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Abstract

Many internal epithelial organs derive from cysts, which are tissues comprised of
bent epithelial cell layers enclosing a lumen. Ion accumulation in the lumen drives
water influx and consequently water accumulation and cyst expansion. Lumen-size
recognition is important for the regulation of organ size. When lumen size and cyst
size are not controlled, diseases can result; for instance, renal failure of the kidney.
We develop a mechanistic mathematical model of lumen expansion in order to inves-
tigate the mechanisms for saturation of cyst growth. We include fluid accumulation
in the lumen, osmotic and elastic pressure, ion transport and stretch-induced cell
division. We find that the lumen volume increases in two phases: first, due to fluid
accumulation stretching the cells, then in the second phase, the volume increase
follows the increase in cell number until proliferation ceases as stretch forces relax.
The model is quantitatively fitted to published data of in vitro cyst growth and
predicts steady state lumen size as a function of the model parameters.
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1 Introduction

1.1 Importance of cyst size regulation

Organs of the respiratory, digestive, genito-urinary and vascular systems de-
pend on cysts as their building blocks. Cysts are comprised of a bent epithelial
cell layer that encloses the lumen and seals it from the extra-cyst medium
(O’Brien et al., 2002). Cysts form via mirror-symmetric polarization of adja-
cent cells, transmembrane protein and channel sorting, directed ion transport
and subsequent lumen expansion (Ferrari et al., 2008). Many adult organs de-
rive from cysts during embryonic development and require cyst growth but are
also vulnerable to aberrant cell re-arrangements due to deregulated cyst form-
ing mechanisms. For instance, cyst diseases of the kidney are common, in par-
ticular autosomal dominant polycystic kidney disease (ADPKD). In ADPKD,
multiple fluid-filled cysts develop, grow in size and gradually compress and
displace normal nephrons. In early stages of ADPKD, cysts begin to enlarge
from many segments of the kidney. The enlarged regions then disassociate
from the original nephron to form disconnected cysts. The cysts continue to
enlarge due to proliferation of cells and fluid secretion induced lumen expan-
sion. Progressive renal cyst formation and enlargement can result in a loss of
renal function and hypertension, which can lead to renal failure (Hanaoka and
Guggino, 2000; Sullivan et al., 1998b). The molecular and biophysical feedback
loops that control cyst size are of vital interest but remain unknown (Tanner
et al., 1992).

The individual mechanisms responsible for cyst growth and size regulation
have been studied in vitro (Balcarova-Ständer et al., 1984; Tanner et al.,
1995) and our mathematical model focuses on corresponding in vitro data. The
Madin-Darby canine kidney (MDCK) cell line is used extensively to study po-
lar cell functions and ion and fluid transport. This cell line is derived from the
renal distal tubular epithelium and has been used to study renal cyst enlarge-
ment (Mangoo-Karim et al., 1989). MDCK cells, when seeded in a hydrated
collagen gel, divide and form spherical cysts in a period of weeks. The MDCK
cysts are lined by a simple, polarized epithelium, with the apical side facing
the lumen. The polarity of these cysts is identical to ADPKD cysts or renal
tubules, making it a useful model for studying renal cyst enlargement (Tanner
et al., 1992). Wang et al. (1990) observe that 5-6 MDCK cells are required to
form a lumen, and this occurs around 2 to 3 days after seeding. Zeng et al.
(2008) did careful analysis to relate the probability of lumen formation to the
number of cells in an aggregate and also found that 5 cells were required for
lumen formation. As the cysts grow, the volume of fluid within them increases
(McAteer et al., 1987). MDCK cells are also used as a model for epithelial
cell growth and morphogenesis. When the MDCK cysts are exposed to mes-
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enchymally derived hepatocyte growth factor, they develop branching tubules.
This response is similar to epithelial-mesenchymal interactions that stimulate
tubulogenesis in vivo (O’Brien et al., 2002).

1.2 Mechanisms of cyst growth

In order to initially form a lumen, individual cells must first form the three
surfaces: apical, basal and lateral (O’Brien et al., 2002). Once achieved, the po-
larity of each individual cell must be coupled within the organization of the tis-
sue. The apical surface is orientated towards the lumen. Polarization of MDCK
cells in culture is controlled by cell-cell interactions and cell-substratum inter-
actions. The signals that mediate such interactions and the resultant polar-
ization were discussed by Eaton and Simons (1995).

The cysts enlarge due to both proliferation of cells and fluid secretion induced
lumen expansion which depends on ion and water channel activity (Ferrari
et al., 2008). Recent studies have indicated that cyclic AMP (cAMP) regulates
the rate of cell proliferation and fluid accumulation in renal cysts of patients
with ADPKD (Belibi et al., 2004; Yamaguchi et al., 2000, 2003). Grown in the
absence of cAMP agonists, Mangoo-Karim et al. (1989) found that MDCK
cells suspended in collagen failed to form cysts. However, by using cAMP
agonists such as forskolin or cholera toxin, Mangoo-Karim et al. (1989) found
an increase in cell proliferation as well as higher chloride levels in the cyst
fluid.

Fluid accumulation in the lumen is the result of fluid secretion driven by
active transepithelial Cl− secretion into the lumen. Cl− secretion is mediated
via cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channels
in the apical membrane. Studies by Li et al. (2004) showed that when the Cl−

channel was blocked, a negative effect on cyst growth was observed, through
the inhibition of the channels. Fluid accumulation within the lumen was then
inhibited.

Tanner et al. (1995) studied the effects of mechanical stretch on cell prolif-
eration. Their findings showed that proliferation increases to accommodate
the increased membrane surface area. Once cell number had increased, DNA
synthesis returned to baseline. A possible mechanism is suggested by the ob-
servation that stretched fetal lung cells release a diffusible growth factor caus-
ing unstretched cells to proliferate (Liu et al., 1993). However, Tanner et al.
(1995) did not find such a diffusible signal for MDCK cells. Stretch-activated
cell proliferation has also been studied theoretically by Shraiman (2005) who
developed a mathematical model of mechanical deformation in the growing
tissue of a Drosophila wing imaginal disc in order to understand the control
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of growth rate. The simulations showed that clones growing faster or slower
than the surrounding tissue are subject to mechanical stress. This stress may
provide a feedback signal to cells, regulating cell division and self-organizing
the uniformly distributed growth of the tissue (Nienhaus et al., 2009).

We also draw on two previously published models of lumen expansion and fluid
secretion. Kücken et al. (2008) developed a model for the onset of regeneration
of the freshwater polyp Hydra. A small fragment of tissue can regenerate into
a complete animal in approximately 48 hours. To do this, the tissue forms a
hollow sphere made of a cell bilayer. Once the hollow sphere has been formed,
it undergoes cycles of inflation and collapse. Kücken et al. (2008) modeled this
process where the inflation of the sphere is controlled by an osmotic pressure
and an elastic pressure. The osmotic pressure is affected by the difference in
the ionic concentrations within the sphere and outside of the sphere. They
included a constant influx of ions into the sphere. The expansion is arrested
by including tissue rupture and a collapse of the sphere.

Physiological models have been proposed by Tanner et al. (1992); Sullivan
et al. (1998a); Li et al. (2004) which describe ion transport mechanisms. These
types of mechanisms were included by Gin et al. (2007) who modeled fluid se-
cretion in parotid acinar cells. In more detail, fluid accumulation within the
lumen is regulated by the ionic concentration differences between the lumen,
the cell interior and the extracellular medium. The intracellular ionic concen-
tration is controlled by different ion transport mechanisms, such as K+ and
Cl− channels, Na+−K+−2Cl− cotransporters and Na+−K+−ATPase ion ex-
changers. The increased ionic concentration in the lumen lead to water flux
from the cell into the lumen. In their model the Cl− channel was dependent
on the intracellular [Ca2+]. Intracellular Ca2+ signaling pathways were also
modeled such that stimulation by an agonist which lead to increased intracel-
lular [Ca2+] translated to an increased water flow into the lumen due to higher
lumenal Cl− accumulation.

In this study, we investigate the feedback mechanisms by which the growth
of the cyst can saturate and shed light on organ size regulation in this simple
tissue. A system of ordinary differential equations is developed and analyzed
to describe the expansion of the lumen via both cell proliferation and fluid
accumulation. In the next section, we derive this model and fit its parameters
to published experimental data. We do not model the initial formation of a
lumen and will initialize our model at the earliest stage when a cyst has just
developed and a lumen has already been formed. In section 3 we analyze the
cyst growth dynamics and explore the role of individual feedback loops. We
conclude with insight on the asymptotic cyst size and a discussion of future
steps.
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2 The model

In this section, we describe the features of the mathematical model for cyst
lumen expansion. The three variables of the model are the lumen volume,
wl(t), the lumenal Cl− concentration, [Cl−](t), and the number of cells, c(t).

Fig. 1 shows the feedback mechanisms that we will include in our model. Cl−

Extracellular medium

Lumen

wl(t) [Cl-](t)

Cl-

c(t)

H2O

Elastic 
pressure

Osmotic pressure

Cell monolayer

Cell

Fig. 1. Mechanisms of lumen volume expansion. Dashed lines indicate negative
feedback mechanisms. Solid lines with arrowheads indicate positive feedback mech-
anisms. One individual cell is shown.

enters the lumen via Cl− channels located on the apical membrane of the
cells. The increased [Cl−] increases the osmotic pressure, causing water influx
into the lumen. The water accumulation in the lumen leads to lumen volume
expansion. On a slower time scale, the increased lumen volume promotes cell
division. Cell number is decreased via cell death or cells migrating out of the
monolayer. The increased cell number decreases the elastic pressure. Long-
term, the increasing lumen volume will dilute the [Cl−] in the lumen, leading
to saturation of the [Cl−] with the effect of saturating the lumen volume.

The changes in the lumen volume (wl(t)), lumenal Cl−(t) concentration and
the number of cells (c(t)) can all be described by ordinary differential equa-
tions. We derive each of these in the following subsections. Our strategy is
to first include into the model many regulatory interactions as described in
the experimental literature and then later to explore the dynamics of reduced
models by setting individual terms and parameters to zero.
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2.1 Lumen volume expansion

Fluid accumulation within the lumen is one mechanism by which lumen ex-
pansion occurs. The water flow is driven by the osmotic pressure resulting from
the ion concentration difference between the lumen and cellular compartments
and the opposing elastic pressure of the cyst monolayer.

The rate of change in the lumen volume is described by the following equation:

dwl

dt
= LwAapicalc(t)ΔP, (1)

where Lw is the water permeability coefficient, Aapical is the surface area of the
apical membrane of a single cell (which is assumed to remain constant), and
c(t) is a variable describing the number of cells (equation given in the next
section).

The driving force for fluid influx is found from the difference ΔP of the osmotic
pressure and the elastic pressure:

ΔP = RT (Clumen − Cintra)− 4(Rl(t)− Rr(t))Ẽ

Rr(t)2
, (2)

for Rl(t) > Rr(t) (the lumen radii Rl(t) and Rr(t) are described later). The
parameter R is the molar gas constant and has the value 8.315 J mol−1 K−1

(or Pa K−1(mol/m3)−1) and T is set to body temperature, 310 K.

The first term of ΔP describes the osmotic pressure with Clumen being the
concentration of ions in the lumen and Cintra the ionic concentration in the
cell. The terms Cintra (intracellular ion concentration) and Clumen (lumenal ion
concentration) are given by:

Cintra =([Cl−]i + [Na+]i + [K+]i + [X]), (3)

Clumen =([Cl−]l(t) + [Na+]l + [K+]l), (4)

where [X] is the concentration of impermeable ions and the subscripts i and l
denote intracellular and lumen, respectively. The lumenal sodium concentra-
tion, [Na+]l, and potassium concentration, [K+]l, are assumed to be equal to
the extracellular sodium concentration, [Na+]e, and potassium concentration,
[K+]e, respectively. We also keep the intracellular ion concentrations fixed,
assuming that their dynamics is on a timescale of seconds (Gin et al., 2007),
whereas the lumen increase follows a timescale of hours. We assume that
there is a concentration gradient between the cellular and extracellular com-
partments, such that there is always water flow into the cell (Gin et al., 2007).
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Eq. 1 describes water flow via a transcellular pathway as found by Rivers et al.
(1996) who studied populations of MDCK cysts. This was also found to be
the case by Kovbasnjuk et al. (1998) who developed an optical microscopic
technique to visualize the flow velocity profiles within the lateral intercellular
spaces and to test for fluid flow across the tight junction. The flow velocity
within the lateral intercellular spaces fell almost to zero adjacent to the tight
junction, indicating that transjunctional flow can be neglected.

The second term of ΔP describes the elastic pressure. The elastic pressure
term is given by

4(Rl(t)− Rr(t))Ẽ

Rr(t)2
(5)

where the elasticity of the cell monolayer is approximated as linear dependence
in agreement with the model of Kücken et al. (2008). Here Ẽ = Eh/(2(1−μ),
where E is Young’s modulus, h is the thickness of the cell monolayer and μ is
Poisson’s ratio.

The lumen radius is given by Rl(t), and is calculated directly from the lumen
volume by approximating the lumen as a sphere. The relaxed lumen radius
Rr(t) describes an unstretched cyst with the same number of cells. Details for
calculating the radii are described later.

2.2 Cell number changes

Tanner et al. (1995) found that the stretched cells of expanding cysts increased
their proliferation rate and proliferated until the characteristic cell number
per unit lumen surface was restored. This was described as a stretch-induced
proliferation mechanism for cyst enlargement. Stretch-induced proliferation
has since been characterized in vivo and in vitro (Tan et al., 2003; Shraiman,
2005; Nienhaus et al., 2009). Taking these observations into account, the rate
of change in cell number can be described as follows:

dc

dt
=

c(t)ΔAγdb

Aapical
− c(t)γd, (6)

where γdb is the doubling rate of cells. The term−c(t)γd describes the net effect
of stretch-independent proliferation and loss of cells due to death or migration
out of the monolayer. In the case where the term is negative, as it is here for
positive γd, the death process outweighs stretch-induced cell proliferation. A
stretch-activation mechanism, ΔA, which gives the response to an increase in
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the difference between the surface area of the lumen, A(t), and the surface
area covered by relaxed cells, is given by:

ΔA = A(t)− c(t)Aapical. (7)

The surface area of the lumen is calculated from the lumen radius, Rl(t), by
assuming a spherical lumen:

A(t) = 4πRl(t)
2. (8)

2.3 Lumenal chloride concentration changes

The build up of [Cl−] in the lumen occurs via the influx through apical Cl−

channels. The accumulation of Cl− in the lumen creates a concentration gra-
dient and water flows from a region of high water concentration to a region of
lower water concentration across the apical membrane of the cell.

The term ICl gives the chloride ion flux from all the cells into the lumen:

ICl = gClc(t)PCl(Vm − VCl)Psd, (9)

where gCl is the maximum whole cell conductance for Cl−,

VCl =
RT

zClF
log

(
[Cl−]l(t)

[Cl−]i

)
(10)

is the Nernst potential for Cl−, RT is as in Eq. 2, T = 310 K, F = 96490 C
mol−1 and zCl = −1 is the valence for Cl−. The open probability of the channel
is given by PCl, which we take to be constant. The open probability normally
describes the gating mechanism of the chloride channel and could be ligand
or voltage dependent. However, we do not include any such mechanisms. The
driving force, Vm−VCl is assumed to be linear, where Vm is the constant apical
membrane potential of the cell.

Cells maintain their volume by activation of ion conductances such that the
loss of ions causes a passive flow of water, decreasing the cell volume (Sardini
et al., 2003). In particular, activation of a chloride conductance upon swelling
is a key step in regulating cell volume. We test a similar idea by incorporating a
stretch-deactivation mechanism for the Cl− channel. However, as discussed in a
later section, the qualitative results do not depend on this stretch dependence.
The stretch-deactivation is given by the following term:
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Psd =1− ΔA

ΔA + kp

, (11)

where ΔA gives the degree of surface stretching as defined in Eq. 7. When
ΔA is large, compared to kp, giving Psd < 1, the chloride channels are deac-
tivated. This stretch dependence can also be interpreted as the average effect
of temporally periodic ion transport that is modulated by stretch-dependent
cell cycles.

We also include an efflux of Cl− from the lumen. Tanner et al. (1992) found
that chloride moved out of the cyst lumen via a paracellular pathway, by
investigating the effects of the small molecule DIDS, known to inhibit the
uptake of cAMP in human red blood cells. They speculated that if chloride
did leave via a transcellular route, a decreased rate of fluid absorption in the
presence of DIDS would result. However, as fluid absorption was unaffected
by DIDS, they concluded that chloride moves out of the cyst lumen mainly
via a paracellular pathway. We include a corresponding leak of Cl− ions from
the lumen:

Jleakc(t)([Cl−]l − [Cl−]e), (12)

which is proportional to the number of junctions between cells and correspond-
ingly to the number of cells, c(t) and the concentration difference between the
lumenal [Cl−] and the extracellular [Cl−].

Combining the above mechanisms regulating the [Cl−], we arrive at the fol-
lowing equation for the rate of change of the lumenal Cl− ion number [Cl−]lwl:

d([Cl−]lwl)

dt
=wcell

ICl

zClF
− wl(t)Jleakc(t)([Cl−]l − [Cl−]e), (13)

where wcell is the constant cell volume. This equation obeys mass conservation
while lumen volume is changing.

By expanding the equation for the lumen chloride concentration, we obtain
the third term capturing the diluting effect of lumen expansion on Cl− concen-
tration ([Cl−] is easier measurable experimentally than the total ion number):

d([Cl−]l)

dt
=

wcell

wl(t)

ICl

zClF
− Jleakc(t)([Cl−]l − [Cl−]e)−

[Cl−](t)

wl(t)

dwl(t)

dt
. (14)
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2.4 Lumen radius

To determine the elastic pressure, the lumen radii, given by Rr(t) and Rl(t),
are required. Here, Rr describes the relaxed, non-stretched radius. Kücken
et al. (2008) assume that the relaxed radius Rr is constant (they use the
variable R0 and refer to it as the initial radius) as there is no evidence for cell
divisions occurring during early (cyst-like) Hydra regeneration. However, this
is not the case for MDCK cells and thus, an algebraic equation is included to
describe the increase of Rr(t) as a function of the number of cells, c(t), and
the constant, relaxed apical surface area per cell that they cover:

Rr(t) =

(
c(t)Aapical

4π

)1/2

. (15)

The radius of the lumen, Rl(t), is calculated directly from the lumen volume
by approximating the lumen by a sphere:

Rl(t) =
(

3

4π
wl(t)

)1/3

. (16)

2.5 Complete system of equations

The complete system of equations we solve is summarized here. Three nonlin-
ear ordinary differential equations describe the cyst growth dynamics:

dwl

dt
=LwAapicalc(t)ΔP,

dc

dt
=

c(t)ΔAγdb

Aapical

− c(t)γd,

d([Cl−]l)

dt
=

wcell

wl(t)

ICl

zClF
− Jleakc(t)([Cl−]l − [Cl−]e)−

[Cl−](t)

wl(t)

dwl(t)

dt
, (17)

which are coupled via the following algebraic equations:
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ΔP =RT (Clumen − Cintra)− 4(Rl(t)−Rr(t))Ẽ

Rr(t)2
,

ΔA =A(t)− c(t)Aapical,

A(t) = 4πRl(t)
2,

Rl(t) =
(

3

4π
wl(t)

)1/3

,

Rr(t) =

(
c(t)Aapical

4π

)1/2

,

Cintra =([Cl−]i + [Na+]i + [K+]i + [X]),

Clumen =([Cl−]l(t) + [Na+]l + [K+]l),

ICl = gClc(t)PCl(Vm − VCl)Psd,

Psd =1− ΔA

ΔA + kp
. (18)

2.6 Parameter values

Where available, we fix parameter values to experimentally measured values
reported in the literature. The remaining parameters are then fitted to exper-
imental data by Wang et al. (1990).

Water permeability (Pf) values have been measured experimentally. Rivers
et al. (1996) measure a value of 2.4 μm s−1, while Timbs and Spring (1996)
measure both the basolateral and apical cell membrane water permeabilities
and find both membranes exhibit permeabilities of 0.001 cm s−1 for MDCK
cells. Farinas and Verkman (1996) used a method of interferometry to measure
cell shape and volume to measure the Pf in cell layers and obtained a value of
6.1× 10−4 cm s−1. In order to convert a water permeability of units cm s−1 to
cm (s atm)−1, we use the relation Lw = PfVw/(RT ) (Fischbarg et al., 1993),
where Pf is the water permeability coefficient expressed in units of cm s−1,
and Vw is the molar volume of water. We chose a water permeability value of
6× 10−13 cm (s atm)−1, which corresponds approximately to a value for Pf of
8.59× 10−5 cm s−1.

Individual cell apical surface area is calculated from an estimate of the initial
lumen volume and the minimum number of cells required for lumen forma-
tion. We calculated a value of 52.62 μm2 from the measurements of (Wang
et al., 1990). A value of 57.2 μm2 is given by Timbs and Spring (1996) for the
average smooth surface area. We assume the cell apical surface area to remain
constant and take this measurement to represent the surface area when the
cell cytoskeleton is relaxed.

The cell volume, wcell = 420.92μm3 is calculated from the apical surface area
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and an assumed cell length (defined to be the distance between the apical
membrane and the basal membrane) of 8 μm. We estimated, approximately,
the cell length from the images of Elia and Lippincott-Schwartz (2009). Be-
cause the cyst is made up of only a monolayer of cells, the cell length is also
the thickness of the monolayer (denoted by the parameter h in Eq. 5).

The value of Ẽ was taken from Kücken et al. (2008), 0.1 Nm−1.

For the intracellular and extracellular ion concentrations, we refer to Mangoo-
Karim et al. (1989) who measured the ionic composition of both secreted fluid
(MDCK monolayers) and cyst fluid (MDCK cysts). The medium concentra-
tions, corresponding here to [Cl−]e, [Na+]e and [K+]e, are 123 mM, 162 mM
and 4.4 mM, respectively. Using electron probe analysis, they measure the
cyst fluid concentrations of [Cl−]l = 138 mM, [Na+]l = 159 mM and [K+]l
= 4.7 mM. The increase in the [Cl−]l is consistent with active transport of
Cl− into the lumen. We assume the lumenal [Na+] and [K+] are equal to the
extracellular values, given the small difference found by Mangoo-Karim et al.
(1989). The value of the intracellular impermeable ions, [X], was chosen to give
a long-term steady-state lumen [Cl−] of approximately 15 mM higher than the
extracellular Cl− concentration, [Cl−]e, (Mangoo-Karim et al., 1989). In our
model, the steady-state concentration of Cl− in the lumen is 132.55 mM.

Stefani and Cereijido (1983) found the cells to have an intracellular potential
of −40.5 mV although they reported that the actual value may be higher
at −50 mV due to leaks around the microelectrode, mechanical damage to
the cell or perturbations due to the handling of the preparation. They also
investigated the possibility of cell-cell coupling and found that the cells are
not electrophysiologically connected. Therefore, we are able to treat each cell
as a single unit and choose a membrane potential, Vm = −50 mV.

The remaining parameters, gCl, kp, Jleak and γdb were fitted to the data of Wang
et al. (1990) who measure the cyst diameter. They suspended single MDCK
cells in type I collagen gel and found the growth to consist of two stages. The
first stage occurs between days 1 and 3 in culture and during this time, the
cells undergo two to three cell divisions. In this stage, there is no evidence of a
lumen. The second stage occurs after this time and the cell aggregates form a
central lumen. In order to compare our results with theirs, we assume that all
cell divisions occur in the plane of the epithelium so that the cyst consists of
only a single layer of cells. By assuming an initially unstretched situation in the
experiment, we obtain the lumen radius by dividing the experimental diameter
by two and subtracting the cell length, set at 8 μm. Cysts are generally found
to remain spherical (McAteer et al., 1987) and thus, we can easily obtain
the cyst volume. We also estimated the standard deviation, σ, from their
measurements. Table 1 gives the experimental measurements to which we fit
the parameters of the model. Wang et al. (1990) found it was not till day 3 that
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Experiment time (days) Model time (days) Lumen volume (μm3) σ (μm3)

3 0 4.01 × 102 7.0× 101

4 1 9.9× 103 1.3× 103

5 2 6.0× 104 8.8× 103

6 3 1.0× 105 2.4× 104

7 4 8.9× 104 2.1× 104

8 5 1.2× 105 1.6× 104

9 6 3.1× 105 6.2× 104

9 3.1× 105 1.1× 104

14 3.1× 105 1.1× 104

Table 1
Experimental lumen calculated from volume measurements by Wang et al. (1990)
used to fit the model parameters. The standard deviation is given by σ. Wang et al.
(1990) found it was not till day 3 that a lumen developed. Their measurement at
day 3 was taken to be our initial lumen volume at the start time of the model
dynamics The data is plotted in Fig. 2.

a lumen developed. Our model description starts at the stage at which a lumen
has already formed, so we take their measurement at day 3 to be our initial
lumen volume. Wang et al. (1990) also find that growth stops after eight or
nine days and the cyst remains viable for several weeks. Therefore we include
two additional data points, days 9 and 14, with identical lumen volume in order
to represent the steady lumen volume. We use a smaller σ value for these two
added data points to restrict the parameter fitting so that the simulated lumen
volume saturates close to the observed value. The parameters were fitted using
a Bayesian inference and Markov chain Monte Carlo (MCMC) method. In the
Bayesian approach, the parameters are assumed to be random variables that
follow a particular distribution. Inferences are made based on the posterior
distribution of the parameters, given the data. Prior information about the
parameters is also taken into account. The MCMC method provides a means of
generating a sample from the posterior distributions of the parameters given
the data. The advantage of this technique is that we can obtain statistical
information about the fit, such as the maximum, the mean, or any other
statistic of the fitted parameter values. Further details of this fitting technique
are given in the Appendix.

A summary of all the parameter values is given in Table 2.
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Cell parameters

Lw 6.0 ×10−13 cm (s atm)−1 Ẽ 0.1 N m−1

R 8.315 J (K mol)−1 T 310 K

Aapical 52.62 μm2 wcell 420.92 μm3

Intracellular ion concentrations

[Cl−]i 60.0 mM [Na+]i 15.0 mM

[K+]i 150.0 mM [X] 62.50 mM

Extracellular ion concentrations

[Cl−]e 115.0mM [Na+]e 150.0 mM

[K+]e 5.0 mM

Lumen ion concentrations

[Na+]l 150.0 mM [K+]l 5.0 mM

Membrane potential

Vm −50 mV

Lumenal [Cl−] parameters

gCl 7.30 nS (±1.61) zCl −1

kp 403.38 μm2 (±68.15) Jleak 5255.63 hr−1 (±1529.94)

PCl 0.1 F 96490 C mol−1

Cell proliferation parameters

γdb 8.677 ×10−4 μm−2hr−1 (±8.28 × 10−5) γd 0.01 hr−1

Table 2
Parameter values for model equations. The parameters gCl, kp, Jleak, γdb were fitted
using a Bayesian inference and Markov chain Monte Carlo (MCMC) method (de-
scribed in the Appendix). Standard deviations for the fitted parameter values are
also given.

3 Model simulation

Our aim is to investigate the regulatory mechanisms which arrest lumen
growth and thereby control cyst size. We are interested in particular, in the
lumenal Cl− accumulation which drives water flux, and cell proliferation as the
mechanisms for lumen expansion. Correspondingly we study, in the following
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subsections, stretch-induced responses, the role of cell death, non-saturating
lumen growth scenarios and the dependence of asymptotic cyst size on Cl−

transport.

As an initial condition, we use the experimental data at day 3 of the experi-
ments by Wang et al. (1990) when the lumen has just been formed. This fixes
the number of cells at five and gives an initial radius of the lumen, Rl, of 4.58
μm, from which we calculate the initial lumen volume. All initial values for
the simulation are: wl = 401.23 μm3, c = 5 and [Cl−]l = 115 mM.

Fig. 2 shows the experimental values used to fit the parameters and the sim-
ulated lumen volume curve. More details are given in the following section.
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Fig. 2. Simulated lumen volume (solid) curve for parameters fitted to the experi-
mental measurements (symbols) obtained from Wang et al. (1990), given in Table
1. Lumen volume remains stationary from 400 hours onward.

3.1 Stretch-induced responses

We investigate here the effects of stretch on both the deactivation of the
Cl− channels and stimulation of cell proliferation, and their impact on lumen
volume expansion.

Fig. 3 shows the model simulation results. Panel A shows the simulated lumen
volume (solid curve) along with the experimental values (symbols). We find
that the Cl− influx is extremely rapid, with the [Cl−] reaching a maximum
concentration of 386.77 mM, shown in Fig. 3B. The [Cl−] then drops rapidly
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to approximately 150 mM by 6 minutes The cell number increases on a slower
time scale.

This fast increase in the [Cl−] translates into a rapid increase of the lumen
volume (Panel A) and the lumen radius, Rl(t) (Panel D, dashed curve). The
two radii, Rl(t) and Rr(t) are shown in Fig. 3D on the left axis. The relaxed
radius, Rr(t) (dotted curve) increases much slower, as it is given by the number
of cells. This can be seen from the solid curve, giving the quantity Rl(t)−Rr(t).
The volume expansion rate is initially proportional to the [Cl−], as shown in
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Fig. 3. A: Lumen volume. Model simulation is given by the solid curve. Experimental
values fitted are from Wang et al. (1990). The mean volume and standard deviation
are shown. B: Lumenal [Cl−]. C: cell number. D: Radii. Lumen radius, Rl(t) (dashed
curve, left axis), relaxed radius, Rr(t) (dotted curve, left axis). The difference Rl−Rr

is shown as the solid curve corresponding to the right axis.

Fig. 4A. The lumen volume derivative is shown as the solid curve. As the
lumenal [Cl−] drops, the rate of lumen increase also decreases. While the [Cl−]
continues to drop, the lumen volume has a second growth phase, dependent on
the rate of change in the cell number (Fig. 4B, dashed curve). The cell number
increase is initially slow, but at approximately 10 hours, increases strongly.
This gives a corresponding increase in the rate of lumen increase. One can
also see the two growth phases in Fig. 2. The lumen volume saturates at a
value of 3.281 ×105 μm3.

Analytically, we can calculate the steady-state lumen volume:
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Fig. 4. Lumen volume increases in two stages. Lumen volume derivative is given by
the solid curve on both panels (left axis). A: The [Cl−] is shown by the dashed curve
(right axis). This result is shown up to 50 hours. B: The cell number derivative is
given by the dashed curve (right axis).

wl =
4π

3
√

(4π)3
A

3/2
apical

(
γd

γdb
+ c

)3/2

. (19)

From the sum in this equation, it is seen that the steady-state lumen volume
has two contributions. The first is given by the stretch of a given number of
cells, at steady state equal to γd/γdb, and the second by the final number of
cells, c.

Cell doubling times are calculated from our model simulations of c(t) and we
find the doubling time between 50 and 100 hours to be 18.49 hours, between
100 and 150 hours, a doubling time of 61.76 hours is obtained and between
150 and 200 hours, the doubling time is 190.77 hours.

The changes in the [Cl−] are influenced by both the changes in the lumen
volume and the stretch-deactivation of the channels. Both these terms are
shown in Fig. 5. The stretch-deactivation term, Psd (dashed curve, right axis),
transiently drops and at approximately 100 hours, increases. A value of one
corresponds to maximum Cl− flux. However, at this stage, it can be seen that
though the Cl− channels are at their maximum open probability, the [Cl−]
does not increase further. This is due also to the expansion of the lumen
diluting the [Cl−]. The ratio of the total cell volume to the lumen volume,
wcellc(t)/wl(t), denoted by γL is shown in Fig. 5B (dashed curve, right axis).
Initially, the total cell volume is greater than the lumen volume. However, this
ratio decreases, rapidly, contributing to the dilution of [Cl−] in the lumen. At
approximately 10 hours, the ratio increases slightly. However, this effect is not
enough to increase the [Cl−], which continues to decrease. This is also affected
by the stretch-deactivation of the Cl− channels so that there is less Cl− influx
from the cells into the lumen.

The saturation of the lumen occurs when the pressure term, ΔP is zero.
Interestingly, the osmotic and elastic pressures are individually non-zero at
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Fig. 5. Effect of lumen volume and stretch-deactivation of the Cl− channels on
[Cl−]. Time is plotted on a logarithmic scale. A: [Cl−] (solid curve, left axis) and
stretch-deactivation of the Cl− channels (Psd) (dashed curve, right axis). B: [Cl−]
(solid curve, left axis) and γL (dashed curve, right axis). The term γL is the ratio
of the total cell volume to the lumen volume (wcellc(t)/wl(t)).

steady-state. Correspondingly, the lumenal ion concentration is 0.0494 mM
higher than the intracellular ion concentration and the difference between the
radii, Rl − Rr is 0.568 μm. The individual pressures and ΔP are shown in
Fig. 6. The osmotic pressure and elastic pressure are plotted in Panel A. The
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Fig. 6. A: Osmotic pressure (solid curve, left axis) and elastic pressure (dashed
curve, right axis). B: ΔP vanishes after approximately 100 hours.

osmotic pressure (solid curve, left axis) increases first, following the increase of
Cl− in the lumen. The osmotic pressure has a dominating effect on the lumen
volume on a time scale of minutes after which the elastic pressure increases so
that the contributions from both terms become equal.

3.2 Stretch-independent cell proliferation and cell death set equal: γd = 0

Here we consider the case when stretch-independent cell proliferation and cell
death are equal, so that the changes in cell number are stretch-induced only.
We do this by setting the term γd = 0.
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For the same parameter set, we find that the volume again saturates, but at a
higher value of 8.24× 105 μm3, amounting to a 2.8 fold increase compared to
the fitted experimental scenario. The steady-state [Cl−] saturates at the same
value and it is greater cell proliferation which causes a greater lumen increase.

In contrast to the previous case in which γd is non-zero, the volume saturates
when both the osmotic and elastic pressures are individually zero. This can
be seen from the equation for the cell number. In order for steady-state to
be achieved, the term ΔA must be zero and this can only be the case when
the surface area, A(t), and the surface area covered by the same number of
unstretched cells, c(t)Aapical, are equal. This implies that the radii Rl(t) and
Rr(t) are equal, giving zero elastic pressure. The lumenal [Cl−] self-adjusts
such that the concentration difference between the lumenal compartment and
the intracellular space becomes zero, giving zero osmotic pressure.

3.3 Non-saturating lumen volume growth

In this section, we investigate the mechanisms by which the lumen volume
increases without bound. We implement two scenarios, first by altering the Cl−

concentration and, second, by considering uncontrolled basal cell proliferation,
which is a hallmark of cancerous cells.

First, we assume a fixed [Cl−] in the lumen and set the chloride equation to
zero so that the [Cl−] remains constant throughout. We simulated the model at
two fixed lumenal Cl− concentrations, 150 mM and 165 mM. Both situations
are shown in Fig. 7. For a [Cl−] of 150 mM the lumen volume first increases,
but then decreases to below its initial volume. This is a result of too weak
fluid secretion, which is needed to stimulate first volume increase and then
cell proliferation, which then drives the second phase of lumen expansion.
However, for a [Cl−] of 165 mM, the lumen volume increases without bound.
The osmotic pressure remains high, and there is a constant fluid influx to
drive lumen expansion. The two examples are dependent also on the initial
cell volume and cell number. For a larger initial lumen volume, a [Cl−] of 150
mM would result in non-saturation of the lumen volume. In this case, the
elastic pressure becomes greater than the osmotic pressure so that the lumen
volume decreases.

Alternatively, we can induce non-saturation by modifying cell proliferation.
We can mimic this by changing the term −c(t)γd in the cell proliferation
equation to +c(t)γd. This positive contribution implies that cell proliferation
outweighs death. The cell number does not saturate and continues to increase
so that the lumen volume does not saturate. However, the [Cl−] does saturate,
although at a slightly higher concentration of 136.59 mM. This gives a higher
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Fig. 7. Lumenal [Cl−] is fixed throughout the simulation. A: [Cl−] = 150 mM.
The lumen volume first increases, but then decreases below its initial volume. B:
[Cl−] = 165 mM. The lumen volume increases without bound.

concentration difference, Clumen−Cintra of 4.086 mM, leading to higher osmotic
pressure.

3.4 Varying Cl− influx changes the saturation volume of the lumen

We demonstrate here that the model can be adapted for other systems to
include different Cl− signaling pathways that affect the Cl− influx into the
lumen and thus, the final size of the cyst.

We first show how increasing the Cl− influx affects the saturation volume of
the lumen. Here, we do this by increasing the conductance of the channel, gCl.
The conductance can be voltage dependent or ligand dependent, both of which
could change the conductance of the Cl− channel. Alternatively, as we have
not included any specific form for the conductance or the open probability of
the channel, PCl, we could also have increased the open probability. The open
probability reflects the gating mechanisms of the channel and thus, could
be adapted to include different gating properties for different types of Cl−

channels.

We increased the Cl− conductance and find that the lumen volume saturates
at a higher value with higher Cl− conductances. Fig. 8 shows the effect of
increasing the conductance on the steady state of the lumen volume. Panel A
shows the lumen volume increasing linearly with increasing Cl− conductance.
The [Cl−] settles to the same steady-state concentration, but the steady-state
cell number increases with increasing Cl− conductance. We plot the lumen
volume equation for two values of the conductance, gCl = 7.30 nS (solid curve),
and gCl = 73.00 nS (dashed curve), in Panels B and C. The lumen volume
derivative is approximately the same at the initial stage, which is due, as
discussed earlier, to the initial [Cl−]. However, it increases slightly faster for the
higher conductance value. The lumen volume derivative then remains higher
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Fig. 8. Effect of increasing the Cl− conductance, gCl, on the saturation value of
the lumen volume. A: Cl− conductance is increased up to ten-fold. The saturation
volume increases linearly. B: Lumen volume equation as function of time for two
different values of gCl. Solid curve: gCl = 7.30 nS, dashed curve: gCl = 73.00 nS. C:
Lumen volume equation for two different values of gCl shown up to 10 hours.

for longer (Panel C), leading to greater lumen volume growth. This has the
effect of increasing cell proliferation, which then feeds back onto the lumen
volume growth, as can be seen by the higher second peak of the dashed curve
(Panel B). Therefore, by increasing the Cl− conductance ten-fold, the effect
is to increase the saturating lumen volume ten-fold through the interacting
volume expansion and increased cell proliferation feedback.

Conversely, by setting the open probability of the channel (PCl) ten times
lower, the lumen volume saturates at 3.17 ×104 μm3 rather than 3.28 ×107

μm3. This is in agreement with studies that have shown that when the Cl−

channels are blocked, fluid accumulation within the lumen is inhibited and
thus lumen growth is inhibited (Li et al., 2004).

All the above discussed scenarios included the stretch-deactivation mechanism
Psd for the Cl− channel. However, by neglecting this mechanism and setting
Psd = 1, we find that the lumen volume still saturates, although at a higher
value.
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4 Discussion

In this study, we investigated the regulatory mechanisms for the control and
saturation of cyst lumen growth. To do this, we constructed a model for
cell proliferation, ion transport and fluid secretion. We included a stretch-
deactivation mechanism of the Cl− channels and a stretch-induced mechanism
for cell proliferation. We chose not to model specific intracellular signaling
pathways, intracellular ion exchange processes or cell volume changes and fo-
cused instead on the general mechanisms for growth control. The causal chain
by which the lumen is increased, as described by our model, can be seen in
Fig. 1 and is summarized here:

(1) Build-up of [Cl−] in the lumen induces an osmotic water flux along its
concentration-gradient into the lumen. The lumen volume increases.

(2) An increase in the surface area of the lumen promotes cell proliferation.
The Cl− channels are deactivated in response to the increased stretch.

(3) The [Cl−] drops as a result of both stretch-deactivation of the Cl− chan-
nels and dilution due to increasing lumen volume. The model predicts
that the lumen volume plateaus, but then experiences a second, slower
phase of increase due to the increase in cell number.

(4) Saturation of the lumen volume occurs when the combined osmotic and
elastic pressure, ΔP is zero.

The increase in lumen volume is initially due to the osmotic pressure, caused
by the increased chloride concentration. The increasing volume has the effect
to dilute the [Cl−] so that the influx of the [Cl−] is balanced by the efflux out
of the lumen. The effect of the stretch-deactivation of the Cl− channels drops,
but the [Cl−] does not increase again, due to the dilution of the concentration.
The increasing surface area of the lumen also coincides with a deactivation
of the Cl− channels. When the chloride concentration reaches steady-state,
the lumen increase is temporarily arrested. However, an increase in cell pro-
liferation occurs in response to the expanding lumen surface area. The lumen
volume begins to increase again, following the cell number increase. Cuppage
et al. (1980) and Huseman et al. (1980) found that a balanced state is achieved
between proliferation and fluid secretion components of cyst enlargement. This
is indicated by the result that hydrostatic pressures within cysts remain close
to values observed across the walls of normal renal tubules.

Grantham et al. (2008) developed a mathematical model for renal cyst growth.
They chose a simple model where cyst enlargement is determined by the dif-
ference between the rate of cell proliferation and apoptosis. They did not
include explicit fluid secretion, rather, this was taken to be a by-product of
cyst enlargement via cell proliferation. They assumed cell proliferation to be
the principal factor of renal cyst enlargement, with fluid secretion only play-
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ing a role when the cyst has detached from the parent tubule. In their model
cyst volume grows exponentially, growing 10% per year. Their modeling as-
sumption was that the cyst volume was 0.0042 cm3 at initiation, the cysts
remained as spheres and enlarged at a constant rate over the life of the pa-
tient. In contrast, our model is capable of emergent growth saturation. The
saturation of the lumen volume growth in our model is not linked to any bio-
chemical size regulation pathway. Saturation of the lumen volume occurs when
the combined effect of the elastic and osmotic pressure terms is zero.

We are interested in the saturation of lumen growth and this was achieved by
our proposed model, but also by the balance of factors such as cell division and
cell death. For example, if stretch-independent cell proliferation outweighed
cell death (replacing −γ dc(t) by +γ dc(t) in Eq. 6), the lumen volume and cell
number do not saturate. However, the [Cl−] does saturate. In our model, the
saturation of the variables emerges from a dynamic balance between different
processes. Alternatively, phenomenological approaches model the saturation
of tissue growth using a logistic equation to describe the cell number increase
as done by Martin et al. (2009) who performed experiments to understand
the interactions of cell competition and growth in the Drosophila wing disc.
Our mechanistic model yields the emergent behavior of saturating cyst growth
that could alternatively be obtained by using a logistic equation.

We did not include signaling pathways for cAMP activation as the focus of this
study was on the different mechanisms for saturation of lumen volume. It is
suggested that cAMP-dependent Cl− channels may also stimulate cell prolifer-
ation via the ERK pathway (Yamaguchi et al., 2003). They found that under
the presence of certain inhibitors of ERK activation, cyst growth was greatly
reduced. Epithelial cell function can be modulated by the activation, via extra-
cellular ATP, of surface receptors such as the P2Y receptor. They concluded
that stimulation of P2Y receptors by extracellular ATP increased the growth
of cysts via a cAMP-dependent activation of the ERK pathway. However, Li
et al. (2004) found that forskolin, a cAMP agonist, known to stimulate the
proliferation of ADPKD epithelial cells, failed to stimulate cell proliferation of
MDCK cells. One possible explanation, which they put forward, is that their
MDCK cells endogenously produce high levels of intracellular cAMP such that
further stimulation by forskolin fails to increase cell proliferation. However, on
further observations, they find this not to be the case. Instead, they find their
cells to be similar to human kidney cortex epithelial cells where cAMP either
has no effect or inhibits cell proliferation. cAMP may stimulate fluid secre-
tion in two ways (Tanner et al., 1992). If it causes a rise in the intracellular
pH, the chloride-bicarbonate exchanger may be activated. Secondly, it may in-
crease chloride conductance of the membrane leading to higher fluxes of ions
into the lumen. The generality of our model can be adapted to include these
cell-specific ion transport mechanisms, which can be used to study the specific
causes of ADPKD.
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Our present analyses reinforces the importance of ion transport in size regula-
tion. Therefore, attempts to manipulate ion channels in in vitro experiments
of cyst growth would be instructive. In this present study, we increased the
Cl− conductance, gCl, and found that this increased the saturation volume
of the lumen. We found that the increased saturation volume was due to a
higher cell proliferation rate. The effect of increasing the Cl− conductance
was to increase the rate of volume change only slightly. However, this initial
slight increase in lumen volume, due to increased Cl− influx, affected the cell
proliferation dramatically. It is this second phase of lumen growth, due to cell
proliferation, that causes the lumen volume to saturate at a higher value. We
varied the Cl− conductance, gCl. Alternatively, we could also have varied the
open probability of the channel, which in this model is also constant. There-
fore, this model can be modified to include intracellular signaling pathways or
voltage dependencies that affect the Cl− conductance or by including gating
mechanisms that control the open probability of the Cl− channel.

We included stretch-regulation of cell proliferation. This has been studied
theoretically by Shraiman (2005) who proposed that the dependence of the
rate of cell proliferation could provide a feedback mechanism back to itself, in
order to stabilize uniform growth. Hufnagel et al. (2007); Aegerter-Wilmsen
et al. (2007) proposed models of Drosophila wing imaginal disc growth under
the control of mechanical forces. These models account for observations such
as uniform growth and both models propose that compression in the center of
the disc leads to termination of disc growth. Nienhaus et al. (2009) studied the
connections between mechanical stress, growth control and morphogenesis by
applying a method of stress-birefringence, which can be considered as maps of
mechanical stress, to the wing imaginal disc of Drosophila. They found that
the stresses are inhomogeneously distributed in the wing disc, with maximum
stress in the center of the disc. Their results are in agreement with predictions
made by both models of growth under mechanical feedback, (Hufnagel et al.,
2007; Aegerter-Wilmsen et al., 2007).

We investigated changes to the cell proliferation rate by modifying the value
of γd, the net contribution of stretch-independent cell proliferation and cell
loss (by death of movement out of the monolayer). In the first case where γd

was set to zero, the system still saturated, though at higher lumen volume
and cell number values. The system is limited by the stretch-dependent cell
proliferation rate, which becomes zero when the cell number has increased to
cover the increased lumen surface area. In the second case, we took a negative
value for γd so that cell proliferation outweighed cell loss. Here, the system
did not saturate and this can be seen analytically as the cell number equation
now only has positive contributions.

89% of the difference in the cyst surface area is due to a higher cell number
(Tanner et al., 1995). Because the differences in the surface area mainly reflect
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the cell number, the surface area can be used to determine doubling times
of cells and Tanner et al. (1995) used this to calculate a doubling time of
approximately 50 hours. They calculated this doubling time between day 7
and day 9 after the cyst had been seeded. During this period of 48 hours, the
surface area doubled. We calculated our model doubling times and found that
the doubling time between 50 and 100 hours is 18.49 hours, between 100 and
150 hours, the doubling time is 61.76 hours and between 150 and 200 hours,
the doubling time is 190.77 hours.

We fitted our model to the experimental data of Wang et al. (1990), which were
measured at time points of days. Ferrari et al. (2008) also measured cyst lumen
volumes, focusing on earlier time points. They investigated the development of
single MDCK cells into aggregates and found that initially, the lumen volume
increases without changes in the total volume or cell number. From Fig. 6E
of their paper, it can be observed, that between 0 and 60 minutes, the lumen
volume increased from 60 μm3 to 150 μm3, a 2.5 fold increase. From 120
minutes to 240 minutes, the lumen volume increased to 480 μm3, giving a 3.2
fold increase. From our model simulations, the lumen volume increased from
401 μm3 to 5370 μm3 by 120 minutes, a 13 fold increase. From 120 minutes to
240 minutes, the lumen volume increased 1.4 times to 8000 μm3. In this second
phase, our rate of increase is comparable to that seen by Ferrari et al. (2008).
Although we did not fit such early data points, our model reproduces results
comparable to the measurements of Ferrari et al. (2008). Fitting earlier data
measurements would be a logical future step, as the initial lumen expansion
is linked to fluid secretion and as can be seen from our simulations, this phase
occurs on a very short time scale. This also would benefit from measurements
of the lumenal [Cl−], which is the main driving force for fluid accumulation.

This model is readily applicable to cyst growth in other organs or species.
Here we focused on the general mechanisms of fluid secretion and cell pro-
liferation to increase lumen size. Other parameter sets also gave the same
two-phase lumen expansion and saturation of the volume. The applicability
of the model can contribute to both the understanding and treatment of renal
cyst diseases. Even tracheal tubes, which transport oxygen, accumulate fluid
in the lumen when the tubes initially form. This fluid is then cleared later
(Lubarsky and Krasnow, 2003). Since fluid secretion is also a driving force
for tubulogenesis, the model is extendable to tube morphogenesis and devel-
opment of epithelial organs. Therefore one possible extension is the inclusion
of symmetry-breaking mechanisms for tubulogenesis. Altogether, our analysis
reinforces the importance of ion regulation for size control.
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Fig. 9. Example of a parameter convergence, shown for kp. A: Convergence plot. B:
Marginal histogram.

5 Appendix

5.1 Parameter estimation with Bayesian inference and MCMC

We use a Bayesian inference and Markov chain Monte Carlo (MCMC) (Gilks
et al., 1996) approach to fit the parameters. In the Bayesian approach, the
parameters are assumed to be random variables that follow a particular dis-
tribution. Inferences are made based on the posterior distribution of the pa-
rameters, given the data and prior information about the parameters. The
MCMC method provides a means of generating a sample from the posterior
distributions of the parameters given the data. A new realization from the pos-
terior distributions is obtained by sampling a candidate value of the parameter
from the proposal distribution. This candidate value is accepted or rejected
by comparison of the current parameter value with the candidate value by
calculating the ratio of the density at the current and candidate points. Here
we use the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings,
1970), which generates a Markov chain with equilibrium distribution from the
posterior.

We first construct the posterior probability distribution

p(q|d) ∝ p(q)p(d|q), (20)

where p(·|·) denotes a conditional probability, d is the data and q the param-
eters to be determined. The left hand of Eq. (20) is the quantity in which
we are interested. Commonly, in classical statistics, the maximum of p(q|d)
would give the set of parameters that maximizes the probability of obtaining
the observed data. This likelihood is maximized by methods such as the sim-
plex algorithm or steepest descent to obtain the parameter values that give
the maximum probability. The resulting parameters could be interpreted as
the “best” choice for those unknowns.
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By using Markov chain Monte Carlo (MCMC) techniques, we can construct
the entire distribution from which we can extract the maximum, the mean,
or any other statistical characterization required. Using these techniques, the
distribution of the Markov chain that is generated should converge to the
posterior distribution, given by Eq. (20).

The right hand side of Eq. (20) are quantities that we can calculate.

p(q): The prior, p(q) summarizes any prior information we have on the pos-
sible values of the parameters. Here we use an uninformative prior for each
of the parameters.

p(d|q): We assume that the error at each data point is Gaussian distributed
to give

p(d|q) ∝ exp

( |d̃i − di|
2σ2

)
, (21)

where the di are the experimental values at each ith time and d̃i are the
estimated values obtained from the set of parameters, q. The variance is
given by σ2 and is estimated from the data. The values for the di and σ
are given in Table 1 and the i refer to the days on which the measurements
were taken. In this case, the d̃i are the simulated lumen volumes from the
given parameters, q.

A Markov chain with equilibrium distribution p(q|d) is then generated using
the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970).
New parameter values, q′, are randomly drawn from the uniform distribution
U(q − δ, q + δ), where δ is the size of the random walk. The new candidate
parameters are accepted with probability

α = min{1, p(d|q′)p(q′)
p(d|q)p(q)

}.

If the sampling procedure converges for a particular parameter, then we con-
clude that the parameter is well-determined by the data. We can calculate the
mean and variance of the parameter distribution, giving the mean value of the
parameter, and information as to how much it can vary without compromising
the fit. An example of a fit for the parameter kp is given in Fig. 9. Fig. 9A
shows the convergence plot for kp and 9B shows the marginal histogram.
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