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Ceremade, Université Paris-Dauphine, 75775 Paris Cedex 16, France
{jung,peyre,cohen}@ceremade.dauphine.fr

Abstract. This article introduces a new image segmentation method
that makes use of non-local comparisons between pairs of patches of fea-
tures. A non-local energy is defined by summing the interactions between
pairs of patches inside and outside the segmented domain. A maximum
radius of interaction can be adapted to fit the amount of variation of the
features inside and outside the region to segment. This non-local energy is
minimized using a level set approach. The corresponding curve evolution
defines a non-local active contour that converges to a local minimum of
our energy. In contrast to previous segmentation methods, this approach
only requires a local homogeneity of the features inside and outside the
region to segment. This does not impose a global homogeneity as required
by region-based segmentation methods. This comparison principle is also
less sensitive to initialization than edge-based approaches. We instanti-
ate this novel framework using patches of intensity or color values as
well as Gabor features. This allows us to segment regions with smoothly
varying intensity or colors as well as well as complicated textures with a
spatially varying local orientation.

1 Introduction

Image segmentation refers to the process of partitioning an image into several
regions or locating objects and boundaries. This paper considers a variational
minimization problem for segmentation, which aims to find a contour represent-
ing the boundary of objects, by minimizing an energy functional composed of a
contour smoothing term and an attraction term that pulls the contour towards
the object boundaries. The curve (locally) minimizing the energy functional, lo-
cated at the object boundaries, is obtained by curve evolution or active contours:
starting with a given initial curve and evolving it to the correct steady state,
the object boundaries. Active contours have been represented either by explicit
parametric representation [1] or by the implicit level set representation of [2].
The level set representation has widely been used because it allows automatic
topology changes of the contour such as merging and breaking, and the computa-
tions are made on a fixed rectangular grid. Many existing active contour models
segment an image according to edge information and/or region information.

Edge-based approaches. Edge-based active contour models use edge detection
functions depending on the image gradient and evolve contours towards sharp
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gradients of pixel intensity. The first work was the snakes model by Kass et al.
[1]. Then, many edge-based active contour models such as balloon [3], geometric
[4], [5], [6] models were proposed. In particular, Caselles et al. [6] proposed an
intrinsic geometric model, geodesic active contours, where the curve evolution
is handled by the level set method [2] proposed by Osher and Sethian. In this
model, the evolving curve moves by mean curvature, but with an extra factor in
the speed, by the stopping edge-function. Therefore, the curve stops on the edges,
where the edge-function vanishes. Although these classical snakes or geometric
active contour models are quite effective, they are usually not robust to noise
because noise also has large gradients. These models need in addition to perform
a-priori smoothing, to smooth out the noise. This can therefore produce a not
very accurate location of edges.

Region-based approaches. Region-based active contour models incorporate re-
gion information so that image within each segmented region has a homogeneous
characteristics, such as intensities and textures. A region-based energy for an ac-
tive contour was proposed in [7]. This was a reduced form of the Mumford-Shah
functional [8] where the image was approximated by a piecewise smooth function
inside objects and a smooth background. Chan and Vese [9] proposed an active
contours without edges model, which is also based on techniques of curve evolu-
tion and level set methods, but the gradient-based information is replaced by a
criterion related to region homogeneity. This model approximates an image by a
two-phase piecewise constant function. The active contours without edge model
was also extended to vector valued images [10] and to texture segmentation [11].

Kimmel [12] proposed a hybrid model by incorporating a more general weigh-
ted arc-length in the active contours without edges model. Sagiv et al. [13]
applied the integrated approach, by incorporating multi-channel approaches [10],
[11], to the problem of texture segmentation.

In this article, we propose an active contour model with a novel energy func-
tional using pairwise interaction of features inside and outside the object, which
allows to only constrain the local homogeneity, in contrast to the Chan-Vese
approach. The local homogeneity property allows our model to capture regions
with features that vary spatially in a smooth way, as well as to segment several
separated objects with different features.

Remark that, a class of models [14], [15], [16] in the framework of Mumford-
Shah or Chan-Vese models has been proposed to perform the segmentation of
images with intensity inhomogeneity. These also utilize region-based techniques
and incorporate the benefits of local information. The difference is that our
model is developed in the non-local framework using patches, illustrated in the
following paragraphs.

Image features. In this work, we consider different image features based on given
images. The choice of features is difficult and critical to get an optimal segmen-
tation result. For a scalar image, the gray-level value or intensity can be enough
to characterize each pixel. If the image is composed of multiple channels (such as
color images), then each pixel is described by a vector of intensities. For texture
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images, the pixel intensity value does not give pertinent information. A very
popular class of texture features are the filter-based features of the given image.
For instance, Gabor filter has often been implemented in texture segmentation
[17], [11], [13] because it can segment images having region differences in spatial
frequency, density of elements, orientation and phase. In particular, Sandberg
et. al [11] incorporated the multiple Gabor transforms, obtained by convolving
the Gabor functions with the original textured image, with the vector valued
active contours without edges algorithm [10]. A recent promising image feature
to represent and process textures is the image intensity patch around the cur-
rent pixel. The information on a close neighborhood around the current pixel is
extracted and leads to semi-local information at each pixel. The patch idea as
feature vector was first introduced for texture synthesis [18], [19], then for image
denoising, illustrated in the following paragraph.

We incorporate the patch idea with selected image features: for instance, for
texture images, we use Gabor transforms as image features, and we consider the
non-local interaction between pairs of patches of the features.

Non-local image processing. Nonlocal methods in image processing have been
explored in many papers because they are well adapted to texture denoising.
Buades et al [20] proposed to compute the weight matrix with patch differences
and denoise the image with a non-local averaging, which is the well-known non-
local means filter. Kinderman et al. [21], Gilboa and Osher [22], and Peyré et
al. [23] proposed non-local energy functionals, and these functionals were used
to solve various image processing problems such as denoising, inpainting, super-
resolution and compressive sensing. The idea of functionals on nonlocal-graphs,
in a regularization process, has also been used for image segmentation in a semi-
supervised [24], [25], [26] or an unsupervised [27], [28] settings.

In our work, we use a non-local energy that enforces the similarity of features
both located either inside or outside the object. Using a level set formulation, this
defines an attraction term pulling the contour towards the object boundaries.
This is contrast to the existing non-local based segmentation methods that use
non-local energy terms only as regularization terms. Note that our work is related
to some developments that start from the work of Shi and Malik [29].

Contributions. This article introduces a novel non-local energy for image/texture
segmentation. In contrast to existing energy, we use pairwise interaction of fea-
tures, which allows to only constrain the local homogeneity. This local homo-
geneity is crucial to capture regions with smoothly spatially varying features,
such as color gradient or oriented textures. This is also useful to segment several
separated objects with different features.

2 Non-local Active Contours

The goal is to segment an image f : [0, 1]2 → R
d, where d is dimensionality of

the feature space. For instance one might consider d = 1 for gray-valued images,
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d = 3 for color images. To segment a texture image, f(x) is computed as a high
dimensional vectors which is the output of a directional filter bank.

Since we aim at proposing a generic segmentation framework, we do not
specify the exact nature of the features in this section. Sections 3.2 and 3.3
detail some typical examples of features spaces.

2.1 Pairwise Patch Interaction

To be able to be less sensitive to noise in the image, we consider patches of
features around each pixel x ∈ [0, 1]2:

∀ t ∈ [−τ/2, τ/2]2, px(t) = f(x + t).

Patch-based processing of images has been used extensively for a very long time
in stereo and image matching in general, and has been very popular since the
introduction of the non-local means denoising method.

Similarly to non-local denoising, we consider the non-local interaction be-
tween pairs of patches, measured using a weighted L2 distance

d(px, py) =

∫

t

Ga(t)||px(t) − py(t)||2dt where Ga(t) = e−
||t||2

2a2 .

The Gaussian weight is used to give more influence to the central pixel, but does
not play a major role in our method.

2.2 Pairwise Interaction Energy

In its simplest form, the segmentation problem corresponds to the computa-
tion of some region Ω ⊂ [0, 1]2 that should capture the objects of interest. This is
usually performed in some variational framework where Ω solves an optimization
problem.

The local homogeneity of the region (and of its complementary) is measured
by considering all possible pairwise patch interaction at a given scale σ > 0. This
gives rise to the following pairwise interaction energy of a region

E(Ω) =

∫∫

Ω×Ω

Gσ(x−y)d(px, py)dxdy+

∫∫

Ωc×Ωc

Gσ(x−y)d(px, py)dxdy. (1)

where Ωc = [0, 1]2\Ω is the complementary of the region.

The parameter σ > 0 is important since it controls the scale of the local
homogeneity one requires for the segmented object. If the region is made of
a nearly constant pattern, one should use a large σ. In contrast, if the region
exhibits fast feature variations, σ should be chosen smaller. For simplicity, we
use the same scale for both inside and outside the region, but one could of course
use two distinct parameters.
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2.3 Non-local Active Contour Energy

In order to perform the segmentation, we use a level set framework [2] where
one computes a function ϕ : [0, 1] → R so that Ω = {x \ ϕ(x) > 0}.

The integration inside and outside the domain is carried over using a smoothed
Heaviside function

H(x) =
1

2
+

1

π
atan(x/ε).

The parameter ε should be chosen small enough to obtain a sharp region bound-
ary, but not too small to avoid numerical instabilities. In the numerical examples,
we use ε = 1/n for a discretized image of n × n pixels.

The energy (1) on regions is turned into an energy on the level set function
ϕ, enforcing the similarity of features located inside and outside Ω,

E(ϕ) =

∫∫

ρ(H(ϕ(x)),H(ϕ(y)))Gσ(x − y)d(px, py)dxdy

where ρ is an indicator function such that ρ(u, v) = 1 if u = v, 0 otherwise.
In practice, we used ρ(u, v) = 1 − |u − v|. The meaning of this term is a way
to consider only pairs of points for which ϕ has the same sign. Note that other
binary interaction function ρ could be used as well, such as ρ(u, v) = uv + (1 −
u)(1 − v) (when u = H(ϕ(x)), v = H(ϕ(y))) and ρ(u, v) = 1 − |u − v|2.

To enforce the regularity of the extracted region, following previous works in
active contours, we penalize the length of the boundary, which is computed as

L(ϕ) =

∫

||∇H(ϕ(x))||dx =

∫

H ′(ϕ(x))||∇ϕ(x)||dx (2)

where ∇H(ϕ(x)) is the gradient at point x of the function H(ϕ).
Our non-local active contour method compute the segmentation as a station-

ary point of the energy

min
ϕ

E(ϕ) + γL(ϕ)

where γ > 0 is a parameter that should be adapted to the expected regularity
of the boundary of the region.

Using the gradient descent with an artificial time t > 0 leads to the evolution
equation for ϕ:

∂ϕ

∂t
= − (∇E(ϕ) + γ∇L(ϕ)) , (3)

where the gradients are computes as

∇E(ϕ)(x) =

∫

(∂1ρ)(H(ϕ(x)),H(ϕ(y)))Gσ(x − y)d(px, py)dy H ′(ϕ(x)),

∇L(ϕ)(x) = −div

( ∇ϕ(x)

||∇ϕ(x)||

)

H ′(ϕ(x)).
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Numerical implementation details. The segmentation is applied to a discretized
image f of n×n pixels. The length energy (2) is computed using a finite difference
approximation of the gradient.

The algorithm consists of two steps: given an image f , the weight function
w(x, y) = Gσ(x − y)d(px, py) is constructed based on the selected features, and
then the evolution equation (3) for ϕ is solved with an explicit scheme. Note
that H ′(ϕ) is replaced by ||∇ϕ||. To ensure the stability of the level set evolution
(3), one needs to re-initialize it from time to time. This corresponds to replacing
ϕ by the signed distance function to the level set {x \ ϕ(x) = 0}.

The size of the windowing function Gσ(x−y) depends on the initial curve: if
the initial curve is far away from the object boundaries, then a large windowing
function may be required. Here, 31×31 or 41×41 are used with a fixed σ = 10 for
100×100 or 200×200 images. The choice of the size of patch and the parameter a
in Ga depends on the image features: for instance, for image features depending
on intensity, 3 × 3 patch with a = 0.5 is used.

3 Experimental Results and Comparisons

This section presents experimental results with synthetic and real images.

3.1 Hybrid Region/Edge based Active Contours

We compare our approach with both region-based and edge-based active
contour segmentation methods. We compare our method with segmentations
obtained by minimizing a hybrid energy of the form

min
ϕ,p

αEr(ϕ, p) + (1 − α)Ec(ϕ) + γL(ϕ) (4)

where α weights the influence of the region term Er and the edge term Ec:

Er(ϕ, p) = λ1

∫

H(ϕ(x))d(px, p1)dx + λ2

∫

(1 − H(ϕ(x)))d(px, p2)dx,

Ec(ϕ) = µ

∫

||∇H(ϕ(x))||g(x)dx,

with positive parameters λ1, λ2, µ and a positive edge function g, and where
p represents the expected constant value of the features inside and outside the
object. In particular, we consider the geodesic active contour model (α = 0,
GAC model [6]) with adding balloon force term ηg(x)||∇ϕ(x)||, the region-based
model (α = 1) of Chan and Vese [9], and the integrated region/edge based model
(α = 1/2) of Sagiv et al. [13], called IAC model:

GAC:
∂ϕ

∂t
= µ||∇ϕ||div

(

g
ϕ

||ϕ||

)

+ ηg||∇ϕ||,

Chan-Vese:
∂ϕ

∂t
= ||∇ϕ||

{

− λ1d(px, p1) + λ2d(px, p2) + γdiv

(

ϕ

||ϕ||

)

}

,

IAC:
∂ϕ

∂t
=

1

2
||∇ϕ||

{

µdiv

(

g
ϕ

||ϕ||

)

− λ1d(px, p1) + λ2d(px, p2)
}

,
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Our model: k = 0 k = 20 k = 50 k = 150 Chan-Vese

Fig. 1. Detection of object with spatially varying background or object, and compar-
ison with Chan-Vese model (α = 1) in (4). 100 × 100 image and 31 × 31 windowing
function is used. k is the iteration number.

where ηg||∇ϕ|| is a balloon force term that helps to avoid poor local minima by
forcing moving the curve forward/outward (depending on the sign of η). Note
that, in practice, we use an edge function g(x) = 1

δ2+Gb1
∗‖∇(Gb2

∗f)(x)‖p with

δ2 = 0.1 and p, b1, b2 > 0, and then we normalize it from 0 to 1. And we let
λ1 = λ2 = 1.

3.2 Gray-level and Color Features

The simplest features f(x) are the values of the image itself.
In the numerical examples, we use the edge function with p = 1, Gb1 with

b1 = 0.5 (or 1 for noisy image) and Gb2 = 1.
In Fig. 1 and 2, we test our method on several synthetic images with spa-

tially varying background and/or object, or with several separated objects with
different intensities. In all the examples, our model correctly detects the objects.
This is due to the local homogeneity property of our model mentioned in Sec-
tion 2.3, which is contrast to the two-phase Chan-Vese model requiring a global
homogeneity in each region. The first example in Fig. 1 well demonstrates the
effect of this property. The second example shows in addition the detection of
interior contour. In the first example in Fig. 2, the bottom object has spatially
varying intensities, and moreover the intensities of its left side are close to the
ones of the background. Thus, Chan-Vese model (see Fig. 3) fails to segment
this piecewise smooth object, regarding its left side as background, while our
model captures the boundary with small gradients. Furthermore, Fig. 2 shows
the detection of multiple separated objects with different intensities, unlike two
phase Chan-Vese model. Lastly, we note that our model needs small number of
iterations (around 150 iterations) to obtain final curves, even with an explicit
scheme.

Fig. 3 presents the results of existing edge-based and/or region-based models,
given in (4): α = 0 with balloon force term ηg(x)||∇ϕ(x)|| (geodesic model),
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k = 0 k = 10 k = 20 k = 50 final curve

Fig. 2. Detection of objects with spatially varying object, or with several separated
objects with different intensities, or with various shapes, using our model. k is the
iteration number, and final curves are obtained at k = 80 (top) and k = 120 (bottom).

α = 0 with balloon force α = 1/2 and two different µ α = 1

Fig. 3. Final curves of models given in (4): α = 0 with balloon force term (GAC),
α = 1/2 (IAC) with two different but close parameters µ, α = 1 (Chan-Vese). GAC:
µ = 1, η = −0.3. IAC: (top) µ = 3.6 and 3.5, (bottom) µ = 1 and 0.9. IAC and
Chan-Vese models used initial curves given in Fig. 2.

Fig. 4. Detection of objects from blurred and/or noisy images. 1st column: initial curves
used, 2nd-5th columns: final curves of our model (Top) and IAC model (Bottom).
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α = 1/2 (integrated active contour model), α = 1 (region-based Chan-Vese
model). For the IAC model, two final curves are shown with two different but
close parameters µ (µ1 > µ2). Because µ is a balancing term between the region-
based and edge-based energies, when µ > µ1 (or µ < µ2), the model tends to
act like the geodesic snake model (or Chan-Vese model). Thus, with the given
initial curves, all the models fail to detect the correct object boundaries. Note
that, with good initial curves surrounding all the boundaries, IAC model was
able to detect the boundaries, as shown in the 2nd column in Fig. 4, with large
values of µ, while in our model one circle around objects as an initial curve was
enough for segmentation. Thus, our model is less sensitive to the choice of initial
curves than edge-based active contour models.

Fig. 4 presents how our model works on noisy images, and detection of objects
with blurred boundaries. The 2nd-4th columns present a clear and clean image
(2nd), given in Fig. 2, and a blurred and noisy version of it, respectively. However,
IAC model fails to locate boundaries with small gradients in blurred or noisy
images, even with good initial curves. These examples show that our model
detects object boundaries with small gradients as well as that it is not sensitive
to noise unlike edge-based models.

In Fig. 5, we test our method on real color images. We compare our model
with the vector-valued Chan-Vese model [10] and IAC model. By using an initial
curve near the boundary of object(s) and a small windowing function, our model
could detect the boundary of non-homogeneous object(s). The segmentation
result is fairly good, comparing with Chan-Vese model and IAC model that
only capture part of object(s). On the other hand, these examples also show a
limitation of our model: in order to detect the boundary of non-homogeneous
objects, the initial curve needs to be located near the object boundary so that
a small windowing function can be used.

3.3 Gabor Features

To segment a texture image, one can use the energy of the output of a
dictionary multi-scale filter bank. Given an image f0, one computes each f(x) ∈
R

d as the magnitude of d complex filters

∀ ℓ ∈ {0, . . . , d − 1}, fℓ(x) = |f0 ⋆ hℓ| (5)

with ∀x = (x1, x2) ∈ [0, 1]2 and hℓ(x) = e
2iπ
n

ηℓ(cos(θℓ)x1+sin(θℓ)x2)Gsℓ
(x).

The parameter ηℓ > 0 is the frequency of the filtering, θℓ ∈ [0, π) is the ori-
entation and sℓ > 0 is the spacial width of the filter. In the numerical examples,
the parameters ηℓ, θℓ, sℓ are fine-tuned to obtain the best texture representa-
tion. Note that the energies (4) incorporating Gabor features and multi-channel
approach have been used for texture segmentation in [11] (Gabor based multi-
channel Chan-Vese model) and [13] (IAC model).

Fig. 6 presents our texture segmentation result and comparison with Ga-
bor based Chan-Vese model [11]. In this case, we use d = 8 filters with ηℓ ∈
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initial curve our model Chan-Vese model IAC model

Fig. 5. Real color images. Final curves of our model, vector-valued Chan-Vese model
[10], and integrated active contour model (IAC).

{2, 2.5, 3, 3.5}, θℓ ∈ {0, π/2}, sℓ = 2. Gabor based Chan-Vese model fails to de-
tect the object on the top right side (even with d = 64 filters with ηℓ ∈ {2, 3, 4, 5},
θℓ ∈ {0, π/4, π/2, 3π/4}, sℓ ∈ {2, 2

√
2, 4, 4

√
2}) because the intensity values of

that object in Gabor transforms are very small compared with the ones of the
other objects and close to the one of the background. But, our model detects all
the objects well due to the local homogeneity.

In Fig. 7, the images are composed of a background and an object with
smoothly varying features. Here, we use d = 4 filters with ηℓ ∈ {0.7, 1.6}, θℓ = 0,
sℓ ∈ {4, 4

√
2} in the first example, and d = 8 filters with ηℓ ∈ {2, 3, 4, 5}, θℓ = 0,

sℓ ∈ {4, 4
√

2} in the second one. Due to a reason similar with the one in Fig. 1,
Gabor based Chan-Vese model [11] fails to segment the actual object boundary,
while our model detects it. For the IAC model, we use p = 2, Gb1 = 1, Gb2

with b2 = 3.75 (top), 0.5 (bottom) for the edge function. IAC model detects
the object in the first example but not in the second one, which depends on the
edge function g(x). However, our model could segment the object in both cases
without any prior work on the edge function like the IAC model.

Conclusion

In this article, we have proposed a novel non-local energy for image/texture
segmentation. We have compared our active contour model with state of the
art. We have illustrated the superiority of our model over the existing region-
based and/or edge-based active contour models. Due to the local homogeneity
property, our segmentation model could detect regions with smoothly spatially
varying features and segment several separated object with different features.
Furthermore, our model is less sensitive to the choice of initial curves as well as
to noise than edge-based active contour models.
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original our model CV model with d = 8 (left) and 64 (right)

Fig. 6. Texture segmentation with Gabor transforms. Comparison with Gabor based
Chan-Vese model [11].

original our model CV model IAC model: edge function, final curve

Fig. 7. Texture segmentation with Gabor transforms. Image composed of a background
and an object with smoothly varying features. Comparison with Gabor based Chan-
Vese model [11] and IAC model [13].
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