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Abstract 

In this work we propose a method for protein classification that combines different texture 

descriptors extracted from the 2-D distance matrix obtained from the 3-D tertiary structure of a 

given protein. Instead of considering all atoms in the protein, the distance matrix is calculated by 

considering only those atoms that belong to the protein backbone. The positive results reported in 

this paper offer further experimental confirmation that the distance matrix contains sufficient 

information for describing a protein. Moreover, we show that combining features extracted from the 

primary structure with features extracted from the distance matrix increases the performance of our 

classification system. We demonstrate this finding by comparing the performance of an ensemble of 

classifiers that uses the combined features. The classifiers used in our experiments are support 

vector machines and random subspace of support vector machines. The experimental results, 

validated using three different datasets (protein fold recognition, DNA-binding proteins recognition, 

biological processes and molecular functions recognition) along with different texture feature 

extraction methods (variants of local binary patterns, radon feature transform based approaches, and 

Haralick descriptors) demonstrate the effectiveness of the proposed approach. Particularly 
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interesting are the results in the classification of 27 types of structural properties: our proposed 

approach achieves significant improvement compared with other reported methods. 

 

Key Words: protein classification; texture descriptors; primary structure; local binary patterns; 

Radon transform; Haralick features; support vector machines. 

 

1 Introduction 

An important area of research involves finding good methods for extracting a set of features 

from a protein (Chou & Zhang, 1995). There are two general views on how extraction should be 

accomplished. Based on the wide assumption that structural features are closely related to sequence 

composition (Krissinel, 2007; Bastolla et al., 2008), one popular approach, called the indirect 

representation of protein spatial structure, extracts features from a sequence to perform 

classification. Indirect representation can be organized mainly into two types: one based on the 

statistical analysis of amino acid residues (Shi et al., 2008) and the other based on amino acid 

indices (Cai  et al., 2002; Shi et al., 2008). Probably the most famous method for extracting a set of 

features from the amino-acid sequence is Chou’s pseudo amino acid (PseAA) composition 

approach, and several variants of this method have been proposed in the literature, including 

hydropathy scales (Chou, 2005), physicochemical distance (Chou, 2000), digital code (Gao et al., 

2005), complexity factor (Xiao et al., 2005; Xiao et al., 2006b), digital signal (Xiao & Chou, 2007), 

Fourier low-frequency spectrum (Liu et al., 2005), cellular automata (Xiao et al., 2006a), and 

genetic programming (Nanni & Lumini, 2008b). As summarized in recent comprehensive reviews, 

(Chou & Shen, 2007; Chou, 2009), since the concept of pseudo amino acid composition (PseAAC) 

was proposed (Chou, 2001), it has provided a very flexible mathematical frame for investigators to 

incorporate their desired information into the representation of protein samples. According to its 

original definition, the PseAAC is actually formulated by a set of discrete numbers (Chou, 2001) as 
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long as it is different from the classical amino acid composition (AAC) and it is derived from a 

protein sequence that is able to harbor some sort of its sequence order and pattern information, or 

able to reflect some physicochemical and biochemical properties of the constituent amino acids. 

The PseAAC approach has also been widely used to deal with many protein-related problems and 

sequence-related systems (see, e.g., (Chen et al., 2009; Ding et al., 2009; Ding and Zhang, 2008; 

Fang et al., 2008; Georgiou et al., 2009; Gonzalez-Diaz et al., 2008; Jiang et al., 2008; Li and Li, 

2008; Lin, 2008; Lin et al., 2008; Lin et al., 2009; Qiu et al., 2009; Zeng et al., 2009; Zhang and 

Fang, 2008; Zhang et al., 2008; Zhou et al., 2007) and a long list of PseAAC-related references 

cited in a recent review (Chou, 2009)). As summarized in (Chou, 2009), until now 16 different 

PseAAC modes have been used to represent the samples of proteins for predicting their attributes. 

Each of these modes has its own advantage and disadvantage. Other new developments for 

predicting various protein features based on sequence information are: (Lin et al., 2009; Xiao et al., 

2008a; Xiao et al., 2008b; Xiao et al., 2009a; Xiao et al., 2009b; Xiao et al. 2009c). 

In contrast to the indirect approach is the view that features should be extracted directly from an 

analysis of the protein's spatial structure. This direct approach to feature representation can be 

grouped into three general types: one based on the spatial atom distribution (Daras et al., 2006), a 

second on its topological structure (Anne, 2004), and a third on its geometrical shape (Sayre & 

Singh, 2008).  

Generally, the indirect representation is lower in computational cost but provides a higher 

dimensional feature set whereas the direct representation is higher in computational cost but 

provides a lower dimensional feature set.  While the lower computational cost involved in the 

indirect approach is desirable, the higher dimensional representation requires the application of the 

most advanced techniques in pattern recognition, for example, building ensembles of classifiers for 

improving the performance of stand-alone methods (Chou & Cai, 2006; Sarda et al, 2005; Nanni & 

Lumini, 2006; Nanni & Lumini, 2008).  
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In this paper we apply new pattern recognition techniques to the indirect representation of 

protein features by examining texture descriptors extracted from the 2-D distance matrix of 

different protein classification datasets. We validate the use of texture descriptors by testing many 

variants of state-of-the-art texture descriptors. In particular, we examine variants of the well-known 

local binary patterns. Our experiments show that the best performance is obtained when the idea of 

dominant local binary patterns (DLB) (Liao et al., 2009) is combined with local ternary patterns 

(LTP) (Tan & Triggs, 2007). With DLP, the most frequent rotation invariant patterns are selected. 

LTP is proposed for obtaining a noise robust texture descriptor. It is based on encoding the gray 

level difference d between a pixel x and its neighborhood u by 3 values. 

A further improvement of performance is obtained by employing a “supervised” random 

subspace of classifiers where each bin of the histogram has a probability of belonging to a given 

subspace according to its occurrence frequencies in the training data (Nanni et al., 2009). Another 

approach for improving classification performance is to extract the texture descriptors not only from 

the whole distance matrix but also from some selected sub-windows. 

In addition to investigating the performance of various texture descriptors, we build on the idea 

that descriptors based on different extraction notions give complementary information. We do this 

by combining a direct (Chou’s amino acid) descriptor with an indirect representation (protein 

spatial structure features extracted from the distance matrix) using the sum rule. Our investigation 

shows that the classifiers trained with features extracted from the amino-acid sequence are partially 

independent to the classifiers trained with features extracted from the distance matrix. The 

experimental results show that the proposed ensemble of classifiers combining direct and indirect 

descriptors outperforms stand-alone approaches. 

The fusion approaches are a well known technique for improving the performance of the stand-

alone methods, remarkable successes of using fusion approaches are: (Chou and Shen, 2008b) 

protein subcellular location prediction, (Chou and Shen, 2008a) protease type prediction, (Chou and 
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Shen, 2009b; Shen et al., 2009) protein folding rate prediction, (Chou and Shen, 2007b) signal 

peptide prediction, (Chou and Shen, 2007a) membrane protein type prediction.  

The remainder of this paper is organized as follows. In section 2, we introduce our proposed 

approach and the feature extraction methods investigated in this paper. In section 3, we report 

experimental results obtained on three benchmark databases. Finally, in section 4, we summarize 

results and draw a few conclusions. 

 

2 Proposed approach 

One objective in this work is to explore new methods for extracting features from the distance 

matrix that works well on several benchmark datasets. In addition, we want to investigate fusion 

using a standard method for extracting features from the primary sequence of the protein. The 

protein descriptor used in our experiments is Chou’s well-known pseudo amino acid descriptor 

(Chou, 2005). 

In (Shi & Zhang, 2009), the authors show that Haralick features and the Radon transform 

produce a good texture descriptor for the distance matrix. In this paper, we compare several variants 

of the LBP, which we use as a new texture descriptor. We demonstrate that it is well suited for the 

distance matrix. 

To improve performance further, we use a random subspace of support vector machines as the 

classifier, and we extract the features not only from the whole distance matrix but also from the II, 

III, and IV quadrant of the whole image (see figure 1). For each image a different classifier is 

trained and the results are combined using the sum rule. 
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Figure 1. Subwindows of the whole distance matrix. 

 

In addition we explore using a random subspace of support vector machine where the features 

are the following: dominant local ternary patterns (LTP), Haralick features, Radon transform, and 

discrete cosine transform (Radon+DCT), and Chou’s amino acid sequence descriptor.  

 

 

Figure 2. Proposed system for protein classification 

 

Quadrant II  

Quadrant III  

Quadrant I  

Quadrant IV  
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The architecture of our best performing system (random subspace of support vector machines) 

is presented in figure 2.   

A general description of each step in our classification experiments is provided below.   

 

2.1 Extracting features from the distance matrix of the protein backbone 

Protein is a composite of 20 types of amino acid residues. Various physicochemical properties 

and different counts and sequenced orders of these residues are the keys for deciding and producing 

the diversity of protein spatial structures. Unfortunately, how these keys work together is not fully 

understood. This fact brings out the difficulty of describing, analyzing, and characterizing protein 

structure. Instead of considering all atoms, many researchers use the Cα atoms of protein to 

characterize the whole protein structure. This protein backbone reflects the topology and the folding 

of protein (Taylor & Orengo, 1989). An effective representation of the backbone is the distance 

matrix (DM). It contains sufficient information of the proteins structure as the original 3D backbone 

structure can be reconstructed from DM using distance geometry methods (Timothy et al., 1983).  

Given a protein Pi as first step we need to extract its backbone: it is described as a vector 

{ },1 ,2 ,, , ,i i i
i NB α α α= Coor Coor Coor , where ,

i
nαCoor is coordinates vector of the nth Cα atom. The 

distance matrix is defined as the matrix ( ) ( ){ }, ,, ,i i
i p qDM dm p q dist α α= = Coor Coor where ( )dist ⋅ is 

simply the Euclidean distance between the two set of coordinates (considered as a vector) and 

1 ,p q N≤ ≤ .1 

Since DM maintains sufficient 3-D structural information, similar protein backbones are 

expected to have such distance matrices with similar properties. In our model, DM is regarded as a 

grayscale image.  It is interesting to note that features extracted from DM are invariant to rotation 

and translation. 

 

                                                 
1 The matlab code for extracting the distance matrix is available at http://bias.csr.unibo.it/nanni/DM.zip 
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2.2 Dominant Local ternary patterns 

The basic idea of LBP is to examine the joint distribution of gray scale values of a circularly 

symmetric neighbor set of P pixels around a pixel x on a circle of radius R. The LBP histogram  of 

dimension N (usually N=P+2) is obtained considering all the pixels of a given image. The 

difference d between x and its neighborhood u is encoded by 2 values:  

 

 

A pattern that contains at most two bitwise 0 to 1 or 1 to 0 transitions (circular binary code) is 

called uniform patterns (e.g., 11111111, 00000110 or 10000111 are all uniform patterns). In 

uniform LBP only these distributions are considered in the histogram (where a single bin contains 

all the non-uniform patterns). 

In (Liao et al., 2009), better performance (compared with using the uniform patterns) is 

obtained when the patterns that represent K% (K=90% in their work) of the whole pattern 

occurrences in the training data are selected.  To make LBP more robust to noise, (Tan & Triggs, 

2007) used Local Ternary Patterns (LTP). In LTP the difference d between x and its neighborhood 

u is encoded by 3 values according to a threshold τ (here τ=3):  1 if u ≥ x + τ ; -1 if u ≤ x – τ ; else 

0. The ternary pattern is then split into two binary patterns by considering its positive and negative 

components. The histograms that are computed from the binary patterns which are concatenated to 

form the feature vector.  

In our experiments, we obtain the best performance by combining the idea of dominant LBP 

with LTP. For this purpose, we modify the original LBP code found at http://www. 

ee.oulu.fi/mvg/page/lbp_matlab2.  

                                                 
2 we have extracted the uniform patterns with getmapping011(16,'riu2') while for dominant LBP/LTP we use 
getmapping011(16,'u2’) 
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Furthermore, when we use dominant LTP as feature extractor, we do not use the standard 

random subspace method but rather a “supervised” approach. The standard random subspace 

method (Ho, 1998) modifies the training dataset by generating K (where K=100 in this paper) new 

training sets containing only a random subset of 60% of the features. Classifiers are then trained on 

these modified training sets. In “supervised” random subspace, each feature is not randomly 

selected but has a probability of being chosen that is based on the occurrence frequencies in the 

training data. Given xi, the sum of the occurrence frequency of the i-th bin of the histogram in the 

training data, the probability of the i-th bin to be chosen is given by xi/∑i xi. In “supervised” random 

subspace, the scores of the set of classifiers are combined using the sum rule. 

It should be noted that the “supervised” random subspace method is only used with the 

dominant LBP/LTP features. When random subspace is coupled with other texture descriptors, the 

standard random subspace is used. 

2.3 Radon transform   

This feature extraction method is performed by selecting the first discrete cosine transform 

(duda et al., 2001) coefficients from the Radon Transform of the image (Kourosh & Hamid, 2005). 

The Radon transform is the projection of the image intensity along a radial line oriented at a 

specific angle (in this paper we use an angle of 45°). We have also tested other methods for 

selecting discrete cosine coefficients3 (DCT), e.g., the coefficients with higher variance in the 

training set and the “discriminative power” method proposed in (Dabbaghchian & Ghaemmaghami, 

2009). But in our tests, the best performance is obtained by selecting the first discrete cosine 

coefficients. In figure 3 an example of this feature extraction is reported. 

 

 

 

 

                                                 
3 For both Radon and DCT we have used the official matlab function (radon.m and dct.m) 
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Figure 3. Radon+DCT feature extraction. 

 

Distance matrix  

Radon  transform  
for 45 degrees. 

DCT transform of 
the Radon 
coefficients 
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2.4 Haralick texture features   

The Haralick texture features descriptor was proposed 30 years ago by (Haralick, 1979). It is 

based on the spatial gray level dependence matrices (SGLD), or co-occurrence matrix. Given an 

image with N gray levels, the SGLD matrix at angle θ is a matrix of size N×N. Each element in the 

matrix is a count of the total number of pairs of gray levels i and j at a distance d along the direction 

θ. 

Thirteen features are calculated4 from a SGLD matrix at a fixed angle θ: energy, correlation, 

inertia, entropy, inverse difference moment, sum average, sum variance, sum entropy, difference 

average, difference variance, difference entropy, and two information measures of correlation.  

In this work we test two different feature sets extracted using the Haralick’s method: 

• HARA1, concatenation of the Haralick features extracted by considering two angles ( 0° 

and 90°), with d=1; 

• HARA3, concatenation of the features extracted by considering four angles (0°, 45°, 

135° and 90°5), with d=1; 

 

2.5 Chou's pseudo amino acid composition (PseAA) 

In (Zeng  et al., 2009) a sequence-based algorithm combining the augmented Chou's pseudo 

amino acid composition based on auto covariance is presented. A set of pseudo amino acid based 

features are extracted from a given protein as the concatenation of the 20 standard amino acid 

composition values and m (where m=20) values, reflecting the effect of sequence order (where m is 

a parameter denoting the maximum distance between two considered amino acids i,j): 

 

                                                 
4 Implemented as in Haralick Texture Features Matlab Toolbox v0.1b shalinig@ece.utexas.edu - 
www.bme.utexas.edu/reasearch/informatics 
5 Notice that it is the same as 0 degree to subwindow II and IV 
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where A(k) denotes the index of the amino acid in the kth position of the protein, Len is the 

length of the protein, d denotes the selected physicochemical property, and the function index(i,d) 

returns the value of the property d for the amino acid i.  

Md and Vd are normalization factors denoting the average and the variance of the 

physicochemical property d on the 20 amino acids: 

 

 

We create 50 different Chou's pseudo amino acid feature vectors using 50 different 

psychochemical properties extracted from the AAindex (Kawashima & Kanehisa, 2000). For each 

Chou's pseudo amino acid feature vector a different support vector machine is trained. These 50 

classifiers are then combined using the sum rule. 

 

2.6 Classification system 

For the classifier, we have used the well-known support vector machine (SVM) (Cristianini & 

Shawe-Taylor, 2000). It is a two class classifier which aims at finding the hyperplane that separates 

the training patterns of two classes by maximizing the distance between the hyperplane and the two 

classes. When it is not possible to find a linear decision boundary, a kernel function can be used to 

project the data onto a higher-dimensional feature space where a hyperplane separating the two 

classes can be found. Some typical kernels used in SVM include polynomial kernels and radial 

basis function kernels. It should be noted that the features used for training SVM are linearly 

normalized to [0 1]. In our work we use the OSU matlab toolbox 

(http://sourceforge.net/projects/svm/). 
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SVM-based machine learning algorithm was used in predicting protein subcellular location 

(Chou and Cai, 2002), membrane protein type (Cai et al., 2003a; Cai et al., 2004a), protein 

structural class (Cai et al., 2002a), specificity of GalNAc-transferase (Cai et al., 2002b), HIV 

protease cleavage sites in protein (Cai et al., 2002c), beta-turn types (Cai et al., 2002d), protein 

signal sequences and their cleavage sites (Cai et al., 2003b), alpha-turn types (Cai et al., 2003c), 

catalytic triads of serine hydrolases (Cai et al., 2004b), B-cell epitope prediction (Chen et al., 2007). 

 

3 Datasets 

All experiments were performed using the following datasets: Protein fold recognition, DNA-

binding proteins, and the GO dataset.  Each of these datasets and the testing protocols are briefly 

described in this section. 

 

3.1 Protein fold recognition (FOLD)  

The fold database used in our experiments is derived from the work of (Ding and Dubchak, 

2001). It contains a training set and a testing set that contain 313 and 385 proteins. The sequence 

similarities are less 35% and 40% respectively, and the class numbers are both 27. The training set 

is used to build the classifier models, and we independently used the testing set to evaluate 

performance as this testing protocol is widely used in the literature for this dataset. The whole 

database can be downloaded from http://ranger.uta.edu/~chqding/protein/. Some sample of distance 

matrices extracted from the proteins of this dataset are reported in figure 4. 
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Figure 4. Examples of different classes of the FOLD dataset. 

 

3.2 DNA-binding proteins (DNA) 

This is the dataset is reported in (Fang et al., 2008) and contains 118 DNA-binding Proteins 

and 231 Non-DNA-binding proteins. These proteins have less than 35% sequence identity between 

each pair. DNA-binding proteins are proteins that are composed of DNA-binding domains and thus 

have a specific or general affinity for either single or double stranded DNA. Sequence-specific 

DNA-binding proteins generally interact with the major groove of B-DNA. 

Some sample of distance matrices extracted from the proteins of this dataset are reported in 

figure 5. For this database we used the ten-fold cross validation protocol. 

 

 

 

 

 

 

 

 

 

 

1ash.pdb 1c53.pdb
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a) Binding class 

                                    

b) Non-binding 

 

Figure 5. Examples of different classes of the BINDING dataset. 

 

3.3 GO dataset (GO) 

This dataset was reported in (Nanni et al., 2009b). It was created by collecting proteins 

according to GO annotations, distinguishing between the biological processes “immune response” 

(33 proteins), “DNA repair” (43 proteins), and between the molecular functions “substrate specific 

transporter activity” (39 proteins)  and “signal transducer activity” (53 proteins). The presence of 

highly similar proteins in the same class was avoided by removing sequences having more than 

30% identity. We randomly extracted 20% of the proteins for building the testing set, and this 

procedure was repeated 50 times. The results were then are averaged. 

Some sample of distance matrices extracted from the proteins of this dataset are reported in 

figure 6. 

1a1h.pdb 1crz.pdb 

1a8e.pdb 1alh.pdb
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    a) immune        b) DNA repair   c) substrate    d) signal 

Figure 6. Examples of different classes of the GO dataset. 

 

 

4 Experimental results 

Performance is evaluated using the area under the Receiver Operating Characteristic (ROC) 

curve. The area under the ROC curve (AUC6) (Fawcett, 2004) is a scalar measure to evaluate 

performance which can be interpreted as the probability that the classifier will assign a higher score 

to a randomly picked positive sample than to a randomly picked negative sample. In the GO 

dataset, which is a four class problem, the AUC is calculated using the one versus all approach (a 

given class is considered as “positive” and all the other classes are considered as “negative”) and 

the average AUC is reported. 

In the following tests, Table 1, the AUC is reported as obtained using the following methods: 

• (Shi & Zhang, 2009), the method reported in (Shi & Zhang, 2009), where few selected 

Radon features and Haralick feature are extracted from the distance matrix; 

• PSEAA, the Chou's pseudo amino acid composition method explained in section 2.5; 

• LBP, standard LBP with P=16 and R=2, the entire DM is used; 

• LTP, standard LTP with P=16 and R=2, the entire DM is used; 

• DLBP, dominant LBP with P=16, R=2 and K=90%, the entire DM is used; 

                                                 
6 EUC is implemented as in dd_tools 0.95 davidt@ph.tn.tudelft.nl 

1iqa.pdb 1b22.pdb 1lwt.pdb 1bg1.pdb
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• DLTP, dominant LTP with P=16, R=2 and K=90%, the entire DM is used; 

• RS-DLTP, a random subspace of DLTP, the entire DM is used; 

• MI DLTP, fusion of four DLTPs, one extracted from the entire DM and the others 

extracted from three sub-windows of the DM; 

• MI(RS-DLTP), fusion of four RS-DLTPs, one extracted from the entire DM and the 

others extracted from three sub-windows of the DM; 

• RADON+DCT, the descriptor described in section 3.3, the entire DM is used and the 

first 20 DCT coefficients are retained; 

• RS-RADON+DCT, the random subspace version of RADON+DCT; 

• MI(RS-RADON+DCT), fusion of four RS-RADON+DCT, one extracted from the entire 

DM and the others from three sub-windows of the DM. The first 20 DCT coefficients 

are retained when the DM is used but with the sub-windows the first 10 coefficients 

are retained; 

• HARA1, the descriptor described in section 3.4, only the entire DM is used; 

• HARA3, the descriptor described in section 3.4, only the entire DM is used; 

• MI(HARA3), fusion of four HARA3, one extracted from the entire DM and the others 

from three sub-windows of the DM. 

 

• In each cell of  table 1 when the texture descriptors are used, there are two values: the first is 

the AUC obtained when the original distance matrix is used, and second, a value between 

parenthesis, is the AUC obtained when the matrix is resized to 100×100 before the feature 

extraction step. Also, for MI(RS-DLTP) and MI HARA3, we use the images resized to 

100×100 before the feature extraction step, while for MI(RS-RADON+DCT) we use the 

original images. 
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DATASETS 
 

FOLD BINDING GO 
PseAA 51.95 90.96 69.53 
(Shi & Zhang, 2009) 72.99 88.86 55.34 
LBP 56.88 (50.91) 74.15 (73.82) 56.9 (55.7) 
LTP 61.56 (56.62) 75.57 (72.20) 60.2 (56.5) 
DLBP 58.96 (55.84) 69.47 (83.67) 59.1 (59.3) 
DLTP 68.57 (67.01) 78.23 (83.90) 61.7 (60.2) 
RS-DLTP 69.87 (65.19) 76.82 (76.91) 60.5 (61.0) 
MI DLTP 70.91 (69.87) 79.53 (84.38) 61.1 (61.1) 
MI(RS-DLTP) 72.99 (75.58) 75.72 (82.00) 62.7 (62.2) 
RADON+DCT 62.60 (52.21) 73.79 (73.76) 51.1 (51.1) 
RS-RADON+DCT 65.45 (52.99) 74.48 (78.79) 53.5 (54.1) 
MI(RS-RADON+DCT) 71.17 (65.97) 79.29 (78.11) 55.21 (53.9) 
HARA1 48.57 (50.39) 88.88 (85.09) 52.02 (62.99) 
HARA3 57.14 (58.70) 88.21 (85.44) 55.85  (61.05) 

FE
AT

U
RE

 E
XT

RA
C

TI
O

N
 

MI HARA3 70.91 (71.69) 88.41 (87.32) 61.73 (61.10) 
 
 

Table 1. Comparison among different methods. 

 

From the results reported in table 1, the following conclusions can be drawn: 

• Using the three sub-windows of the DM improves performance; 

• The dominant LTP with the LBP/LTP texture descriptor works well in this particular 

application--the standard LBP/LTP obtains the worse performance; 

• The features used in (Shi & Zhang, 2009), a set of selected Haralick features and moments 

extracted from the Radon coefficients, works particularly well in the BINDING dataset and 

well enough in the FOLD dataset. In these datasets the structural configuration of the 

proteins is very important. We want to stress the low performance of PSEAA in the FOLD 

dataset. The GO dataset the features of (Shi & Zhang, 2009) works poorly probably because 

of the low performance of the Radon based features in this difficult dataset. 
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Notice that in our work we do not perform any feature selection. We prefer to use longer 

feature vectors since the feature selection could be dataset dependent. In our work we want to 

propose a general method that works well on several datasets. If a training set is used to select a set 

of features for a particular dataset, the performance would likely be improved. 

 

In table 2, we report some tests performed for optimizing the parameters of the texture descriptors, 

as follows: 

• Different values for the parameters τ and K of dominant LTP; 

• MULTIRES, a combination between a dominant LTP with  P=16 and R=2 and P=8 and R=1, 

both with  τ=3; 

• R X-Y, is the MI(RS-RADON+DCT) method where the first X coefficients are extracted from 

the entire DM, and the first Y coefficients are extracted from the sub-windows of DM.  

• MI HARA3 d=X, is the method MI HARA3 where we change the value of the parameter d. 
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DATASETS 
 

FOLD BINDING GO 
τ=3 K=90% 75.58 82.00 62.20 

τ=1 K=90% 70.17 79.67 59.24 
τ=5 K=90% 74.03 81.56 60.37 
τ=3 K=80% 72.99 77.80 60.52 

τ=3 K=85% 74.55 80.28 60.62 

τ=3 K=95% 74.81 83.75 62.07 

MULTIRES 73.25 80.78 61.31 
R 25-10 71.17 79.29 55.21 
R 40-20 70.65 81.06 59.95 
R 15-5 66.23 80.27 51.60 
MI HARA3 d=1 71.69 87.32 61.10 
MI HARA3 d=2 72.47 85.25 63.64 

PA
RA

M
ET

ER
S 

MI HARA3 d=3 74.03 82.98 62.76 
 

Table 2. Parameters optimization. 

 

From the results reported in table 2, it is clear that the best configurations are R 40-20 for 

RADON+DCT, d=1 for MI HARA3, and τ=3 and K=90% for dominant LTP. 

Finally, we report the results of the following fusions by sum rule (notice that before the 

fusion the scores of each classifier are normalized to a mean of 0 and a standard deviation of 1): 

• FUS1, fusion by sum rule among MI(RS-DLTP), MI(RS-RADON+DCT) and MI HARA3; 

• FUS2, fusion by weighted sum rule among MI(RS-DLTP), MI(RS-RADON+DCT) and MI 

HARA3. The weights of MI(RS-DLTP) and MI(RS-RADON+DCT) are 0.25, while the 

weight of MI HARA3 is 1; 

• FUS3, fusion by sum rule among PSEAA, MI(RS-DLTP), MI(RS-RADON+DCT) and MI 

HARA3; 

• FUS4, fusion by weighted sum rule among PSEAA, MI(RS-DLTP), MI(RS-Radon+Dct) and 

MI HARA3. The weight of PSEAA is 5, while the weights of the other methods are 1. 
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Method FOLD BINDING GO 
FUS1 80.78 87.97 64.44
FUS2 76.62 89.41 63.59
FUS3 81.04 91.06 69.16
FUS4 64.68 92.16 71.53

 
Table 3. Fusion approaches. 

 

 

Looking at table 3, it is clear that the best approach is different for the FOLD dataset and for 

the BINDING/GO dataset. This is due to the different performance of PSEAA. It works better than a 

texture descriptor in the general classification problems in the BINDING or GO dataset but works 

worst in the structural classification problem (where the features extracted from the distance matrix 

work very well). Obviously, in this particular problem, the structural classification using the 

distance matrix brings more information than the amino-acid sequence.  

FUS3 obtains the best performance in the FOLD dataset, while in the BINDING/GO dataset 

the best performance is obtained by FUS4 (where PSEAA has an higher weight). 

The results also suggest that some ad-hoc fusion methods should be studied independently in 

each dataset. For example, in the BINDING dataset fusion by sum rule between MI HARA3 and 

PSEAA (the two best descriptors in that dataset) obtains an AUC of 92.52. If in the BINDING 

dataset, we combine using sum rule MI HARA3, PSEAA and (Shi & Zhang, 2009), we obtain an an 

AUC of 93.58. 

 

In order to validate the effectiveness of the presented method, we compare it with several 

methods in different literatures all of which used the same benchmark data sets and the same testing 

protocol of original paper (Ding & Dubchak, 2001), it is the dataset named FOLD in this work. The 

comparison is listed in Table 4. (Ding & Dubchak, 2001) proposed six kinds of features denoted by 



Acc
ep

te
d m

an
usc

rip
t 

22 
 

C,S,H,P,V and Z respectively. Letter C is just the popular amino acid composition, while the left 

five letters indicate the features of Polarity, Polarizability, Normalized Van Der Waals volume, 

Hydrophobicity and Predicted secondary structure respectively. (Chinnasamy et al., 2005; Shi et al., 

2006) are based on the same features CSHPVZ but different classifier systems. (Huang et al., 2003) 

combines CSHPVZ with bigram-coded feature (B) and spaced bigram-coded feature(SB), (Lin et 

al., 2007) does the same work as (Huang et al., 2003) but improves the classifier system by the 

technique of data fusion. 

Method Accuracy (%) 
(Ding & Dubchak, 2001) 56.50 
(Chinnasamy et al., 2005) 58.18 

(Shi et al., 2006) 61.04 
(Huang et al., 2003) 65.50 

(Lin et al., 2007) 69.60 
(Shi & Zhang, 2009) 72.99 

FUS3 81.04 
 

Table 4. Other comparisons in the FOLD dataset. 

 

The results reported in table 4 demonstrate that our proposed system (FUS3) outperforms 

other methods with the highest accuracy of classification. 

 

 

4. Conclusion and Discussion 

This paper focused on the study of texture descriptors for training an ensemble of machine 

learning algorithms for protein classification. The texture descriptors are extracted from the 2-D 

distance matrix obtained from the 3-D tertiary structure of a given protein. 

Based on an analysis of prior research, we propose a new method based on a fusion of three 

texture descriptors and on the pseudo Chou’s amino acid descriptor. Moreover, to improve the 
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performance, we extract the texture descriptors not only from the entire distance matrix but also 

from some selected sub-windows. 

The ensemble proposed in this work has been tested on three datasets. The experimental 

results show that the proposed ensemble of classifiers outperforms stand-alone approaches. 

Particularly interesting are the results in the classification of 27 types of structural properties. 

The best practical finding revealed in this work is that texture descriptors extracted from the 2-

D distance matrix and amino acid descriptors should be combined to obtain a very reliable method 

of classification.  

As further future work we want to test more texture descriptors, some preliminary tests have 

shown interesting results. We have tested: an holistic method based on the neighborhood preserving 

embedding method (NPE)7 (He et al., 2005), which is a subspace learning algorithm aimed at 

preserving the global Euclidean structure of the space, obtaining a 40% accuracy in the FOLD 

dataset; a recent Gabor based descriptors (Guo et al., 2009) obtaining a 66% accuracy in the FOLD 

dataset. Both these results are obtained considering also the sub-windows of the distance matrix and 

the random subspace as classifier. 

Since user-friendly and publicly accessible web-servers represent the future direction for 

developing practically more useful predictors (Chou and Shen, 2009a), we shall make efforts in our 

future work to provide a web-server for the method presented in this paper. 
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