of quantiles of Tc,k−Tc,k−1 versus quantiles of an
exponential distribution for a cluster at measurement location 3.

times Tc,k is then validated by executing an Anderson-
Darling (AD) goodness-of-fit test for composite exponential-
ity [34]. For the 45 clusters in the measurement campaign,
the minimum, average, and maximum P values associated
with the AD test are equal to .06, .40, and .92, respectively.
This means that, at the 5% significance level, all 45 clusters
retain exponentiality. Figure 6 shows the quantile-quantile
(QQ) plot of the empirical quantiles of samples Tc,k −
Tc,k−1 versus the theoretical quantiles of the exponential
distribution (13) for a cluster detected at measurement
location 3 (the MLE of λc equals 0.53 ns). Figure 6 shows
good agreement of the waiting times in this cluster with an
exponential distribution.

4.4. Power Pc,k . A natural model for the fading of MPC
powers Pc,k in cluster c is the lognormal fading model [35,
36]. For cluster c, it is investigated whether the samples Pc,k
on a dB scale could originate from a normal distribution.
This normal distribution is parameterized by the mean
μc and the standard deviation σc of Pc,k in dB. These
distributional parameters are estimated by their MLEs.

Composite normality of Pc,k [dB] is assessed with a few
statistical tests in literature such as the Anderson-Darling
(AD) test [34], the Shapiro-Wilk (SW) test [37], and the
Henze-Zirkler (HZ) test [38].Multiple tests for normality are
executed as no uniformly most powerful test exists against all
possible alternative distributions. The AD, SW, and HZ tests
are generally considered to be relatively powerful against a
variety of alternatives. Of the 45 clusters in this measurement
campaign, normality of Pc,k [dB] is retained at the 5%
significance level for 39, 38, and 40 clusters with the AD,
SW, and HZ tests, respectively. For the 45 clusters, average
P values are .38 (AD), .43 (SW), and .44 (HZ). Concluding,
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normality for Pc,k [dB] is assumed in the following, as
the majority of clusters pass the different goodness-of-fit
tests.

5. Statistics of the Distributional Parameters

This section models the intercluster and intracluster propa-
gation parameters laid out in the signal model of Section 3
in (1), (3), and (4). The intercluster and intracluster propa-
gation parameters are fully determined by the distributional
parameters of the location-scale distributions of the previ-
ous section. In the following, the intercluster propagation
parameters are identified with the location parameters of the
distributions, that is, for cluster c,

φA
c � αAc (von Mises circular mean of AoAs),

φD
c � αDc (von Mises circular mean of AoDs),

τc � θc
(
onset of delays

)
,

pc � μc
(
normal mean of powers in dB

)
.

(14)

The intracluster propagation parameters are characterized
by the scale parameters of the distributions, that is, for the
MPCs in cluster c,

φA
c,k −→ κAc (von Mises concentration of AoAs),

φD
c,k −→ κDc (von Mises concentration of AoDs),

τc,k −→ λc
(
exponential mean waiting time between delays

)
,

pc,k −→ σc
(
normal standard deviation of powers in dB

)
.

(15)

In the following, the statistics of the distributional
parameters are discussed. Preliminarily, correlations between
these parameters are investigated. In this section, distinction
is made between distributional parameters originating from
LoS and nLoS measurements, and it is assessed whether
the parameters’ statistics differ significantly between LoS
and nLoS. A summary of this section’s results is found in
Table 2.

5.1. Correlations. Spearman’s rank correlation coefficient is
calculated between the location and scale parameters, and
the two number parameters nC and nP,c. 45 samples for
each of these parameters are available (45 clusters in this
campaign). Figures 7(a) and 7(b) show the upper triangles of
the correlation matrices of estimated parameters stemming
from LoS and from nLoS measurements. Permutation tests
are carried out to decide on the significance of each of
the correlations. Correlation coefficients which prove to
significantly differ from zero at a 5% level are marked with
the text “5%.” Correlation coefficients which are different
from zero at the more strict 1% significance level are marked
with a “1%” label. For correlations without a label, the
permutation test accepted the hypothesis of zero correlation
at the 5% significance level.

Firstly, we look at the correlations between the distribu-
tional parameters in (14) and (15) (part of the correlation
matrices inside the dashed rectangles in Figures 7(a) and
7(b)). Most notably, the correlation between cluster mean
power pc and cluster onset τc proves to be strong at the 1%
significance level, and this for both LoS (negative correlation
of−0.80, P value of 1.8·10−4) and nLoS (negative correlation
of −0.58, P value of 9.7 · 10−4). This is well established
in the Saleh-Valenzuela model, where linear cluster power
is modelled as exponentially decaying with cluster delay
[30]. This strong correlation cannot be easily ignored, so
pc is modelled through regression with τc in the following.
Additionally, in Figure 7, some correlations are significant
at the 5% level but not at the 1% level. These correlations
can sometimes be explained from the expected propagation
physics; for example, regarding the positive correlation of
0.37 between σc and λc in nLoS, it is expected that the
variability of MPC power σc will be larger if the MPCs are
characterized by a larger λc, that is, have delays that are
further in between. For simplicity of the provided models,
we choose to not perform regression between distributional
parameters for which the correlation is significant at the 5%
level but not at the 1% level, also because these correlations
are between different distributional parameters for LoS and
nLoS. Summarizing, the distributional parameters will be
modelled by their marginal statistical distributions in the
next sections, except for the mean cluster power pc which
strongly depends on the cluster onset τc.

Secondly, we look at the correlations with the number
parameters nC and nP,c (part of the correlation matrices
outside the dashed rectangles in Figures 7(a) and 7(b)). In
this paper, no model is provided for the number of paths
per cluster nP,c; MPC parameter extraction in Section 2.3.1
estimated the 100 strongest MPCs without deciding on the
actual number of paths through heuristics. Nevertheless, the
significant correlations with nP,c in Figure 7 can give infor-
mation about the effect of the number of paths per cluster
on the estimation accuracy of other cluster parameters, in
particular scale (dispersion) parameters. For example, at the
1% level, the correlation between nP,c and λc is significant
for both LoS (negative correlation of −0.73) and nLoS
(negative correlation of −0.61). As clusters contain paths
with similar delay characteristics, it can be expected that a
larger number of paths nP,c will yield closer spacing of these
paths on the delay axis, that is, smaller estimated values
of λc. In contrast to this, the estimation of the other scale
parameters κAc , κ

D
c , and σc does not seem to be greatly affected

by nP,c. In Figure 7(a), the number of clusters nC is not
strongly correlated with the distributional parameters for the
LoS measurements. In Figure 7(a), for nLoS, the correlation
between nC and the location φA

c of the clusters on the AoA
axis is significant at the 5% level (negative correlation of
−0.39). However, as there is no physical basis to assume
that the arrival angle of a cluster should depend on the total
number of arriving clusters, this correlation will not be taken
into account while modelling the statistics of nC .

From the data in Figure 7, the conclusion is that a
majority of the correlations can be assumed to be zero, which
means that the multivariate postulation can be weakened
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Figure 7: Spearman’s correlation of distributional and number parameters

without completely moving to the univariate assumption.
Future work on this topic is to investigate whether or not
omitting correlations which are assumed to be zero would
significantly degrade channel matrix estimates. Finally, we
compare the correlation analysis in this section with the
observations made in [39]. In this work, strong correlations
between spreads in the AoA, AoD, and delay domains are
found, that is, clusters are small or large in all domains at
once. These strong correlations are not found for our mea-
surements (see the correlations between the scale parameters
in Figure 7), except for LoS where κAc and κDc show significant
correlation. Contrary to [39], where an LoS/obstructed LoS
scenario is considered, our measurements also include a
heavy nLoS scenario with propagation through walls. For
our nLoS case, cluster spreads in all domains appear to be
decorrelated. For our LoS case, the azimuthal spreads are
significantly correlated as in [39]. However, in contrast to
this work, correlation with delay spread is weak for our
measurements, which is likely caused by our LoS cases being
restricted to hallway propagation.

5.2. Location Parameters (Intercluster)

5.2.1. Cluster Angular Means φA
c and φD

c . The uniform
distribution is a suitable distribution for modelling φA

c and
φD
c , as from a modelling perspective there is no physical

basis for a certain mean AoA or AoD to have a higher
probability of occurrence than another mean AoA or AoD.
In this section, no distinction is made between LoS and nLoS,
because the uniform distribution is not parameterized by any
distributional parameter (which could change between these
two circumstances). The premise of a uniform distribution in
(−π,π] for the intercluster mean azimuth angles is validated
through statistical hypothesis tests. In [7], the popular
Kolmogorov-Smirnov (KS) test is advocated for goodness of
fit of the propagation parameters’ underlying distributions.
However, for small sample sizes, the KS test is known to

have low power. Because of this, we use Rao’s spacing test for
uniformity [40]. This test has the following advantages over
the KS test: it is designed for circular data, has higher power,
and is nonparametric which means that no error-prone
distributional assumption is made on the test statistic. For
both the 45 cluster mean AoAs φA

c and the 45 cluster mean
AoDs φD

c , Rao’s spacing test retained the null hypothesis of a
uniform distribution in (−π,π] at the 5% significance level
(P values of .67 and .14, resp.).

5.2.2. Cluster Onset τc. For consistency with the modelling of
the intracluster delay in Section 4.3, we also adopt the Saleh-
Valenzuela model for the intercluster delay; the waiting time
between the onsets τc − τc−1 of two consecutively arriving
clusters is modelled by an exponential distribution [30].
This exponential distribution is fully parameterized by the
mean of waiting times τc − τc−1. Under the assumption of
an exponential distribution, it is first investigated whether
the mean waiting time between clusters differs between LoS
and nLoS measurements. This is done by executing the two-
sample Anderson-Darling (AD) test, which assesses whether
τc − τc−1 grouped according to LoS or nLoS could both
originate from the same statistical distribution. This test
results in a P value of .04, which is borderline significant
at the 5% level and prompts us to distinguish between LoS
and nLoS. Next, for LoS and nLoS separately, composite
exponentiality of τc−τc−1 is verified using the one-sample AD
test. An exponential distribution is accepted for both LoS and
nLoS at the 5% significance level (P values of .13 and .12,
resp.). The mean of waiting times τc − τc−1 is estimated at
2.30 ns for LoS and 1.21 ns for nLoS (see Table 2). Clusters
seem to arrive in more rapid succession in nLoS than in LoS,
which could be due to the choice of measurement locations
in Figure 2. For the nLoSmeasurements, at least either the Tx
or Rx are located in an office, while the LoS measurements
are strictly hallway to hallway propagation. The offices have
smaller dimensions and contain more closely spaced groups
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of scatterers (desks, etc.) than the hallway, which renders
them more likely to produce clusters closer in the delay
domain.

Other measurement campaigns in office environments
which used the Saleh-Valenzuela model found mean waiting
times between cluster onsets ranging from 27 to 60 ns [41,
42]. These larger values compared to our measurements
could be attributed to the fact that measurements in litera-
ture clustered propagation paths based only on path delay.
The two extra dimensions (two azimuth angles) used in our
clustering procedure increases the discriminatory power of
the clustering, that is, more clusters can be distinguished
between. It is therefore expected that joint AoA/AoD/delay
clustering results in clusters more closely spaced in the delay
domain.

5.2.3. Cluster Mean Power pc. For both LoS and nLoS,
significant correlation was found between cluster mean
power pc and cluster onset τc in Section 5.1. In literature, two
commonly used models exist for the monotonic decay of pc
with increasing τc. The first model (Saleh-Valenzuela model)
proposes a linear decrease of the average pc of MPC powers
in dB with the cluster onset τc (exponential law) [30]. The
second model proposes a linear decrease of pc in dB with the
logarithm of τc (power law) [35],

pc [dB] = a0 + a1 · τc [ns] + a2 ·Dc + a3 · τc [ns] ·Dc

+ εc
(
exponential law

)
,

(16)

pc [dB] = b0 + b1 · 10 log(τc [ns]) + b2 ·Dc

+ b3 · 10 log(τc [ns]) ·Dc + χc
(
power law

)
.
(17)

In the models (16) and (17), pc (in dB) is made
dependent on τc (in ns) or 10 log(τc) (in dBns) and the
dummy variable Dc. The value of Dc is one for clusters
stemming from LoS measurements and is zero for nLoS
clusters. The terms εc and χc denote the models’ errors for
cluster c and are generally assumed to be zero-mean normally
distributed. The regression parameters a0 through a3 and
b0 through b3 are estimated using a backward elimination
procedure [43]:

a0 = −20.14dB, a1 = −0.81dB/ns,
a2 = 0dB, a3 = 0dB/ns

(
exponential law

)
,

b0 = −22.35dB, b1 = −0.55,
b2 = 0dB, b3 = 0

(
power law

)
.

(18)

The standard deviations of εc in (16) and χc in (17) are
estimated at 4.72 dB and 5.09 dB, respectively. In (18), it
is noted that the regression parameters a2, a3, b2, and b3
associated with the dummy variable Dc are assumed to be
zero at the 5% significance level by the backward elimination
procedure. This means that the form of the exponential and
power law models is not significantly different between LoS
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Figure 8: Scatter plot of pc versus τc and fitted exponential law
model.

and nLoS measurements. The coefficients of determination
for the exponential and power law models are equal to 0.42
and 0.26, respectively. The exponential lawmodel is therefore
preferred as it explains a larger part of the variability of pc
than the power law model. Figure 8 shows a scatter plot of
pc versus τc along with the fitted exponential lawmodel (16).
The exponential law model is also shown in Table 2.

5.3. Scale Parameters (Intracluster). This section discusses
the statistics of the distributional scale parameters in (15).
To our knowledge, no examples of possible statistical distri-
butions for the scale parameters exist in literature. We will
therefore use the entropy-maximizing normal distribution
to model these parameters. As the scale parameters can
only take on positive values, they are first log transformed
to match the support of the normal distribution (i.e., any
positive or nonpositive number). Also, log transformation
has the additional benefit of softening the impact of outliers
(large values of the scale parameters), which makes it more
probable that log transformed variables are well described by
a normal distribution. In the next sections, the premise of a
normal distribution is investigated for the log-transformed
scale parameters log(κAc ), log(κ

D
c ), log(λc), and log(σc).

5.3.1. Cluster Angular Concentrations κAc and κDc . For both κ
A
c

and κDc , the two-sample Anderson-Darling (AD) test detects
no difference between LoS and nLoS distributions at the 5%
significance level (P values of .16 and .20, resp.). Without
making distinction between LoS and nLoS, the assumptions
of normality for log(κAc ) and log(κDc ) are validated using
the statistical tests of Section 4.4: the Anderson-Darling
(AD), Shapiro-Wilk (SW), and Henze-Zirkler (HZ) tests.
For log(κAc ), all three tests accepted normality at the 5%
level with P values of .37 (AD), .46 (SW), and .31 (HZ).
The sample mean and sample standard deviation of log(κAc )
are equal to 0.50 and 0.33, respectively (see Table 2).
Furthermore, normality is also accepted for log(κDc ) with
P values of .09 (AD), .14 (SW), and .59 (HZ). The sample
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mean and standard deviation of log(κDc ) equal 0.36 and 0.32,
respectively (see Table 2).

The concentration parameters κAc and κDc range from
0.42 to 14.73 and from 0.46 to 16.25. For comparison,
the von Mises distribution is also proposed for the non-
isotropic angular dispersion in outdoor suburban/urban
environments in [33]. Herein, the concentration of AoAs
perceived by a mobile antenna below rooftop height ranges
from 0.6 to 3.3. Compared to our measurement campaign,
the AoAs seem to be somewhat less concentrated in outdoor
environments, which could be explained from the larger
physical structures in outdoor environments which cause
scattering in a broader angular range.

5.3.2. Cluster Mean Waiting Time between MPCs λc. It is
first assessed whether λc (in ns) originating from LoS or
nLoS measurements could have been drawn from the same
statistical distribution. A two-sample AD test on λc grouped
according to LoS or nLoS results in a P value of .19,
indicating no significant difference between LoS and nLoS
at the 5% level. Next, normality for log(λc) without making
distinction between LoS and nLoS is considered: AD, SW,
and HZ hypothesis tests accepted normality at the 5% level
with P values of .13, 0.21, and .13, respectively. We therefore
assume a normal distribution for log(λc); the sample mean
and sample standard deviation of log(λc) are equal to 0.03
and 0.35, respectively (see Table 2).

The parameter λc varies from 0.23 ns to 6.99 ns between
the clusters of all executedMIMOmeasurements and is equal
to 1.52 ns on average. For comparison, measurements in
[41] yielded an average λc of about 0.16 ns (estimation of
MPC delay using the frequency domainmaximum likelihood
or FDML procedure), while measurements in [42] resulted
in an average λc of 4 ns (estimation of MPC delay using
the inverse discrete Fourier transform or IDFT procedure).
These results correspond well with our average λc of 1.52 ns,
despite that MPC delay is estimated differently using the
ESPRIT procedure.

5.3.3. Cluster Standard Deviation of Power σc. For σc (in dB),
a two-sample AD test decides that there is no significant
change in the statistical distribution of this parameter
between LoS and nLoS measurements (P value of .34).
Normality for log(σc) is assessed with the AD, SW, and HZ
hypothesis tests, all of which accepted normality at the 5%
level (P values of .61, .78, and .41, resp.). The sample mean
and sample standard deviation of log(σc) are equal to 0.88
and 0.14, respectively (see Table 2). Figure 9 shows a QQ plot
of empirical quantiles of log(σc) versus theoretical quantiles
of a uniform distribution; good agreement between both can
be seen.

5.4. Number of Clusters. In literature, the number of clusters
nC in geometry-based stochastic channel models, is char-
acterized in various ways. In [9], the probability density
function of nC follows from marginalizing a continuous
multivariate distribution. A possible issue with this approach
is that samples of nC drawn from a continuous distribution
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Figure 9: QQ plot of quantiles of log(σc) versus quantiles of a
normal distribution.

have to be rounded to integer values, as nC is a discrete
variable. For other channel models the number of clusters
is fixed. For example, in [6], nC is equal to 6, while in [7],
nC in indoor office environments is assumed to be 12 in LoS
conditions and 16 in nLoS conditions. In [19], the number
of clusters is modeled by a discrete probability distribution,
nC is found to be a minimum value of 3 plus a Poisson-
distributed random variable. Herein, the mean number of
clusters is found equal to 4.69. The number of clusters varies
to some extent between reports in literature, this is however
expected, as the number of cluster will greatly depend on
the adopted definition of clusters and the sort of clustering
algorithm used.

For our measurements, there is no significant difference
in the statistical distribution of nC between LoS and nLoS, as
concluded by a two-sample AD test at the 5% level (P value
of .87). As in [19], the Poisson distribution is also adopted
here for the number of clusters nC , as it is a natural candidate
distribution for the number of events occurring in a specified
(time) interval. For example, the Poisson distribution has
already been applied to the number of paths characterization
problem in [44]. The minimum number of clusters for the
K-power-means clustering algorithm in Section 2.3.2 is set
to 2. Therefore, the number of clusters nC is modelled as
a minimum value of 2 plus a Poisson-distributed random
variable. The probability density function pPoiss(nC;η) of nC
is written as

pPoiss
(
nC ;η

) =
(
η− 2

)nC−2e−(η−2)
(nC − 2)!

, nC ≥ 2. (19)

In (19), the distributional parameter η is the mean
number of detected clusters. The MLE for η is the sample
mean of nC and equals 5.00 for our measurements (see
Table 2). This value is comparable to a mean number of
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Table 2: Summary of statistical modelling of MPC parameters with clustering.

MPC parameter Intracluster distribution
Intercluster (bc) and Intracluster
(wc) parameters

Statistical modelling

AoA ΦA
c,k [rad] von Mises

(bc) φA
c [rad] Uniformly distributed

(wc) κAc [−]
Lognormally distributed

Mean of log(κAc ) = 0.50

Standard deviation of log(κAc ) = 0.33

AoD ΦD
c,k [rad] von Mises

(bc) φD
c [rad] Uniformly distributed

(wc) κDc [−]
Lognormally distributed

Mean of log(κDc ) = 0.36

Standard deviation of log(κDc ) = 0.32

delay Tc,k [ns] Exponential

(bc) τc [ns]
Exponentially distributed

Mean of τc − τc−1 = 2.30 ns (los)/1.21ns (nlos)

(wc) λc [ns]
Lognormally distributed

Mean of log(λc) = 0.03

Standard deviation of log(λc) = 0.35

power Pc,k [−] Lognormal

(bc) pc [dB]
pc[dB] = −20.14− 0.81 · τc[ns] + εc
εc zero-mean normally distributed

with standard deviation 4.72 dB

(wc) σc [dB]
Lognormally distributed

Mean of log(σc) = 0.88

Standard deviation of log(σc) = 0.14

Number parameter Statistical modelling

Number of clusters nC [−] Poisson distributed

mean of nC = 5.00

clusters equal to 4.69 found in [19]. Herein, clustering is
also done with the K-power-means algorithm and by using
the Kim-Parks index. A Kolmogorov-Smirnov goodness-of-
fit test accepted the Poisson distribution for nC in (19) at the
5% significance level with a P value of .50.

6. Summary

In this paper, directional MIMO measurements in an
indoor office environment are presented. Measurements are
performed through frequency-domain channel sounding in
the 3.5GHz band. The spatial structure of the channel is
captured by 10 by 4 uniform rectangular antenna arrays
at both link ends. The antenna arrays are created using
the virtual array technique. From these measurements,
parameters associated with discrete propagation paths are
extracted using a joint 5D ESPRIT estimation algorithm.
The estimated path parameters include azimuth of arrival,
azimuth of departure, delay, and power. In agreement
with the geometry-based stochastic type of MIMO channel
models, the path parameters are grouped into clusters using
the statistical K-power-means algorithm.

Statistical distributions of the propagation parameters
within individual clusters are determined, and correlations
between these parameters are assessed. Motivated choices
for the statistical distributions are made, based on the
propagation physics expected in office environments. For
example, the von Mises distribution for circular data is

chosen for the statistics of the azimuth angles of arrival and
departure. The distributional location and scale parameters
are subsequently used to characterize the intracluster and
intercluster dynamics of the propagation path parameters.
This is done by in turn determining the statistical distribu-
tions of these location and scale parameters, and considering
their correlations. To validate the distributional choicesmade
in this paper, the goodness of fit to the proposed distributions
is verified using a number of statistical hypothesis tests with
sufficient power. The most important results of the statistical
analysis are summarized in Table 2.

Additionally, a new notation for the MIMO channel
matrix is given which more visibly shows the clustered nature
of propagation paths. This notation is named FActorization
into a BLock-diagonal Expression or FABLE. Future work
includes the use of FABLE as the signal model in multipath
estimation algorithms such as ESPRIT. The conventional
signal model of these algorithms currently does not take
clustering into account.
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