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ABSTRACT

This paper introduces a novel and generic framework embedding

statistical constraints for variational problems. We resort to the the-

ory of Monge-Kantorovich optimal mass transport to define penalty

terms depending on statistics from images. To cope with the com-

putation time issue of the corresponding Wasserstein distances in-

volved in this approach, we propose an approximate variational for-

mulation for statistics represented as point clouds.

We illustrate this framework on the problem of regularized

color specification. This is achieved by combining the proposed

approximate Wasserstein constraint on color statistics with a generic

geometric-based regularization term in a unified variational mini-

mization problem. We believe that this methodology may lead to

some other interesting applications in image processing, such as

medical imaging modification, texture synthesis, etc.

Index Terms— Variational model, Energy minimization, Image

regularization, Gradient descent, color and contrast modification;

1. INTRODUCTION

This paper deals with the use of statistical priors for constrained

functional minimization problems. More precisely, we take interest

in the practical use of the Monge-Kantorovich optimal mass trans-

portation theory [1] to enforce statistical constraints within a generic

variational framework.

This problem arises in various image processing problems (such

as medical imaging, texture synthesis, deconvolution, inpainting,

etc), where the solution is known to follow some statistical prop-

erties (values, correlations, filter coefficients, . . . ). In this paper, we

study the color specification of an image, which aims at modifying

the color statistics of a given image to match some desired color dis-

tribution while preserving its geometrical information.

1.1. Previous work

Contrast and color modification This problem has received

growing attention in the past few years, with various applications

to image and movie enhancement such as in the movie industry,

in medical or satellite imaging. Most approaches (see for in-

stance [2, 3, 4, 5] for gray level or color modification) are based

on histogram manipulation (e.g. histogram equalization, affine

transformation, etc). Yet, as demonstrated in [6], these techniques
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often yields some unpleasant artefacts –such as noise enhancement,

JPEG “bloc” effect, and loss of details–, for which [6] introduced a

post-processing filter to remove them.

Variational regularization of color and contrast modification

An interesting alternative to perform color modification and its reg-

ularization is to use a unified variational formulation, in which the

two tasks are driven simultaneously. In such a variational setting,

the functional to be minimized is obtained by combining several

penalty terms: generic fidelity and regularization terms (e.g. based

on the Euclidean norm, the Total Variation, the Sobolev norm, or the

curvature of level set) and a supplementary term devoted to the de-

sired contrast or color change (see e.g. [7, 8, 9]). As shown in these

references, the intrinsic advantage of using this kind of variational

framework is that it enables to preserve geometrical information of

the original image and to control the regularity of the transformation

so that it prevents the apparition of the aforementioned artefacts.

However, a major limitation of these techniques is the use of

high-dimensional statistical constraints. Indeed, most of approaches

have been proposed for one-dimensional statistics (for instance in [8]

for local histogram equalization). Recently in [9], the difficulty of

designing penalty term with multi-dimensional data such as color

cloud is circumvented by the use of cumulated histograms.

The originality of our work is that we propose a new framework

in which multi-dimensional constraints are easily embedded by mak-

ing use of the Wasserstein metric.

1.2. Outline and contributions

We propose in section 2 a fully generic method to enforce statistical

constraints with quadratic Wasserstein distances [1]. The problem

statement is first formulated in the exact setting (§ 2.1 and 2.2), and

then derived to an approximate setting (§ 2.3) for which a gradient

based algorithm is designed to solve the corresponding minimiza-

tion problem (§ 2.4). In Section 3, we illustrate the interest of the

proposed framework for regularized color transfer between images.

2. A GENERIC FRAMEWORK FOR WASSERSTEIN

CONSTRAINED VARIATIONAL PROBLEM

In this section, a general formulation of the problem is stated in § 2.1.

In the next paragraph (§ 2.2) a brief overview is given on the defi-

nition and the time complexity of the quadratic Wasserstein distance

when considering points clouds. An approximation of the Wasser-

stein distance and its numerical computation is then studied in § 2.3.

Finally, a new formulation of variational problems with Wasserstein

constraints and a gradient descent algorithm is proposed in § 2.4.



2.1. Problem statement

Let u : i ∈ Ω 7→ ui = (uR(i), uG(i), uB(i))T ∈ Γ ⊂ R
d be

a discrete color image (d = 3), where Ω ⊂ Z
2 denotes the spatial

domain (N -pixel grid) and Γ is the RGB color cube. For the sake

of simplicity, we refer throughout the paper as [u] := {ui}i∈Ω the

color statistics of image u, i.e. a points cloud with N = |Ω| points.

In this paper, we aim at minimizing a large class of problems of the

form

min
w∈Rd×N

n

E(w) = F (w, u) + λR R(w) + λS S([w], [v])
o

(∗)

in which the function S is used to measure the adequacy of the statis-

tics of image w with the given constraints [v], where F is a fidelity

term depending on the original image u, and where R is a generic

regularization term depending only on the image w.

A solution of this problem may be found using for instance a

gradient descent scheme, thus requiring the computation of the first

derivative of S. In the following sections, we investigate which func-

tion S may be used in practice in the Monge-Kantorovich optimal

transport framework to achieve the design of such gradient descent

step.

2.2. Wasserstein distance

Definition In the discrete setting, when statistics are represented

as point-clouds, the Wasserstein metric is equivalent to the optimal

assignment problem [10]. The quadratic Wasserstein metric [1] be-

tween two d-dimensional N -point clouds [u], [v] ∈ R
d×N is there-

fore the optimal permutation σ ∈ Σ(Ω) cost such that

W2([u], [v]) = min
σ∈Σ(Ω)

 

X

ℓ∈Ω

‖uℓ − vσ(ℓ)‖
2

! 1
2

(1)

where ‖.‖ is the Euclidean norm in R
d, and where Σ(Ω) is the set of

permutations of Ω.

Computation in the 1-D case When considering 1-D discrete dis-

tributions with N points, it is well known that the optimal assign-

ment problem can be solved in O(N log N) operations via fast sort-

ing algorithms. Indeed, the optimal assignment σ⋆ ∈ Σ(Ω) of [v]
with [u] minimizing (1) can be computed as:

σ
⋆ := σ[v] ◦ σ

−1
[u] (2)

where σ[u] and σ[v] are the permutations that respectively sort the

points of [u] and [v] in the same order.

Computation in the multi-dimensional case When considering

the general case, the optimal assignment can be formulated as a lin-

ear program, which can be solved using dedicated methods (e.g. the

Hungarian or the Auction algorithms) with at least a O(N2.5 log N)
time complexity. Relaxation of the assignment problem makes it

possible to use simplex or interior point methods, but a bi-stochastic

matrix with N2 entries has to be built, which requires large memory.

Moreover, we emphasize here that the computation of the deriva-

tive ∂W2, as required by the energy minimization problem (∗), boils

down to compute the optimal assignment of (1). Thus the computa-

tion of ∂W2 has the same time complexity as W2, which makes it

practically unusable for imaging problems where N is very large.

2.3. Approximation using Sliced Wasserstein Distance

Sliced Wasserstein Definition Based on the approximation of the

Wasserstein metric proposed in [11] and recently applied to shape

recognition in [12], we define the Sliced Wasserstein distance as the

sum of 1-D optimal assignment costs

SW2([u], [v])2 :=
1

|Ψ|

X

θ∈Ψ

W2 ([u]θ, [v]θ)
2

, (3)

=
1

|Ψ|

X

θ∈Ψ

min
σθ∈Σ(Ω)

X

ℓ∈L

˛

˛ 〈 uℓ − vσθ(ℓ) , θ 〉
˛

˛

2
,

where θ is a unit vector of from the set Ψ of directions sampled

over the unit sphere S
d−1 in R

d, where 〈., θ〉 is the Euclidean scalar

product according to direction θ. We denote by σ⋆
θ the optimal

assignment of the 1-D distribution [u]θ = { 〈 uℓ , θ 〉 }ℓ∈Ω with

[v]θ = { 〈 vℓ , θ 〉 }ℓ∈Ω which is computed using Eq. (2). The SW2

distance can thus be estimated faster than W2 in O(|Ψ|N log N)
operations, so as its gradient which is defined in the next paragraph.

Sliced Wasserstein Gradient It can be shown1 under mild as-

sumptions that the first derivative of SW2 exists and is easy to com-

pute.

Proposition 1 Let [u], [v] be two discrete distributions of R
d×N and

assume that points {uℓ ∈ R
d}ℓ∈Ω are pairwise different, i.e. uℓ 6=

um , ∀ (ℓ, m) ∈ Ω × Ω \ {ℓ}. Let Ψ ∈ S
d−1 be a discrete set of

orientations s.t. ∀ θ ∈ Ψ, 〈 θ , uℓ − um 〉 6= 0∀ (ℓ, m) ∈ Ω × Ω \
{ℓ}. Then, the derivative of functional SW2([u], [v]) according to

the point of [u] with index ℓ exists. Moreover, once the 1-D optimal

assignments {σ⋆
θ}θ∈Ψ have been computed, the gradient of SW2

2 is

defined as follows, ∀ ℓ ∈ Ω

∂SW2([u], [v])2

∂uℓ

:=
2

|Ψ|

X

θ∈Ψ

〈 uℓ − vσ⋆

θ
(ℓ) , θ 〉 θ . (4)

2.4. Proposed Solution to the Wasserstein Constrained Prob-

lem (*) for Regularized Color Transfer

The Sliced Wasserstein Regularization Problem Using the pro-

posed Sliced Wasserstein distance and its derivative formulas (3)

and (4), we may rewrite problem (∗) as:

min
w∈Rd×N



E(w) = F (w, u) + λR R(w) +
λS

2
SW2([w], [v])2

ff

(⋆)

where the quadratic Sliced Wasserstein distance is used as a statisti-

cal fidelity term.

Here we are interested in color transfer application, for which

we choose to restrict our attention to the following penalty terms:

• a fidelity term F defined as the sum of the quadratic loss and

a level set consistency term already considered in [7, 9]

F (w, u) =
X

i∈Ω



λL

2
‖wi − ui‖

2 − λLS 〈∇wi ,
∇ui

‖∇ui‖
〉

ff

• a regularization term R defined as the color Total Varia-

tion [13] penalty (TV):

R(w) = ‖w‖
TV

=
X

i∈Ω

‖∇wi‖ ,

1The proof is omitted here due to the lack of space.



where the first derivative operator ∇ is defined for color image as:

∇ui =
“

(∇uR(i))T
, (∇uG(i))T

, (∇uB(i))T
”T

∈ R
6

.

Forward-Backward Proximal Iterations To solve Problem (⋆),

which is a non-convex minimization problem, we use a forward-

backward proximal scheme to converge to a local minimum of en-

ergy E .

Starting from w(0) := u, the update of the image w(k) at itera-

tion k and point of coordinate i ∈ Ω depends on the two following

Forward (F) and Backward (B) steps:

8

>

<

>

:

w
(k+ 1

2
)

i = w
(k)
i − τ

„

F ′(w(k), u)(i) + λS
∂SW2(w(k),[v])2

∂w
(k)
i

«

(F)

w
(k+1)
i = prox τ ·λRR

“

w(k+ 1
2
)
”

(i) (B)

where in our case the gradient of the fidelity term F is defined as

F
′(w(k)

, u)(i) = λL(w
(k)
i − ui) + λLS div

∇ui

‖∇ui‖
,

where the gradient of the sliced Wasserstein distance is computed us-

ing Proposition 1, and eventually the proximal operator of the back-

ward step is a ROF denoising [13] which is computed using Cham-

bolle’s iterative scheme [14] recalled in the next paragraph. Note

that the divergence operator div is here applied on 6-dimensional

vector-valued images.

Computation of the proximal operator The proximal operator

in (B), when defined as ROF denoising [13], may be computed with

prox λ‖·‖TV
(w) = argmin

z∈Rd×N

1

2
‖z − w‖2 + λ‖z‖TV = w + ∇∗(v∗),

where ∇∗ = − div is the dual operator of the discrete gradient ∇
and v∗ is the vector field solution in R

2d×N of the following dual

constrained problem [14]:

v
∗ ∈ argmin

v∈R2d×N ,‖v‖
∞

≤λ

‖f − div v‖2
with ‖v‖∞ = max

i∈Ω
‖vi‖ .

The solution can be computed using a gradient descent

v
(t+1) = Proj‖·‖

∞
≤λ

n

v
(t) + ρ∇(div(v(ℓ)) − f)

o

, (5)

with ρ ≤ 2
‖div ◦∇‖

= 1
4d

and Proj‖·‖
∞

≤λ : vi 7→
vi

‖vi‖
min(‖vi‖, λ).

3. APPLICATION TO SIMULTANEOUS COLOR

TRANSFER AND REGULARIZATION BETWEEN IMAGES

This section is devoted to the experimental study of the proposed

gradient descent algorithm for color transfer between images.

Experimental Settings The desired color statistics [v] are defined

here by the color cloud of an image v chosen by the user. For all

experiments, the algorithm is run with ρ = 1
12

and τ = 10−1, using

the following set of parameters: number of directions for the sliced

Wasserstein distance |Ψ| = 10 in Formula (4) and the weights of the

color transfer energy (⋆) λL = 0.1, λR = λLS = 0.5 and λW = 1.

Results Figure 1 exhibits several color transfer examples with the

proposed approach. To show the role of the fidelity and the penalty

terms in the energy (⋆), we also display the results of the “raw color

transfer” obtained with the same gradient descent algorithm –with

identical direction set Ψ– where λF = λR = 0 (i.e. without regu-

larization).

As expected, the regularized color transfer approach enables to

considerably reduced the presence of artefacts (compression blocks,

noise enhancement, details reduction) which arises when directly

matching the statistics (the raw color transfer). This application also

demonstrates that the proposed use of the Wasserstein constraints

within a variational framework yields for color transfer as good re-

sults as for contrast modification (i.e. with only 1-D constraint), but

with higher statistical constraints.

4. CONCLUSION AND FUTURE WORK

In this paper, a new framework has been introduced to combine

classical variational-based regularization techniques with high-

dimensional statistical constraints. Such approach is likely to find

some other applications in image processing and computer vision

(e.g. medical imaging, texture synthesis).

Several extensions of this work are foreseen, such as the use

of more complex statistical features than color (cross-correlation,

patches, . . . ) and the regularization of image sequence.
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(a) Original image (b) Desired color distribution (c) Original image (d) Desired color distribution

(e) Raw color transfer (f) Raw color transfer (g) Raw color transfer (h) Raw color transfer

(i) Regularized color transfer (j) Regularized color transfer (k) Regularized color transfer (l) Regularized color transfer

(m) Original image (n) Desired color distribution (o) Raw color transfer (p) Regularized color transfer

(q) Original image (r) Desired color distri-
bution

(s) Raw color transfer (t) Regularized color transfer

Fig. 1. Illustration of color transfer using a variational framework with Wasserstein constraint.

(For a good visualization of the images, the reader is encouraged to use the electronic version of this paper)


