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Abstract

In this paper we consider a simple continuous model to describe cell invasion, incor-

porating the effects of both cell-cell adhesion and cell-matrix adhesion, along with

cell growth and proteolysis by cells of the surrounding extracellular matrix (ECM).

We demonstrate that the model is capable of supporting both noninvasive and in-

vasive tumour growth according to the relative strength of cell-cell to cell-matrix

adhesion. Specifically, for sufficiently strong cell-matrix adhesion and/or sufficiently

weak cell-cell adhesion, degradation of the surrounding ECM accompanied by cell-

matrix adhesion pulls the cells into the surrounding ECM. We investigate the crit-

icality of matrix heterogeneity on shaping invasion, demonstrating that a highly

heterogeneous ECM can result in a “fingering” of the invasive front, echoing ob-

servations in real-life invasion processes ranging from malignant tumour growth to

neural crest migration during embryonic development.

Keywords: Cancer Invasion – Cell adhesion – Mathematical model – Pattern

formation – Integrodifferential equation
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1 Introduction

The adhesive attachments that link cells to their surroundings are fundamental in

forming and maintaining the structure and function of tissues. Correspondingly,

perturbations to their normal behaviour can lead to a wide variety of pathologies,

ranging from heart defects to neurological disorders. Cellular adhesion is classi-

fied into two principle forms, cell-cell adhesion and cell-matrix adhesion, the former

defining the direct binding between cells, and the latter the attachment of cells to

the surrounding ECM (Steinberg 2007). Control of adhesion and, in turn, cell po-

sitioning, is determined by the expression of various transmembrane molecules, the

cell adhesion molecules (CAMs), which allow communication between extracellular

and intracellular signalling pathways. Cell-cell adhesion is typically mediated by the

cadherin family of CAMs (Cavallaro & Christofori 2004), the prototype being the

epithelial cell-cell adhesion molecule E-cadherin, which zips cells together through

a protein-protein coupling of extracellular domains. Cell-matrix adhesion is mainly

regulated via the integrins, the extracellular domains of which anchor to ligands in

the ECM (Berrier & Yamada 2007).

Cell invasion occurs in a number of biological processes, notably embryonic de-

velopment (for example, the wave of cell migration away from the neural crest to

form, amongst others, components of the peripheral nervous system) and cancer.

The transition from a noninvasive and compact tumour to an invasive one capable

of generating metastases is pivotal for prognosis, and the profile of the invasive front

provides a crucial diagnostic indicator: sharp and uniform fronts generally imply

noninvasive tumours while diffuse and/or wavy fronts tend to indicate invasiveness.
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Indeed, fractal dimension algorithms have been applied to tumour boundaries to

provide a quantitative measure of malignancy (Landini & Rippin 1996; Abu-Eid &

Landini 2006).

Invasion can either occur “individually”, where cells migrate as individuals to

form a diffuse/indistinct tumour-host interface, or “collectively” in which groups

of cells invade while maintaining tight cellular contacts (e.g. see Friedl & Wolf

2003; Yilmaz et al. 2007; Friedl & Gilmour 2009). Particular invasion patterns in

the latter class include tumour “fingers”: strands of tumour cells that project out

from the main tumour mass, occasionally breaking free to form “clusters”. Notably,

these collective forms of invasion are characterised by the expression of both cell-cell

adhesion molecules that hold cells together, and cell-matrix adhesion molecules that

facilitate the invasion. Nonuniform patterns of invasion have also been observed

during neural crest migration, where cells migrate out in “streams” and “chains”,

see for example Kulesa & Fraser (1998); Young et al. (2004); Kasemeier-Kulesa et al.

(2005).

Fundamental to many developmental instances of invasion, including neural crest

migration and gastrulation, is the tightly regulated epithelial-mesenchymal transi-

tion of cells, involving a reconfiguration of their molecular repertoire such that the

tight E-cadherin bonds joining it to its neighbours are dissolved while various pro-

migratory processes, including cell-matrix binding, matrix degradation and cellular

protrusions, are upregulated. For tumours of epithelial type, progression into an

invasive phenotype also shares certain elements of the epithelial-mesenchymal tran-

sition, albeit in uncontrolled fashion (see Yilmaz & Christofori (2009) for a recent
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review). A drop in E-cadherin expression frequently correlates with increased tu-

mour malignancy while forced expression of E-cadherin in cultures can reverse the

invasive transformation, giving noninvasive phenotypes (e.g. see Christofori 2003;

Cavallaro & Christofori 2004; Yilmaz & Christofori 2009). Recent focus has been

paid to a “cadherin switch” (Wheelock et al. 2008), in which loss of E-cadherin is

further accompanied by gain in the mesenchymal CAM N-cadherin, and the cell

subsequently loses its affinity for its epithelial neighbours.

Expansion into the surrounding environment requires interactions with the ECM,

determined by the integrin family of CAMs (Berrier & Yamada 2007). The focal

adhesions created through integrin-ECM binding provide anchoring points, and the

combination of their formation at the leading edge with detachment at the rear pro-

pels the cell forward through the matrix (e.g. Friedl & Wolf 2009). Subsequently,

the nature of the ECM plays a significant role in directing migration: cells preferen-

tially migrate towards more adhesive (ligand dense) regions of the matrix, a process

termed haptotaxis (Lo et al. 2000), or along the long strands of individual collagen

fibres, known as contact guidance (Dunn & Heath 1976; Manwaring et al. 2004).

Mesenchymal migration through the ECM also requires its structural modifi-

cation via proteolytic degradation and, in addition to their mechanical role, focal

adhesions provide sites for the recruitment of matrix proteases such as MMPs where

they can act to cleave fibres directly to the fore of the cell, a process termed peri-

cellular proteolysis (Friedl & Wolf 2009). The result is tunnels through the matrix

along paths of cell migration, providing potential paths of least resistance through

which further expansion can take place.
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While the above events – loss of cell-cell adhesion, gain in cell-matrix adhesion,

proteolytic action – are often described as separate processes, the interlocking na-

ture of cell signalling pathways inevitably precludes such simplicity. Invariably, a

signalling molecule known to modify one aspect will directly impinge on another.

For example, the Snail genes appear to play “master controller” roles with their

downstream targets including a wide range of components important for invasion,

including repression of E-cadherin expression and induction of various pro-migratory

factors such as integrins and MMPs (e.g. Nieto 2009). A plethora of reviews exist

on the various intracellular and extracellular signalling modulators of adhesion and

their role in epithelial-mesenchymal transition and tumour invasion, for example see

Yilmaz & Christofori (2009).

1.1 Modelling adhesion in invasion processes

There is a significant literature on the mathematical modelling of adhesion in the

context of cancer invasion. Most early work in this area involved the incorpora-

tion of adhesion via a surface tension on the tumour boundary (Byrne & Chaplain

1996; Chaplain 1996; Cristini et al. 2003; Frieboes et al. 2006, 2007; Friedman 2007;

Macklin & Lowengrub 2007). This representation of adhesion is indirect: there is

no explicit modelling of cell-cell or cell-matrix contact. Direct representations of ad-

hesion were first considered in the context of individual cell-based models (Turner

& Sherratt 2002; Turner et al. 2004; Grygierzec et al. 2004). In recent years, this

modelling approach has been developed significantly by Anderson and coworkers, in

a series of sophisticated studies into the ways in which changes in cell-cell and cell-
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matrix adhesion interact with other aspects of the invasive phenotype (Anderson

et al. 2006, 2009; Ramis-Conde et al. 2008; Poplawski et al. 2009).

Individual cell-based models lend themselves naturally to the inclusion of ad-

hesive effects because cell boundaries are represented explicitly. In contrast, it is

more difficult to include adhesion explicitly in continuum models. For cell-matrix

adhesion, Mallet & Pettet (2006) included integrins as a model variable, with cells

moving up gradients of active integrin density; their work is effectively a more pre-

cise version of phenomenological models for haptotaxis (e.g. Marchant et al. 2001;

Landman et al. 2008). However, this approach does not extend in any natural way

to cell-cell adhesion, and it is only very recently (Gerisch & Chaplain 2008; Kim

et al. 2009; Sherratt et al. 2009) that this has been incorporated into continuum

models for cancer invasion, via an integro-partial differential equation formulation

that was developed initially by Armstrong et al. (2006) in the context of cell sorting,

and that also forms the basis for the present study.

1.2 Outline

In this paper we develop (Section 2) a minimal model for cellular invasion within a

matrix environment. We demonstrate (Section 3) its ability to predict either non-

invasive or invasive growth, according to the relative strengths of cell-cell and cell-

matrix adhesion, and the potentially significant role that the local ECM structure

may play on the rate and form of invasion. For a “sufficiently variable” ECM

environment, we show (Section 4) that the model can generate a highly variable

front, similar to the various nonuniform processes of invasion described above. We
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conclude with a brief discussion and consider some potential future extensions.

2 Model derivation

We consider a minimal model for invasion in which a population of proliferating cells,

n(x, t), is deposited into an ECM environment, m(x, t). It is assumed that cells form

adhesive attachments both to other cells (cell-cell adhesion) and the surrounding

matrix (cell-matrix adhesion), and that the force generated through this binding

drives cell movement. To model these within a continuous framework we extend

the integro-PDE approach developed in Armstrong et al. (2006) (see also Sekimura

et al. 1999; Gerisch & Chaplain 2008; Sherratt et al. 2009; Kim et al. 2009; Gerisch

& Painter 2010) and study the generic cell density equation

n(x, t)t =

random motility︷ ︸︸ ︷
Dn∇2n −

Adhesive movement︷ ︸︸ ︷
∇ ·

[
φn(x, t)

∫
V

r

|r|Ω(|r|)f(n(x + r), m(x + r))dr

]

+

Cell kinetics︷︸︸︷
g(·) . (1)

In the above representation, r
|r|Ω(|r|)f(u(x + r), m(x + r)) defines the local force

exerted on cells at x through cell-cell/cell-matrix binding at x+r, formulated through

splitting it into three components:

1. the direction of the force, r
|r| ;

2. the dependency of the force magnitude on the distance from x, Ω(|r|);

3. the dependency of the force magnitude on the adhesivity at x + r, f(n(x +

r), m(x + r)).
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For uniqueness we specify
∫

V
Ω(|r|)dr = |V |. In practice, adhesivity undoubtedly de-

pends on a number of factors, including the composition of receptor-receptor/receptor-

ligand bindings and physical properties of the substrate. Above we simply assume

that this relates to cell and matrix densities at x + r. The total force exerted at x

sums all local forces over a volume V , minimally representing the mean cell volume

but in practice likely to be of the order of several cell diameters due to their capacity

to deform and extend protrusions. We assume that this region is symmetrical about

the cell centre and take V to be either the interval [−R, R] (in 1D), the circle of

radius R (in 2D) or the sphere of radius R (in 3D). Herein we refer to V (R) as the

sensing region (radius), since it reflects the volume over which cells can detect their

neighbours. The parameter φ relates the force generated to movement of the cells

and depends on factors such as the viscosity of the medium. The above framework

can easily be extended to include additional movement cues (e.g. chemoattractants).

However to focus on cell-cell and cell-matrix adhesion we ignore these, and for the

same reason we shall generally assume Dn = 0.

To describe f we adapt the choice of Armstrong et al. (2006) and consider

f(n, m) = (αn + βm) [1− n/k3 −m/k4] ,

where α and β respectively define the strengths of cell-cell and cell-matrix adhesion

while the notation [z] = max(z, 0). This choice reflects an approximately linear

increase in force magnitude at low cell and matrix (combined) densities, and a de-

crease at higher densities; intuitively, the former assumes that increased densities

correspond to a greater likelihood of forming bonds while the latter assumes a re-

sistance against moving into dense regions. For n/k3 + m/k4 = 1 the force is zero,
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and k3, k4 can be interpreted as crowding parameters. In the absence of suitable

experimental data, we assume Ω(r) = constant (= 1); alternative choices for Ω

would be to decrease with r due to a diminished likelihood of forming bonds with

distance: investigations into other forms are described in Sherratt et al. (2009).

We note that the above implies that a matrix gradient across the sampling radius

can generate directional cell motility and hence describes “haptotaxis” (Lo et al.

2000). A number of previous models have represented haptotaxis through terms of

the form −β[nmx]x (for example, see Perumpanani et al. 1996; Chaplain & Lolas

2005; Mallet & Pettet 2006; Gerisch & Chaplain 2008), however we do not consider

this simplification here for two key reasons. Firstly, our model describes movement

through adhesive binding and, given that cell-cell bounds are formed over some

sensing radius, it is appropriate that cell-matrix bonds develop over the same range

as for cell-cell adhesion. Secondly, our work will investigate model behaviour across

parameter space and equivalent formulations for cell-cell and cell-matrix interactions

admit direct comparison between the parameters α and β.

To describe cell growth we simply adopt a logistic growth form

g(n) = k1(1− n/k2) ,

where k1 describes the growth rate and k2 is the “carrying capacity”. Note that the

carrying capacity is considered to be distinct from the crowding parameters above:

the latter describe restricted movement into highly dense tissue regions while the

former defines population-limited cell growth, for example as a result of nutrient

depletion or cell-cell mediated contact inhibition. It is worth noting that for a

nutrient-rich environment (i.e. large k2), the tissue density may also impact on cell
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growth and g(n) could therefore additionally depend on the matrix density. For the

present paper we ignore such scenarios: preliminary investigations with other forms

for g appear to yield comparable results, but a full investigation is left for future

work. Cell proliferation may also depend on cell and matrix densities across the

sensing region of a cell, rather than at its centre; this possibility has been considered

previously by Szymanska et al. (2009), but we neglect it here in order to focus on

adhesive effects.

For many cell types, expansion and invasion of an ECM environment in vivo

requires the dissolution of matrix to create the space into which cells can migrate

(Friedl & Wolf 2009). Invading cells produce a wide variety of proteolytic enzymes

(e.g. MMPs) which are either recruited to cell-matrix adhesion sites, localising pro-

teolysis to the cell-matrix interface (pericellular proteolysis), or secreted into the

extracellular milieu where they act on matrix at a distance. In certain cases, regen-

eration of the ECM may also occur via the synthesis and assembly of new matrix

components, but here we assume that no regeneration occurs on the timescales con-

sidered. In principle, adhesive interactions between the cells and matrix may deform

the matrix structure, however we assume such effects are negligible in comparison to

matrix degradation. While cell-matrix interactions have been modelled in detail by

a number of authors (e.g. Chaplain & Lolas 2005; Mallet & Pettet 2006; MacArthur

et al. 2005; Gerisch & Chaplain 2008), our focus is on the regulation of cell-invasion

through the relative levels of cell-cell and cell-matrix adhesion and we adopt the
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relatively simple scheme proposed by Perumpanani et al. (1996):

m(x, t)t = −k5pm , (2)

p(x, t)t = Dp∇2p + k6nm− k7p , (3)

where p(x, t) describes the concentration of proteolytic enzymes. The model is fur-

ther simplified by assuming that proteolytic secretion/action occurs directly at the

cell-matrix interface (pericellular proteolysis, Dp = 0) and that production/decay

timescales for the protease are much shorter than those associated with invasion

(Mignatti & Rifkin, 1993). This same quasi-steady state assumption was made by

Perumpanani et al. (1996) and yields p = (k6/k7)nm. In order to focus on adhesion-

driven movement we set Dn = 0, and our equations are then reduced to the cell and

matrix density equations

nt =

Proliferation︷ ︸︸ ︷
k1n

(
1− n

k2

)

−

Adhesive movement︷ ︸︸ ︷
∇ ·

(
φn

∫
V

r

|r|(αn(x + r) + βm(x + r))

[
1− n(x + r)

k3
− m(x + r)

k4

]
dr

)

mt = −(k5k6/k7)nm2︸ ︷︷ ︸
Proteolysis

.

Substituting

n∗ =
n

k2
, m∗ =

k3m

k2k4
, t∗ = k1t, x∗ =

x

R

α∗ =
αk2

2φ

k1k3R
, β∗ =

βk4k
2
2φ

k1k2
3R

, K =
k3

k2
, γ =

k5k6k
2
2k4

k1k7k3
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into the above (and dropping the *s for notational convenience) generates the nondi-

mensional model

nt = n (1− n) (4a)

−∇ ·
(

n

∫
V

r

|r|(αn(x + r) + βm(x + r)) [K − n(x + r)−m(x + r)] dr

)

mt = −γnm2 (4b)

where the new sensing region V is either the interval [−1, 1] (in 1D) or the unit

circle/sphere (in 2/3D). Assuming that a cell can sense across a region of several

cell diameters via elongation and protrusion, a length of 1 in the dimensionless model

can be estimated as approximately 50 μm.

n(x, t) and m(x, t) are non-dimensional tumour cell and matrix densities at po-

sition x and time t. The parameters α, β, γ and K are henceforth referred to as

the cell-cell adhesion strength (α), the cell-matrix adhesion strength (β), the ma-

trix degradation rate (γ) and the crowding capacity (K), although we note that in

reality these are non-dimensional parameters that incorporate further information.

In the next sections we perform numerical simulations to investigate the potential

for these parameters to impact on the rate and mode of invasion.

3 Exploration into dynamics of the invasive front

Numerous experimental studies have linked an increased tendency to invade with

altered adhesive properties for various cancer cell types. In this section we explore

the impact of varying ratios of adhesive coefficients in the model (4) on the cohesivity

and/or infiltration of the cells.
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We begin by considering a 1D geometry (x ∈ [0, L], where L � 1, the sampling

range) that describes the profile of the cell front. Our initial set-up considers a

deposition of cells within a uniform matrix environment as follows:

n(x, 0) =

⎧⎪⎪⎨
⎪⎪⎩

n0 if x ≤ Li

0 otherwise

(5a)

m(x, 0) = m0 . (5b)

We use reflective boundary conditions at x = 0, corresponding to this point being

the centre of an initial cell mass, with zero-flux boundary conditions at x = L. In

practice this latter condition is of limited significance since we stop our simulations

before the invasion approaches the boundary.

3.1 Impact of adhesive coefficients on invasion/non-invasion

Numerical simulations imply that the behaviour of the model is divided into two

principle classes according to the sizes of β and α: for β < α, “noninvasive” growth

occurs, Figure 1 (top row), in which proliferation drives cellular expansion towards

the population carrying capacity, yet no expansion outside the initial deposition

occurs. For β > α, Figure 1 (middle row), we observe “invasive” growth, in which

the population rapidly grows and expands from its initial range to eventually fill

the entire domain. Further increases in β result in faster expansion, e.g. Figure 1

(bottom row).

Under invasive growth, cell and matrix profiles appear to evolve into formal

travelling-waves (i.e. constant speed and shape) and, in Figure 2, we calculate the

wavespeed for various (α, β) pairs: while there is some dependence on the mag-
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nitudes of α and β, the rate of invasion appears to predominantly depend on the

difference β − α. The ability for a continuous model to exhibit non-invasive growth

is unusual and can be attributed to an absence of the diffusive type terms often used

to model a “random” component to cell motion. While the merits of including such

terms is debatable – here our general assumption is that cells only move under the

forces generated by adhesion – exploratory numerical simulations incorporating a

Fickian type diffusion term indicate that solutions always generate invasive growth,

regardless of the size of the diffusion coefficient. Despite this, the same general

principles apply: larger cell-matrix than cell-cell adhesion generates a faster rate of

invasion. We note that noninvasive growth can be generated in models including

random motility of cells; it occurs via other means, for example through an ECM

regrowth term, see Gerisch & Chaplain (2008).

3.2 Dependency of invasion on matrix density

The above results clearly corroborate established hypotheses on the importance of

adhesion to cancer invasion: upregulated cell-matrix adhesion and/or downregu-

lated cell-cell adhesion corresponds to a greater propensity for invasion. Similarly,

migration of cells out from the neural crest requires a carefully regulated epithelial-

mesenchymal transition, during which downregulation of cell-cell adhesion is accom-

panied by an upregulation in cell-matrix interactions.

Intuitively, this suggests that the adhesivity/density of the matrix can play a

pivotal role on the rate of invasion and we now explore this in greater detail. We

first consider the impact of matrix density on the wavespeed by considering the
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rate of invasion for varying uniform initial matrix densites (in the range [0, K]) and

fixed (α, β) pairs. Figure 3 (a) summarises the results. At low and medium matrix

densities, invasive speed increases with matrix density. Here, the increase in matrix

density combined with proteolysis creates large front-back differences in the strength

of cell–matrix coupling, pulling cells forward. Yet, at higher matrix densities, the

impeded movement into the tight matrix structure slows the rate of infiltration. This

same trend is observed at all investigated parameter sets for which β > α (for α < β,

cell-cell adhesion dominates and no invasion takes place), although the maximum

invasion speed clearly changes according to β − α, as described in Section 3.1. We

note further that at each (α, β) pair, critical matrix densities exist below/above

which no invasion takes place (i.e. zero wavespeed). For larger β − α, these critical

values are pushed towards more extreme initial matrix densities and define locations

for which the “pull-forward” of cell-matrix adhesion is counterbalanced by the “pull-

back” of cell-cell adhesion: under zero cell-cell adhesion, we observe invasion for all

values β > 0 and m0 ∈ (0, K) (see Figure 3 (a), right hand panel).

Expanding this further, we explore the invasion of cells into a heterogeneous

ECM environment: in vivo, the density and structure of the ECM varies greatly

both within and between tissues (e.g. see Wolf et al. 2009). To examine the impact

of a heterogeneous matrix, we consider invasion of cells into the smoothly varying

initial matrix distribution m(x, 0) = 0.5 + 0.5 cos(πx/L). The figures in Figure 3

(b) summarise the results from simulations conducted at three distinct (α, β) pairs.

In correspondence with the results above, invasive speed varies with the position of

the cell front along the x-axis and, in turn, the local matrix density. As the local
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matrix density drops below a critical value, invasion is halted, although the location

at which this occurs depends on the magnitude of cell-matrix to cell-cell adhesion:

for comparitively large cell-matrix adhesion, the cell front is able to propagate most

of the way along the axis before coming to a halt. We note that similar behaviour

is observed with other forms of the initial matrix density profile.

4 Exploration into the shape of the invasive in-

terface

As described earlier, the shape of the tumour-host boundary is an important di-

agnostic indicator: straight/sharp boundaries generally imply noninvasive tumours

while diffuse/ragged boundaries are considered hallmarks of invasiveness. Specific

examples of the latter include the so-named “tumour fingers”, “indian-chains” and

“clusters”, in which protrusions of tumour cells extend and/or break free from the

main tumour mass (Friedl & Wolf 2008). Various hypotheses have been touted for

the development of such patterns, including the invasion of cells into an inhomoge-

neous host environment (e.g. see Anderson 2005; Anderson et al. 2006; Gerisch &

Chaplain 2008). Nonuniform invasion is also observed during neural crest invasion.

Here, time lapse imaging has revealed the formation of “streams” as the cells mi-

grate out to pattern the peripheral nervous system (e.g. see Kulesa & Fraser 1998;

Young et al. 2004; Kasemeier-Kulesa et al. 2005). Once again, variation in the local

environment is believed to play a crucial role in directing these pathways.

We use the continuous framework here to investigate in detail the role of envi-
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ronmental heterogeneity in regulating the shape of the invasive boundary. For com-

putational simplicity, we restrict to a two-dimensional rectangular domain (x, y) ∈

[0, Lx] × [0, Ly] that describes a slice through the invasion front. Boundary condi-

tions are as indicated in Figure 4 (a). We consider an initially quasi-1D deposition

of cells adjacent to the bottom border of the domain as follows:

n(x, y, 0) =

⎧⎪⎪⎨
⎪⎪⎩

n0 if x ≤ Li

0 otherwise .

We note that investigations with different initial cell distributions suggest that they

have relatively little impact on the general properties of the system. To determine

the effect of matrix heterogeneity on invasion, we consider a variety of ECM distri-

butions, as illustrated in Figure 4 (b)-(e):

• Alternating stripes of high/low matrix density, arranged parallel to the cell/ECM

interface, m(x, y, 0) = m0 + m1 cos(2πkxx/Lx), Figure 4 (b);

• Alternating stripes of high/low matrix density, arranged perpendicular to the

cell/ECM interface, m(x, y, 0) = m0 + m1 cos(2πkyy/Ly), cf Figure 4 (c).

• Alternating spots of low/high density, arranged in checkerboard fashion, m(x, y, 0) =

m0 + m1 cos(2πkxx/Lx) cos(2πkyy/Ly), Figure 4 (d);

• randomly varying matrix, Figure 4 (e).

The time consuming nature of 2D simulations limits the capacity to perform full-

scale parameter analyses and we therefore restrict our attention to a ‘typical’ invasive

parameter set, (α, β, γ, K) = (0.5, 1.0, 1.0, 2.0): limited numerical simulations with

other invasive parameter sets (i.e. β > α) indicate qualitatively similar behaviour.
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For the three regular ECM distributions, Figure 4 (b)-(d), we set an average initial

matrix density m0 = 0.5 and classify matrix heterogeneities according to both their

perturbation from m0 (using m1 = 0.1, 0.3, 0.5) and coarseness (or wavelength, using

kx, ky = 1, 2).

When the matrix is arranged in stripes running parallel to the initial cell front,

we observe equivalent behaviour to the 1D investigations in Figure 3 (b). Thus, a

uniform front is generated that invades into the ECM with speed changing according

to the variation in matrix density along the x-axis. If the matrix density drops belows

the critical value, as demonstrated in Figure 3 (a), the invasion process is halted.

However, for stripes arranged perpendicularly to the initial cell front, matrix den-

sity varies with position along the front. As such, the speed of invasion varies and

the result is growing “fingers” that project out along the lines of higher initial matrix

density (Figure 5) with the thickness of the projections correlating with the wave-

length of the imposed matrix variation. If the matrix density drops to sufficiently

low values, no invasion occurs into those areas. For an initial checkerboard-style

matrix as in Figure 4 (d), we also observe nonuniform invasion into the matrix,

although fingers will now expand and shrink to reflect the locally varying matrix

density (Figure 6). Once again, no invasion takes place into areas in which the ma-

trix density is sufficiently low, leaving non-occupied “holes” as the cell population

expands. These results reveal a critical relationship between the form of the invasive

front and the local ECM structure.

We conclude this investigation by exploring the impact of more realistic, ran-

domised initial matrix densities (as illustrated in Figure 4 (e)). The timecourse of
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one such simulation is plotted in Figure 7, revealing a highly variable invasion front

that changes considerably over both space and time: for example, by t = 50 we see

that some parts of the tumour front have invaded about twice as far as others. We

note that the degree of this variation is transient, depending strongly on the specific

matrix heterogeneity.

To explore how distinct measures of matrix heterogeneity differentially impact

on the front, we consider invasion into random initial matrix that varies with respect

to both perturbation from the mean level (m0 = 0.5) and its coarseness (i.e. the

average wavelength in the initial heterogeneity). Figure 8 plots the calculated cell

distributions at t = 40. Our simulations indicate that both factors are critical for

generating heterogeneous invasion fronts. Under relatively low perturbations (left-

most columns), any variation in the invasion speed along the y-axis is minimal and

the front is relatively smooth in nature. Increasing the perturbations (left to right

columns) leads to greater variations in invasion speed and correspondingly, a more

jagged front. Note that “holes” can be observed if the matrix density drops to

critically low levels in a sufficiently large pocket of matrix. Similar observations

derive from an investigation into the impact of matrix coarseness on the front: for

finely varying matrix (i.e. low wavelength/coarseness) (Figure 8, top row), any

variation in the matrix is of shorter wavelength than the sensing radius of cells and

the integral effectively smooths out this heterogeneity. The subsequent invasion

takes place with a more or less uniform front. Increasing the coarseness (top to

bottom rows) results in greater differences in the invasive speed and correspondingly,

a more variable tumour front.
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5 Discussion

In the course of this paper we have expanded on our earlier continuous-level mod-

elling (e.g. see Armstrong et al. 2006; Sherratt et al. 2009; Gerisch & Painter 2010)

to develop a relatively simple model for studying cellular invasion that incorporates

cell-cell adhesion, cell-matrix adhesion and proteolytic degradation of a surrounding

extracellular matrix. Under sufficiently strong cell-matrix adhesion and/or suffi-

ciently weak cell-cell adhesion, we observe the expansion of a cell population as

it degrades and invades the surrounding ECM environment. The structure and

heterogeneity of the matrix plays a significant role in shaping the dynamics: highly

heterogeneous and variable ECM can lead to “fingering” at the invasive front. These

results echo similar findings by others in both hybrid discrete-continuous (e.g. An-

derson 2005; Anderson et al. 2006) and fully continuous models (e.g. Gerisch &

Chaplain 2008). Significantly, under confocal microscopy techniques, Wolf et al.

(2009) reveal that within the same tissue, in vivo collagen scaffolds cover a range

between low and high density networks with highly variable pore size. Note that for

a sufficiently homogeneous matrix, our model predicts that invasion can occur with

a smooth front (Figure 8 top rows): invasion is not necessarily synonomous with a

jagged appearance of the front.

In its current form, the model is intentionally simplistic to facilitate an initial

study into the impact of adhesion and matrix degradation on the form of inva-

sion. As such, the present results are qualitative rather than quantitative and a

number of further extensions to the model would be required before applying it to

specific systems. For example, the manner in which cells interact with the matrix
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is significantly more complex than in the toy model described here. We note that

a number of authors have developed more detailed models to describe cell-matrix

interactions (e.g. Chaplain & Lolas 2005; Mallet & Pettet 2006; MacArthur et al.

2005; Gerisch & Chaplain 2008) and it would be of interest to examine how they can

be incorporated and extended within the current framework. For example, certain

environmental factors are known to modulate multiple processes associated with

invasion and the incorporation of this detail within the model may provide insight

into ambiguities associated with their capacity to facilitate or impede invasion.

The live imaging of migrating cells in vivo indicates that proteolysis is a highly

focussed process, capable of significantly reordering matrix alignment. Proteolysis

at the front of the cell is accompanied by the remodelling of matrix fibres at the rear

to create a locally aligned trail of fibres along the path of cell migration (e.g. Friedl

& Wolf 2009). Such trails may provide a guidance cue to the cells (contact guidance)

and detailed modelling by a number of authors using both discrete (e.g. Dallon et al.

1999; McDougall et al. 2006) and continuous approaches (e.g. Dallon & Sherratt

2000; Hillen 2006; Painter 2009) indicate that it forms a powerful mechanism for

generating “cellular highways”, i.e. paths in the matrix along which cells prefer-

entially migrate. An interesting exploration would be to investigate whether the

addition of adhesive interactions within such models either enhances or diminishes

the capacity of cells to generate heterogeneous patterns of invasion.

The focus of our work has been on the invasive properties of a single cell popu-

lation, exploring how its specific adhesive properties alter its capacity to invade. In

reference to tumour growth, therefore, the framework here is most suitably applied
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to the in vitro deposition of specific cell lines within a suitable collagen matrix (e.g.

Tranquillo 1999; Shreiber et al. 2003; Baba et al. 2004). In vivo, tumour growth oc-

curs within a far more complicated environment: for example, a tumour may develop

within a surrounding healthy population while the surrounding matrix will also in-

clude a variety of other cell types (e.g. fibroblasts). Interactions between tumour

cells and healthy cells have previously been modelled within a reaction-diffusion

framework (e.g. Sherratt & Nowak 1992; Gatenby 1995; Sherratt & Chaplain 2001;

Painter & Sherratt 2003; Smallbone et al. 2008), and our model provides a way

of including the potential adhesive interactions between the tumour and healthy

cells in such studies. In a similar vein, another potential extension of the model

would be to explore pathways to malignancy via the addition of mutated subpopu-

lations with distinct adhesive, proteolytic and proliferative properties. Differential

adhesion in distinct cell types is a powerful mechanism for the patterning of cell

populations, a process known as cell sorting (e.g. Foty & Steinberg 2004; Steinberg

2007) and it would be of interest to determine how such processes contribute to the

rearrangement and invasion of tumours.

The application to neural crest cell invasion is another area for consideration.

Following their emergence along the dorsal neural tube, neural crest cells migrate

away to pattern various structures including components of the peripheral nervous

system. Migration occurs in a highly structured fashion, with cells following stereo-

typical pathways and often forming collective “streams” and “chains” (Kulesa &

Fraser 1998; Young et al. 2004; Kasemeier-Kulesa et al. 2005) through a combina-

tion of signals within the neural tube, cell-cell contacts, and spatial variation in the
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extracellular distribution of attractive and repulsive cues (e.g. Young et al. 2004;

Kasemeier-Kulesa et al. 2008). Our framework, while currently focusing on attrac-

tive/adhesive interactions, could easily be adapted to add additional processes such

as repulsion to investigate their contribution to the invasive process.
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Figure 1: Non-invasive/invasive growth depends on the cell-cell:cell-matrix adhesive

strength ratio. Rows plot cell density, n, (solid) and matrix density, m (dashed line)

for various (α, β) pairs: Top row, (α, β) = (0.5, 0.25); Middle row, (α, β) = (0.5, 1.0);

Bottom row, (α, β) = (0.5, 2.0). Other parameters set at γ = 1, K = 2, m0 = 1,

n0 = 0.1, Li = 4 and L = 40 (plots truncated at x = 25 for clarity of presentation).

The advection-reaction equations were solved numerically using a simplistic Method

of Lines approach. Briefly, adhesive terms are discretised in conservative form via

first order upwinding on a uniform mesh (with grid spacing Δx). The integral inside

the advection term is calculated via direct summation. The resulting ODEs were

discretised using an explicit trapezoidal scheme. We refer to Hundsdorfer & Verwer

(2003) for more information on these methods. In the above simulations, we set

Δx = 0.1.

Figure 2: Speed of invasion (indicated by height of columns) calculated for varying

(α, β) pairs in the range 0 ≤ α, β ≤ 2. For all cases β < α, no invasion takes place

and the wavespeed is zero. For β ≥ α, invasion occurs with the speed increasing

with the size of β − α. Parameter and numerical details as in Figure 1.
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Figure 3: Top row: wavespeeds calculated for various different initial matrix den-

sities, m0, and distinct (α, β) pairs: (Left) wavespeeds for α = 0.5 and β = 0.5

(dotted line/circles), β = 1.0 (dot-dash/stars) and β = 2.0 (solid/squares).

(Right) wavespeeds for α = 0.0 and β = 0.5 (dotted line/circles), β = 1.0 (dot-

dash/stars) and β = 2.0 (solid/squares). Bottom row: Plots showing the in-

vasion of cells (top row) into the spatially varying matrix (bottom row), with

m(x, 0) = 0.5 + 0.5 cos(πx/L). In each frame, cell/matrix densities are plotted

at increments of 10 between t = 0 and t = 200. (Left) (α, β) = (0.5, 0.5), (Centre)

(α, β) = (0.5, 1.0), (Right) (α, β) = (0.5, 2.0). Other parameters are set at L = 30,

Li = 1.0, n0 = 0.1, γ = 1, K = 2.0. Numerical details as in Figure 1.

Figure 4: (a) Schematic showing the set-up for the 2D invasion model. Cells are

deposited within a narrow strip adjacent to the x = 0 boundary. Surrounding

region (cross-hatched area) contains matrix only, with the initially imposed matrix

heterogeneity varying according to the forms described in (b)-(e) (see text for further

details).
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Figure 5: “Fingers” generated through invasion of cells into an initial matrix in

which matrix density varies along the invasion front. For each subfigure (a)-(f), plots

represent matrix density (top) and cell density (bottom) plotted on the rectangular

domain (x, y) ∈ [0, 20]×[0, 10] at the fixed time t = 40 for the following initial matrix

distributions: (a) m0 = 0.5, m1 = 0.1, ky = 1; (b) m0 = 0.5, m1 = 0.3, ky = 1; (c)

m0 = 0.5, m1 = 0.5, ky = 1; (d) m0 = 0.5, m1 = 0.1, ky = 2; (e) m0 = 0.5, m1 =

0.3, ky = 2; (f) m0 = 0.5, m1 = 0.5, ky = 2. Model parameters are set as described in

the text, (α, β, γ, K) = (0.5, 1.0, 1.0, 2.0), with n0 = 0.1 and Li = 1. The 2D model

was solved numerically in conservative form using a method of lines approach similar

to that described for the 1D numerics, with the 2D domain discretised onto a uniform

grid of spacing Δx = Δy = 0.2. The advective component is approximated via first

order upwinding, with the 2D integral inside the advective term approximated as

described in Armstrong et al. (2009). We note that a number of more efficient

numerical methods have been developed for systems similar to (4), see Gerisch &

Chaplain (2008); Gerisch & Painter (2010); Gerisch (2010) for details, although such

schemes would require– modification for the boundary conditions specified here.

Figure 6: Invasion of cells into a “checkerboard” matrix. For each subfigure (a)-

(f), plots represent matrix density (top) and cell density (bottom) plotted on the

rectangular domain (x, y) ∈ [0, 20]× [0, 10] at the fixed time t = 40 for the following

initial matrix distributions: (a) m0 = 0.5, m1 = 0.1, ky = kx = 1; (b) m0 = 0.5, m1 =

0.3, ky = kx = 1; (c) m0 = 0.5, m1 = 0.5, ky = kx = 1; (d) m0 = 0.5, m1 = 0.1, ky =

kx = 2; (e) m0 = 0.5, m1 = 0.3, ky = kx = 2; (f) m0 = 0.5, m1 = 0.5, ky = kx = 2.

Other model details as for Figure 5.
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Figure 7: Time evolution of a cell invasion front into a “randomised” matrix struc-

ture. Cell (n) and matrix (m) densities are plotted at the various times shown, using

a grayscale indicator (black indicating zero density and white representing a density

of 1). Other model details as for Figure 5.

Figure 8: Cell invasion into various randomised initial matrices. Cell distributions

plotted at t = 40 as density maps (white representing a density of 1, black repre-

senting a density of zero). Other model details as for Figure 5.
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