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As in preceding papers in which we studied the limits of penalized one-dimensional Wiener measures with certain functionals Γ t , we obtain here the existence of the limit, as t → ∞, of d-dimensional Wiener measures penalized by a function of the maximum up to time t of the Brownian winding process (for d = 2), or in d ≥ 2 dimensions for Brownian motion prevented to exit a cone before time t. Various extensions of these multidimensional penalisations are studied, and the limit laws are described. Throughout this paper, the skew-product decomposition of d-dimensional Brownian motion plays an important role.

1 Introduction a) Let {Ω, (X t , F t ) t≥0 , F ∞ , P x } denote the canonical d-dimensional Brownian motion with dimension d ≥ 2. Ω is the space of continuous functions dened on R + , and taking values in R d , (X t , t ≥ 0) is the coordinate process on Ω and (F t ) t≥0 its natural ltration, F ∞ = t≥0 F t , and P x denotes the Wiener measure on (Ω, F ∞ ) such that P x (X 0 = x) = 1.

b) We consider (Γ t , t ≥ 0) an R + -valued, (F t ) adapted process such that :

0 < E x [Γ t ] < ∞.
Our aim in this work is to show the existence and some properties of the limit, as t → ∞, of P (t)

x , which is dened by : P (t) x (Λ) :=

E x [1 Λ Γ t ] E x [Γ t ] (Λ ∈ F ∞ ), (1.1) 
for a certain process (Γ t ).

In a series of preceding papers ( [START_REF] Roynette | Limiting laws for long Brownian bridges perturbed by their one-sided maximum, III. Period[END_REF], [START_REF] Roynette | Limiting laws associated with Brownian motion perturbed by normalized exponential weights I[END_REF], [START_REF] Roynette | Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time[END_REF], [START_REF] Roynette | Some extensions of Pitman's and Ray-Knight's theorems for penalized Brownian motions and their local times[END_REF], [START_REF] Roynette | Penalizing a Bes(d) process (0 < d < 2) with a function of its local time at 0, V. To appear in[END_REF], [START_REF] Roynette | Penalizing a Brownian motion with a function of the lengths of its excursions[END_REF]), we have shown that for a large class of processes (Γ t , t ≥ 0), one has : i) for every s ≥ 0, and every Λ s ∈ F s , lim t→∞ P (t) x (Λ s ) exists.

(1.2)

ii) This limit is of the form

E x [1 Λs M Γ s ], (1.3) 
where (M Γ s , s ≥ 0) is a ((F s ) s≥0 , P x ) R + -valued martingale. A survey of our main results involving various processes (Γ t ) is given in [START_REF] Roynette | Some penalisations of the Wiener measure[END_REF]; see also [START_REF] Roynette | Pénalisations et extensions du théorème de Pitman, relatives au mouvement brownien et à son maximum unilatère[END_REF] for some complements. Our main tool used to prove (1.2) and (1.3) is the following Theorem 1.1. Assume that, for every xed s ≥ 0 :

E x [Γ t |F s ] E x [Γ t ] → t→∞ M Γ s a.s. (1.4) and E x [M Γ s ] = 1. (1.5) 
Then :

(i)

∀ s ≥ 0, ∀ Λ s ∈ F s E x [1 Λs Γ t ] E x [Γ t ] → t→∞ E x [1 Λ s M Γ s ] (1.6) 
(ii) (M Γ s , s ≥ 0) is a ((F s ) s≥0 , P x ) R + -valued martingale such that M Γ 0 = 1. The proof of Theorem 1.1 -which is true independently of this Brownian scheme and, in particular, of the dimension d -is quite elementary. It hinges upon Scheé's lemma (see [START_REF] Meyer | Probabilités et potentiel[END_REF], p. 37, T21). c) We now assume that the hypotheses of Theorem 1.1 are satised. Then, the formula :

Q x (Λ s ) = E x [1 Λ s M Γ s ], s ≥ 0, Λ s ∈ F s (1.7)
induces a family of probabilities (Q x , x ∈ R d ) on the canonical space (Ω, F ∞ ).

In the articles ( [START_REF] Roynette | Limiting laws for long Brownian bridges perturbed by their one-sided maximum, III. Period[END_REF], [START_REF] Roynette | Limiting laws associated with Brownian motion perturbed by normalized exponential weights I[END_REF], [START_REF] Roynette | Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time[END_REF], [START_REF] Roynette | Some extensions of Pitman's and Ray-Knight's theorems for penalized Brownian motions and their local times[END_REF], [START_REF] Roynette | Penalizing a Bes(d) process (0 < d < 2) with a function of its local time at 0, V. To appear in[END_REF], [START_REF] Roynette | Penalizing a Brownian motion with a function of the lengths of its excursions[END_REF]), we described precisely the main properties of the canonical process (X t , t ≥ 0) under Q x . The aim of the present work is to study several penalisations with respect to (Γ t , t ≥ 0) in a multidimensional framework, i.e : we assume d ≥ 2.

d) For this purpose, for x = 0, we shall use the skew-product decomposition of (X t , t ≥ 0) :

X t = R t Θ H t , (1.8) 
where (i) (Θ u , u ≥ 0) is a Brownian motion on the unit sphere S d-1 in R d . Recall that (Θ u , u ≥ 0) is the diusion process with the innitesimal generator 1 2 ∆, where ∆ denotes the Laplace-Beltrami operator on S d-1 ;

(ii) the process (R t := |X t |, t ≥ 0) is a Bessel process with dimension d, or index ν = d 2 -1 which is independent from (Θ u , u ≥ 0);

(iii)

H t = t 0 ds R 2 s .
When d = 2, formula (1.8) may be written:

X t = R t exp (iβ Ht ) (1.9) 
where, now (β u , u ≥ 0) is a standard real-valued Brownian motion, independent from (R t , t ≥ 0), a two dimensional Bessel process. The process

θ t := β H t = θ 0 + Im t 0 dX s X s , t ≥ 0,
shall be called the winding process of X around 0. (We may choose θ 0 ∈ [0, 2π), with x = |x| exp(iθ 0 )).

e) Notation : Throughout the paper, we shall use the notation (X u ; u ≥ 0)

for the process X indexed by u ∈ R + or (X(u); u ≥ 0) when the latter notation may be more convenient.

f) The paper is organized as follows : it is devoted to the penalisations of ddimensional Brownian motion by the functionals (Γ t , t ≥ 0), displayed below in (1.10)-(1.12).

(i) In Section 2 we restrict ourselves to d = 2. We rst consider in Theorem 2.1 the case where Γ t is a function of the one-sided maximum of the winding process :

Γ t = ϕ(S θ t ) with S θ t = sup s≤t θ s = sup s≤t β Hs (1.10)
We also study in Theorem 2.9 the penalisation with the more general functionals

Γ t = ϕ(S θ t ) exp(-λ(S θ t -θ t )) , (1.11) 
for some Borel function ϕ : R + → R + , and λ ≥ 0 (see also Theorem 2.14).

(ii) Section 3 is devoted to the penalisations related to a cone C in R d with d ≥ 2. More precisely, if C is a cone with vertex the origin, and basis O (where O is an open set of the unit sphere S d-1 ), we study the penalisation with :

Γ t = 1 {T C >t} exp γ 2 H t + ρR t (γ ∈ R, ρ ≥ 0) (1.12)
where

T C = inf{u ≥ 0 : X u / ∈ C} is the exit time of the cone C.
At the end of Section 3, we study the case when d = 2, and the functional Γ t equals f (θ t , θ t ), with θ t = S θ t = sup s≤t θ s , θ t = inf s≤t θ s . Thus, Γ t is a function of the maximum and minimum of the winding process. In fact, we only study the particular case :

f (s, i) = 1 s≤α 1 , i>α 0 , with : α 0 < 0 < α 1 .
g) Another penalisation study for Brownian motion in R 2 is discussed in [START_REF] Roynette | Penalizing Brownian paths: Rigorous results and meta-theorems[END_REF]; it involves the penalisation process :

Γ t := exp - 1 2 t 0 V (X s )ds (1.13)
where V is a function with compact support from R 2 to R + . Note that such penalisations have been studied in [START_REF] Roynette | Limiting laws associated with Brownian motion perturbed by normalized exponential weights I[END_REF], when (X s , s ≥ 0) is a onedimensional Brownian motion, or more generally, a Bessel process with index µ ∈] -1, 0[. Thus, our extension in [START_REF] Roynette | Penalizing Brownian paths: Rigorous results and meta-theorems[END_REF] complements the Bessel studies in [START_REF] Roynette | Limiting laws associated with Brownian motion perturbed by normalized exponential weights I[END_REF] and corresponds to the case µ = 0.

2 Penalisation with a function of the one-sided maximum of the continuous winding of planar Brownian motion a) We keep the notation from the Introduction. We write the skew-product representation of the canonical 2-dimensional Brownian motion (X t ), starting at x = 0, as :

X t = R t exp(iβ H t ), t ≥ 0, (2.1) 
where :

• R t = |X t | is a 2-dimensional Bessel process starting at r = |x| i.e : d = 2, ν = 0 is the corresponding Bessel index (2.
2)

• H t = t 0 ds R 2 s ;
(2.3)

• (β u , u ≥ 0) is a linear Brownian motion;
(2.4) • the processes (β u , u ≥ 0) and (R t , t ≥ 0) are independent.

(2.5)

In fact,

θ t := β Ht , t ≥ 0, (2.6) 
is the process of continuous windings of (X t , t ≥ 0) around 0; we denote : We now describe the limiting laws obtained by the penalisations of P x with the functionals Γ t = ϕ(S θ t ), t ≥ 0.

S θ t = sup s≤t θ s ≡ sup u≤H t (β u ) (2.
Theorem 2.1. 1) Suppose that the starting point x is a positive real number;

we take β 0 = 0. Let ϕ as above. For every s ≥ 0, and Λ s ∈ F s ,

lim t→∞ E x [1 Λ s ϕ(S θ t )] E x [ϕ(S θ t )] exists (2.9)
2) This limit is equal to

E x [1 Λs M ϕ s ] (2.10) 
where :

M ϕ s = ϕ(S θ s )(S θ s -θ s ) + 1 -Φ(S θ s ). (2.11)
Moreover, (M ϕ s , s ≥ 0) is a ((F s , s ≥ 0), P x ) positive martingale which converges to 0 P x a.s., as s → ∞.

3) The formula

Q ϕ x (Λ s ) = E x [1 Λ s M ϕ s ] (2.12) induces a probability on (Ω, F ∞ ). Under Q ϕ x (x = 0), the canonical process (X t , t ≥ 0) satises : (i) the random variable S θ
∞ is nite a.s. and admits ϕ as its probability density;

(ii) let g = inf{s ≥ 0 :

S θ s = S θ ∞ } = sup{s ≥ 0 : θ s = S θ ∞ }, then, Q ϕ x (0 < g < ∞) = 1;
(iii) the process (X t , t ≥ 0) admits the skew-product representation (2.1), where :

(a) R t := |X t |, t ≥ 0, is a 2-dimensional Bessel process, independent from the process (β s , s ≥ 0), (b) Let (A u , u ≥ 0) denote the inverse of (H t , t ≥ 0), i.e : A u = inf{t : H t > u} and dene g = A g, then i. (β s , s ≤ g) and (β g -β g+s , s ≥ 0) are independent; ii. (β g -β g+s , s ≥ 0) is a 3-dimensional Bessel process; iii. Conditionally on S θ ∞ = y, (β s , s ≤ g) is a
Brownian motion considered up to the rst time when it reaches y.

Remark 2.2. To deal with any x ∈ R 2 , x = 0, we should start with

ϕ : R →]0, ∞[ such that R ϕ(y)dy = 1. The associated function Φ is Φ(u) = u -∞ ϕ(y)dy.
Note that when x = ρe iθ 0 (0 ≤ θ 0 < 2π) is the starting point of (X t ), then we take β 0 = θ 0 . It can be shown that (2.9) and (2.10) hold with : . Then, for every m > 0, one has :

M ϕ s = [ϕ(S θ s )(S θ s -θ s ) + 1 -Φ(S θ s )] 1 1 -Φ (θ 0 ) (2.
E r log t 2 √ H t m → t→∞ E[|N | m ] = 2 m π 1 2 Γ m + 1 2 (2.14)
where N denotes a standard centered Gaussian random variable.

Remark 2.4. Lemma 2.3 is in fact equivalent to the celebrated asymptotic result due to Spitzer ( [START_REF] Spitzer | Some theorems concerning 2-dimensional Brownian motion[END_REF], see also Durrett [START_REF] Durrett | A new proof of Spitzer's result on the winding of twodimensional Brownian motion[END_REF], and e.g. Pap-Yor [START_REF] Pap | The accuracy of Cauchy approximation for the windings of planar Brownian motion[END_REF], Pitman-Yor ( [START_REF] Pitman | Asymptotic laws of planar Brownian motion[END_REF], [START_REF] Pitman | Further asymptotic laws of planar Brownian motion[END_REF]) for many complements) :

2θ t log t (law) → t→∞ C , ( 2.15) 
where C denotes a standard Cauchy variable .

In fact, due to the skew-product representation of (θ t , t ≥ 0), (2.15) is equivalent to : and we use the "elementary identity" :

4H t (log t) 2 (law) → t→∞ T 1 (law) = 1 N 2 (2.
1 x m/2 = 1 Γ m 2 ∞ 0 e -ux u m 2 -1 du, x > 0.
(2.18)

Thus, we obtain :

E r log t 2 √ H t m = E r α t H t m/2 = 1 Γ m 2 ∞ 0 E r e -u H t α t u m 2 -1 du = 1 Γ( m 2 )2 m 2 -1 ∞ 0 v m-1 E r e -ν 2 t 2 Ht dv. (2.19)
where we have denoted :

ν t = v log √ t . 2) Let E (γ) r
be the expectation for a Bessel process with index γ, starting from r. Recall the absolute continuity formula (see [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF], Ex (1.22), p.450) :

E (µ) r ξ t exp µ 2 -ν 2 2 H t = E (ν) r ξ t r R t ν-µ , ( 2.20) 
where ξ t is any non-negative σ(R s , s ≤ t)-measurable r.v. Applying (2.20) with µ = 0, ν = ν t , and ξ t = 1 leads to : 

E (0) r exp - ν 2 t 2 H t = E (ν t ) r r R t ν t . ( 2 
E r log t 2 √ H t m = 1 Γ( m 2 )2 m 2 -1 ∞ 0 v m-1 ψ(v, t)dv, ( 2.22) 
where :

ψ(v, t) := E (ν t ) r r R t νt . (2.23)
Using the scaling property of Bessel processes we get :

ψ(v, t) = r √ t νt E (ν t ) r/ √ t 1 R 1 ν t . (2.24)
a) Since the density function of R 1 under P (ν t ) r/ √ t is explicitly known (see for instance [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF], p 446) we have : 

E (νt) r/ √ t 1 R t ν t = ∞ 0 y exp - 1 2 y + r √ t 2 √ t r νt I ν t ry √ t dy, (2.25) with I µ (z) = z 2 µ ∞ k=0 1 Γ(k + 1)Γ(k + µ + 1) z 2 2k . ( 2 
I µ (z) ≤ z 2 µ I 0 (z), (µ > 0, z > 0). (2.29)
Therefore, for any t ≥ 1, we have :

y exp - 1 2 y + r √ t 2 √ t r νt I ν t ry √ t ≤ 2 y 2 1+νt I 0 (ry)e -y 2 2 . (2.30) Since v is xed and I 0 (z) ∼ z→∞ 1 √ 2πz
e -z (cf [START_REF] Lebedev | Special functions and their applications[END_REF], p123), we may apply the dominated convergence theorem in the right-hand side of (2.25) : 

lim t→∞ E (νt) r/ √ t 1 R t νt = ∞ 0 ye -y 2 2 dy = 1. ( 2 
ψ(v, t) ≤ 2e -v 2 ∞ 0 (1 + y) 2 I 0 (ry)e -y 2 2 dy ≤ Ke -v 2 (v ≤ log( √ t), t ≥ r 4 ). (2.35)
Consequently, applying the dominated convergence theorem leads to :

lim t→∞ ∞ 0 v m-1 ψ(v, t)1 {v≤log( √ t)} dv = ∞ 0 v m-1 e -v dv.
(2.36) c) We claim that :

lim t→∞ ∞ 0 v m-1 ψ(v, t)1 {v>log( √ t)} dv = 0.
(2.37)

We dene :

A(t) := ∞ 0 v m-1 ψ(v, t)1 {v>log( √ t)} dv.
Using Γ(k + ν t + 1) ≥ Γ(ν t + 1) (k ≥ 0) and (2.26) we get :

I νt ry √ t ≤ 1 Γ(ν t + 1) r √ t νt y 2 νt exp r 2 y 2 2t . (2.38)
Then, it is easy to deduce from (2.24), (2.25), (2.34) and (2.38) that :

A(t) ≤ 2 ∞ 0 v m-1 Γ(ν t + 1) e -v 2 1 {v>log( √ t)} × ∞ 0 y 2 1+νt exp -1 - r 2 2t y 2 2 dy dv. (2.39) Let t ≥ r 2 , then 1 - r 2 2t ≥ 1 2 and 
A(t) ≤ 2 ∞ 0 v m-1 Γ(ν t + 1) e -v 2 1 {v>log( √ t)} ∞ 0 y 2 1+νt e -y 2 4 dy dv ≤ 2 ∞ 0 v m-1 Γ(1 + ν t /2) Γ(ν t + 1) e -v 2 1 {v>log( √ t)} dv ≤ 2 ∞ 0 v m-1 e -v 2 1 {v>log( √ t)} dv.
This shows (2.37).

d) Using (2.36) and (2.37) and passing to the limit in (2.22) as t → ∞ , we obtain :

lim t→∞ E r log t 2 √ H t m = 1 Γ( m 2 )2 m 2 -1 ∞ 0 v m-1 e -v dv = Γ(m) Γ( m 2 )2 m 2 -1 = 1 √ π 2 m 2 Γ m + 1 2 = E(|N | m ) (2.40)
from the Legendre duplication formula (see [START_REF] Lebedev | Special functions and their applications[END_REF], p. 4); (2.40) is precisely the statement of Lemma 2.3.

The next Lemma is a corollary of Lemma 2.3.

Lemma 2.5. For every integrable function Ψ : R + → R + , one has :

lim t→∞ (log t) E x Ψ(S θ t ) = 4 π ∞ 0 Ψ(y)dy. (2.41)
Proof of Lemma 2.5

1) The identity :

E x Ψ(S θ t ) = E x Ψ H t |N | (2.42)
holds, since :

S β u := sup s≤u β s (2.43) is distributed as √ u|N |, and (H t , t ≥ 0) is independent from (β u , u ≥ 0).
Hence :

(log t) E x Ψ(S θ t ) = (log t) 2 π ∞ 0 e -z 2 /2 E x Ψ(z H t ) dz = (log t) 2 π E x ∞ 0 1 √ H t exp - y 2 2H t Ψ(y)dy = 2 2 π ∞ 0 E x Z t exp - y 2 2H t Ψ(y)dy, (2.44) 
where

Z t := log t 2 √ H t . (2.45)
We have :

∞ 0 E x Z t exp - y 2 2H t Ψ(y)dy = E x Z t ∞ 0 Ψ(y)dy + δ(t), (2.46) 
where

δ(t) := ∞ 0 E x Z t exp - y 2 2H t -1 Ψ(y)dy. (2.47)
First, observe that Lemma 2.3 implies that

lim t→∞ E x [Z t ] = 2 π (2.48)
Next, we claim that :

lim t→∞ δ(t) = 0. (2.49)
Applying Cauchy Schwarz inequality we obtain :

E x Z t exp - y 2 2H t -1 ≤ E x [Z 2 t ] 1/2 E x 1 -exp - y 2 2H t 2 1/2 . According to Lemma 2.3, t → E x [Z 2 t ] is a bounded function. Since H t → t→∞ ∞ a.
s., we may conclude that :

lim t→∞ E x [Z 2 t ] 1/2 E x 1 -exp - y 2 2H t 2 1/2 = 0.
It 

lim t→∞ (log t)P x (S θ t < c) = 4 π c (c > 0) (2.50) and lim t→∞ (log t)E x ϕ(a + S θ t )1 {S θ t >b-a} = 4 π (1 -Φ(b)) (b > a). (2.51)
Proof of Corollary 2.6

It is an immediate consequence of Lemma 2.5, which we apply by choosing as functions Ψ respectively Ψ(u) = 1 [0,c] (u), and

Ψ(u) = ϕ(a + u)1 [b-a,∞[ (u).
Remark 2.7. Note that the rates of decay of t → P x (S θ t < c) and t → P 0 (S β t < c) as t → ∞ are very dierent (due to the time-change (H t )). Indeed, it is classical, and it has been used in [START_REF] Roynette | Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time[END_REF] that :

lim t→∞ ( √ t)P 0 (S β t < c) = c 2 π . (2.52)
Proof of Theorem 2.1 a) Let us rst prove points 1) and 2) of Theorem 2.1. For x = 0, for every s ≥ 0,

E ϕ(S θ t )|F s = A(X s , θ s , S θ s , t -s),
with :

A(y, a, b, u) = E y ϕ b ∨ (a + S θ u ) .
Thus :

A(y, a, b, u) = ϕ(b)E y 1 {S θ u <b-a} + E y ϕ(a + S θ u )1 {S θ u >b-a} .
Hence, from Corollary 2.6 : 

E ϕ(S θ t )|F s ∼ t→∞ 4 π ϕ(S θ s ) (S θ s -θ s + 1 -Φ(S θ s ) 1 log(t -s) (2.53) E ϕ(S θ t ) ∼ t→∞ 4 π 1 log t . ( 2 
M Γ t = M ϕ t , with M ϕ t = ϕ(S θ t )(S θ t -θ t + 1 -Φ(S θ t ). It has been already proved (see Proposition 3.1 in [12]) that (M ϕ t ) is P x -martingale. Therefore E x M ϕ t = 1
. This shows (1.5). Applying Theorem 1.1 gives 1) and 2) of Theorem 2.1. b) The end of the proof of Theorem 2.1 is then quite similar to that of Theorem 4.6 in [START_REF] Roynette | Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time[END_REF], modulo the change of clock (H t , t ≥ 0). We refer the reader to that proof. Remark 2.8. We note that the penalisation with f (S θ t ) where (θ t ) denotes the winding number of our C-valued Brownian motion X t = U t + iV t , t ≥ 0, is the limiting case of penalisations with respect to f (S θ (α) t ), where :

θ (α) t := t 0 U s dV s -dV s dU s R α s , t ≥ 0,
for 0 < α < 2, for which the discussion is in fact easier than for α = 2. We claim that Theorem 2.1 is still valid when S θ is replaced by S θ (α) . Indeed, we still have :

θ (α) t = γ t 0 R 2(1-α) s ds ,
where (γ u ) is a Brownian motion independent of (R s , s ≥ 0), but now we also have :

E x t 0 R 2(1-α) s ds ∼ t→∞ C α t 0 s 1-α ds = C α 2 -α t 2-α ,
for an universal constant C α , independent of the starting position x (which now may be taken equal to 0). Moreover, for some probability density f : R + → R + , we obtain, with the same kind of arguments as previously :

E x f (S θ (α) t ) ∼ t→∞ C α 1 t 1-α/2 , (2.55)
where

C α is a universal multiple (depending on α) of E 0 1 0 R 2(1-α) s ds -1/2 .
Due to ( [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF], Corollary (1.12), Chap. XI), it is easy to prove that the last expectation is nite. Note that in the case α = 2, the rate of decay of

E x f (S θ (α) t
) is drastically dierent as (2.41) shows . To be complete, it would be of some interest to consider also the penalisations with

exp - t 0 R -α s ds , or f (S θ (α) t ),
for α > 2. We leave this question to the interested reader.

The end of this section is devoted to two generalisations of Theorem 2.1. We start with the rst one. The notation is the same as previously. Let now ψ : R + → R + and λ > 0 such that :

∞ 0 (1 + λy)ψ(y)dy = 1 (2.56)
We shall now study the penalisation with Γ t = ψ(S θ t ) exp(-λ(S θ t -θ t )) (Theorem 2.1 corresponds to the case λ = 0). Theorem 2.9. Suppose that x is a positive real number. Then, for every s ≥ 0, and Λ s ∈ F s ,

E x 1 Λ s ψ(S θ t ) exp -λ(S θ t -θ t ) E x ψ(S θ t ) exp -λ(S θ t -θ t ) → t→∞ E x 1 Λ s M ϕ s ), (2.57) 
with : Φ, the primitive of ϕ such that Φ(0) = 0, satises :

ϕ(y) = ψ(y) + λ ∞ y ψ(u)du, y ≥ 0. ( 2 
1 -Φ(u) = ∞ u ψ(y)(1 + λ(y -u))dy, u ≥ 0. (2.59)
Proof of Theorem 2.9

1) Let a ∈ R, b ≥ a + (= max(a, 0)) and t ≥ 0. Dene :

N (a, b, t) := ψ(b)e -λ(b-a) E e λθ t 1 (S θ t ≤b-a) +E ψ(a + S θ t )e -λ(S θ t -θ t ) 1 {S θ t >b-a} . (2.60) Since θ t = β H t and (H t , t ≥ 0) is independent from (β u , u ≥ 0)
, we obtain from the explicit knowledge ( [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF], Ex (3.14), Chap. III, see also [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF]) of the law of the pair (S β u := sup s≤u β s , β u ) under P 0 :

P 0 (S β u ∈ dy, β u ∈ dx) = 2(2y -x) √ 2π u 3 e -(2y-x) 2 2u 1 (x<y, y>0) dx dy, (2.61) N (a, b, t) = E 2 πξ 3 ψ(b)e -λ(b-a) b-a 0 dy y -∞ e λx (2y -x)e -(2y-x) 2 2ξ dx + ∞ b-a ψ(a + y)dy y -∞ e -λ(y-x) (2y -x)e -(2y-x) 2 2ξ dx , with ξ = H t .
Setting r = 2y -x in the last integral, we obtain :

N (a, b, t) = E 2 πξ 3 ψ(b)e -λ(b-a) b-a 0 e 2λy dy ∞ y re -r 2 2ξ -λr dr + ∞ b-a ψ(a + y)e λy ∞ y re -r 2 2ξ -λr dr . (2.62)
But, from Lemma 2.3 we have :

lim t→∞ (log t) 3 E 1 H 3 2 t = 16 2 π . (2.63)
Using moreover the fact that H t → ∞ as t → ∞, we get : 

lim t→∞ (log t) 3 N (a, b, t) := N † (a, b), ( 2 
= 32 πλ 2 ψ(b) + λ ∞ b ψ(y)dy (b -a) + ∞ b ψ(y) 1 + λ(y -b) dy = 32 πλ 2 (b -a)ϕ(b) + 1 -Φ(b) (2.65)
(the notation (2.58) and property (2.59) have been used to obtain the last equality).

2) Then, conditioning with respect to F s , and separating the cases when S θ t is attained before, or after s, we obtain :

E x ψ(S θ t ) exp -λ(S θ t -θ t ) F s = N (θ s , S θ s , t -s).
From (2.64) and (2.65) we deduce :

N (θ s , S θ s , t -s) N (0, 0, t) ∼ t→∞ log t log(t -s) 3 [(S θ s -θ s )ϕ(S θ s ) + 1 -Φ(S θ s )] → t→∞ (S θ s -θ s )ϕ(S θ s ) + 1 -Φ(S θ s ) = M ϕ s .
Theorem 2.1 implies that E x [M ϕ s ] = 1; thus, Theorem 2.9 follows directly from Theorem 1.1.

We now prepare some material for our second generalisation of Theorem 2.1. The notation is the same as previously. Let 0 < r < R two real numbers and dene :

θ -,r t = t 0 1 {Rs<r} dθ s (2.66) θ +,R t = t 0 1 {Rs>R} dθ s (2.67) H -,r t = t 0 1 {Rs<r} ds R 2 s (2.68) H +,R t = t 0 1 {Rs>R} ds R 2 s (2.69)
The process (θ -,r t , t ≥ 0) (resp. (θ +,R t , t ≥ 0)) is the process of small (resp. big) windings. The following result may be found in Pitman-Yor ( [START_REF] Pitman | Asymptotic laws of planar Brownian motion[END_REF]) :

Theorem 2.11. The 4-dimensional vector :

4 (log t) 2 (H -,r t , H +,R t ), 2 log t (θ -,r t , θ +,R t ) converges in law,
as t → ∞ to :

T 1 0 1 {α s ≤0} ds, T 1 0 1 {α s >0} ds, γ - T 1 0 1 {α s ≤0} ds , γ + T 1 0 1 {α s >0} ds
(2.70) where (α(t), t ≥ 0), (γ -(t), t ≥ 0) and (γ + (t), t ≥ 0) are three independent one-dimensional Brownian motions and

T 1 = T 1 (α) := inf{s ≥ 0; α s = 1}.
We shall use the following lemma, whose proof is postponed to the end of this subsection. Lemma 2.12. Let (α s , s ≥ 0) be a real-valued Brownian motion starting from 0, and let T 1 := inf{s; α s = 1}. We denote :

A - T 1 := T 1 0 1 {αs<0} ds, A + T 1 := T 1 0 1 {αs>0} ds.
Then, for a, b ∈ R :

E[(A - T 1 ) a (A + T 1 ) b ] < ∞ if and only if : - 1 2 < a < 1 2 .
Proposition 2.13. We dene :

S θ -,r t := sup s≤t θ -,r s , S θ +,R t := sup s≤t θ +,R s . (2.71) Let ψ : R + × R + → R + be a Borel function such that R 2 + ψ(u, v)du dv < ∞.
Let m, n two reals, with 0 < m < 1. Then :

lim t→∞ 4 m+n-1 (log t) 2m+2n-2 E x (H -,r t ) m (H +,R t ) n ψ(S θ -,r t , S θ +,R t ) = 2 π R 2 + ψ(u, v)du dv E (A - T 1 ) m-1/2 (A + T 1 ) n-1/2 . (2.72)
Proof of Proposition 2.13

We may write θ -,r

t = γ - H -,r t , θ +,R t = γ + H +,R t
, with γ -and γ + two independent real valued Brownian motions independent from (R s , s ≥ 0). Thus :

E x (H -,r t ) m (H +,R t ) n ψ(S θ -,r t , S θ +,R t ) = E x (H -,r t ) m (H +,R t ) n ψ H -,r t |N -|, H +,R t |N + |
(where N -and N + are two independent gaussian variables, independent from (R s , s ≥ 0))

= 2 π R 2 + e -u 2 +v 2 2 E x (H -,r t ) m (H +,R t ) n ψ( H -,r t u, H +,R t v) du dv = 2 π R 2 + ψ(u, v)du dv E x (H -,r t ) m-1/2 (H +,R t ) n-1/2 exp - u 2 2H -,r t - v 2 2H +,R t ,
and so, by Theorem 2.11 and Lemma 2.12 and because H -,r t and H +,R t converge a.s. to ∞ as t → ∞, the quantity :

4 m+n-1 (log t) 2m+2n-2 E x (H -,r t ) m (H +,R t ) n ψ(S θ -,r t , S θ +,R t ) converges, as t → ∞, to 2 π ∞ 0 ∞ 0 ψ(x, y)dx dy E (A - T 1 ) m-1/2 (A + T 1 ) n-1/2 .

Note that E[(A

- T 1 ) m-1/2 (A + T 1 ) n-1/2 ] < ∞ by Lemma 2.12, because 0 < m < 1 and so - 1 2 < m - 1 2 < 1 2 .
We may now state our second generalisation of Theorem 2.1.

Let ψ : R + × R + → R + be integrable and :

∞ 0 ∞ 0 ψ(u, v)du dv = 1.
We study penalisation by :

Γ m,n,ψ t := (H -,r t ) m (H +,R t ) n ψ(S θ -,r t , S θ +,R t ), (2.73) 
where n is real and 0 < m < 1.

Theorem 2.14. 1) For any s ≥ 0 and Λ s ∈ F s :

Q ψ x (Λ s ) = lim t→∞ E x [1 Λ s Γ m,n,ψ t ] E x (Γ m,n,ψ t ) exists.
(2.74)

2) This limit is equal to :

Q ψ x (Λ s ) = E x [1 Λ s M ψ s ] (2.75) 
where :

M ψ s = ψ(S θ -,r s , S θ +,R s )(S θ -,r s -θ -,r s )(S θ +,R s -θ +,R s ) + ∞ S θ -,r s dx ∞ S θ +,R s ψ(x, y)dy +(S θ -,r s -θ -,r s ) ∞ S θ -,R s ψ(S θ -,r
s , y)dy

+(S θ +,R s -θ +,R s ) ∞ S θ +,r s ψ(x, S θ +,R s )dx.
(2.76)

3) ( M ψ s , s ≥ 0) is a positive martingale.

4) The formula (2.74) induces a probability on (Ω,

F ∞ ). Under Q ψ x , the couple (S θ -,r ∞ , S θ +,R ∞
) is nite a.s and admits ψ as its probability density.

Note the remarkable feature that the martingale ( M ψ s , s ≥ 0) and the probability Q ψ

x do not depend on m, n.

Proof of Theorem 2.14

The proof of Theorem 2.14 is very similar to that of Theorem 2.1 and some details are left to the reader. However, it hinges mainly on the relation (which follows from a simple application of the Markov property) :

E x [Γ m,n,ψ t |F s ] = e X s , H -,r s , H +,R s , S θ -,r s , S θ +,R s , θ -,r s , θ +,R s , t -s
where the function e, which depends on eight arguments, is dened as :

e(x, h -, h + , s -, s + , θ -, θ + , u) = E x (h -+ H -,r u ) m (h + + H +,R u ) n ×ψ(s -∨ (θ -+ S θ -,r u ), s + ∨ (θ + + S θ +,R u 
)) .

Since :

lim t→∞ H -,r t = lim t→∞ H +,R t = ∞,
we deduce from Proposition 2.13 that :

E x [Γ m,n,ψ t |F s ] E x [Γ t ] -→ t→∞ ∞ 0 ∞ 0 ψ(S θ -,r s ∨ (θ -,r s + u), S θ +,R s ∨ (θ +,R s + v))du dv.
It is easy to verify that the limit equals M ψ s .

Remark 2.15. Of course, it is tempting to use Theorem 2.14 with m = n = 0. Unfortunately, we do not know whether the conclusion holds in this case, since, from Lemma 2.12 the quantity which then appears in (2.72) is :

E[(A - T 1 ) -1/2 (A + T 1 ) -1/2 ] = ∞.
However, we conjecture that the conclusion of Theorem 2.14 still holds in this case.

Proof of Lemma 2.12 1) It is known (see [START_REF] Pitman | Asymptotic laws of planar Brownian motion[END_REF]) that :

A - T 1 = A - τ ( 1 2 L T 1 ) = V L T 1 (2.77)
where :

• (L u , u ≥ 0) denotes the local time process at 0 of the 1-dimensional Brownian motion (α u , u ≥ 0), and (τ , ≥ 0) is its right-inverse :

τ = inf{u > 0 : L u > } ; • (V s , s ≥ 0) is a stable (1/2) subordinator, independent of the pair (L T 1 , A + T 1 )
; to be precise :

E[exp(-λV s )] = exp(-s √ 2λ)
• L T 1 is exponentially distributed, with parameter (1/2).

Therefore,

(A - T 1 , A + T 1 ) law = 1 2 L T 1 2 1 N 2 , A + T 1
where N denotes a standard Gaussian variable independent of the pair (L T 1 , A + T 1 ); hence, for a, b ∈ R :

E (A - T 1 ) a (A + T 1 ) b = E 1 N 2a E 1 2 L T 1 2a (A + T 1 ) b . (2.78)
2) We also recall (cf [START_REF] Pitman | Asymptotic laws of planar Brownian motion[END_REF]) that :

• 1 2 L T 1 , A + T 1 law = (L T * 1 , T * 1 ) (2.79) • T * 1 law = sup t≤1 |α t | -2
admits positive and negative moments of all orders,

with T * 1 = inf{s ≥ 0; |α s | = 1}. Hence, for any m ∈ R : E[(A + T 1 ) m ] < ∞.
(2.80)

3) Observe that the density of occupation formula implies that A + t = ∞ 0 L x t dx, where (L x t ) is the local time process associated with (α t ). From Ray-Knight theorem (see [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF], Chap XI, Theorem 2.2) :

L 1-x T 1 , 0 ≤ x ≤ 1 law = R 2 x , 0 ≤ x ≤ 1 , ( 2.81) 
where (R 2 s , s ≥ 0) is a squared Bessel process with dimension 2 started at 0. Consequently :

(L T 1 , A + T 1 ) law = R 2 1 , 1 0 R 2 s ds . (2.82)
Hence, from Lévy's formula (see [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF], Chap XI, Cor. 3.3) :

E exp - v 2 2 A + T 1 |L T 1 = = E exp - v 2 2 1 0 dsR 2 s |R 2 1 = = v sinh v exp -2 (v coth v -1) .(2.83)
4) Let us assume b < 0. Replacing in the elementary formula :

r b = 2 1+b Γ(-b) ∞ 0 e -v 2 2 r v -2b-1 dv 21
r by A + T 1 , we get :

(A + T 1 ) b = 2 1+b Γ(-b) ∞ 0 v -2b-1 exp - v 2 2 A + T 1 dv
Since L T 1 is exponentially distributed with parameter (1/2), using (2.83) we obtain :

E L T 1 2a A + T 1 b = 1 2 ∞ 0 2a E A + T 1 b |L T 1 = e -/2 d = 2 b Γ(-b) R 2 + 2a v -2b-1 e -2 ×E exp -v 2 2 A + T 1 |L T 1 = d dv = 2 b Γ(-b) R 2 + 2a v -2b sinh v e -2 v coth v d dv = 2 b+2a+1 Γ(2a + 1) Γ(-b) ∞ 0 v -2b sinh v tanh v v 1+2a dv.
Hence :

E (A - T 1 ) a (A + T 1 ) b = E 1 N 2a 2 1+b Γ(2a + 1) Γ(-b) ∞ 0 v -2b sinh v tanh v v 1+2a dv (2.
84) It is now clear that, for b < 0 :

E (A - T 1 ) a (A + T 1 ) b < ∞ if and only if - 1 2 < a < 1 2 .
(2.85)

In particular, we recover :

E (A + T 1 ) b < ∞, for any b < 0, (2.86) 
which also follows from (2.79). 5) Now, we assume : b > 0.

If |a| > 1/2 let p > 1 such that |a/p| > 1/2. Denote q the conjugate exponent of p (i.e. 1/p+1/q = 1), a := a/p and b := b/p. Applying Hölder's inequality leads to :

E (A - T 1 ) a (A + T 1 ) -b = E (A - T 1 ) a (A + T 1 ) b (A + T 1 ) -2b ≤ E (A - T 1 ) a (A + T 1 ) b 1/p E (A + T 1 ) -2b q 1/q .
Consequently (2.85) and (2.86) imply that

E (A - T 1 ) a (A + T 1 ) b = ∞.
When |a| < 1/2, choosing p > 1 such that |ap| < 1/2 we obtain :

E (A - T 1 ) a (A + T 1 ) b ≤ E (A - T 1 ) ap (A + T 1 ) -bp 1/p E (A + T 1 ) 2bq 1/q .
with 1/p + 1/q = 1. It then suces to apply (2.85) together with (2.86) to conclude that the left-hand side in the above inequality is nite.

3 Penalisation related to a cone 1) We keep the notation concerning the d-dimensional canonical Brownian motion, as given in the Introduction, d); in particular, if X 0 = x = 0, there is the skew-product decomposition :

X t = R t Θ Ht , t ≥ 0 (3.1)
where

(R t , t ≥ 0) is a Bessel process with index µ = d 2 -1.
We suppose here that d ≥ 2.

2 

) Let O be a connected, regular, open set of S d-1 . Let 0 < λ 2 1 ≤ λ 2 2 ≤ λ 2 3 ≤ . . .,
i) ∆ϕ n = -λ 2 n ϕ n ii) ϕ n : O → R, ϕ n = 0 on ∂O, ϕ n is C ∞ in O iii) (ϕ n , n ≥ 1) is an orthonormal basis of L 2 (O) (3.2) (for the Riemannian measure on O) iv) ϕ 1 > 0 in O
Note that we denoted by λ 2 n (and not by λ n ) the eigenvalues of ∆, for "aesthetical" reasons which will appear below.

3) We denote by C the cone in R d with vertex at the origin, and basis O, and we dene :

T C = inf{t ≥ 0 : X t / ∈ C} (3.3) T Θ O = inf{u ≥ 0 : Θ u / ∈ O} (3.4)
The aim of this paragraph is to study the penalisation by the functional

Γ t = 1 {T C >t} exp γ 2 H t + ρR t (γ ∈ R, ρ ≥ 0)
Of course, the particular case : γ = ρ = 0 amounts to study Brownian motion (X t , t ≥ 0) conditioned to stay in the cone C. We shall prove the following :

Theorem 3.1. Let x ∈ C (x = 0), and let T C denote the exit time of C, as dened by (3.3). Let ρ ≥ 0, and γ ∈ R such that :

µ 2 ≥ γ -λ 2 1
, where : µ = d 2 -1. Then : 1) For every s ≥ 0, and Λ s ∈ F s , the limit as t → ∞ of :

E x 1 Λs 1 {T C >t} exp γ 2 H t + ρR t E x 1 {T C >t} exp γ 2 H t + ρR t exists. (3.5)
2) This limit equals :

E x 1 Λs 1 {T C >s} M s (3.6)
where :

M s := k exp - ρ 2 2 s + γ 2 H s ϕ 1 (Θ Hs )R -µ s I ν (ρR s ) (3.7) 
with :

ν = µ 2 + λ 2 1 -γ and k = ϕ 1 x |x| |x| -µ I ν (ρ|x|) -1 (3.8)
where I ν denotes the modied Bessel function with index ν. (cf. [START_REF] Lebedev | Special functions and their applications[END_REF], p.108).

3) Formula (3.6) induces a probability Q x on (Ω, F ∞ ). Under this probability Q x , the process (X t , t ≥ 0) satises :

i) Q x (T C = ∞) = 1 (3.9) ii)
(X t , t ≥ 0) admits the skew-product decomposition :

X t = R t Θ H t (3.10)
where : a) (R t , t ≥ 0) is the "Bessel process with drift", whose generator is given by :

L R : f → L R f (r) = 1 2 f (r) + 1 + 2ν 2r + ρI ν+1 (ρr) I ν (ρr) f (r), (3.11) 
see [START_REF] Watanabe | On time inversion of one-dimensional diusion processes[END_REF]. b) (Θ u , u ≥ 0) is a diusion taking values in O, with generator :

L Θ : f → L Θ f (θ) = 1 2 ∆f (θ) + ∇ϕ 1 ϕ 1 (θ) • ∇f (θ) (3.12)
where the above scalar product and the gradient are taken in the sense of the Riemannian metric on S d-1 ;

c) The processes (R t , t ≥ 0) and (Θ u , u ≥ 0) are independent.

(3.13) Remark 3.2. i) ρ = 0 is allowed in Theorem 3.1. In this case, the process

(R t , t ≥ 0) is, under Q x , a Bessel process with index ν (ν depends on γ via formula (3.8)). i') ρ = γ = 0 is allowed in Theorem 3.1. In this case, (R t , t ≥ 0) is, under Q x , a Bessel process with index ν = µ 2 + λ 2 .
ii) Note that, when γ > 0, with respect to the penalisation with Γ t = 1 (T C >t) exp γ 2 H t + ρR t , the terms exp γ 2 H t and exp(ρR t ) play conicting roles : the term exp γ 2 H t favors the trajectories for which R is small, whereas the term exp(ρR t ) favors those for which R is large. This explains, intuitively, that the process (R t , t ≥ 0) may have, for ρ = 0, and γ > 0, a smaller "dimension" than the process (R t , t ≥ 0) under P x . Note that this situation never happens when one penalizes with 1 (T C >t) , i.e : when one considers the Brownian motion in R d , conditioned never to leave the cone C. iii) We shall show, in the course of the proof, that :

E x exp γ 2 H t + ρR t < ∞, for all t ≥ 0,
as soon as : µ 2 + λ 2 1 -γ ≥ 0. iv) If ρ > 0, and γ = 0, the limit process is "very transient", since :

ρI ν+1 (ρr) I ν (ρr) ∼ r→∞ ρ. (3.14)
Thus, in this case, the process (R t , t ≥ 0) behaves, as t → ∞, as a onedimensional Brownian motion with drift ρ. We also remark that, if we take ρ < 0 in Theorem 3.1, the limiting probability Q x is the same as for ρ = 0.

Proof of Theorem 3.1.

1) We begin with the Lemma 3.3. Let T Θ O = inf{u ≥ 0 : Θ u / ∈ O}, and a ∈ O. Then :

P a T Θ O > t = n≥1 exp - λ 2 n t 2 ϕ n (a) O ϕ n (b)db (3.15) ∼ t→∞ exp - λ 2 1 t 2 ϕ 1 (a)k , ( 3.16) 
with :

k = O ϕ 1 (b)db > 0.
Proof of lemma 3.3

This lemma is classical. Note pu (a, b) the density, with respect to the Riemannian measure (db), of the semi-group of the process ( Θ u , u ≥ 0), i.e : the process (Θ u , u ≥ 0) killed as it exits from O. Then (see [START_REF] Berger | Le spectre d'une variété riemannienne[END_REF]) :

pu (a, b) = ∞ n=1 exp - λ 2 n u 2 ϕ n (a)ϕ n (b), (3.17) 
hence, for every a ∈ O :

P a T Θ O > t = E a 1 O ( Θ t ) = n≥1 exp - λ 2 n t 2 ϕ n (a) O ϕ n (b)db.
2) For every x ∈ R d , x = 0, we denote by (r, θ) its polar coordinates, with :

x = (r, θ) , r = |x| , θ ∈ S d-1 (3.18) 
Lemma 3.4. For every x = (r, θ) in O, we have :

E r,θ 1 {T C >t} exp γ 2 H t + ρR t ∼ t→∞ k ϕ 1 (θ) √ 2πρ 1+µ r -µ I ν (ρr) t µ+ 1 2 e ρ 2 2 t with µ = d 2 -1, ν 2 = µ 2 -γ + λ 2 1 , and k = O ϕ 1 (b)db.
Proof of lemma 3.4

Conditioning with respect to R t = σ{R s , s ≤ t}, we get :

E r,θ 1 {T C >t} exp γ 2 H t + ρR t = E r,θ exp γ 2 H t + ρR t E r,θ 1 {T C >t} |R t .
It is clear that (3.1) implies :

H T C = T Θ O . ( 3.19) 
Consequently, applying Lemma 3.3, we obtain :

E r,θ 1 {T C >t} |R t = E r,θ 1 {H T C >Ht} |R t ∼ t→∞ k ϕ 1 (θ) exp - λ 2 1 2 H t .
As a result :

E r,θ 1 {T C >t} exp γ 2 H t + ρR t ∼ t→∞ k ϕ 1 (θ)E (µ) r exp ρR t + γ 2 H t - λ 2 1 2 H t .
Choosing ν 2 = µ 2 -γ + λ 2 1 and ξ t = exp ρR t in (2.20), we have :

E (µ) r exp ρR t + γ 2 H t - λ 2 1 2 H t = E (ν) r r R t ν-µ exp ρR t , (3.20) 
with

ν 2 = µ 2 -γ + λ 2 1 . Hence : E r,θ 1 {T C >t} exp γ 2 H t + ρR t ∼ t→∞ k ϕ 1 (θ)E (ν) r r R t ν-µ exp ρR t .
(3.21) But, the second term in (3.21) may be computed explicitly :

E (ν) r r R t ν-µ exp ρR t = r ν-µ ∞ 0 e ρy y ν-µ 1 t y r ν yI ν ry t exp - r 2 + y 2 2t dy = e -r 2 2t tr µ ∞ 0 y µ+1 I ν ry t e (ρy-y 2 2t ) dy = e ( ρ 2 2 t-r 2 2t ) tr µ ∞ 0 y µ+1 I ν ry t e -1 2t (y-ρt) 2 dy = e ( ρ 2 2 t-r 2 2t ) √ tr µ ∞ -ρ √ t (z √ t + ρt) µ+1 I ν r t (z √ t + ρt) e -z 2 2 dz ∼ t→∞ √ 2πρ 1+µ r -µ I ν (ρr) t µ+ 1 2 e ρ 2 2 t .
3) We now prove points 1) and 2) of Theorem 3.1.

Conditioning with respect to F s , we get :

E r,θ 1 Λ s 1 {T C >t} exp γ 2 H t + ρR t E r,θ 1 {T C >t} exp γ 2 H t + ρR t = E r,θ 1 Λ s 1 {T C >s} e γ 2 Hs E r ,θ 1 {T C >t-s} e γ 2 H t-s +ρR t-s E r,θ 1 {T C >t} exp γ 2 H t + ρR t with r = |X s | = R s and θ = Θ H s .
Hence, from Lemma 3.4 :

E r,θ 1 Λ s 1 {T C >t} exp γ 2 H t + ρR t E r,θ 1 {T C >t} exp γ 2 H t + ρR t ∼ t→∞ E r,θ 1 Λs 1 {T C >s} (t -s) µ+ 1 2 e γ 2 H s ϕ 1 (Θ Hs )R -µ s I ν (ρR s )e ρ 2 2 (t-s) ϕ 1 (θ)r -µ I ν (ρr)e ρ 2 t 2 t µ+ 1 2 → t→∞ k E r,θ 1 Λ s 1 {T C >s} ϕ 1 (Θ H s )R -µ s I ν (ρR s )e -ρ 2 2 s+ γ 2 H s , with k := ϕ 1 (θ)r -µ I ν (ρr) -1 . 4) We prove that M s 1 {T C >s} is a positive martingale Since (Θ u , u ≥ 0)
is the diusion associated with 1 2 ∆, and (3.2) holds, we get :

dϕ 1 (Θ H t ) = dM (1) t + 1 2 ∆ϕ 1 (Θ H t )dH t = dM (1) t - λ 2 1 2 ϕ 1 (Θ H t ) dt R 2 t ( 3.22) 
where (M

t , t ≥ 0) is a local martingale. On the other hand, denoting by L (µ) the innitesimal generator of the Bessel semigroup, with index µ :

L (µ) f (r) = 1 2 f (r) + 1 + 2µ 2r f (r) (3.23) 
an elementary computation, which follows from the classical identity (see [START_REF] Lebedev | Special functions and their applications[END_REF], p. 110)

I ν (r) + 1 r I ν (r) = 1 + ν 2 r 2 I ν (r)
shows that, with :

Ψ(r) := r -µ I ν (ρr) (r ≥ 0) (3.24) 
we get :

L (µ) Ψ(r) = Ψ(r) ρ 2 2 + ν 2 -µ 2 2r 2 . ( 3 

.25)

Thus :

d(R -µ t I ν (ρR t )) = dM (2) t + ρ 2 2 + ν 2 -µ 2 2R 2 t R -µ t I ν (ρR t )dt (3.26)
where (M

t , t ≥ 0) is a local martingale. We then apply Itô's formula (Notation : given our aim in this point 4), we now prefer to use s for the time variable, instead of t):

d 1 k M s = d e -ρ 2 2 s+ γ 2 H s ϕ 1 (Θ Hs )R -µ s I ν (ρR s ) = - ρ 2 2 + γ 2 1 R 2 s M s k ds + e -ρ 2 2 s+ γ 2 H s R -µ s I ν (ρR s ) dM (1) s - λ 2 1 2 ϕ 1 (Θ H s ) ds R 2 s + e -ρ 2
2 s+ γ 2 Hs ϕ 1 (Θ Hs ) dM (2) s +

ρ 2 2 + ν 2 -µ 2 2R 2 s R -µ s I ν (ρR s ) ds = e -ρ 2 2 s+ γ 2 H s R -µ s I ν (ρR s )dM (1) s + ϕ 1 (Θ H s )dM (2) s (3.27) since ν 2 = µ 2 + λ 2 1 -γ.
Recall that ϕ 1 (x) = 0 when x ∈ ∂O; hence M T C = 0. This proves that (M s 1 {T C >s} , s ≥ 0) is a local martingale. Since it is positive, it is a supermartingale. Hence, to prove that (M s 1 {T C >s} , s ≥ 0) is a martingale, it suces to prove that E r,θ M s 1 {T C >s} = 1.

Due to (3.17) and (3.2) iii) we have :

E r,θ 1 {T Θ O >t} ϕ 1 (Θ t ) = E θ ϕ 1 ( Θ t ) = n≥1 e -λ 2 n 2 t ϕ n (θ) O ϕ n (b)ϕ 1 (b)db = e -λ 2 1 2 t ϕ 1 (θ). (3.28) 
We proceed as in the proof of Lemma 3.4, taking the conditional expectation with respect to R t and using the previous result we get :

E r,θ M s 1 {T C >s} = k E r,θ 1 {T C >s} ϕ 1 (Θ H s )e γ 2 Hs-ρ 2 2 s R -µ s I ν (ρR s ) = k E r,θ e γ 2 Hs-ρ 2 2 s R -µ s I ν (ρR s ) e -λ 2 1 2 Hs ϕ 1 (θ) = kϕ 1 (θ) E (µ) r R -µ s I ν (ρR s ) exp (γ -λ 2 1 ) H s 2 - ρ 2 2 s
According to the absolute continuity formula (2.20), with ν 2 = µ 2 -γ + λ 2 1 , we have :

E r,θ M s 1 {T C >s} = kϕ 1 (θ)e -ρ 2 2 s E (ν) r R -µ s I ν (ρR s ) r R s ν-µ = kϕ 1 (θ)r ν-µ e -ρ 2 2 s E (ν) r R -ν s I ν (ρR s ) . But L (ν) ( Ψ)(r) = ρ 2 2 Ψ(r), with Ψ(r) = r -ν I ν (ρr), then : R -ν s I ν (ρR s )e -ρ 2 2 s , s ≥ 0 is a martingale under P (ν) r . (3.29) Therefore (3.8) implies E r,θ M s 1 {T C >s} = kϕ 1 (θ)r ν-µ r -ν I ν (ρr) = 1,
from the denition of k, at the end of point 3) above.

5) Description of the process (R t , t ≥ 0) under Q x

For every positive functional F , and every x ∈ C, x = 0, we write :

E Q x (F (R s , s ≤ t)) = kE r,θ F (R s , s ≤ t)ϕ 1 (Θ H t )1 {T C >t} e -ρ 2 2 t+ γ 2 H t R -µ t I ν (ρR t ) (3.30)
Then, conditioning with respect to R t = σ{R s , s ≤ t} and using (3.28) we get :

E Qx F (R s , s ≤ t) = kE (µ) r F (R s , s ≤ t)R -µ t I ν (ρR t )e -ρ 2 2 t-( λ 2 1 2 -γ 2 )H t (3.31)
Relation (3.25) implies that :

L (µ) Ψ(r) Ψ(r) = ρ 2 2 + ν 2 -µ 2 2r 2 = ρ 2 2 + λ 2 1 -γ 2r 2 , ( 3.32) 
the function Ψ being dened by (3.24). Consequently,

R -µ t I ν (ρR t )e -ρ 2 2 t-( λ 2 1 2 -γ
2 )Ht , t ≥ 0 is a martingale under P (µ) r , (3.33) since it is of the form :

Ψ(R t ) exp - t 0 L (µ) Ψ Ψ (R s )ds .
Thus, the function h(t, a, r) = exp - r . Thus, it is a Markov process, with innitesimal generator L R :

ρ 2 t 2 - λ 2 1 2 - γ 2 a Ψ(
L R f (r) = 1 h L µ (f h)
where L µ is the innitesimal generator of the process ((t, H t , R t ), t ≥ 0). Hence :

L R f = 1 2 f (r) + ∂ ∂r (log h) + 1 + 2µ 2r f (r) = 1 2 f (r) + 1 2r + ρI ν (ρr) I ν (ρr) f (r) = 1 2 f (r) + 1 + 2ν 2r + ρI ν+1 (ρr) I ν (ρr) f (r) (3.34) 
since from ( [START_REF] Lebedev | Special functions and their applications[END_REF], p. 110) :

d dz z -ν I ν (z) = z -ν I ν+1 (z). (3.35)
Note that, since :

I ν (z) ∼ z→0 1 Γ(ν + 1) z 2 ν , ( 3.36) 
then : ρI ν+1 (ρr)

I ν (ρr) ∼ r→0 ρ 2 2ν r, ( 3.37) 
the process (R t , t ≥ 0) under Q x behaves, near 0, as a Bessel process with index ν = µ 2 + λ 2 1 -γ. In particular, when ρ = 0, this process is then a Bessel process whose index equals µ 2 + λ 2 1 -γ. Thus, the dimension of this Bessel process may be smaller than the original dimension d; this happens if

λ 2 1 < γ. 6) Description of the process (Θ u , u ≥ 0) under Q x i) Let f : O → R be regular. Since, under P (µ) x , (Θ u , u ≥ 0) is a spherical Brownian motion associated with 1 2
∆, then :

M f t := f Θ t∧T Θ O - 1 2 t∧T Θ O 0 ∆f (Θ s )ds (3.38) = f (θ) + t∧T Θ O 0 ∇f (Θ s ) • dΘ s (3.39) is a P x -martingale whose bracket equals t∧T Θ O 0 |∇f | 2 (Θ s )ds (the gradient
and its norm being taken in the sense of the Riemannian structure on S d-1 ). Hence, since R and Θ are independent, under P x :

M f t := f Θ H t∧T C - 1 2 t∧T C 0 ∆f (Θ H s )dH s (3.40) = f (θ) + t∧T C 0 ∇f (Θ Hs ) • dΘ Hs (3.41) is a P x -martingale whose bracket is equal to t∧T C 0 |∇f | 2 (Θ H s )dH s .
In the same way :

M (1) t = ϕ 1 (θ) + t 0 ∇ϕ 1 (Θ H s ) • dΘ H s , ( 3.42) 
where M

(1) t has been introduced in (3.22). ii) M t∧T C , t ≥ 0 is a P x positive martingale and, from Girsanov's theorem

M f t - t∧T C 0 1 M s d < M f , M > s is a Q x local martingale. (3.43)
iii) We now determine the bracket < M f , M >. Since the bracket of M f and of M (2) (which was introduced in (3.26)) is equal to 0, as R and Θ are independent, we deduce from (3.27), (3.41) and (3.42) :

d < M f , M > t = ke -ρ 2 2 t+ γ 2 H t R -µ t I ν (ρR t ) ∇f • ∇ϕ 1 Θ Ht dH t = M t ∇f • ∇ϕ 1 ϕ 1 Θ Ht dH t ,
for any t ≤ T C .

Relations (3.40) and (3.43) imply :

f (Θ H t )1 {T C >t} - 1 2 t∧T C 0 ∆f (Θ H s )dH s - t∧T C 0 ∇f • ∇ϕ 1 ϕ 1 (Θ H s )dH s (3.44) is a Q x -martingale.
Performing the time change H t = u in (3.44), we deduce :

f (Θ u )1 {T Θ O >u} - 1 2 u∧T Θ O 0 ∆f (Θ s )ds - u∧T Θ O 0 ∇f.∇ϕ 1 ϕ 1 (Θ s )ds
is a martingale. Thus, from Stroock and Varadhan [START_REF] Stroock | Multidimensional diusion processes[END_REF], (Θ u , u ≥ 0) is a diusion process, with innitesimal generator :

1 2 ∆ + ∇ϕ 1 ϕ 1 .∇. 7) We prove that, under Q x , T C = ∞., a.s.
This follows from the fact that the normal derivative of ϕ 1 on the boundary of O does not vanish. Thus :

∇ϕ 1 ϕ 1 (θ) ∼ θ→∂O -→ n d(θ, ∂O)
where d(θ, ∂O) denotes the distance of θ to the boundary of O, and where -→ n is the inward normal vector. This implies that the process (Θ u , u ≥ 0) under Q x has, in the neighborhood of the boundary of O, "a radial part which behaves like a BES (3) process", hence which does not reach the boundary.

8)

We prove the independence, under Q x , of (R t , t ≥ 0) and (Θ u , u ≥ 0)

For the sake of simplicity, we shall only give the proof for dimension d = 2.

Under P x , we write the complex-valued Brownian motion :

X t := x t + iy t = |X t | exp iβ (1) Ht , where β (1) Ht = Im t 0 dX s X s = t 0 x s dy s -y s dx s |X s | 2 . (3.45) (|X t |, t ≥ 0)
decomposes as a semi-martingale :

• under P x : |X t | = β (2) t + 1 2 t 0 ds |X s | • under Q x : |X t | = β (2) t + t 0 h(|X s |)ds , ( 3.46) 
Theorem 3.5.

Let x be as just assumed.

1) For every s ≥ 0, and every Λ s ∈ F s , the limit :

Q x (Λ s ) := lim t→∞ E x 1 Λ s 1 {θ t <θ + , θ t >θ -} E x 1 {θt<θ + , θ t >θ -} exists. (3.51) This limit equals Q x (Λ s ) = E x (1 Λ s M s ) (3.52) with M s := k R λ s sin λ(θ + -θ s ) 1 {θ s <θ + , θ s >θ -} (3.53) and λ = π θ + -θ - , k = 1 x λ 1 sin(λθ + ) . (3.54)
Moreover, (M s , s ≥ 0) is a positive martingale such that M 0 = 1.

2) Formula (3.52) induces a probability on (Ω, F ∞ ), and under Q x , the process (X t , t ≥ 0) writes :

X t = R t e iβ H t (3.55)
where :

a) (R t , t ≥ 0) and (β u , u ≥ 0) are independent b) (R t , t ≥ 0) is a Bessel process with dimension 2(1 + λ), and

H t = t 0 ds R 2 s . (3.56) c) (β u , u ≥ 0)
is distributed as the solution of the SDE :

Z u = β u -λ u 0 cotg λ(θ + -Z s ) ds (3.57)
where ( β u , u ≥ 0) is a Brownian motion.

In particular, the process (β t , t ≥ 0) never reaches the levels θ -and θ + , although :

sup s≤t β s → t→∞ θ + a.s., inf s≤t β s → t→∞ θ -a.s.,
Proof of Theorem 3.5

It is essentially the same as that of Theorem 3.1. We briey indicate the main lines.

1) When written in our present context, formula (3.17) yields the density of the process (β t , t ≥ 0) killed when it exits the interval [θ -, θ + ] :

P (S β u < θ + , I β u > θ -, β u ∈ dx) = k≥1 cos kπx θ + -θ - -cos kπ(2θ + -x) θ + -θ - e -k 2 π 2 u 2(θ + -θ -) 2 × 1 θ + -θ - 1 {θ -<x<θ + } dx.
(3.58)

Consequently :

P (S β u < θ + , I β u > θ -) = P (u < T θ + ∧ T θ -) ∼ u→∞ Ce -λ 2 u 2 , ( 3.59) 
where :

C = 1 θ + -θ - θ + θ - cos(λx) -cos λ(2θ + -x) dx.
We have : This proves the rst part of Theorem 3.5, if we admit for a while that E x [M t ] = 1. This equality is actually a direct consequence of the next step 2).

C = 2
2) We now verify that R λ s sin λ(θ + -θ s ) , s ≥ 0 is a martingale under P x and M 0 = 1. Indeed, R λ s sin λ(θ + -θ s ) , s ≥ 0 is the imaginary part of the conformal martingale R λ s exp iλ(θ + -θ s ) , s ≥ 0 . Moreover, we have, by Itô's formula : 3) We now compute the law of (R t , t ≥ 0) under Q x .

We have, for every functional F ≥ 0 : 

E Qx F (R s , s ≤ t) = k E x F (R s , s ≤ t)
E Q x F (R s , s ≤ t) = k sin(λθ + ) E x F (R s , s ≤ t)R λ t e -λ 2 H t 2 .
Using (2.20) with µ = 0, ξ t = R λ t and ν = λ and the denition of k in (3.54), we obtain :

E Q x F (R s , s ≤ t) = E (λ)
x F (R s , s ≤ t) .

This proves that, under Q x , (R s , s ≥ 0) is a Bessel process with index λ, i.e with dimension 2(1 + λ). In particular, this process is transient.

4)

Computation of the law of β under Q x .

Relation (3.65) implies that :

M t = 1 + λk t 0 R λ-1 s sin λ(θ + -θ s ) dB s -λk t 0 R λ s cos λ(θ + -θ s ) dβ H s .
(3.69) (B s , s ≥ 0) being the driving Brownian motion of (R s , s ≥ 0) is independent from (β u , u ≥ 0). Since (M t ) is a positive P x -martingale then Girsanov's theorem provides us with :

β H t = γ t -λ t 0 R λ s cos λ(θ + -θ s ) R λ s sin λ(θ + -θ s ) d < β H , β H > s = γ t -λ t 0 cotg λ(θ + -β H s ) dH s .
Performing the time change u = H t , yields :

β u = β u -λ u 0 cotg λ(θ + -β s ) ds
where ( β u , u ≥ 0) is a Q x -Brownian motion.

5) The last point 2) c) of Theorem 3.5 is now classical : in order to prove that the hitting time of the interval [θ -, θ + ] by the process β is a.s. innite, it suces to apply Feller's test. We also note that, under Q x :

H ∞ = ∞ 0 ds R 2 s = ∞ a.s.

7 )

 7 the one-sided maximum process of θ. b) Let ϕ : R + → R + a Borel function such that

  )

  .64) with : N † (a, b) = 32 π ψ(b)e -λ(b-a) ψ(a + y)e λy dy ∞ y re -λr dr

0 R λ- 1 sλ 2 2 t 0 R λ- 2 s 2 s= 0 R λ- 1 s

 01202201 R λ t sin λ(θ + -θ t ) = x λ sin(λθ + ) + λ t sin λ(θ + -θ s ) dB s + sin λ(θ + -θ s ) ds -λ t 0 R λ s cos λ(θ + -θ s ) dθ s sin λ(θ + -θ s ) ds R x λ sin(λθ + ) + λ t sin λ(θ + -θ s ) dB s cos λ(θ + -θ s ) dθ s (3.65)where (B s , s ≥ 0) is the driving Brownian motion of (R s , s ≥ 0).

  is now clear that (2.49) follows from the dominated convergence theorem.

As a result, (2.44), (2.46), (2.48) and (2.49) show (2.41). Corollary 2.6. Let ϕ as in Theorem 2.1 and Φ be dened by (2.8). Then :

  r) is a harmonic function for the Markov process ((t, H t , R t ), t ≥ 0). The formula (3.31) then indicates that the process (R t , t ≥ 0) is under Q x the h-Doob transform of the process (R t , t ≥ 0) under P

	(µ)

  sin(λθ + ) θ + -θ - Observe that the Markov property implies :E x 1 {θt<θ + , θ t >θ -} F s = 1 {θs<θ + , θ s >θ -} g(R s , θ + -θ s , θ --θ s , t -s) with g(r, θ + , θ -, u) = P r θ u < θ + , θ u > θ -. 1 {θt<θ + , θ t >θ -} F s P x θ t < θ + , θ t > θ - = 1 {θ s <θ + , θ s >θ -} sin λ(θ + -θ s ) sin(λθ + )

	Consequently (3.64) implies :						
	lim									R s x
			θ + θ -	sin λ(θ + -x) dx =	4 sin(λθ + ) π	.	(3.60)
	From formulae (3.48), (3.49), (3.59), and the independence of H E r e -λ 2 H t 2 = E (λ) r r R t λ .	(3.62)
	Reasoning as in the proof of Lemma 2.3, we obtain :
	E (λ) r	r R t	λ	∼ t→∞	r √ t	λ 1 2 λ/2	Γ(1 + λ/2) Γ(1 + λ)	.	(3.63)
	Finally, we get :								
	P t→∞	4 sin(λθ + ) π2 λ/2	Γ(1 + λ/2) Γ(1 + λ)	r √ t	λ	.	(3.64)

t from (β u ), we deduce, for every starting point (r, 0) :

P r (θ t < θ + , θ t > θ -) ∼ t→∞ C E r e -λ 2 H t 2 .

(3.61) Applying (2.20) with ξ t = 1, µ = 0 and ν = λ, we get :

r (θ t < θ + , θ t > θ -) ∼ t→∞ E x λ .

  R λ t sin λ(θ + -θ t ) 1 {θt<θ + ,θ t >θ -}

	where	
	χ(u) = E sin λ(θ + -β u ) 1 {S β u <θ + , I β u >θ -}	(3.67)
	= sin(λθ + )e -λ 2 u 2	(3.68)
	by an easy martingale argument.	
	Plugging (3.68) in (3.66), we get :	
		(3.66)

= k E x F (R s , s ≤ t)R λ t χ(H t )

for a certain h, where β (2) , resp : β (2) , is a P x , resp : Q x Brownian motion. Moreover : dβ

(2) t = x t dx t + y t dy t |X t | , which implies : d < β (2) , β

(1)

hence, from Knight's representation theorem of continuous orthogonal martingales, (β

t ) and (β

u ) are two independent real-valued Brownian motions. After applying Girsanov's theorem to go from P x to Q x , we obtain likewise that ( β

u , u ≥ 0), which are respectively the martingale parts of (β

t ); likewise, from point 6) of the proof, or even more directly in dimension 2, (β

For dimensions d > 2, we leave the variant of this proof to the reader.

We shall now end this Section 3 by giving, for d = 2, a slightly dierent form of Theorem 3.1, where we make ρ = γ = 0, to simplify matters. This time, we shall use the skew-product decomposition given by (2.1),• • • ,(2.5) :

where (R t , t ≥ 0) denotes a Bessel process with dimension 2 (or index 0). We denote, for θ t = β H t :

On the other hand, θ -and θ + denote two reals such that :

and we now propose to study the penalisations with Γ t := 1 {θt<θ + , θ t >θ -} . When θ -> -π and θ + < π, this study is a particular case of Theorem 3.1, with ρ = γ = 0. In what follows, x is a point of R 2 whose rst coordinate is strictly positive, while the second one is 0, and we shall write x for (x, 0).