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Abstract

Phylogenetic comparative methods have long considered phylogenetic signal as a

source of statistical bias in the correlative analysis of biological traits. However,

the main life-history strategies existing in a set of taxa are often combinations

of life history traits that are inherently phylogenetically structured. In this pa-

per, we present a method for identifying evolutionary strategies from large sets

of biological traits, using phylogeny as a source of meaningful historical and

ecological information. Our methodology extends a multivariate method devel-

oped for the analysis of spatial patterns, and relies on finding combinations of

traits that are phylogenetically autocorrelated. Using extensive simulations, we

show that our method efficiently uncovers phylogenetic structures with respect

to various tree topologies, and remains powerful in cases where a large majority

of traits are not phylogenetically structured. Our methodology is illustrated

using empirical data, and implemented in the free software R.
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1. Introduction1

Phylogeny has long been recognised as a major source of biological variation.2

For instance, Gregory (1913) and Osborn (1917) considered that species’ vari-3

ability should be partitioned between heritage (i.e., phylogenetic inertia) and4

habitus (i.e., adaptation). In their well-known criticism of the adaptationist5

paradigm, Gould and Lewontin (1979) underlined the importance of the con-6

straints imposed by the phylogeny to the variability observed among organisms.7

In comparative studies, the effect of phylogeny has merely been perceived as8

a source of nuisance, since it reveals non-independence among trait values ob-9

served in taxa (Dobson, 1985; Felsenstein, 1985), and thus violates one of the10

basic assumptions required by most statistical tools (Harvey and Pagel, 1991).11

12

Phylogenetic comparative methods (PCM) were especially designed to solve13

this problem. Various methods have been developed that transform quantita-14

tive traits into new variables that are not correlated to phylogeny, according to15

a given model of evolution. For instance, phylogenetic independent contrasts16

(PIC, Felsenstein, 1985) transform values observed at the n tips of a phylogeny17

into (n − 1) node values that are not phylogenetically autocorrelated under a18

Brownian motion model. Generalised least squares (GLS, Grafen, 1989; Rohlf,19

2001) is a more general technique that allows specifying the autocorrelation of20

observations as a component of a linear model. This approach can therefore21

account for the non-independence among observations using a wide variety of22

models of evolution (Hansen and Martins, 1996). As stressed by Rohlf (2006),23

these approaches do not actually remove phylogenetic autocorrelation from the24

data, but merely take it into account to provide more accurate estimates of25

model parameters. In fact, PIC, GLS, along with other existing PCM all aim26

towards the same goal: ‘correcting for phylogeny’ in the correlative analysis of27

biological traits at the species level (Harvey and Purvis, 1991; Martins, 2000;28

Martins et al., 2002; Garland et al., 2005).29

30
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Nonetheless, studying the phylogenetic patterns of trait variation allows for-31

mation of hypotheses about the evolutionary pathways that led to the trait32

values of extant species. It also allows shedding light onto the influence of33

historical and ecological processes on community assembly (Webb et al., 2002).34

Many biologically meaningful patterns are inherently structured with phylogeny.35

Indeed, many life-history and ecological strategies are likely to be phylogeneti-36

cally structured (Webb et al., 2002). Inheritance from a common ancestor and37

phylogenetic inertia (i.e., constraints to evolution) may cause phylogenetic sig-38

nal (similar trait values across closely related species) to occur. Other factors39

leading to phylogenetic signals in traits act at the population level rather than40

at the species level such as high gene flow, lack of genetic variation, stabilising41

selection if changes in trait states reduce fitness, or population growth if traits42

are pleiotropically linked to other traits that reduce fitness (Wiens and Gra-43

ham, 2005). However, traits might also be affected by variations unrelated to44

the phylogeny, but relating to ecological conditions experienced by the species.45

For instance, biotic interactions might drive character displacement and abiotic46

interactions might lead to trait convergence. From this perspective, phyloge-47

netic signal becomes a source of precious biological information that can be48

used to identify historical as well as recent evolutionary strategies. Interest-49

ingly, a similar paradigm shift occurred in spatial ecology (Legendre, 1993)50

when it was pointed out that spatial patterns in species’ distribution were not51

only sources of spurious correlations, but also indicators of critical ecological52

structures such as localised species assemblages and species-environment asso-53

ciations. This paradigm shift proved particularly fecund and still motivates54

innovative developments in statistical ecology (e.g., Dray et al., 2006; Griffith55

and Peres-Neto, 2006).56

57

In this paper, we present a method which uses phylogenetic information58

to uncover the main phylogenetic structures observable in multivariate data59

associated with a phylogeny. Our approach, phylogenetic principal component60

analysis (pPCA), extends a methodology developed in spatial ecology (Dray61
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et al., 2008) and in spatial genetics (Jombart et al., 2008) to the analysis of62

phylogenetic structures in biological features of taxa such as life-history traits.63

We emphasise that phylogenetic structures can be measured and quantified in64

the same way as spatial structures, as they are both associated with the concept65

of autocorrelation. We then define different kinds of phylogenetic structures,66

and show how pPCA can be used to identify them. After evaluating the ability67

of pPCA to uncover phylogenetic patterns through extensive simulations, we68

illustrate our method using an empirical example. pPCA is implemented in69

the adephylo package (Jombart and Dray, 2009) for the free software R (R70

Development Core Team, 2009).71

2. Methods72

2.1. Measuring phylogenetic autocorrelation73

Phylogenetic autocorrelation is said to occur whenever the values taken by a74

set of taxa for a given biological trait are not independent of the phylogeny. Fre-75

quently, closely related taxa exhibit more similar traits than randomly-chosen76

taxa. Moran’s I, an index originally used to measure spatial autocorrelation77

(Moran, 1948, 1950), has been proposed for measuring phylogenetic autocor-78

relation (Gittleman and Kot, 1990). Adapting the former definition (Cliff and79

Ord, 1973, p13) to the phylogenetic context, I is defined as:80

IW(x) =
xT Wx

n

1
var(x)

(1)

where x is the centred vector of a trait observed on n taxa, var(x) is the81

usual variance of x, and W is a matrix of phylogenetic proximities among taxa82

(W = [wij ] with i, j = 1, . . . , n), whose diagonal terms are zero (wii = 0),83

and rows sum to one (
∑n

j=1 wij = 1). The null value, i.e. the expected value84

when no phylogenetic autocorrelation arises, is I0 = −1/(n− 1) (Cliff and Ord,85

1973). In its initial formulation (Gittleman and Kot, 1990), i.e. before row86

standardisation so that
∑n

j=1 wij = 1, W contained binary weights. Before this87

standardisation, the entry at row i and column j was set to 1 if taxon i shared88
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a common ancestor with taxon j at a given taxonomic level, and to 0 otherwise.89

Hence, taxa were considered as either phylogenetically related or not. Moran’s90

I then compared the trait value of a taxon to the mean trait value in related91

taxa to detect phylogenetic autocorrelation.92

93

Such binary relationships are clearly not sufficient to model the possibly94

complex structure of proximities among taxa induced by the phylogeny. To95

achieve better resolution in these comparisons, we propose using as entries of96

W any measurement of phylogenetic proximity valued in R
+ verifying:97

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wij � 0 ∀ i, j = 1, . . . , n

wii = 0 ∀ i = 1, . . . , n
∑n

j=1 wij = 1 ∀ i = 1, . . . , n

(2)

Then, Moran’s I compares the value of a trait in one taxon (terms of x)98

to a weighted mean of other taxa states (terms of Wx) in which phylogenet-99

ically closer taxa are given stronger weights. This extension gives the index100

considerable flexibility for quantifying phylogenetic autocorrelation, as phyloge-101

netic proximities can be derived from any model of evolution (including or not102

branch lengths). For instance, one interesting possibility would be using the103

covariance matrix estimated in a GLS model (Grafen, 1989) to define phyloge-104

netic proximities. This could be achieved by setting diagonal terms (variances)105

of the covariance matrix to zero, adding the smallest constant ensuring that all106

terms are positive, and row-standardizing the resulting matrix.107

108

This formulation of Moran’s I also relates the index to other PCM. For109

instance, the test proposed by Abouheif (1999), initially based on the many110

possible planar representations of a tree, turned out to be a Moran’s I test111

using a particular measure of phylogenetic proximity for W (Pavoine et al.,112

2008).113

Moran’s I is also related to autoregressive models. In their simplest form,114
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these models are written as (Cheverud and Dow, 1985; Cheverud et al., 1985):115

x = ρWx + Zβ + e (3)

where ρ is the autocorrelation coefficient, Z is a matrix of explanatory variables,116

β is the vector of coefficients, and e is a vector of residuals. The matrix of phy-117

logenetic relatedness W (Cheverud and Dow, 1985; Cheverud et al., 1985) is118

exactly the weight matrix of our definition of Moran’s I (equation 1). The essen-119

tial difference between the two approaches is that autoregressive models perform120

the regression of x onto Wx, while I computes the inner product between both121

vectors (numerator of equation 1) to measure phylogenetic autocorrelation.122

Lastly, the weighting matrix W is also the core of another approach pro-123

ducing variables that model phylogenetic structures (Peres-Neto, 2006). Like124

Moran’s I, this approach was initially developed in spatial statistics (Griffith,125

1996), and consisted in finding eigenvectors of a doubly centered spatial weight-126

ing matrix (Dray et al., 2006). Applied to a matrix of phylogenetic proxim-127

ity W, this method yields uncorrelated variables modeling different observable128

phylogenetic patterns, each related to a value of Moran’s I. Peres-Neto (2006)129

performed the regression of a variable x onto these eigenvectors to partial-out130

the phylogenetic autocorrelation from x. Alternatively, we suggest using these131

eigenvectors to simulate what we further call ‘global’ and ‘local’ phylogenetic132

structures.133

2.2. Global and local phylogenetic structures134

Phylogenetic autocorrelation relates to the non-independence of trait values135

observed in taxa given their phylogenetic proximity. There are two ways in136

which this non-independence can arise, depending on whether closely related137

taxa tend to have more similar, or more dissimilar trait values than expected at138

random, resulting in positive and negative autocorrelation, respectively. Positive139

phylogenetic autocorrelation most often results in global patterns of similarity140

in related taxa; we thus refer to these patterns as global structures. Global pat-141

terns reflect the general idea of phylogenetic signal: trait values observed in a set142
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of taxa are not independent, but tend to be more similar in closely related taxa143

(e.g., Figure 1A). Most common explanations for this phenomenon are inheri-144

tance from a common ancestor, or the conservation of ecological niches (Harvey145

and Pagel, 1991).Traits whose evolution can be modeled by a Brownian or by146

an OU process with low stabilising constraint generally display global patterns147

(Abouheif, 1999; Pavoine et al., 2008). Such phenomenon typically results in148

close-to-the-root divergence in evolutionary strategies.149

Conversely, negative phylogenetic autocorrelation corresponds to dissimilarities150

among tips localised in specific parts of the tree, which we call local struc-151

tures. A local structure would be observed whenever closely related taxa tend152

to be more different with respect to a given trait than randomly chosen taxa153

(e.g., Figure 1E). Local structures correspond to relatively recent events that154

induced divergence of the evolutionary strategies close to the tips of the phy-155

logenetic tree, such as convergence and character displacement (following past156

or present biotic interactions). This also occurs when the trait under study has157

been selected towards different optimal values, resulting in opposed evolution-158

ary strategies being observed in sister taxa.159

Both structures can be identified using Moran’s index (equation 1). The sign of160

I depends on how values of a trait (xi) relate to the values observed on closely161

related taxa (Wxi). Moran’s I will be greater than (respectively less than) I0162

(value of I in the absence of autocorrelation) when closely related taxa tend163

to have similar (respectively dissimilar) values for the studied trait. Obviously,164

the definition of phylogenetic proximities in W will condition the measurement165

of global and local structures. As shown by Pavoine et al. (2008), not all phy-166

logenetic proximities are equal in detecting phylogenetic structures. Especially,167

the phylogenetic proximities underlying Abouheif’s test (matrix A = [aij ] in168

Pavoine et al. 2008) proved superior to several common phylogenetic proxim-169

ities for testing phylogenetic inertia in traits simulated under Brownian and170

Ornstein-Uhlenbeck (OU) processes. More generally, the matrix W can be de-171

rived from any model of evolution which seems appropriate to the data, taking172

branch lengths into account whenever these are accurately estimated, and rely-173

7
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ing only on the topology in other cases.174

Ecological and life-history strategies of species require not one, but several traits175

to be adequately described. Accordingly, ecological and life-history strategies176

are likely to involve combinations of traits with both global and local phyloge-177

netic structures. In the following, we describe a methodology which explicitly178

investigates multivariate phylogenetic structures that have barely been consid-179

ered so far.180

2.3. The phylogenetic principal component analysis181

Dray et al. (2008) and Jombart et al. (2008) developed a multivariate ap-182

proach for identifying spatial structures in multivariate data. Essentially, this183

approach consists in constraining the principal components of a multivariate184

method to exhibit spatial autocorrelation, as measured by Moran’s index. This185

methodology proved better at detecting autocorrelated patterns than usual mul-186

tivariate methods such as principal component analysis (Dray et al., 2008; Jom-187

bart et al., 2008). Here, we use the same rationale to define the phylogenetic188

principal component analysis (pPCA), a method designed to summarise a set189

of traits into a few synthetic variables exhibiting global or local phylogenetic190

structures. Note that while we presented pPCA for the analysis of quantitative191

traits for the sake of simplicity, this approach can be extended to qualitative192

traits, or even to mixtures of quantitative and qualitative variables (Dray et al.,193

2008).194

195

We denote X = [xij ] (X ∈ R
n×p) a matrix containing p quantitative traits196

measured on n taxa, and W a matrix of phylogenetic weights used in the com-197

putation of Moran’s I (equation 1). As in classical PCA, missing data can be198

set to the mean of the corresponding trait, which does not add artefactual struc-199

tures to the analyzed traits. Without loss of generality, we assume that traits200

are centered (i.e.,
∑

i xij = 0 with j = 1, . . . , p). The purpose of pPCA is to201

find linear combinations of traits (columns of X) containing a large variance and202

displaying global or local phylogenetic structures. Mathematically, this problem203

8



Acc
ep

te
d m

an
usc

rip
t 

translates into finding the appropriate loadings u ∈ R
p (with ‖u‖2 = 1) that204

minimise and maximise, respectively, the function:205

f : R
n×p × R

n×n × R
p −→ R

(X,W,u) �−→ var(Xu)IW(Xu) (4)

The solution to this problem is given by the diagonalisation of the matrix206

1
2nXT (W + WT )X (Dray et al., 2008; Jombart et al., 2008). It results in a207

set of loadings {u1, . . . ,uk, . . . ,ur} with uk ∈ R
p forming linear combinations208

of traits (Xuk, the so-called principal components) associated with decreasing209

eigenvalues λk, so that:210

var(Xuk)IW(Xuk) = λk (5)

The largest eigenvalues likely correspond to a large variance and a strong posi-211

tive I, indicating global structures (close-to-root variation in trait states). Con-212

versely, the lowest (i.e., most negative) eigenvalues correspond to a high vari-213

ance and a large negative I, indicating local structures (close-to-tips variation214

in trait states). As in other reduced space ordinations, the eigenvalues indicate215

the amount of structure expressed by each synthetic variable. A sharp decrease216

in the screeplot is likely to indicate a shift between strong and weak structures.217

The amount of variance (var(Xuk)) and phylogenetic autocorrelation (I(Xuk))218

in each principal component (Xuk) can be computed for a better interpretation219

of each structure. Moreover, the loadings uk can be used to assess how traits220

contribute to a given principal component, and thus understand the nature of221

the corresponding biological structure.222

223

One important choice is that of the phylogenetic weights (W) used in the224

analysis. Here, we use the measure of phylogenetic proximity underlying the test225

of Abouheif (1999) to define W, because of its good performances at detecting226

phylogenetic structures (Pavoine et al., 2008). The phylogenetic proximity aij227

among tips i and j is defined as:228

aij =
1∏

p∈Pij
ddp

for i �= j (6)

9
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where Pij is the set of internal nodes on the shortest path from tips i to j,229

and ddp is the number of direct descendants from the internal node p. The230

phylogenetic proximity aij defines the entries of the off-diagonal terms of W,231

all diagonal entries being set to 0. As W is row-standardised, it is defined as:232

wij =
aij∑n

j=1,i�=j aij
(7)

2.4. Sensitivity study233

Extensive simulations were conducted to evaluate the sensitivity of the pPCA234

to various parameters. Datasets were simulated with different characteristics235

concerning the type of tree, the tree size, the type, strength and numbers of236

phylogenetically structured traits, and the total number of traits (including237

structured and unstructured traits). These parameters are summarised in Ta-238

ble 1. Five types of trees of 16, 32, or 128 tips were simulated to encompass239

a wide range of tree topologies and sizes: completely symmetric trees (Figure240

1A), trees obtained by random clustering of tips (as implemented by rtree241

function of the ape package, Paradis et al., 2004, Figure 1B), the Yule model242

(Yule, 1924, Figure 1C), the biased model (Kirkpatrick and Slatkin, 1993, Figure243

1D), and completely asymmetric trees (Figure 1E). Datasets including random244

traits and phylogenetically structured traits (i.e., displaying global and/or lo-245

cal structures) were obtained for each tree. Random traits were drawn from a246

normal distribution (N (0, 1)), while ‘structured traits’ were obtained by adding247

normally-distributed random noise to phylogenetic eigenvectors of W (Peres-248

Neto, 2006). Whenever several structures of the same type (global or local)249

were simulated in a given dataset, these were derived from the same eigenvec-250

tor, so that we could evaluate the performance of pPCA when a ‘consensus’251

phylogenetic signal exists in a set of traits (e.g., Figure 1B). This was consis-252

tent with the fact that several phylogenetically structured traits are expected253

to exhibit the same patterns, either because these structures are caused by the254

same evolutionary process, or because all traits are correlated to another phy-255

logenetically structured trait. 200 datasets were simulated for each of the 810256
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different combinations of parameters, resulting in a total of 162 000 datasets.257

258

All simulations were performed in the R software (R Development Core259

Team, 2009). Trees were simulated using the R packages ape (Paradis et al.,260

2004) and apTreeshape (Bortolussi et al., 2006), and scripts developed by TJ for261

the symmetric model. Structured traits were simulated using the ade4 package262

(Chessel et al., 2004; Dray et al., 2007), and data were handled using the phy-263

lobase package (Bolker et al., 2007).264

265

Each dataset was analysed by a pPCA using Equation 7 to define phyloge-266

netic proximities. In each analysis, the structured traits were compared to the267

first relevant (global and/or local) principal component of pPCA, to assess how268

the method performed. The strength of the link between the original simulated269

structures and patterns identified by pPCA was measured using the absolute270

value of Spearman’s rank correlation, |ρ|. Whenever the dataset included sev-271

eral distinct structured traits, |ρ| values were averaged by type of structure (i.e.,272

global or local). Hence, we obtained one or two |ρ| per simulated dataset, used273

as indicator of the performance of pPCA (|ρ| close to one = high performance,274

|ρ| close to zero = low performance).275

276

Variations in |ρ| according to the different simulation parameters were in-277

vestigated using a linear model. The relationship between |ρ| and the predic-278

tors was linearised using a logit link, i.e. using logit(|ρ|) = log |ρ|
1−|ρ| as the279

response variable. When interpreting coefficients of the model, predictions μ̂280

were re-transposed onto the |ρ| scale, that is, replacing μ̂ by 1
1+e−μ̂ . Qualita-281

tive variables were modeled using treatment-coded contrasts (Faraway, 2004, p.282

173). The explanatory variables were the type of tree (factor ‘tree’, the biased283

model being the intercept), the type of structuring (factor ‘strutype’, with level284

‘global’ at the intercept), the number of tips (‘ntips’, intercept=16), the total285

number of traits (‘ntraits’, intercept=10), the standard deviation of the random286

noise added to structured variables (‘noise’, intercept=0.5), and the number of287
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structures (factor ‘nstruc’, intercept=1).288

2.5. Empirical data analysis289

We illustrate pPCA with the data on reproductive and morphometric traits290

within a small group of species and subspecies from the lizard family Lacer-291

tidae published by Bauwens and Diaz-Uriarte (1997). These data are currently292

available as the dataset lizards in the adephylo package (Jombart and Dray,293

2009) for R (R Development Core Team, 2009). They consist in a molecular294

phylogeny and 8 life-history traits measured for 16 taxa: mean adult length295

(in mm, abbreviated mean.L), length at maturity (in mm, matur.L), maximum296

length (in mm, max.L), hatchling length (in mm, hatch.L), hatchling mass (in297

g, hatch.m), clutch size (in number of descendents, clutch.S ), clutch frequency298

(in number of events per year, clutch.F ), and age at maturity (in number of299

months of activity, age.mat). All traits were measured on females. Adult life300

span and egg size were discarded from the analysis because data were missing301

for several taxa.302

The analyses were conducted in the R software (R Development Core Team,303

2009), using the ade4 package (Chessel et al., 2004; Dray et al., 2007) for facto-304

rial analyses and adephylo (Jombart and Dray, 2009) to perform the pPCA. As305

in Bauwens and Diaz-Uriarte (1997), data were log-transformed and regressed306

onto mean adult female length to partial out the body size effect. As a con-307

sequence, mean adult female length was removed from the analysis. We then308

investigated phylogenetic structures of the transformed life-history traits using309

pPCA.310

3. Results311

3.1. Sensitivity study312

All explanatory variables had a very significant effect on the response vari-313

able (Appendix A, Table A.1), which was trivial because even very low effects314

might be significant with a large number of observations. All coefficients of315
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the model (Appendix A, Table A.2) have therefore been interpreted quantita-316

tively to determine the level of effects of the explanatory variables. The model317

explained satisfyingly 57% of the total variance. Overall, the average |ρ| was318

relatively high (CI99% = [0.667; 0.669]), showing that phylogenetic structures319

were well retrieved by pPCA. The strongest effect was by far that of the type of320

structure: global patterns were more easily retrieved than local structures, with321

a difference of 0.31 in predicted |ρ| (later denoted Δ ˆ|ρ|). pPCA performed bet-322

ter in larger trees (Δ ˆ|ρ| = 0.11 between trees with 16 and 128 tips), suggesting323

that phylogenetic signal is more easily captured when a large number of taxa324

is available, which is in line with previous findings for a different PCM (Mar-325

tins and Hansen, 1997). For a given number of structured traits, the number326

of random traits slightly lowered the method’s ability to retrieve phylogenetic327

patterns (Δ ˆ|ρ| = 0.10 between 10 and 50 traits). Phylogenetic structures in-328

corporating larger amounts of random noise were also more difficult to retrieve329

(Δ ˆ|ρ| = 0.10 between noise of 0.5 and 1). Lastly, the number of structured traits330

and the type of tree only marginally affected the ability of pPCA to identify331

phylogenetic patterns.332

3.2. Empirical data analysis333

Both global and local phylogenetic structures were found by pPCA in the lac-334

ertid lizards data (Figure 2). The first global principal component of pPCA first335

opposed a lineage with three species (Lacerta schreiberi, L. agilis, L. vivipara)336

having the largest negative scores to the rest of the tree (taxa with positive337

scores, or scores closer to zero), with the subspecies Podarci h. h. exhibiting338

the most opposite life histories (Figure 2A). Among the remaining species or339

subspecies, Lacerta monticola cantabrica and L. m. cyreni were distinctive by340

their negative scores. The loadings of the analysis (Figure 2B) provided further341

insights on the corresponding evolutionary strategies, and showed a trade-off342

between the frequency of reproductive events per year (clutch.F) and the clutch343

size (clutch.S). L. schreiberi, L. agilis, L. vivipara, and to a lesser extent L. m.344

cantabrica and L. m. cyreni, reproduce less often but produce a larger number345
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of eggs per reproductive event than other populations. A possible explanation346

for this structure is that environmental conditions only allow for a few repro-347

duction events in these populations, which then deliver lots of eggs with poor348

individual survival rates. In contrast, the first local principal component of349

pPCA (Figure 2A) highlighted a strong opposition between related taxa, es-350

pecially between Takydromus tachydromoides and Acanthodactylus erythrurus,351

but also to a lesser extent between L. schreiberi and L. agilis. This opposition352

was also apparent, although weak, within two additional lineages (first Podarcis353

muralis, P. bocagei versus P. h. atrata, P. h. hispanica Asturias; second L.354

m. cyreni versus L. m. cantabrica). Figure 2B (vertical axis) shows the mean-355

ing of these local variations. The species with positive scores on the first local356

principal component (especially, T. tachydromoides and L. schreiberi) produce357

a large number of small eggs while species with negative scores (especially A.358

erythrurus and L. agilis) produce fewer, but larger descendants.359

4. Discussion360

Phylogenetic autocorrelation has so far been considered as a mere nuisance361

to the correlative analysis of comparative biological data, when exploring trade-362

offs as well as in allometric studies. In this paper, we advocate that phylogenetic363

autocorrelation is a source of relevant biological information for the exploratory364

analysis of such data. To accomplish this task, we introduced the phylogenetic365

principal component analysis (pPCA), a method that we adapted from existing366

multivariate spatial statistics (Dray et al., 2008; Jombart et al., 2008) to anal-367

yse phylogenetic structures in multivariate sets of traits. Based on the results368

obtained from simulated and empirical data, we discuss the ability of the pPCA369

to retrieve phylogenetic signals in a multivariate set of traits, and the impact370

that this approach could have in evolutionary ecology.371

372
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4.1. Performance of the approach - methodological discussion373

Preliminary results stemming from our sensitivity study were very promis-374

ing, and provided guidelines for applications of pPCA. Overall, pPCA performed375

well to retrieve simulated phylogenetic structures, even in some cases where only376

1 out of 50 traits was phylogenetically structured. pPCA seemed to retrieve377

global phylogenetic structures more easily than local structures. This may be378

due to the asymmetry of Moran’s I distribution, which often has a smaller range379

of variation in negative values (local structures) than in positive values (global380

structures) (de Jong et al., 1984). As pPCA seeks principal components with381

extreme values of I, global structures (associated with large positive I) would382

be more easily detected than local structures (associated with large negative I).383

Therefore, local structures may be interpreted even though the corresponding384

eigenvalue seems negligible compared to global structures, provided it is bio-385

logically significant. Other results of our sensitivity study suggest that pPCA386

performs better in larger trees, although performances on small phylogenies were387

satisfying. Interestingly, pPCA seemed rather insensitive to the shape of the,388

indicating that the method can be used with virtually any kind of phylogeny.389

390

Although pPCA will be best appreciated using empirical datasets, further391

simulation studies may be considered. In this study, we used eigenvectors of392

a phylogenetic proximity matrix (Peres-Neto, 2006) to simulate phylogenetic393

structures. This method allows simulation of complex phylogenetic patterns in394

negligible computational time, which permitted examination of the influence a395

large number of parameters on pPCA results. The drawback of this approach is396

that eigenvectors of phylogenetic proximity matrices are not directly related to397

an model of evolution such as the Brownian motion or the OU models. While398

current procedures implementing trait simulation under these models are more399

computer-intensive, it could be possible to study how pPCA behaves under these400

models, given variation in a few parameters.401

402

The main parameter that should be investigated in further detail is the403
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phylogenetic proximity used in pPCA. A previous study demonstrated that404

some phylogenetic proximities were better than others at detecting phyloge-405

netic structures using Moran’s index (Pavoine et al., 2008). However, it is likely406

that the most appropriate measurement of phylogenetic proximity depends on407

the dataset under scrutiny. To assess whether a given phylogenetic proximity is408

adapted to a particluar dataset, we advocate to perform Moran’s I test using409

this proximity matrix. Whenever significant structures are detected, one can410

input this phylogenetic proximity in pPCA to uncover the nature of the under-411

lying phylogenetic structures.412

413

4.2. Potential impacts of the approach in evolutionary and ecological studies414

This novel approach should complement nicely the usual PCM toolbox,415

bringing a new perspective to the analysis of comparative biological data. Con-416

trary to usual PCM, our approach does not attempt to improve estimates of417

correlations among traits by ‘correcting’ for phylogenetic dependence among418

species. Instead, it seeks biologically meaningful combinations of traits that are419

globally or locally phylogenetically structured, thus allowing us to uncover fun-420

damental evolutionary patterns. As noted by Bauwens and Diaz-Uriarte (1997),421

theories of life-history evolution are explicitely micro-evolutionary [...] whereas422

patterns of life-history covariation are most evident when comparisons are made423

among higher taxonomic levels. pPCA covers both of these aspects, by provid-424

ing insights about broad macro-evolutionary patterns (global structures) and425

more recent, even micro-evolutionary patterns (local structures).426

427

Life histories, for example, are likely to be phylogenetically structured (Gail-428

lard et al., 1989; Pontier et al., 1993; Rochet et al., 2000). In our case study, the429

pPCA identified phylogenetic patterns in the main life-history tactics adopted430

by a set of taxa. Our results suggest that the trade-off between clutch fre-431

quency and size may have resulted in the ancient divergence of evolutionary432

strategies. In contrast, the trade-off between hatchling mass on the one hand433
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and clutch size and frequency on the other hand appears to be more labile, in-434

volving more recent character changes in most of the lineages and especially be-435

tween T. tachydromoides and A. erythrurus. The pPCA thus allows description436

of global (close-to-root, phylogenetic signal) versus local (close-to-tips) phylo-437

genetic structures in a multivariate set of traits, and highlights which lineages438

and which taxa are involved in these structures. Overall, this illustration using439

an empirical dataset showed that pPCA can bring new insights about evolu-440

tionary strategies of a set of taxa. Moreover, whenever a molecular clock is441

available for the considered phylogeny, it would be possible to estimate the age442

of the involved lineages and taxa, by dating their most recent common ances-443

tors. This would allow assessing how and when different evolutionary strategies444

might have appeared and evolved along the history of the considered taxa. Local445

structures uncovered by pPCA point out more recent evolutionary events, such446

as speciation caused by diversifying selection or niche separation, and are thus447

also of fundamental interest. Dating these recent events would be even more448

interesting as historical information about the considered taxa is more likely449

to be available for recent speciation events. For instance, we could investigate450

whether a recent speciation highlighted as local structure would have been pre-451

ceded by significant modifications of the environment.452

453

A further strength of pPCA lies in its ability to analyse very large sets of454

traits (i.e., hundreds or thousands of traits) simultaneously. Usual PCM typ-455

ically rely on pairwise comparisons among traits, which becomes cumbersome456

when lots of variables are under scrutiny, and often requires discarding traits457

from the analysis. This issue will be increasingly concerning in the near future458

as new and large databases of life-history traits will become available. pPCA459

can be used to explore such data, to unveil evolutionary trade-offs among a large460

number of traits, without having to make a prior selection of analysed traits.461

Previous methods have already attempted to analyse phylogenetic signals in a462

series of traits. These methods determine the proportion of variation in a set463

of traits correlated with the phylogenetic relatedness among species (Giannini,464
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2003; Desdevises et al., 2003). They involve factorial analyses, but with the aim465

of partitioning variation in traits instead of depicting phylogenetic structures.466

Nevertheless, one step of the Giannini (2003) variation partitioning approach467

consists of selecting the nodes of the phylogeny that better explain the variation468

in the trait values. Accordingly, the selected nodes could be used to determine469

at which depth in the phylogeny the taxa differ in their trait values. However,470

this selection results from a long series of tests to determine if the differences be-471

tween the lineages that descend from a given node are significantly responsible472

for trait variation. The number of tests depends on the size of the phyloge-473

netic tree, with an increasing risk of erroneously significant tests. The pPCA474

approach thus brings a new optimised way of disentangling the phylogenetic475

patterns in a set of traits by identifying the lineages and also the combination476

of traits responsible for global versus local trait variation.477

478

A potential application of the pPCA concerns phylogenetic community ecol-479

ogy (Webb et al., 2002). Phylogenetic clustering in a community (lower phylo-480

genetic diversity than expected by chance in a regional pool of species) merely481

reflects the simultaneous action of environmental filtering and phylogenetic con-482

servatism. In contrast, distinct, even opposed processes can lead to phylogenetic483

overdispersion (higher phylogenetic diversity within a community than expected484

by chance in a regional pool of species). For example, phylogenetically overdis-485

persed communities can arise from (i) limiting similarity and conservative traits486

or (ii) environmental filters with convergent traits (Kraft et al., 2007). Conse-487

quently, knowledge of the evolution of traits is necessary to interpret observed488

structures in phylogenetic diversity. A difficulty is that the traits involved in489

environmental filters and those involved in limiting similarity might follow differ-490

ent evolutionary pathways (Emerson and Gillepsie, 2008; Ackerly et al., 2006).491

Although pPCA does not provide a formal test of phylogenetic conservatism or492

over-dispersion, it can be used to describe the phylogenetic signal induced by493

these processes. Therefore, our methodology could be applied to describe the494

level of phylogenetic signal in sets of traits from labile traits with local close-495
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to-tips variations to conserved traits with global close-to-root variations. This496

approach could provide even more details by highlighting lineage-dependent sig-497

nals. For example, a single trait might exhibit a general pattern of phylogenetic498

signal (global structure) and also strong localised trait variations in a single499

lineage (local structure). Moreover, pPCA can be used together with other500

multivariate methods to relate the combination of traits identified with a given501

phylogenetic structure (either global or local) to explanatory factors, such as502

environmental variables. For instance, co-inertia analysis (Dolédec and Chessel,503

1994; Dray et al., 2003a,b) could be used to link phylogenetic structures iden-504

tified by pPCA to descriptors of the ecological niche, so as to assess potential505

patterns of adaptation. pPCA could therefore complement both existing ecolog-506

ical methods (e.g., co-inertia) and evolutionary approaches (e.g., phylogenetic507

overdispersion/clustering), providing a link between trait evolution, patterns in508

phylogenetic diversity, and biotic or abiotic interactions, and giving insights into509

the historical and ecological processes that underpin community assembles.510

To conclude, we illustrate the intersection between issues in spatial and phy-511

logenetic methods. Spatial and phylogenetic patterns are generated by very512

different processes, but the mathematical tools that can be used to measure513

and model these patterns may be similar. This is because both rely on the con-514

cept of autocorrelation, which can be defined as the non-independence among515

observations with respect to a set of underlying proximities. Several spatial516

methods developed in ecology have already been successfully adapted to PCM517

(Cheverud et al., 1985; Gittleman and Kot, 1990; Diniz-Filho et al., 1998; Des-518

devises et al., 2003; Giannini, 2003). Originally, spatial autocorrelation was519

perceived by ecologists as a nuisance that precluded the use of standard statis-520

tical tools in correlative studies. However, the study of spatially autocorrelated521

patterns turned out to be a fecund paradigm, as ecologists realised that these522

structures were mere indicators of considerable underlying ecological processes.523

The same may be true of phylogenetically autocorrelated patterns. Rewording524

Legendre (1993), we can now also ask the question: is phylogenetic autocorrela-525

tion trouble, or a new paradigm?526
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Dolédec, S., Chessel, D., 1994. Co-inertia analysis: an alternative method for564

studying species-environment relationships. Freshwater Biology 31, 277–294.565

Dray, S., Chessel, D., Thioulouse, J., 2003a. Co-inertia analysis and the linking566

of ecological data tables. Ecology 84 (11), 3078–3089.567

Dray, S., Chessel, D., Thioulouse, J., 2003b. Procrustean co-inertia analysis for568

the linking of multivariate datasets. Ecoscience 10, 110–119.569

Dray, S., Dufour, A.-B., Chessel, D., 2007. The ade4 package - II: Two-table570

and K-table methods. R News 7, 47–54.571

Dray, S., Legendre, P., Peres-Neto, P., 2006. Spatial modelling: a comprehensive572

framework for principal coordinate analysis of neighbour matrices (PCNM).573

Ecological Modelling 196, 483–493.574
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6. Figure legends670

Figure 1: pPCA of simulated data. Example of simulated traits (light671

yellow) for different tree structures (A-E), and structures identified by pPCA.672

Global components and corresponding eigenvalues are indicated in red, while673

local components and their eigenvalues are displayed in blue. Positive and674

negative values of traits and PCs are indicated by black and white circles, re-675

spectively. Symbol size is proportional to absolute values. Simulated traits are676

labelled as Gi: ith global structure, Li: ith local structure, and Ri: ith ran-677

dom (i.e., non-phylogenetically structured) trait. Principal components (PC)678

of pPCA are labelled as GPC1: first global PC (i.e., associated with the largest679

positive eigenvalue). LPC1: first local PC (i.e., associated with the largest neg-680

ative eigenvalue). (A) Symmetric tree; random noise added structures (‘noise’)681

equaled 0.5. (B) Random clustering of tips; noise=1. (C) Yule model; noise=0.5.682

(D) biased model; noise=0.75. (E) Assymetric tree; noise=1.683

684

685

Figure 2: pPCA of lizards data. (A) First global (red) and local (blue)686

principal components of the pPCA of lacertid lizards data, after removal of size687

effect. Inset barplot displays the corresponding eigenvalues. Positive and nega-688

tive scores are indicated by black and white circles, respectively. Symbol size is689

proportional to absolute values. Taxa are labelled as: Podarcis h. atrata (‘Pa’),690

P. h. hispanica (‘Ph’), Lacerta lepida (‘Ll’), L. monticola cantabrica (‘Lmca’),691

L. m. cyreni (‘Lmcy’), Podarcis h. hispanica Asturias (‘Phha’), P. h. h. Sala-692

manca (‘Pha’), P. bocagei (‘Pb’), P. muralis (‘Pm’), Acanthodactylus erythru-693

rus (‘Ae’), Takydromus tachydromoides (‘Tt’), T. septentrionalis (‘Ts’), Lacerta694

vivipara (‘Lviv’), L. agilis (‘La’), L. schreiberi (‘Ls’), and L. viridis (‘’Lvir’).695

(B) Loadings of the traits for the first global (red) and local (blue) principal696

components. Inset barplot displays the corresponding eigenvalues. d=0.5 in-697

dicates the mesh of the grid. Analysed traits are hatchling length (hatch.L)698

and mass (hatch.m), clutch frequency (clutch.F) and size (clutch.S), mean and699
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maximum female length (mean.L, max.L), mean female length and age at sex-700

ual maturity (matur.L, age.mat). See text for a more detailed description of701

analysed traits.702
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7. Table legends703

Table 1: parameters of the simulated data. 200 datasets were simu-704

lated for all combinations of these parameters. (1) expressed in number of tips.705

(2) number of phylogenetically structured traits (global/local). (3) standard de-706

viation of normal variates added to phylogenetically structured traits. (4) total707

number of traits in the dataset, including phylogenetically structured traits.708
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Figure 1:709

710
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Table 1:713

Parameter Values

Tree model Symmetric; Random clustering; Yule; Biased; Asymmetric

Tree size1 16; 32; 128

Structures2 1/0; 0/1; 3/0; 0/3; 1/1; 3/3

Random noise3 0.5; 0.75; 1

Number of traits4 12; 20; 50
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Appendix A. Tables of the analysis of simulations714

This appendix presents two tables corresponding to the analysis of simulated715

data by the linear model described in sections 2.4 and 3.1.716

Df Sum Sq Mean Sq F value Pr(>F)

fac.tree1 4 6632 1658 2757.68 < 2.2e−16

fac.strutype1 1 117621 117621 195635.60 < 2.2e−16

ntips3 1 11412 11412 18981.57 < 2.2e−16

ntraits4 1 31102.96 31102.96 51732.57 < 2.2e−16

noise5 1 8156.31 8156.31 13566.13 < 2.2e−16

fac.nstruc6 1 385.43 385.43 641.08 < 2.2e−16

Residuals 215990 129858.80 0.60

Table A.1: Analysis of variance of the model. Factors are preceded by ‘fac’. (1) type of tree.

(2) type of structure (global or local). (3) number of tips. (4) total number of traits. (5)

number of structured traits (1 or 3). (6) standard deviation of the random noise added to the

structured traits.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8474 0.0053 158.99 < 2e−16

fac.treeclust1 0.0431 0.0053 8.16 < 2e−16

fac.treecomb2 0.2980 0.0053 56.48 < 2e−16

fac.treesym3 0.4450 0.0053 84.34 < 2e−16

fac.treeyule4 0.0410 0.0053 7.78 < 2e−16

fac.strutypelocal5 -1.4759 0.0033 -442.31 < 2e−16

ntips6 0.0046 0.0000 137.77 < 2e−16

ntraits7 -0.0223 0.0001 -227.45 < 2e−16

fac.nstruc38 0.0845 0.0033 25.32 < 2e−16

noise9 -0.9520 0.0082 -116.47 < 2e−16

Table A.2: Coefficients of the model. Factors are preceded by ‘fac’, followed by the levels.

(1) trees obtained by random clustering of tips. (2) comb-like model (completely asymmetric

trees). (3) completely symmetric trees. (4) Yule model. (5) local phylogenetic structure. (6)

number of tips. (7) total number of traits. (8) number of structured traits (1 or 3). (9)

standard deviation of the random noise added to the structured traits.

34




