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University of A Coruña, Department of Computer Science, Campus de Elviña s/n,

15071 A Coruña (Spain), Phone: +34 81 167000

Abstract

We used simulated evolution to study the adaptability level of the canonical genetic

code. An adapted genetic algorithm (GA) searches for optimal hypothetical codes.

Adaptability is measured as the average variation of the hydrophobicity that the

encoded amino acids undergo when errors or mutations are present in the codons

of the hypothetical codes. Different types of mutations and point mutation rates

that depend on codon base number are considered in this study. Previous works

have used statistical approaches based on randomly generated alternative codes or

have used local search techniques to determine an optimum value. In this work, we

emphasize what can be concluded from the use of simulated evolution considering

the results of previous works. The GA provides more information about the difficulty

of the evolution of codes, without contradicting previous studies using statistical or

engineering approaches. The GA also shows that, within the coevolution theory, the

third base clearly improves the adaptability of the current genetic code.

Key words: Genetic code theories, error-minimization hypothesis, genetic code

evolution, genetic algorithms.
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1 Introduction

In this work we use a genetic algorithm as a method to corroborate the adapt-

ability of the standard or canonical genetic code. Although this code is not

universal (for example, mitochondrial DNA has variations), it is present in

most complex genomes. The genetic code, with the four nitrogenated bases,

when grouped in genes, encodes the amino acids that are linked to determine

the proteins. This code is redundant given three bases are needed to establish

a codon that codifies each of the 20 amino acids that are present in proteins,

plus a “stop translation” signal found at the end of every gene. Hence, us-

ing this code, most of the amino acids are specified by more than one codon,

implying the redundancy of the code.

Nevertheless, as there are 64 possible codons to encode the 21 labels, numerous

hypothetical “genetic codes” could be defined, with associations different from

those of the standard genetic code. The number of possible codes is 1.4·1070, as

Yockey (2005) has calculated, taking into account the amino acid assignments

of the modern standard genetic code. The alternative codes have the same

number of codons per amino acid as in the standard code: for example, 3 amino

acids codified by sets of six codons, 5 amino acids codified by four codons, etc.

When the codon set structure of the standard genetic code is unchanged, only

considering permutations of the amino acids coded in the 20 sets, there are

20! (2.43 · 1018) possible codes. Finally, as indicated by Schönauer and Clote

(1997), there are more than 1.51 · 1084 general codes, without restrictions in

the mapping of the 64 codons to the 21 labels.

∗ Corresponding author: José Santos

Email address: santos@udc.es (José Santos).
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The establishment of the genetic code is still under discussion, although the

discovery of non-standard genetic codes altered the “frozen accident”, as named

by Crick (1968). The genetic code could have been an adaptive process by

means of natural evolution. This implies that the codes with less harmful ef-

fects in the possible errors of the protein synthesis machinery (and in the final

proteins) have an evolutionary advantage over codes that present a greater

number of harmful effects. An argument in favor of this adaptability of the

standard genetic code is that the amino acids with similar chemical properties

are coded by similar codons. For example, the codons that share two of the

three bases tend to correspond to amino acids that have similar hydrophobic-

ity.

Many authors present results in favor of this option. For instance, Woese

(1965) stated that “the codon catalogue has more recently been shown to

manifest very definite correlations among the codon assignments for related

amino acids”, and Goldberg and Wittes (1966) indicated that the pattern

of organization of the genetic code decreases to a minimum the phenotypic

effects of mutation and of base-pairing errors in protein synthesis. Single base

changes, especially transitions, usually cause either no amino acid change or

the change to a chemically similar amino acid. In more recent works, Jestin

and Kempf (1997) showed that the codon assignment of stop signals optimized

the tolerance of polymerase-induced frameshift mutations, that is, most single-

base deletions are less deleterious at chain termination codons than at codons

encoding amino acids. Furthermore, the work of Ardell and Sella (2002) using a

population genetic model of code-message coevolution demonstrated that such

coevolution tends to produce structure-preserving codes, and in particular

it can reproduce some of the structure-preserving patterns of the standard
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genetic code.

Di Giulio (2005), in a review on the theories of the origin and evolution of

the genetic code, distinguishes two basic alternatives. The stereochemical the-

ory claims that the origin of the genetic code must lie in the stereochemical

interactions between anticodons or codons and amino acids. Then, the physic-

ochemical theory claims that the force defining the origin of the genetic code

structure is the one that tends to reduce the deleterious effects of physicochem-

ical distances between amino acids codified by codons differing in one base.

There is a third element in the set of hypotheses: the structure of the genetic

code reflects the biosynthetic pathways of amino acids through time and the

error minimization at the protein level is just a consequence of this process,

as indicated, for example, by Di Giulio (2005) and Torabi et al. (2007). This

is the so-called coevolution hypothesis (Wong, 1975). This coevolution theory

suggests that codons, originally assigned to prebiotic precursor amino acids,

were progressively assigned to new amino acids derived from the precursors as

biosynthetic pathways evolved. Higgs (2009) proposed a “four column” code

as an early state, based on the evidence about which were the earliest amino

acids. For the author the driving force during the build-up of the standard

code is not the minimization of translational error, and the main factor that

influenced the positions in which new amino acids were added is that there

should be minimal disruption of the protein sequences that were already en-

coded. Nevertheless, the code that results is one in which the translational

error is minimized.

The works of Freeland and Hurst are significant in the study of the adaptability

of the standard genetic code of the physicochemical theory. They corroborate

that adaptability by means of a simulation, when they determined that in
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a sample of 1 million random hypothetic codes there was only around one

hundred with lower error than the one of the standard genetic code (Freeland

and Hurst, 1998a). The error is measured as the average variation of the polar

requirement property (a measurement of hydrophobicity) that the amino acids

undergo when only one letter of each codon is changed, with all the possible

variations, in the set of the 64 codons of each hypothetical code. Using a

different methodology, Di Giulio measures the optimality of the genetic code in

relation to the best possible code that could be reached. This code is obtained

in his case with local search techniques (Di Giulio, 1989).

Opposite to that brute-force search of possible codes that are better adapted or

to the local search for the best hypothetical code, we used simulated evolution,

by means of a standard genetic algorithm (GA) (Goldberg, 1989) adapted to

our problem. The GA provides a guided and global search of better adapted

hypothetical codes as well as a method to guess the progression and the diffi-

culty in finding such alternative codes.

This paper is organized as follows. Section 2 summarizes previous works per-

formed in this field. Section 3 briefly explains the definitions of the hypothet-

ical codes used in our simulations, whereas Section 4 presents the implemen-

tation details of the genetic algorithm in our application in the search for

better adapted codes. Section 5 explains the measurements used to determine

the level of adaptation of the genetic code. Section 6 expounds the first re-

sults of evolution when searching for alternative codes, Section 7 shows the

results with a bias in the transition/transversion probability ratio of muta-

tions whereas Section 8 presents the results with the introduction of errors as

a function of the base position in the codon. Finally, Section 9 presents some

conclusions.
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2 Previous work

Several authors have studied the adaptability of the genetic code using differ-

ent simulations. In a first computational experiment, Haig and Hurst (1991)

determined an adaptability level of the canonical genetic code by means of a

simple simulation. They found that of 10,000 randomly generated codes, only

2 performed better at minimizing the effects of errors, when polar requirement

was taken as the amino acid property. Thus, they estimated that the proba-

bility that a code as conservative as the standard genetic code arose by chance

was 0.0002, and therefore, they concluded that the standard genetic code was

a product of natural selection for load minimization. To quantify the efficiency

of each possible code they used a measurement that considers the changes in a

basic property of the amino acids when all the possible mutations are consid-

ered in a generated code (see Section 4.3 for more details). The property used

by the authors was the polar requirement, which may be considered a mea-

surement of hydrophobicity, as the one that gave the most significant evidence

of load minimization from an array of four amino acid properties (hydropathy,

molecular volume, isoelectric point and the polar requirement).

Freeland and Hurst (1998a) in their refinement of the previous estimate used a

larger sample consisting of 1,000,000 possible codes. The criteria for creating

plausible alternative codes in these works (Haig and Hurst, 1991; Freeland

and Hurst, 1998a) are summarized in Section 3. Their alternative codes main-

tain the same synonymous block structure of the canonical code. The authors

found 114 better codes (a proportion of 0.000114), indicating, according to

the authors’ results, a refinement of the previous estimate for relative code

efficiency such that the code was even more conservative. When the authors
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also took into account restrictions about the biosynthetic pathways (Taylor

and Coates, 1989), they found 284 better codes. The authors indicate that

“for the most part historical features do not explain the load-minimization

property of the natural code” (Freeland and Hurst, 1998b).

In addition, the same authors extended this work to investigate the effect of

weighting transition errors differently from transversion errors and the effect

of weighting each base differently, depending on reported mistranslation biases

(Section 7 explains these types of mutations). When they used weightings to

allow for biases in translation, they found that only 1 in every million ran-

domly generated codes was more efficient than the standard genetic code. In

(Ronneberg et al., 2001) the authors presented a graphical tool for testing the

adaptive nature of the genetic code under those assumptions about patterns

of genetic error and the nature of amino acid similarity. Additionally, as the

adaptability of the genetic code does not hold for other amino acid properties

other than polar requirement, in (Freeland et al., 2000b) the authors applied

point accepted mutation (PAM) 74-100 matrix data, which derives from fre-

quently observed substitution patterns of amino acids in naturally occurring

pairs of homologous proteins. The matrix used by the authors was built solely

from evolutionary diverged proteins. Hence, as the authors indicate, the ma-

trix provides a direct measurement of amino acid similarity in terms of protein

biochemistry. The results indicate that the standard genetic code is close to the

global optimum of all codes with regard to error rates. However, Di Giulio has

questioned this work, as the title of the work “the origins of the genetic code

cannot be studied using measurements based on the PAM matrix because this

matrix reflects the code itself, making any such analysis tautologous” clearly

explains (Di Giulio, 2001).
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Gilis et al. (2001) extended Freeland and Hurst’s work by studying the fre-

quency at which different amino acids occur in proteins. Their results indi-

cate that the fraction of random codes that beat the standard genetic code

decreases. In addition, they used a new function of error measurement that

evaluates in silico the change in folding free energy caused by all possible point

mutations in a set of protein structures, this being a measurement of protein

stability. With that function the authors estimated that around two random

codes in a billion (109) are fitter than the standard code.

Other works (Goodarzi et al., 2006; Torabi et al., 2007) have taken into con-

sideration both relative frequencies of amino acids and relative gene copy

frequencies of tRNAs in genomic sequences to use a fitness function which

models the mistranslational probabilities more accurately in modern organ-

isms. The relative gene copy frequencies of tRNAs are used as estimates of

the tRNA content. The methodology is the same as that used in previous

works, but now the aim is to find better assignments of amino acids for the

two main families of aaRSs (aminoacyl-tRNA synthetases). These enzymes

are responsible for charging tRNAs with their cognate amino acids. The prob-

ability of mischarging is based on the difference of molecular volume between

the incorrectly charged amino acid and the correct one. In addition, they used

the frequencies of amino acid concentration and the mentioned frequencies of

tRNAs to measure the fitness of the alternative assignments. For example, in

one of the tests, the relative frequency of more optimal classifications hardly

exceeded 0.03. Their model signifies higher optimality of the genetic code to-

wards load minimization and suggests, according to the authors, the presence

of a coevolution of tRNA frequency and the genetic code.

Previous studies have used search techniques to obtain the best possible codes.
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Di Giulio (1989) estimated that the standard genetic code has achieved 68%

minimization of polarity distance, by comparing the standard code with ran-

dom block respecting codes (the codes obtained by relabeling the 20 amino

acids in the canonical table by a permutation thereof). The value of the best

possible code (necessary in the comparison) was obtained using a simulated

annealing technique to solve a constrained minimization problem. The mini-

mization percentage was defined by the Di Giulio as (�mean−�code)/(�mean−

�low), where �mean is the average error value (Section 5), obtained by aver-

aging over many random block respecting codes, and �low is the best (or

approximated) � value. The author indicated that the percentage distance

minimization (p.d.m.) can be interpreted as the optimization level reached

during genetic code evolution. In addition, the author criticized the works

of Freeland and Hurst (1998a). As an argument, Di Giulio stated that with

the probability of 10−6, there are 2.4 · 1012 codes that should display a better

value than that of the genetic code (Di Giulio, 2000). Therefore, the author

preferred the use of the p.d.m. in his analysis. In Section 5 this measurement

is commented again. Novozhilov et al. (2007) also employed a local greedy

search which used as elementary evolutionary step a swap of the amino acids

assignments with alternative codes that possessed the same block structure

and the same degree of degeneracy as the standard code. One of the main

authors´ conclusions was that the standard code is much closer to its local

minimum (fitness peak) than most of the random codes with similar levels of

robustness.

In (Di Giulio and Medugno, 1999) the authors extended the work to consider

the evolution of the genetic code under the coevolution theory. In the stages of

evolution considered where the code codifies less than 13 amino acids, which
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implies a not very high number of permutations, the authors conduct an ex-

haustive search to obtain the best possible code, while they use the simulated

annealing technique for codes codifying for 13 or more amino acids. The mini-

mization percentage decreased in the early and intermediate stages of genetic

code evolution, an observation, as the authors remark, that cannot be ex-

plained easily under the hypothesis of the reduction of the deleterious effects

of translation errors.

3 Generation of variant genetic codes

In the works mentioned, different possibilities were used to generate alter-

native codes. In the works of Haig and Hurst (1991) and of Freeland and

Hurst (1998a), when hypothetical codes were generated, two restrictions were

considered:

(1) The codon space (64 codons) was divided into 21 nonoverlapping sets

of codons observed in the standard genetic code, each set comprising all

codons specifying a particular amino acid in the standard code. Twenty

sets correspond to the amino acids and one set to the 3 stop codons.

(2) Each alternative code is formed by randomly assigning each of the 20

amino acids to one of these sets. The three stop codons remain invariant

in position for all the alternative codes. Moreover, these three codons

are the same stop codons of the standard genetic code (UAA, UAG and

UGA).

This conservative restriction, which maintains the pattern of synonymous cod-

ing found with the standard genetic code, controls, as indicated by Freeland
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(2002), for possible biochemical restrictions on code variation and for the level

of redundancy inherent in the canonical code (Freeland and Hurst, 1998b).

In addition, the authors, in a more restrictive generation of possible codes, di-

vided the 20 synonymous blocks into four groups, each group comprising the

synonymous codon sets described by Taylor and Coates (1989), which share

a common base identity at the first codon position (UNN, CNN, ANN and

GNN, N refers to any nucleotide). In this case, the codon assignments of syn-

onymous blocks are allowed to vary within groups, but not between groups.

These restrictions incorporate the general observation of biosynthetic related-

ness which exposes that amino acids which share a biosynthetic pathway tend

to also share the same nucleotide identity in the first base position of their

corresponding codons.

We will use the first method to generate alternative codes, but without con-

sidering this last and more restrictive generation, as the results between the

two alternatives are difficult to analyze. As the authors stated, “the biological

significance of the small discrepancies between the two alternatives is uncer-

tain” (Freeland and Hurst, 1998b). Moreover, we will use a freer evolution

with one restriction: we only impose three codons for the stop signal. The aim

of the introduction of this last possibility, also used by Di Giulio et al. (1994),

is a comparison between the restrictive and non-restrictive hypothetical codes

in terms of optimal values that can be obtained and in terms of evolution

difficulty.
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4 Genetic algorithm adapted to the problem

Evolutionary computing methods are global search methods based on a pop-

ulation of solutions to a problem. The individuals of the population encode

in a genotypic representation those solutions. The methods are variations of

a general process whereby each generation of individuals from a population

is evaluated, and these individuals procreate according to their fitness. The

fitness represents how well an individual resolves a problem such as a typi-

cal computational optimization problem, and it is associated with the level of

adaptation in the natural world. A selection operator defines what individuals

are selected to procreate and pass their genetic material to the next generation,

through different operators such as the crossover operator. Selection methods

have the common property of a higher probability of selection of an individual

with higher fitness. Later on, the population undergoes mutation processes

and a new population is somehow selected from the old one to continue with

the process. These methods include Genetic Algorithms (GAs), evolutionary

strategies, genetic and evolutionary programming and coevolution, although

in this work we only used GAs (Goldberg, 1989).

4.1 Encoding

Each individual of the genetic population must encode a hypothetical code.

In our solution, in the case of non-restrictive codes, each individual has 64

positions, which correspond to the 64 codons, and each position encodes the

particular amino acid associated with the codon. In the case of restrictive

codes, each individual has 20 positions, which correspond to the 20 codon
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sets, and each position encodes the particular amino acid associated with the

codon set. In both cases, a basic procedure ensures that the individuals of

the initial population encode, at least in one position, the 20 amino acids.

As in (Haig and Hurst, 1991) a fixed number of three codons are used for the

stop label. The genetic operators require that a given individual should always

encode the 21 labels.

4.2 Genetic operators

We used a mutation operator and a swap operator. A mutation changes the

amino acid encoded in each of the 64 positions, by a mutation probability, to

a different one. This operator is only applied with the unrestrictive codes. The

mutation does not operate if the amino acid to mutate is the only one in the

whole code. These mutations simulate the possible errors in the transcription

process from DNA to RNA and in the translation process when incorrect

transfer RNAs join a given codon of the messenger RNA. From our application

point of view, it is the operator that varies the number of codons associated

with a particular amino acid.

The other genetic operator is the swap operator, hardly ever used in GA

applications, although it is appropriate for the present problem. The operator

interchanges the contents of two genes, that is, once two genes are randomly

selected, the amino acids codified by the two respective codons (or codon sets)

are swapped. Figure 1 shows how these genetic operators work in the case of

unrestrictive codes. The two operators guarantee that the 20 amino acids are

always represented in the individuals. Other operators, such as the classical

crossover operator, do not guarantee this important restriction.
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Finally, as selection operator we used tournament selection. The operator se-

lects the best individual in a window of randomly selected individuals from

the population. Hence, the size of the window determines the required selec-

tive pressure. Moreover, we used elitism of the best individual; that is, this

individual is kept in the next generation without changes.

4.3 Fitness function

We used as fitness function the measurement applied, for example, by Haig

and Hurst (1991) and Freeland and Hurst (1998a) to quantify the relative

efficiency of any given code. The measurement calculates the mean squared

(MS) change in an amino acid property resulting from all possible changes to

each base of all the codons within a given code. Any one change is calculated

as the squared difference between the property value (polar requirement) of

the amino acid coded for by the original codon and the value of the amino

acid coded for by the new (mutated) codon. The changes from and to “stop”

codons are ignored, while synonymous changes (the mutated codon encodes

the same amino acid) are included in the calculation. Figure 2 summarizes the

error calculation, when the first base of the codon UUU is mutated, taking

into account the new values of the polar requirement of the new coded amino

acids. The final error is an average of the effects of all the substitutions over

the whole code.

Many other alternative types of weighting are imaginable, the best model

relating chemical distance to code fitness being difficult to know, as commented

by the previously cited authors. In the MS measurement we can consider the

MS1, MS2 and MS3 values that correspond to all single-base substitutions
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in the first, second and third codon positions, respectively, of all the codons

in a given genetic code. The MS value (or any of the components) defines

the fitness value of a given code and the evolutionary algorithm will try to

minimize it.

5 Statistical vs. engineering analysis

Knight et al. (1999) indicate that two criteria can be used to assess if the

genetic code is in some sense optimal. The first one is the “statistical approach”

(Freeland et al., 2000a), applied by these authors (Haig and Hurst, 1991;

Freeland and Hurst, 1998a; Knight et al., 1999), which compares the standard

genetic code with many randomly generated alternative codes. Comparing

the error values of the standard genetic code and alternative codes indicates,

according to the authors, the role of selection. The main conclusion of the

authors with this approach is that the genetic code conserves amino acid

properties far better than expected from a random code.

The second one is the “engineering approach”, which compares the standard

genetic code with the best possible alternative. As mentioned previously, this

approach is taken by Di Giulio (Di Giulio et al., 1994; Di Giulio, 2000), al-

though it is also used in (Freeland et al., 2000b). This approach tends to

indicate that the genetic code is still far from optimal. They used the p.d.m.

measurement, which determines code optimality on a linear scale. The mea-

surement is calculated as the percentage in which the canonical genetic code

is in relation to the randomized mean code and the most optimized code, as

defined in Section 2. We also used a measurement called “improvement”, re-

lated with percentage minimization, but defined as the improvement obtained
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in fitness by the best evolved individual, measured as the final fitness with

respect to the corresponding MS value of the standard genetic code.

6 Equal transition/transversion bias

In this first analysis, we tested the capability and difficulty of simulated evolu-

tion to find better adapted codes than the canonical code, taking into account

the MS value previously explained, and with an equal probability of muta-

tions in the three bases and the two types of mutations. As we commented

before, Haig and Hurst (1991) only found two alternative codes with lower MS

than the standard genetic code in a set of 10,000 randomly generated codes,

and Freeland and Hurst (1998a) refined the probability with a larger sample of

1,000,000, where they found only 114 better codes. Both results were obtained

using the codes defined with the restrictions mentioned previously and using

the statistical approach.

6.1 GA parameters

We tested the implemented GA, searching for alternative codes, with the two

definitions of codes presented in Section 3. Figure 3 shows the evolution of

the MS across 150 generations of the genetic algorithm. The quality of the

best individual and the average quality of the population are the result of an

average of 10 evolutions with different initial populations. The population size

was 1,000 individuals for the different tests. Larger populations do not improve

the results, as we will discuss later. The other evolutionary parameters were

a mutation probability of 0.01 and a swap probability of 0.5. The mutation
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operator is only used in the non-restrictive model, as the restrictive model

only needs the swap operator to interchange the 20 amino acids among the 20

sets of codons.

For non-restrictive codes, the best (minimum) MS found in one of the evo-

lutions was 1.784, whereas the minimum was around 3.48 for the restrictive

codes. These values can be compared with the best value found by Freeland

and Hurst (∼ 4.7) and the value of the standard genetic code (5.19).

There is not a general rule to set the parameter values of the different genetic

operators, since the results with a particular value set depend on the appli-

cation. As Mitchell (1997) indicates the parameters typically interact with

one another nonlinearly, so they cannot be optimized one at a time. There is

a great deal of discussion on parameter settings and approaches to parame-

ter adaptation in the evolutionary computation literature, but there are not

conclusive results on what is the best.

We selected the rates mentioned after experimentation with incremental values

in the intervals [0.001, 0.1] for the mutation operator and [0.01, 0.8] for the

swap operator. Mutation rates around the highest tested value (0.1) imply a

high level of exploration and give worse results. For instance, with a mutation

rate of 0.1 the best value was 2.593 in the non-restrictive model, whereas a

value of 0.001 showed slightly worse values than the ones obtained with a

mutation rate of 0.01, and with very slow quality evolutions. These results

were obtained when the values of the other parameters were set to their final

selected values. The swap operator shows less sensitivity to the values of the

tested interval, the worst results being those with low values (∼ 0.01), as

expected since this operator is necessary to swap the amino acids in both
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code models.

We used tournament selection with a window size of 3% of the population.

The size determines the number of randomly selected individuals from the

population, from which the best in the window is selected. We experimented

with incremental window sizes in the interval [1%, 10%], the best result being

that obtained with the selected window size. This size imposes a low selective

pressure, which makes the evolutions less dependent on the appearance of

good sub-optimal solutions. With low selective pressure values the evolutions

are quite similar, and they begin to worsen with a value of around 8% in the

window size. For instance, with a window size of 10%, the best value was only

2.757 in the unrestrictive model, with a population of 1,000 individuals and

the mutation and swap rates selected. Finally, we used the commented elitism

of the best individual through generations.

A population of 1,000 individuals provides a good trade-off between efficiency

(computing time) and good results. For instance, in the case of non-restrictive

codes, with a population of 1,000 individuals, the mean value of the best codes

obtained in the ten different tests (different initial populations) was 1.853 with

a standard deviation of 0.025. With a smaller population, 100 individuals, the

mean value of the best codes obtained in ten different executions of the GA

was 2.443, with a greater standard deviation of 0.149. With larger populations,

over 1,000 individuals, the best values improved very little. For instance, with

10,000 individuals, the mean value of the best codes obtained was 1.849, with

a similar standard deviation (0.027) to that obtained for 1,000 individuals.

The same conclusions can be obtained with the restrictive codes. With a pop-

ulation of 1,000 individuals the mean value of the best codes was 3.508, with

a standard deviation of 0.017. Again, the low standard deviations, together
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with the fact that there is not practically any improvement in the best values

obtained with larger populations, justifies the use of a population of 1,000

individuals.

6.2 Percentage distance minimization results

The percentage distance minimization, using the best values obtained by the

GA, was 67% with the non-restrictive codes, while 71% with the restrictive

codes, a higher value since the restrictive model also restricts the optimum

value. Di Giulio et al. (1994) report p.d.m. values of 72.7% in the case of

codes with only amino acid permutations in the 20 sets of codons and 64%

with codes with the same degeneracy of the genetic code, although using the

absolute value of the differences of the polarity values instead of the squared

differences and not considering synonymous changes. They explain that “this

percentage decreases as the number of codes considered increases”, which is in

accordance with our results. The same can be inferred with the improvement

measurement, as its value was 33% with the restrictive codes model and 66%

in the non-restrictive case.

The MS values of each sample of codes in each generation form a probability

distribution against which the standard genetic code MS value may be com-

pared. The upper part of Figure 3 also shows the histograms of the initial

population and at the end of the evolution with the non-restrictive codes and

in one of the tests. In the histograms, the x-axis gives a particular range of

categories of MS values whereas the y-axis indicates the number of individ-

uals with an MS in that category. The histogram of the initial population

presents a similar distribution as the ones of Freeland and Hurst (1998a), as
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the population is random. A better code (better than the canonical code) was

not found by chance in that initial population. At the end of the evolutionary

process, the situation changed radically, where all the individuals showed a

better MS than the one of the standard genetic code.

An analysis of the amino acids encoded in the codons of a variety of the best

non-restrictive codes indicates two considerations: there is a great variety of

better codes, with very different assignments; and there are not clear coin-

cidences between the best codes with the assignments of the standard code.

When evolution works without restrictions (except for the stop signal), five

amino acids appear in most of the codons: alanine (Ala), proline (Pro), serine

(Ser), threonine (Thr), and also asparagine (Asn) with a lower number, while

the rest are codified by only one or two codons. These amino acids are codified

in the standard genetic code with six or four codons (except Asn), although

the other two amino acids codified by six codons in the standard code (Arg

and Leu) are codified by only one codon in most of the best evolved codes.

There is no biological reason for these assignments, as we are working with

non-restrictive codes. The amino acids that appear in most of the codons have

an intermediate value of polar requirement (between 6.6 in Pro and 7.5 in Ser).

This helps minimize the error, when the majority of changes due to mutations

are among the intermediate values.

If restrictions are taken into account, there are few coincidences in the amino

acid assignments in the 20 sets of codons between the standard code and the

best codes obtained, such as the one shown in Figure 4. The assignments

of the amino acids to the codons in the standard genetic code as well as in

the best code obtained with restrictions are shown. The polar requirement

values are also shown, associated with their amino acids of the best evolved
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code. This last result coincides with the observations of Freeland and Hurst

(1998a), although their better codes correspond with those obtained by chance

in numerous samples. Nevertheless, the best evolved codes, like the one in

Figure 4, have the same property as that of the standard genetic code: amino

acids that share the two first bases have similar values of polar requirement.

6.3 Other error measurements and amino acid properties

Finally, we also applied other measurements, besides MS. An evolution with

a linear fitness function, using the absolute value of the difference of the polar

requirement property instead of the mean squared difference, gave similar

conclusions. The p.d.m. in the non-restrictive case was 65%, very similar value

(64%) to that obtained by Di Giulio et al. (1994), using the same linear fitness

definition. Nevertheless, the best codes obtained have few similarities when the

two fitness functions were used: only amino acids Pro and Thr were codified

by more than three codons with the two fitness definitions.

Moreover, when different amino acid properties were used, the results indi-

cated that polar requirement is the property that provides the most signifi-

cant evidence of error minimization. These properties were hydropathy index,

isoelectric point and molecular volume, the same as those used by Haig and

Hurst (1991). For instance, in the non-restrictive case, the p.d.m. was 53%

with the hydropathy property, 42% with molecular volume and 23% when the

isoelectric point was used in the MS calculation of the fitness. The GA pa-

rameters were the same as those of the previous experiments. The standard

genetic code even presents a good level of optimization for another property of

hydrophobicity (hydropathy), but a poor level for the isoelectric point prop-
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erty.

We have also used the alternative distance matrix used by Higgs (2009) to

measure the distance between amino acids. The matrix is derived from obser-

vations of rates of substitutions in proteins, and uses different weights assigned

to 9 different properties (including polar requirement). The mean distance be-

tween pairs of non-identical amino acids is 100. In this case, the numerator of

the fitness function uses directly the distances of the matrix when there is a

change of the codified amino acid after a change in each base. The p.d.m. was

60.4% with the non-restrictive codes, a lower value with respect to the use of

only polar requirement (65%), but better with respect to the other properties

commented before. The author indicates that the distance matrix is “a more

realistic amino acid distance measurement that is derived from maximum like-

lihood fitting of real protein sequence data” (Higgs, 2009), resulting in a level

of optimality close to the value when polar requirement was only used.

7 Introduction of a transition/transversion bias and evolution of

the individual bases

In nature, transition errors tend to occur more frequently than transversion

mutations, because of the unequal chemical similarity of the four nucleotides

to one another (Freeland, 2002). A transition error is the substitution of a

purine base (A, G) into another purine, or a pyrimidine (C, U/T) into another

pyrimidine (i.e., C ↔ T and A ↔ G), whereas a transversion interchanges

pyrimidines and purines (i.e., C, U ↔ A, G).

We can use the MS values for each code calculated at different weightings
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of transition/transversion bias (WMS), and turning the MS measurements

into WMS measurements, as previously done by Freeland and Hurst (1998a).

Thereby, at a weighting of 1, all possible mutations are equal when calculating

the MS values for each position of each codon. And, for example, at a weighting

of 2, the differences in amino acid attribute resulting from transition errors

are weighted twice as heavily as those resulting from transversion errors.

Freeland and Hurst (1998a) investigated the effect of weighting the two types

of mutations differently. The main conclusion of their work was the dramatic

effect of transition/transversion bias on the relative efficiency of the second

codon base; that is, the number of better alternative codes (regarding WMS2)

decreases almost six fold as the transition/transversion bias increases from 1

to 5. Nevertheless, even at higher transition/transversion bias the second base

remains an order of magnitude less relatively efficient than the first and third

bases.

Another aspect was that the individual bases combine in such a way that the

overall relative efficiency of the standard code (measured by WMS) increases

with increasing transition/transversion bias up to a bias of approximately 3.

Moreover, this effect is clearer with WMS1. As commented by the authors,

this observation coincides quite well with typical empirical data, which re-

veal general transition/transversion biases between 1.7 and 5. In addition, as

the causes of this natural bias are physiochemical, basically size and shape

of purines and pyrimidines, “it seems reasonable to suppose that the biases

observed now were present to a similar extent during the early evolution of

life” (Freeland and Hurst, 1998a).

We used the GA to determine the difficulty of evolution in obtaining better
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codes by simulated evolution taking into account the three bases separately. In

addition, we used a weight of 1 and a weight of 3, with the intention of testing

the conclusions previously mentioned by Freeland and Hurst (1998a), where

the first and third bases of the canonical code showed a better adaptability

level.

Figure 5 shows the evolution of the three individual components of the MS.

This indicates, for example, that the evolution with MS1 uses a fitness that

only considers errors in that first base. The evolutions in that Figure were

with a population of 1,000 individuals and with the restrictions mentioned in

the generation of alternative codes. The top graphs correspond to a weight

of 1 and the bottom graphs were obtained with a weight of 3. The graphs

include the improvement in fitness obtained by the best evolved individual,

measured as the final fitness with respect to the corresponding MS value of the

standard genetic code. In addition, the graphs show the percentage distance

minimization obtained in each case, where the value of the best code obtained

by the GA is used for the calculation of the percentage.

If we consider Freeland and Hurst’s analysis of random individuals of the

first generation, the second base is clearly the worst adapted in the standard

genetic code, since in the first generation there are random codes with better

MS2. The p.d.m. is 19%, which indicates that the second base in the canonical

code is quite far from the possible best value. The first base is better adapted

in the standard code (p.d.m. 62%) with lower number of random individuals

with better MS1 than the canonical MS1 value (4.88). This can be guessed by

the relation, in the first generation, of the fitness of the best individual and

the mean value of the population with respect to the value of the canonical

code. Finally, the third base is the best adapted in the standard code (p.d.m.
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96%), as there are not random codes with lower values than the MS3 of the

standard genetic code (0.14). Table 1 shows the mean values of the randomly

generated populations, together with the best values obtained, that were used

in the calculation of the measurements in Figure 5.

The evolution of the qualities in the evolutionary processes gives us similar

conclusions. In the case where the genetic algorithm takes into account only the

optimization of the second base, the average quality of the genetic population,

in less than five generations, obtains a better value than the MS2 value of the

canonical code. This is obtained even with low selective pressure (tournament

size of 3% of the population). In simulated evolution, it is more difficult for

the average population quality to have an MS1 that is better than the value

of the genetic code. Finally, with the evolution of the third base, the genetic

algorithm requires a few generations to obtain better individuals, and it is not

able to obtain an average quality with a lower value than the MS3 value of

the standard genetic code.

The values of the improvement measurement indicate, especially in the MS2

case, that we must consider in the analysis the best values that can be ob-

tained. The best MS2 value the GA can reach is worse than the optimal value

of MS1 and, especially, MS3. The imposed restrictions in the definition of

alternative codes are the reason for the different values obtained in the MS

individual components. In other words, the second base is clearly the worst

adapted, but the value that could be reached is also worse than the value of

the other two cases.

The bottom graphs in Figure 5 are the same evolutionary processes with a

bias of 3. No appreciable differences exist in the curves of quality evolution,
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except that the p.d.m. increases in the three cases. In the second base, the

improvement of p.d.m. is quite high, small with MS1 and lower with MS3.

These improvements are in accordance with the results previously mentioned

of Freeland and Hurst (1998a) with random populations.

7.1 Codes with two-base codons

We studied the level of optimality of the first two bases within the coevolution

hypothesis. This hypothesis maintains that early on in the genetic code few

precursor amino acids were codified. As the other amino acids arose biosyn-

thetically from these precursors, part or all of the codon domain of the pre-

cursor amino acids was passed to the product amino acids (Wong, 1975).

Yockey (2005) has considered an initial scenario with codons with only two let-

ters. However, other authors reject this possibility because, as Higgs indicates,

the evolution of a code with codons of length two it is unlikely “because the

evolution of such a code to a triplet code would require the complete reinven-

tion of the mechanism by which the ribosome shifts along the mRNA and the

complete rewriting of all the gene sequences that were written in the two-base

or one-base code” (Higgs, 2009). From the point of view of the evolutionary

simulated search there is no significant difference if we use the possibility of

codons with two bases or codons with three letters where the third base is

completely degenerate. The only difference in the fitness function between the

two possibilities is because the synonymous changes of the degenerate third

base, changes that are considered in the calculation.

Figure 6 shows the evolution of MS1 and MS2 when codes with two bases are
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considered. The possible original code proposed by Yockey (2005) is used as

reference (Figure 7). This code codifies 14 amino acids and uses two codons

for the stop signal. Again, evolution shows that the first base of the possible

precursor code is clearly better adapted than the second one, as also indicated

by the values of the improvement measurement. Evolution needs several gen-

erations to reach the situation in which the average fitness of the population

improves the MS1 value of the reference code, whereas in the first generation

the average fitness overcomes the MS2 value. The p.d.m. value in the second

base cannot be measured (the value would be negative), as the mean value

of the random distribution is even better than the MS2 value of the refer-

ence code. When simulated evolution works with the combined MS as fitness

(without considering the possible degenerate third base), the p.d.m. was 55%.

This value indicates that when the code expanded to the current code with

three-letter codons, there was a clear improvement in the adaptability level,

as the MS value was 71% in that case (Section 6).

This increase in the p.d.m. value in the transition from the code with two-

base codons to the code with three-base codons is compatible with the results

of the work of Di Giulio and Medugno (1999). As mentioned before, these

authors considered the evolution of the genetic code under the coevolution

theory, although without an explicit consideration of a code with two-base

codons. The authors tested 10 evolutionary stages through which genetic code

organization might have passed prior to reaching its current form. The mini-

mization percentage decreased in the early and intermediate stages of genetic

code evolution. However, the authors found that the “real increase in mini-

mization percentages seems to have taken place only in the final four stages

of code evolution, and therefore, the physicochemical hypothesis is unable to
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explain code evolution in the early and intermediate stages”. The final four

stages begin after the transition from a stage of 13 amino acids (plus 3 labels

to the stop signal) to a stage of 15 amino acids.

The stages described in (Di Giulio and Medugno, 1999) and in (Yockey, 2005)

basically differ in the presence of the Asp amino acid, considered in the first

stage in (Di Giulio and Medugno, 1999), seen as one of the first amino acids

to be assigned codons in Wong (1975) and not in the previous code considered

in (Yockey, 2005). This last author arguments that eight of the amino acids

considered in his set of original amino acids have “cylinder” codons (any third

base considered in the extension of the code codifies the same amino acid), as

well as that most of the remaining amino acids are not present in ferredoxins,

very ancient proteins present in ancestral organisms soon after the origin of

life. Figure 7 shows the best code obtained by the GA and the reference code

consisting of two-letter codons considered in (Yockey, 2005).

8 Errors as a function of the base position in the codon

The previous experiments assumed that mistakes are equally likely to be made

at any of the three codon positions. Freeland and Hurst (1998a) indicate that

this assumption is correct when we consider point mutations in the DNA se-

quence and that these are accurately translated via mRNA into an erroneous

amino acid. However, the assumption must be reconsidered if we take into ac-

count mistranslation of mRNA. The translation machinery acts upon mRNA

reading bases in triplets (codons), and that translation accuracy varies accord-

ing to the base position of the codon. The rules from (Freeland and Hurst,

1998a), used to consider the empirical data, were applied and are summarized
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as:

A Mistranslation of the second base is much less frequent than the other

two positions, and mistranslation of the first base is less frequent than

the third base position.

B The mistranslations at the second base appear to be almost-exclusively

transitional in nature.

C At the first base, mistranslations appear to be fairly heavily biased toward

transitional errors.

D At the third codon position, there is very little transition bias.

The MS calculation can be modified to take into account these rules, weighting

the errors accordingly (tMS). The left part of Figure 8 shows the quantification

of the mistranslation used in (Freeland and Hurst, 1998a) as well as in our

work to weight the relative efficiency of the three bases in the tMS calculation.

Freeland and Hurst (1998a), with their 1 million randomly generated codes,

found only 1 with a lower tMS value. Now the probability of a code as efficient

as or more efficient than the standard genetic code evolving by chance falls

until 10−6.

The right part of Figure 8 shows the evolution of tMS with the two cases pre-

viously considered, with and without the introduction of Freeland and Hurst’s

restrictions. The p.d.m. values were 85% and 84% with the non-restrictive and

restrictive genetic codes models, respectively. The values are similar, but in

any case the two values are better with respect to the same p.d.m. values when

the MS fitness was used (p.d.m. values of 67% and 71%, Section 6). There-

fore, the p.d.m. measurement, that considers the distance between the mean

value of random codes and the best possible value, again indicates that the
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canonical genetic code is better adapted with the considerations incorporated

in the tMS calculation.

In addition, the improvement measurement gives extra information. The simi-

lar values of p.d.m. with the tMS calculation are differentiated with that mea-

surement. In both cases the improvement in fitness quality was similar with

respect to an equal probability of errors in the three bases: the improvement

measurement value (decrease in fitness of the best individual with respect to

the canonical code) in tMS is 63% without restrictions and 37% with restric-

tions. This improvement measurement considers the best value that could be

obtained with the rules that define the alternative codes. The value of 37%

with restrictive codes indicates that the imposed restrictions imply a worse

optimum value. Moreover, with such restrictions the evolution with restrictive

codes improves the tMS value of the canonical code with fewer generations

(regarding the best and average values) with respect to the evolution with

unrestrictive codes. Nevertheless, the best final value corresponds to the un-

restrictive codes.

9 Discussion and conclusions

Yockey (2005) criticized the idea of evolution of the genetic code in the sense

of minimization of the effects of mutations. As argument he stated that the

1.4 ·1070 possible codes could not have been tested in the 8 ·108 years between

the event of Earth formation (4.6 · 109 years ago) and the origin of life in it

(3.8 ·109 years ago). We do not consider this statement as a correct argument,

as neither natural evolution has to check all possible codes to minimize the

deleterious effects of mutations, nor simulated evolution tests all the possibil-
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ities in the search space. Thanks to the selection of best individuals, natural

and simulated evolution concentrates only on the most promising areas of

the search landscape, sampling it to search for optimal solutions in a com-

putational problem or discovering the genetic material that provides better

adaptation to an organism.

Nevertheless, the fact that the GA easily finds better codes than the standard

genetic code does not imply that there was not any adaptive evolution of the

genetic code. Two considerations must be taken in this regard. Firstly, we

only have considered one (important) property. Knight et al. (2004) stated

that “the average effect of amino acid changes in proteins is unlikely to be

perfectly recaptured by a single linear scale of physical properties”. Secondly,

we agree with the authors that the code could be trapped in a local, rather

than global, optimum. The authors continued by saying that “The fact that the

code is not the best of all possible codes on a particular hydrophobicity scale

does not mean that it has not evolved to minimize changes in hydrophobicity

under point misreading”.

The two approaches for measuring the adaptability level of the genetic code

were valid. Within the statistical approach, the conclusions inferred are similar

to those obtained by the GA. When a bias in the transition/transversion

mutations is included and when the errors as a function of the base position

in the codons are considered, GA evolution shows a better adaptability level

of the canonical genetic code. Nevertheless, does simulated evolution provide

more information than the statistical approach or the engineering approach?

The answer is that the GA gives us more information about the difficulty of

evolution of codes.
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For instance, if we compare the evolution of the quality of the best individual

in the case of an equal transition/transversion bias and in the case of inclu-

sion of errors as a function of base position (same evolutionary parameters,

Figures 3 and 8), we can observe the greater difficulty of simulated evolution

with tMS to discover an individual that overcomes the value of the standard

genetic code, in the two models considered, with and without the conservative

restrictions. In the second case (tMS), practically twice as many generations

are needed to obtain better values, which indicates the better adaptability

level of the standard genetic code under these assumptions. Regarding the

adaptability level of the individual bases, the evolution of the average quality

of the genetic population reflects the different adaptability level of the three

bases. For example, to obtain an average quality with a better value than

the corresponding one of the standard genetic code, the required number of

generations in the first base is more than double that required in the second

base (Figure 5). The third base shows a clear adaptability level as the GA is

not able for the average quality of the population to overcome the MS3 value

of the canonical code.

Within the engineering approach, the use of the percentage distance minimiza-

tion and improvement measurements gives a clear view of the adaptability level

in relation to the best codes that could be reached. In the case of restrictive

codes, their own definition imposes a better level of adaptability of the third

base, whereas the second one is the worst adapted.

Within the coevolution theory, we have considered an initial possible scenario

with codons of two bases and 14 codified amino acids and the final scenario

of the current canonical code. Although a more detailed analysis can incor-

porate intermediate scenarios in the simulation, our analysis shows that the
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third base clearly improves the adaptability of the current genetic code, which

is in agreement with the error minimization hypothesis. Nevertheless, our sim-

ulations cannot establish if that minimization is mainly due to the selective

pressure to minimize the effects of the errors that the physicochemical theory

claims or to the main factor of the coevolution theory, that is, “the mechanism

which concedes codons from the precursor amino acids to the product amino

acids is the primary factor determining the evolutionary structuring of the

genetic code” (Di Giulio and Medugno, 1999). If the codons of the product

amino acids are assigned to physicochemical similar amino acids, it implies

also an error minimization.

Although the best possible values for the p.d.m. measurement in the engi-

neering approach can be calculated with local search procedures, simulated

evolution tries to mimic the process of natural selection with the competition

among the individuals of the genetic population, operating in that case over

the genetic code. Hence, the simulation of evolution can provide a more real-

istic view of the adaptability of the genetic code, within the physicochemical

theory, in the fight for survival of the codes in the evolution in the RNA World.

As final conclusion, we remark that the simulated evolution of codes indicates

that the canonical code is better adapted (in terms of p.d.m.) when we consider

the restrictive codes. This could be in favor of the coevolution theory, since

the restrictive codes incorporate the block structure of the canonical code and

because the freer evolution of unrestrictive codes could obtain a better level of

adaptability considering the physicochemical theory. As we have mentioned,

both approaches (statistical and engineering) to quantify the canonical code’s

susceptibility to error are valid to us. We do not agree with Freeland and co-

workers (Freeland and Hurst, 1998a; Freeland et al., 2000b) when they favor
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the statistical approach because, as they emphasize, the approach considers

that the possible codes form a Gaussian distribution of error values. However,

even when beginning with those Gaussian distributions of random codes in

the initial genetic populations, the GA simulations indicate that is easy to

improve the adaptability level of the standard genetic code, with low selective

pressure and in few generations. Our results are in agreement with the work

of Novozhilov et al. (2007) when they used a local and greedy search to find

the shortest evolutionary trajectory from a given starting code to its local

minimum of the error cost function. The authors concluded that “the stan-

dard genetic code appears to be a point on an evolutionary trajectory from

a random point (code) about half the way to the summit of the local peak.

Moreover, this peak appears to be rather mediocre, with a huge number of

taller peaks existing in the landscape”. In our simulations with the evolution-

ary computing methodology, the situation of the canonical code in the graphs

of evolution indicates that the canonical code is adapted, but it is clearly in a

local minimum.
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Table 1
Mean and best values in the MS1, MS2 and MS3 evolutions of Figure 5.

MS1 MS2 MS3

Mean value
W=1 12.027 12.680 3.522

W=3 12.027 12.455 2.340

Best value
W=1 0.536 1.586 0.013

W=3 0.421 1.586 0.009
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Fig. 1. Swap operator (left) and mutation operator (right).

Fig. 2. Calculation of the mean squared (MS) error value of a code to define the
fitness function.

Fig. 3. Evolution of the MS in codes without restrictions (except the number of
stop codons) and in codes with restrictions. The histograms shown on the top of
this Figure correspond to the population at the beginning and end of the evolu-
tionary process in the non-restrictive case. In these histograms, the x -axis gives a
particular range of categories of MS values whereas the y-axis indicates the number
of individuals with an MS in that category. The arrows in the histograms indicate
the category into which the MS value of the canonical code falls.
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Fig. 4. Best code obtained with restrictive codes. The Table shows the 21 sets of
codons considered in the restrictive model and the encoded amino acids in the
best evolved code, together with their polar requirement values used in the fitness
calculation. The last column shows the associations in the standard code.

Fig. 5. Evolution of the individual components of MS with restrictive codes, with
equal transition/transversion bias (top graphs) and with a bias of 3 (bottom graphs).
In the graphs the y-axis indicates the fitness value of the best individual or the av-
erage quality of the genetic population, whereas the x -axis indicates the GA gener-
ation. MS1, MS2 and MS3 correspond to the mean squared errors of the individual
bases without a bias in the transition/transversion mutations (W=1), and WMS1,
WMS2 and WMS3 are the errors with a transition/transversion bias of 3 (W=3).
The values indicated with a horizontal line are the values of the corresponding MS
error of the canonical code.
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t Fig. 6. Evolution of MS1 and MS2 in codes with two-base codons. MS1 and MS2

correspond to the mean squared errors of the two individual bases. The values
indicated with a horizontal line are the values of the corresponding MS error of a
supposed canonical code taken as reference (Yockey, 2005)

Fig. 7. Best evolved precursor code and first extension code proposed by Yockey
(2005). From left to right, the columns indicate the 16 possible codons with two
bases, the amino acids (plus the stop signal) codified with those codons in the best
evolved code, the polar requirement value of those amino acids of the best code,
and the amino acids codified in the code proposed by Yockey (2005)
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Fig. 8. Evolution of tMS (the error is a function of the base position in the codon),
with and without restrictions in the evolved codes, together with the obtained qual-
ity improvements. The value indicated with a horizontal line is the value of the
tMS error of the canonical code. The table at the left shows the quantification of
mistranslation used to weight the relative efficiency of the three bases in the tMS
calculation.
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