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Eradication-resolution dynamics with stochastic flare-ups

Hugo A. van den Berga,∗, Zoe A. Duncombea

aMathematics Institute, University of Warwick, Coventry CV4 7AL UK

Abstract

In infectious disease as well as in cancer, the ultimate outcome of the curative response, mediated by the

body itself or through drug treatment, is either successful eradication or a resurgence of the disease (“flare-

up” or “relapse”), depending on random fluctuations that dominate the dynamics of the system when the

number of diseased cells has become very low. The presence of a low-numbers bottle-neck in the dynamics,

which is unavoidable if eradication is to take place at all, renders at least one phase of the dynamics essen-

tially stochastic. However, the eradicating agents (e.g. immune cells, drug molecules) generally remain at

high numbers during the critical bottle-neck phase, sufficiently so to warrant a deterministic treatment. This

leads us to consider a hybrid stochastic-deterministic approach where the infected cells are treated stochas-

tically whereas the eradicating agents are treated deterministically. Exploiting the fact that the number of

eradicating agents typically decreases monotonically during the resolution phase of the response, we derive

a set of coupled first-order differential equations that describe the probability of ultimate eradication as a

function of the system’s state, and we consider a number of biomedical applications.

Keywords: Cancer, Infection, Eradication, Extinction bottleneck, T cells, Stochastic processes

1. Introduction

Eradication-resolution dynamics occurs whenever a proliferative disease is being cleared by an agent that

is diminishing in numbers. For example, in cancer therapy with immunostimulatory monoclonal antibodies,

the antibodies mediate a connection between tumour cells and immune effector cells, and are thus destroyed

as the cancer is being eradicated (Bargou et al. (2008); Hudis (2007); Melero et al. (2007)), whereas in a

T cell response against a viral infection, the number of T cells drops as the infection is being eradicated

(Badovinac et al. (2002), Van den Berg and Kiselev (2004); Harty and Badovinac (2008)). Such eradication-

resolution processes are characterised by a dichotomy of outcomes: the disease may be successfully erad-

icated, or it might escape, “flaring up” after an initial decrease. This behaviour is illustrated qualitatively

in Fig. 1. Starting with a sufficient dosage of the anti-cancer drug, the tumour size initially drops and then

increases again as the amount of drug remaining in the system steadily falls (Bargou et al. (2008)). On a

deterministic treatment of the problem, the ultimate outcome is always a relapse of the cancer following a

temporary remission (Fig. 1, left panel; equations are given below in Section 3.2). For some trajectories, the

size of the tumour passes through a minimum that corresponds to just a few cells (or even less than one cell;

this is the infamous “attofox” effect). Clearly, the deterministic treatment breaks down at low numbers of

tumour cells. Moreover, whether eradication occurs or not depends critically on stochastic effects.
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Figure 1: Phase portraits of deterministic examples of eradication-resolution dynamics.

A slightly more complex example is shown in the right panel of Fig. 1 (equations are given and discussed

in Section 3.3). Here, both outcomes are possible even in a deterministic treatment: the phase plane is divided

into two regions, one in which ultimate eradication is certain and one in which ultimate flare-up is certain.

The regions are separated by a critical trajectory which serves as separatrix (the heavy line in Fig. 1). Again,

stochastic fluctuations become important as the number of infected cells approaches low numbers, and the

probability of eradication would not be expected to jump crisply from 0 to 1 at the deterministic separatrix.

In both examples, it appears that the appropriate approach is to associate with each point in the phase

plane the probability that a stochastic trajectory starting at this point will result in eradication. This is a

problem of immediate medical interest: when confronted with a tumour mass of a given size, the clinician

wants to know the minimal dose that corresponds to a pre-determined likelihood of success. Thus, the

evaluation of eradication probabilities from the extent of the disease and a proposed dosage of eradicating

agent is central to rational design of treatment.

More realistic deterministic models of tumour growth (including e.g. spatial effects of diffusion limita-

tion and vascularization), its induced immune response (including e.g. delays in response and clonal expan-

sion), and medical treatment (which may act directly or via immune manupulation) exhibit a richer range

of dynamic behaviours (e.g. Araujo and McElwain (2004); de Pillis et al. (2005); Sachs and Hlatky (2010)).

Of concern here is the ultimate behaviour of such dynamics, which may be a non-zero equilibrium for the

tumour, or some sort of cycling behaviour. In the latter case, the upstrokes of the cycling may be viewed as

flare-ups, or the amplitude of the cycle may be small enough that the behaviour is best regarded as oscilla-

tions about a non-zero value. But then, from a stochastic point of view, either eradication or flare-up will

still be almost certain to occur at some point in time. Of course, as the tumour equilibrium size increases, the

probability that either eradication or flare-up occurs during the lifetime of the subject becomes vanishingly

small, and thus the need to incorporate a stochastic treatment disappears as well. It is with these caveats in

mind that tumour dynamics is regarded as an instance of eradication-resolution dynamics with two possible

eventual outcomes.

This paper considers the stochastic treatment of eradication-resolution dynamics and, in particular, the

calculation of the eradication probability as a function of initial conditions. The method outlined in Sec-

tion 2 exploits a typical feature of eradication-resolution systems, viz. that the stochasticity near the point of

eradication is almost entirely due to the disease component (cancer cells, infected cells, virions etc.), while

the eliminating agents (antibodies, drug molecules, T cells etc.) remain present at numbers that warrant a

mean-field approach. This motivates a hybrid stochastic-deterministic dynamical system, where the low-
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numbers component is treated stochastically and the high-numbers component is treated deterministically.

The approach is illustrated in the case of a number of typical biological examples in Section 3. A natural

extension is considered in Section 4.

2. Eradication probability flow

Deterministic eradication-resolution dynamics can be represented in a fairly general setting by the fol-

lowing system of ordinary differential equations:

d
dt

x =−μg(x,N)x (1)

d
dt

N = ρh(x,N)N−ϑ f (x,N)x (2)

where x is the eradicating agent, N is the number of pathogenic entities, μ , ρ , and ϑ are positive parameters,

and g, h, and f are ”functional response” functions, dimensionless multipliers taking values in the inter-

val [0,1], with the stipulation that g(x,N) �= 0 whenever N > 0; thus μ , ρ , and ϑ are maximum specific rates

of, respectively, agent decay, disease spreading, and eradication. A pair (x(t),N(t)) is called an eradication
solution if it satisfies equations (1) and (2) and N(t)→ 0 as t →∞, whereas (x(t),N(t)) is a flare-up solution
if it satisfies equations (1) and (2) and limt→∞ N(t) > 0.

On the deterministic approach, x and N are both non-negative real numbers. However, since eradication

requires that N pass at least once through a stage where N ∼ 1, a deterministic treatment is not justified.

Also, the deterministic system may not even admit an eradication solution. Accordingly, equation (2) is

replaced by a continuous-time Markov chain, with N ∈ {0,1,2, . . .} and event rate ρh(x,N)N + ϑ f (x,N)x
for increment/decrement events (N → N± 1). The problem is to characterise the function PN(x), which is

the probability of ultimate eradication if the system is started in the state (x,N). The eradication function is

determined by the dynamics together with the following boundary conditions:

P0(x) = 1 for x≥ 0 ; (3)

PN(0) = 0 for N ≥ 1 . (4)

It is assumed that the agent variable x corresponds to a sufficiently large number of entities to warrant a

deterministic treatment (this may not be strictly valid for flare-up solutions in which x tends to zero as

t → ∞; however, the behaviour of x in such cases is not qualitatively important, since N will have passed its

low-numbers bottle-neck in the long-time limit).

Let z = x−1 and P(z,N)≡ PN(x), so that

d
dt

z = μg(z−1,N)z (5)

By the above assumptions, for fixed positive N, z is a monotone increasing function of t, which allows us to

use replace t in the continuous-time Markov chain by z. Noting that

P{N remains constant during an interval of duration δ t}
= exp{−(ρh(z−1,N)N +ϑ f (z−1,N)z−1)δ t}

.= 1− (ρh(z−1,N)N +ϑ f (z−1,N)z−1)δ t

.= 1− ρh(z−1,N)N +ϑ f (z−1,N)z−1

μg(z−1,N)z
δ z (6)
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we have, by a straightforward application of the law of total probability,

P(z,N) .=
(

1− ρh(z−1,N)N +ϑ f (z−1,N)z−1

μg(z−1,N)z
δ z

)
P(z+δ z,N)

+
(

ρh(z−1,N)N
μg(z−1,N)z

P(z+δ z,N +1)+
ϑ f (z−1,N)z−1

μg(z−1,N)z
P(z+δ z,N−1)

)
δ z (7)

for N ≥ 1. Rearranging this probability conservation law, taking the limit

dP(z,N)
dz

= lim
δ z→0

P(z+δ z,N)−P(z,N)
δ z

(8)

and transforming back, we obtain a system of ordinary differential equations for the probability flow:

dPN(x)
dx

=
ρh(x,N)N +ϑ f (x,N)x

μg(x,N)x
(

pupPN+1(x)+(1− pup)PN−1(x)−PN(x)
)

(9)

with

pup =
ρh(x,N)N

ρh(x,N)N +ϑ f (x,N)x
(10)

for N ≥ 1.

One solution is PN(x) ≡ 1 for x > 0 and N ≥ 1, i.e. eradication is certain from all starting positions.

This would require a jump discontinuity at the N-axis, since PN(0) = 0 for N ≥ 1. To decide whether this

is admissible, we must consider the behaviour near the N-axis more carefully. The essential difficulty is

that the justification for a deterministic treatment in the x-direction breaks down near the N-axis. Consider

momentarily a fully stochastic treatment, in which x is replaced by a discrete variable X ∈N. For X = 1 and

N ≥ 1, the law of total probability then gives the following equation:

PN(1) =
ρhNPN+1(1)+ μgPN(0)+ϑ f PN−1(1)

ρhN + μg+ϑ f
(11)

(with a slight abuse of notation since X , which is absolute-scaled, has replaced ratio-scaled x). Since g > 0 at

X = 1 by assumption and PN(0) = 0, PN(1) is strictly smaller than 1, which rules out the solution PN(x)≡ 1.

This accords with the intuitive expectation that for small x, the probability of eradication decays quickly

to zero with increasing N. This argument motivates the following approximate boundary condition for the

system with real x:

PN(δx)≡ 0 for N ≥ 1 (12)

for some small value δx > 0. Heuristically, we can think of δx as a boundary width satisfying the requirement

that the deterministic treatment of x is admissible for x > δx. Since trajectories that enter the strip

{(x,N) | 0 < x < δx , N ≥ 0}
cannot leave it, the fact that the ultimate fate of the eradicating agent is discrete absorption, rather than

asymptotic decay, does not materially affect the eradication analysis.

To obtain numerical solutions, two truncations are required. The first is the approximate boundary

condition (12). Secondly, only finitely many (say N̂) equations can be evaluated, prompting the replacement

of PN̂+1
(x) by PN̂(x) in equation (9), which gives:

dPN̂(x)
dx

=
ϑ f (x, N̂)
μg(x, N̂)

(
PN̂−1

(x)−PN̂(x)
)

. (13)
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Figure 2: Simulated time courses of the hybrid stochastic-deterministic system derived from eqns (17) and (18), with K = 5 and μ = 1.

The thin line depicts the deterministic dynamics of the T cells (x) and the thick line depicts the stochastic dynamics of the number of

infected cells (N).

Numerical solutions must be checked against an unwarranted influence of the chosen values for δx and N̂.

The general form of equation (9) is

ẋ ·∇PN(x) = ∑
ΔN

hΔN(x,N)(PN(x)−PN+ΔN(x)) (14)

where x is the deterministic component of the state, evolving with dynamics ẋ, and N is the stochastic

component, capable of elementary transitions ΔN which occur with hazard rates denoted as hΔN. This is not

in every case the most convenient form of the master equation, but it proves to be useful in eradication-decay

dynamics where both components are scalar and (as in the examples of Section 3) ẋ is negative everywhere.

3. Applications

We consider various specifications of the general equations, along with biological interpretations. Each

example is designed to illustrate a feature of the present approach.

3.1. Eradication of an intracellular infection by T cells
The first example is defined by the following specifications:

g≡ 1 h≡ 1 f =
N

K +N

where K is a positive parameter. Thus

d
dt

x =−μx (15)

d
dt

N = ρN−ϑ
N

K +N
x (16)

Biologically, this system may be interpreted as follows: N denotes the number of cells that have been infected

with an intracellular pathogen such as a virus. The proliferation of the infection, at specific rate ρ , is stemmed

by the action of T cells which bear a receptor that is specific to a molecular characteristic of the pathogen.

5
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Figure 3: PN(x) for the simple T cell example (white: probability 0; black: probability 1; grey: probability in interval (0,1)). Abscissa

is 0 < x ≤ 150, ordinate is 1 ≤ N ≤ 30. Far left: K = 5, μ = 0.001; middle left: K = 5, μ = 1; middle right: K = 50, μ = 0.001; far

right: K = 50, μ = 1. The heavy line is the deterministic null isocline for N.

In this model, the T cells have a standard hyperbolic functional response (Van den Berg and Kiselev (2004))

and decay autonomously and exponentially during the so-called contraction phase (Badovinac et al. (2002)).

Two parameters can be eliminated by scaling:

d
dt

x =−μx (17)

d
dt

N = N− N
K +N

x (18)

(deterministically, K could be eliminated as well, but this is not possible for the stochastic treatment since N
is expressed on an absolute scale).

Hybrid stochastic-deterministic dynamics are obtained by replacing the equation for N by stochastic

dynamics as outlined in Section 2; typical simulation results are shown in Fig 2. If N has the value N1 > 0

on time t1, the probability that the first step change in N (either to N1 + 1 or N1− 1) will occur at a time

greater than t1 + τ is given by:

exp

{
−N1τ− x0N1 exp{−μt1}

μ (K +N1)
(1− exp{−μτ})

}
(which is obtained by integrating the hazard rate N1 (1+ x(t)/(K +N1)) where x(t) = x0 exp{−μt}, the

solution of eqn (17)). Starting from the same initial conditions, the outcome can be eradication or flare-up

(Fig. 2, left and middle panels): the variable N may spend some time in the low-numbers bottle-neck before

the flare-up takes off (Fig. 2, right panel).

Numerical solution of the probability flow equations for PN(x) is straightforward. Representative solu-

tions are shown in Fig. 3. When the T cell numbers decay slowly and the saturation parameter K is low,

the probability of eradication rises quickly from zero to 1 as x crosses the deterministic null isocline of N.

Fast T cell decay means that the probability of eradication is virtually zero in the neighbourhood of the

deterministic null isocline of N, and greater T cell numbers are needed to obtain a reasonable probability

of eradication. Larger K-values have the effect of blurring somewhat the change-over from low to high

probability near the N-null isocline.

The ability to achieve PN(x) near 1 for T cell numbers that sufficiently large given the prevailing size of

the infection, especially at low T cell decay rates, lends credibility to the hypothesis that T cell expansion

6
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Figure 4: PN(x) for the cancer example (white: probability 0; black: probability 1; grey: probability in interval (0,1)). Abscissa is

0 < x/xc ≤ 5, ordinate is 1≤ N ≤ 1500; K = 50; η = 5. Far left: μK/ρ = 100, ϑ/ρ = 15; middle left: μK/ρ = 50, ϑ/ρ = 15; middle

right: μK/ρ = 25, ϑ/ρ = 15; far right: μK/ρ = 25, ϑ/ρ = 10.

and contraction follows a stereotypical or “programmed” response pattern (Badovinac and Harty (2006)):

provided the initial expansion delivers a clonal size x0 
 K + N0 where N0 is the size of the infection at

the onset of the contraction phase, eradication is virtually assured. Against this hypothesis of programmed

contraction, one could point to the possibility of a delayed flare-up after the T cells have decayed determin-

istically during the low-numbers phase and argue for the hypothesis of regulated contraction, which states

that the rate of T cell decay depends, at each moment in time, on the value of N at that point in time; see

Section 3.3, as well as Van den Berg and Kiselev (2004) for arguments in favour of regulated contraction.

3.2. Elimination of a tumour by immunostimulatory antibodies
Consider a tumour, proliferating at specific rate ρ > 0 and let Y denote the molar amount of drug active

in the body. The drug is a monoclonal antibody that binds to the surface of the cancer cells, being specific to

tumour-specific surface antigens; the Fc tail of the drug molecule binds to the surface of an immune effector

cell which kills the cancer cell (Hudis (2007)); alternatively, the drug is a fusion molecule which can engage

immune cells that lack the Fcγ receptor, such as T cells (Löffler et al. (2000)). For the sake of simplicity,

we consider eradication-resolution dynamics for the scenario in which a single dose is administered, and we

ignore a multiple dosage or drug infusion regime of administration, which may also be clinically relevant.

Assume that the drug partitions between cancer cells and a fluid phase (blood plasma, tissue fluid) so

that a fraction N/(N +K) is bound, where K is a binding constant. The amount of drug bound per cell may

then be defined as follows:

x =
Y

N +K
. (19)

The effectiveness of the drug is assumed to be a sigmoid increasing function of x:

d
dt

N = ρN−ϑ
N

1+(x/xc)−η (20)

where ϑ > ρ is the maximum killing rate per tumour cell and xc and η are positive parameters that determine

the shape of the drug effectiveness curve. Drug molecules are assumed to be destroyed when they are bound

to a cell that is being destroyed, whereas the free drug molecules disappear with rate μ ≥ 0, thus:

d
dt

Y =−ϑ
N

1+(x/xc)−η x−μ
KY

K +N
. (21)

7
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Figure 5: Relapse probability 1−PN(x) as a function of scaled drug dose Y/xc; K = 50; μK/ρ = 25; η = 5. Left: ϑ/ρ = 10; right:

ϑ/ρ = 15. In each panel curves are for (top to bottom): N = 3000, 1000, 300, 100, 30, 10, 3, 1.

From equations (20) and (21) we can derive the deterministic component of the eradication-resolution dy-

namics:
d
dt

x =−μ
K +(ρ/μ)N

K +N
x . (22)

The stochastic component is defined by the event rate(
ρ +

ϑ
1+(x/xc)−η

)
N

and the probability for the event N → N +1 is given by:

pup =
(
1+(ϑρ)(x/xc)

−η)−1
. (23)

(We ignore the slight complication that x is reduced by a factor (K +N)/(K +N +1) whenever N jumps up;

this factor is close to unity for realistic K.)

Qualitatively this example is similar to the previous example, and plots of PN(x) versus x and N have the

same appearance as those shown in Fig. 4 for the simple T cell model. Deterministically, flare-up (in the case

of cancer called relapse, which follows the transient remission due to the drug’s effects) is assured, whereas

stochastically there is a positive probability of eradication provided the dose given is large enough relative

to the present size of the tumour. When decay is relatively fast (large μK/ρ), the probability of eradication

decreases rapidly with tumour size N, whereas the relative effectiveness of the drug (ϑ/ρ) determines how

gradual this drop-off in probability is.

Suppose that a clinician wants to know the minimal dose required to assure eradication to within, say,

0.1%. For this information, she might consult a nomogram that charts that relapse probability as a function

of tumour size and dose administered. In the present notation amounts to 1−PN(x) for a tumour size N
and a dose equivalent to x; such curves are shown in Fig. 5. This shows that, as expected, increasing the

dose reduces the relapse probability, but from a certain point onwards further increases in drug dose do not

result in further reductions of this relapse probability. The lowest relapse probability that can be achieved

depends on the tumour size and the drug’s efficacy parameters, in the expected way. This property shows

that multiple administrations of the drug will generally be required, but that even when the tumour size is

down to a single cell, eradication cannot be assured.

8
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Figure 6: Eradication probability PN(x) for the T cells with residual surveillance level example (white: probability 0; black: probabil-

ity 1; grey: probability in interval (0,1)). K = 50, μ = 1. Left: Abscissa is 0 < x ≤ 150, ordinate is 1 ≤ N ≤ 30 (the white line is

the deterministic separatrix); middle: 0 < x ≤ 2000, ordinate is 1 ≤ N ≤ 1000; right: 1−PN(x) as a function of x for (top to bottom):

N = 3000, 1000, 300, 100, 30, 10, 3, 1.

3.3. T cells with residual surveillance level

According to the simple T cell model of Section 3.1, the T cell number decays to zero. However, it

has been observed that a small but functionally significant number of antigen-specific T cells remains after

the contraction phase: this is the residual surveillance level which helps the immune system to suppress re-

infection (Harty and Badovinac (2008)). This effect can be explained by the fact that the cytotoxic operation

of the T cells tends to damage the T cells themselves as well, so that T cell death is proportional to the rate

at which they are themselves destroying infected cells (Xu et al. (2001)). This can be modelled by adjusting

the simple model as follows:

g≡ N
K +N

h≡ 1 f =
N

K +N
On this model specification, the T cells stop dying off as soon as eradication has been achieved.

The deterministic model now has a separatrix, as shown in the right panel of Fig. 1, such that trajectories

starting to the right of it terminate in a stationary point on the x-axis, whereas trajectories starting to the

left exhibit flare up (i.e. x→ 0 and N → ∞ as t → ∞). Thus, in contrast to the previous two examples, the

deterministic treatment predicts different values for PN(x), albeit with PN(x) ∈ {0,1}. As one would expect,

the stochastic treatment replaces the abrupt transition about the separatrix by a smooth increase of PN(x)
with increasing x. This is illustrated in Fig. 6, where the separatrix is indicated for comparison. There is a

transition region of more or less constant width around the deterministic separatrix (Fig. 6, left and middle

panels). For a given size of the infection, the probability of flare-up (1−PN(x)) falls of rapidly with x once

the latter attains a critical level (Fig. 6, right panel). Thus, provided that the immune system expands a

sufficiently large clonal response, the probability of flare-up can reliably be reduced to a very small residual

level. This can be advanced as an argument in favour of regulated contraction rather than stereotypical,

programmed contraction.

9
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Figure 7: Comparison of fully stochastic (left) and hybrid stochastic-deterministic (right) calculation of PN(x); θ/ρ = 0.05; α = 0.01;

1≤ X ≤ 20; 1≤ N ≤ 15 (white: probability 0; black: probability 1; grey: probability in interval (0,1)).

3.4. Comparison with a fully stochastic treatment
A fully stochastic treatment becomes necessary when the copy number of the eradicating agents becomes

small. Consider the following deterministic model:

d
dt

X =−αXN (24)

d
dt

N = ρN−θXN (25)

where α , ρ , and θ are positive parameters. The eradication probabilities for the stochastic treatment satisfy

the following equations by the law of total probability:

P0(0) = 1 and PN(0) = 0 for N ≥ 1 (26)

ρPN+1(x)− (ρ +X (α +θ))PN(x)+θXPN−1(x) =−αXPN(X−1) for X ≥ 1 . (27)

Equation (27) is a non-homogeneous difference equation in N for PN(x) with x fixed and PN(X − 1) as a

forcing term. Thus, by successively solving for x = 1,2,3, . . . the general solution is readily obtained and

found to be:

PN(X) =
X

∑
ξ=1

(
X
ξ

)(
αξ

ρ
(
rξ −1

))X−ξ

κξ rN
ξ (28)

where

rξ =
ρ +ξ (α +θ)

2ρ

(
1−

√
1− 4ρθξ

(ρ +ξ (α +θ))2

)
(29)

and the coefficient κξ is defined by the recursion formula:

κξ = 1−
ξ−1

∑
u=1

(
ξ
u

)(
αu

ρ (ru−1)

)ξ−u

κu for ξ ≥ 2 (30)

with κ1 = 1. The results shown in Fig. 7 suggest that even at low values of x, the hybrid approach can give

reasonable results.
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Figure 8: Non-monotone T cell dynamics model for the case ϑλ < K. Left panel: deterministic phase portrait; right panel: probability

of eradication from various starting positions (white: probability 0; black: probability 1; grey: probability in interval (0,1)).

4. Extension to dynamics with recovery of the eradicating agent

In the foregoing sections it was assumed that the eradicating agent (x) decays monotonically. However,

in many systems an adaptive response to the flare-up may occur, where the eradicating agent is added or

proliferates in response to the pathogen’s escape. By way of example we consider here the following,

slightly more complex model of the dynamics of a T cell response:

d
dt

x = λx−μ
(

1− N
K +N

)
x2 (31)

d
dt

N = ρN−ϑ
N

K +N
x (32)

where the T cells x grow with specific growth rate λ whereas they disappear by mutual killing in proportion

to the complement of the functional response function (Kottilil et al. (2001); Strasser and Pellegrini (2004);

Xu et al. (2001)), which is the usual hyperbolic response (see Van den Berg and Kiselev (2004) for further

details on this model). The qualitative behaviour is very different depending on parameter values; when

ϑλ < K, the T cells are ultimately unable to stem the spread of the infection (Fig. 8), whereas for ϑλ > K,

eradication is assured (Fig. 9). The case ϑλ = K, while interesting in its own right, is not germane to the

present discussion.

4.1. The case ϑλ < K
In qualitative terms, the behaviour for ϑλ < K is somewhat similar to that in the examples of sections 3.1

and 3.2. The eradication probabilities drop off very sharply with increasing N as trajectories become almost

certain to converge on a common escape path in the middle of the phase plane (Fig. 8).

Numerical solution of the probability flow equation (9) is slightly more involved. First, the line x = δx
no longer provides a boundary condition; repeating the argument leading to eqn. (11), we now have

PN(1) =
ρhNPN+1(1)+λPN(2)+ϑ f PN−1(1)

ρhN +λ +ϑ f
(33)

where we have set g = 0 for N = 1 since it takes at least two T cells for mutual destruction. Since eqn. (33)

uncouples PN(1) from PN(0) (≡ 0), a jump discontinuity is admissible. The second difficulty is that the flow
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Figure 9: Non-monotone T cell dynamics model for the case ϑλ > K. Left panel: deterministic phase portrait; right panel: expected

time until eradication from various starting positions (white: zero time; black: long time).

equations are numerically stable in the positive x-direction for (x,N) situated to the right of N = (ϑ/ρ)x−K
(part of the x null isocline) whereas they are stable in the negative x-direction for (x,N) to the left of this

line. Moreover, the equations become infinitely stiff near this line. A Picard iteration scheme (Hirsch et al.

(2004)) was employed to obtain the solution shown in Fig. 8 (right panel): numerical solutions are generated

alternately for the field above and below the nullcline diagonal, each round of the iteration using the solutions

on the other side of the nullcline as forcing functions, starting a distance δx away from the line to avoid the

infinite stiffness (since the stiffness amounts to infinitely rapid equilibration between solutions for adjacent

N-values, a very fast relaxation rate nearby achieves practically the same effect). The iteration results in a

set of values for PN(x) on the nullcline which serve as consistent boundary conditions for the “forward” and

“backward” solutions; in this respect the iterative scheme resembles the shooting technique for nonlinear

problems (Burden and Faires (1989)).

4.2. The case ϑλ > K
We noted in Section 2 that PN(x) ≡ 1 for x > 0 and N ≥ 1 solves the probability flow equations, but

that the jump discontinuity at x = 0 is not allowed by the behaviour near the line x = 0. By the argument of

Section 4.1, this jump discontinuity is now allowed, and thus PN(x)≡ 1 is a feasible solution. In the appendix

we show that this solution applies when ϑλ > K. Thus, eradication is certain from all starting positions if

the immune efficiency parameters are sufficiently large (although eradication may only be achieved through

a series of intermediate flare-ups that are ultimately contained). Instead of PN (a plot of which would not be

informative), we consider the expected time until eradication. Thus, let TN(x) denote the expected time until

eradication starting from position (x,N). The derivation is similar; the probability conservation equation (7)

now becomes:

T (z,N) .=
(

1− ρh(z−1,N)N +ϑ f (z−1,N)z−1

μg(z−1,N)z
δ z

)
T (z+δ z,N)

+
(

μg(z−1,N)z+
ρh(z−1,N)N
μg(z−1,N)z

T (z+δ z,N +1)+
ϑ f (z−1,N)z−1

μg(z−1,N)z
T (z+δ z,N−1)

)
δ z . (34)

Again, the Picard iteration scheme was used to obtain the results shown in Fig. 9, which suggests that the

expected time till eradication is approximately conserved along the fast-moving parts of the deterministic

trajectories, as is not surprising. Along the slow moving return trajectory the expected time increases in the
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opposite direction of the phase flow, which is partly due to the deterministic travel time along this trajectory

and partly due to the possibility of a quasi-flare-up that will ultimately be contained.

5. Concluding remarks

Hybrid stochastic-deterministic dynamical systems constitute a natural approach, since biological sys-

tems are almost invariably essentially stochastic, and one should expect the high-numbers justification for

a deterministic treatment to be satisfied for some subset of the system’s components. The usual determin-

istic treatment is then seen as a only a special case of the general situation which is a partitioning into a

low-numbers component is to be treated stochastically and the high-numbers component can treated deter-

ministically (Kiehl et al. (2004); Wilkinson (2006)). Simulation of such hybrid systems is perfectly straight-

forward (Alfonsi et al. (2005)); since the hazard rates generally co-depend on the deterministic component,

it is necessary to integrate this time-varying hazard in order to realise the time till the next transition in the

stochastic component (this time interval being a random variable).

We focussed on rather simplified biomedical examples of eradication-decay dynamics; other examples

may be found in pest control, epidemiology, and pharmacodynamics. The key quantity of interest is the

probability of eradication (or its complement, the risk of flare-up) starting from a given quantity of eradi-

cating agents. In T cell dynamics, this quantity is the maximal expansion of the responding clonotype; in

oncology, it is the dose of drug administered. In both cases, dynamics may be considerably more com-

plicated. Also, probability of flare-up is not the only clinical outcome marker (although it is an important

one); the drug administration regime may be chosen to minimise a cost functional that takes into account the

hazard rates for various morbidities associated with the tumour mass as well as the drug itself (side effects).

To calculate the optimal drug dosage in this case requires an optimal-control approach, such as the one taken

in Van den Berg and Kiselev (2004).
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Appendix: Eradication probabilities for the non-monotone T cell dynamics model

We consider the system

d
dt

x = λx−
(

1− N
K +N

)
x2 (.1)

d
dt

N = N−ϑ
N

K +N
x (.2)

which is a scaled version of the system defined by equations (31) and (32). Deterministically, the stationary

point (x,N) = (λ ,0) is a global attractor if ϑλ > K, whereas stochastically, flare-ups may occur, but eventual

eradication is assured. To prove this, let R denote the region

R
def=

{
(x,N) | x > λ & 0 < N ≤ K

( x
λ
−1

)}
and define

Ñ(x) def= ent
(

K
( x

λ
−1

))
(.3)

where ent(·) is the entier function R→ N which rounds its argument down to the nearest integer. Suppose

that every trajectory must eventually (re)visit R. Since the downward jump probabilities are strictly positive,

the probability that the phase point, starting from Ñ(x) for some finite x, on its next exit from R does so

by eradication (i.e. absorption to N = 0) is bounded away from zero. Furthermore, since x is monotonically

decreasing for phase points in R, a trajectory traversing R must eventually exit R, either by eradication

or into the region where N > Ñ(x). Therefore the probability that a trajectory starting from an arbitrary

point (x,N) with x > 0, N > 0 will exhibit n exits from R without eradication is bounded above by (1−δ )n

for some δ > 0. Since this probability tends to zero as n→ ∞, every trajectory must eventually exit R by

eradication.

It remains to show that every trajectory must enter R. Consider a trajectory starting from a phase point

outside of R, and let uN(x) denote the probability of absorption into R starting from the point (x,N).
Also, let vN−Ñ(x)(x) denote this probability when x is held fixed. Since clearly uN(x) = 1, we have v0(x) = 1.

Suppose that the trajectory never enters R. Along such a trajectory, x increases monotonically, either without

bound or, if N remains constant from some point in time onwards, bounded by a finite value. However, the

latter possibility is ruled out since the jump probabilities are nonzero. Thus x must tend to infinity along a

trajectory that never enters R. This fact, together with the dependence of the jump probabilities on x, implies

that uN(x) ≥ vN−Ñ(x)(x). It therefore suffices to show that vN−Ñ(x)(x)→ 1 for all N ≥ 1 as x→ ∞. This is

the case precisely when the following quantity diverges:

S(x) def=
∞

∑
i=1

(
i

∏
j=1

ϑx

K + Ñ(x)+ j

)
(.4)

(see e.g. (Karlin and Taylor, 1975, p. 147)). To establish this divergence, let m(x) be a function R→N such

that

m(x) < ϑx− Ñ(x)−K and

{
m(x)→ ∞
m(x)/x→ 0

as x→ ∞

and let

r(x) def= Ñ(x)−K
( x

λ
−1

)
. (.5)
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By definition, 0≤ r(x) < 1 and thus limx→∞ r(x)/x = 0. The sum S(x) can be bounded below by a geometric

sum:

S(x)≥
∞

∑
i=1

(
i

∏
j=1

ϑx

K + Ñ(x)+ i

)
=

∞

∑
i=1

(
ϑx

K + Ñ(x)+ i

)i

≥
m(x)

∑
i=1

(
ϑx

K + Ñ(x)+ i

)i

≥
m(x)

∑
i=1

(
ϑx

K + Ñ(x)+m(x)

)i

=
ϑλ

ϑλ −K−λ (m(x)+ r(x))/x

([
ϑλ

K +λ (m(x)+ r(x))/x

]m(x)

−1

)
(.6)

which diverges as x→ ∞ when ϑλ > K.
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