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This paper assesses how simple small-angle scattering particle size evaluation

models, such as Porod or Guinier radii, which have a normally limited validity

range, may see this range extended to larger q values. This is shown to be

particularly true for metallic systems, where the dispersion in particle size is

always large. Because of the size dispersion, the relationship between the

average particle size and the Guinier radius is shown to change. For systems with

relatively large size dispersion, the paper shows that the Porod and Guinier

radii, and simple extensions thereof, give valuable information on particle size

and particle size distribution. This is demonstrated to be valid for particles with

moderate aspect ratios. These simple evaluations are quick and very well

adapted to large data sets, such as those originating from time-resolved or

scanning small-angle experiments.

1. Introduction

Small-angle scattering (SAS) is one of the most common

techniques for measuring precipitate sizes and precipitate size

distributions in metallic systems. Carried out with X-rays or

neutrons, it is classically used in aluminium alloys (Marlaud et

al., 2010a; Dupasquier et al., 2007; Tsao et al., 2006), steels

(Bischof et al., 2005; Michaud et al., 2007; Ohnuma et al., 2009;

Perrard et al., 2006), magnesium alloys (Vogel et al., 2003;

Antion et al., 2007), Ni–Ti alloys (Kompatscher et al., 2002) etc.

A common and important characteristic of precipitates in

metallic systems is that their size distribution is always poly-

disperse, and this needs to be taken into account when

analysing the data.

When a SAS spectrum is recorded, several strategies can be

adopted to extract useful information on the particle sizes.

Algorithms have been developed to determine a particle size

distribution from the scattering spectrum without any parti-

cular assumption of its form, using Fourier transforms. The

indirect Fourier transform method developed by Glatter

(Glatter, 1977; Glatter, 1980; Glatter & Kratky, 1982) has been

particularly well used in the literature (Leitner et al., 2007;

Sato et al., 2009; Staron & Kampmann, 2000; Ulbricht et al.,

2007; Van Dijk et al., 2002; Bergner et al., 2009; Bischof et al.,

2005). However, this task can be quite complicated in practice.

Firstly, in the case of dilute systems with relatively weak

contrast, the scattering at very small angles is often perturbed

by other contributions, coming from large particles present in

the sample, dislocations, sample surfaces etc. [see e.g.

Kompatscher et al. (2002); Mukherji et al. (2003)]. Scattering at

very small angles can also be perturbed by multiple scattering,

particularly when short-wavelength X-rays are used. Secondly,

counting statistics at high angles do not always permit accurate

measurements, especially when fast time-resolved experi-

ments (with low counting times) are carried out. These

imperfections in the experimental intensity at the boundaries

of the scattering-vector range make algorithms based on

Fourier transforms difficult to use. In addition, these algo-

rithms are generally not able to extract simultaneously the

precipitate form factor and the precipitate size distribution.

However, most metallurgical samples simultaneously show

non-spherical particles and particle dispersion.

To overcome these difficulties, two alternative strategies can

be adopted. The first is to model SAS data by calculating the

scattering of a given precipitate size distribution, assuming a

shape for the precipitates. The scattering by simple objects

such as spheres or ellipsoids can be exactly calculated and, in a

low volume fraction hypothesis, the intensity scattered by the

collection of particles can be simply computed. Most

commonly a lognormal distribution of particles is assumed,

since it corresponds rather well with commonly observed

precipitate size distributions (Alinger et al., 2009; Del

Genovese et al., 2005; Glade et al., 2005; Staron et al., 2003;

Vogel et al., 2003; Wiskel et al., 2008; Perrard et al., 2006;

Marlaud et al., 2010b). Other types of distributions have been

used less commonly as well, such as Gaussian (Michaud et al.,

2007) or Shultz (Kusy et al., 2004), and one can find instances

where several distributions are combined to describe the

scattering by several precipitate families of different mean

sizes (Bischof et al., 2008; Leitner et al., 2005, 2006; Ohnuma et

al., 2009).

The second possibility is to carry out a simple evaluation

directly from the scattering curve, which gives a particle size

directly. Such measurements are frequently used in the
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literature and they are particularly interesting when a very

large amount of data needs to be processed automatically. This

situation occurs frequently now with the improvement in

X-ray detectors and brightness of synchrotron sources, which

enable generalized time-resolved measurements of precipitate

microstructures (Dupasquier et al., 2007; Schober et al., 2010;

Kenesei et al., 2006; Deschamps et al., 2005; Marlaud et al.,

2008) or precipitate mapping of heterogeneous micro-

structures (Dumont et al., 2006; De Geuser et al., 2010). In

such cases, where up to several thousand SAS spectra need to

be analysed, complicated parameter-dependent data analysis

can be impractical or even impossible.

The most classical parameter that is extracted directly from

SAS data is the Guinier radius Rg (or radius of gyration)

(Kenesei et al., 2006; Kompatscher et al., 2002; Ohnuma et al.,

2000; Wiskel et al., 2008; Dupasquier et al., 2007; Kamiyama et

al., 2001; Deschamps et al., 2001), for which the intensity I(q) is

shown to be equivalent to a Gaussian for small scattering

vectors q [q = (4�/�)sin�, where � is half the scattering angle

and � is the wavelength of the incident radiation] (Guinier et

al., 1956; Kostorz, 1996):

IðqÞ / exp �R2
gq2=3

� �
: ð1Þ

It is well known that, in the case of a monodisperse distribu-

tion of spheres, the following relationship holds between the

Guinier radius and the radius of the spheres:

Rmonodisperse
g ¼ 3=5ð Þ

1=2
Rsphere: ð2Þ

The Guinier approximation is valid for a particle of any shape

at sufficiently small scattering vectors, where qR << 1.

Therefore, it is generally considered that the measurement of

precipitate size using this approximation should be made at

the smallest scattering vectors measured during the experi-

ment. In practice, however, either researchers do not provide

the q range used for the Guinier size measurement (Dupas-

quier et al., 2007; Kompatscher et al., 2002) or they find that the

Guinier approximation is valid at larger scattering vectors,

where qR lies somewhere between 1 and 2 (Kenesei et al.,

2006; Dumont et al., 2006). Thus, it is not clear (i) under what

conditions the Guinier approximation is valid in the case of a

polydisperse collection of particles; (ii) in what q range it

should be applied; (iii) what the relationship is between the

Guinier radius and the average radius in the case of a poly-

disperse distribution of precipitates; and (iv) what the influ-

ence is of precipitate shape on these relationships.

The Guinier radius can be extracted from a so-called

Guinier plot, where log(I) is plotted versus q2. The Guinier

radius is then simply related to the initial slope � of the plot by

Rg ¼ �3�ð Þ
1=2: ð3Þ

If the Guinier approximation holds over a sufficiently wide

range of q, the intensity exhibits a linear part and it can be

shown that the Guinier radius can also be obtained very

simply from the scattering vector qmax at which Iq2 shows a

maximum:

Rg ¼ Rmax ¼ 31=2=qmax: ð4Þ

Thus, the precipitate size can clearly be visualized on a Kratky

plot (Iq2 versus q) as being inversely proportional to the q

value at the maximum (while the volume fraction is propor-

tional to the area of the plot). Even in those samples where the

Guinier plot does not show a straight line, one can generally

observe a maximum in the Kratky plot. Equation (4) applied

to this maximum has been used in the past as a measurement

of precipitate sizes and the so-called ‘pseudo-Guinier radius’

Rmax (Perrard et al., 2006). The validity of the use of this

parameter to characterize a precipitate microstructure is also

unclear. The position of this maximum in the Iq2 curve can be

seen as the q value that contributes the most to the total

integrated intensity, but its relationship to the Guinier radius

may not be straightforward.

In the present paper, we will numerically calculate the SAS

behaviour of lognormal distributions of precipitate sizes as a

function of the width of the particle size distribution (PSD).

This will be done first for spherical particles and subsequently

for ellipsoids of variable aspect ratio. The SAS behaviour will

be evaluated particularly in the light of studying the rela-

tionship between the measured Guinier or pseudo-Guinier

radii and the actual average precipitate sizes. These values will

also be compared with the Porod radius, which provides a

measurement of the surface-to-volume ratio of the particles.

Finally, this analysis will be matched with experimental data

on the Fe–Cu system (which presents dilute distributions of

spherical precipitates) and the Fe–Nb–C system (where

precipitates have an ellipsoidal shape of moderate aspect

ratio). The paper will not address the case of precipitates of

very large aspect ratio such as fine needles or platelets, which

should be analysed using specific procedures. Similarly, we will

not address the case of concentrated distributions of particles,

where interference between particles makes the data analysis

more complicated.

2. SAS by a lognormal distribution of spheres

Let us consider a distribution of spheres, the number density

of which follows a lognormal distribution defined by two

parameters, the median size Rm and the dispersion parameter

s:

f ðRÞ ¼
1

ð2�Þ1=2
sR

exp �
1

2

lnðR=RmÞ

s

� �2
( )

: ð5Þ

When the dispersion parameter s is sufficiently small, sRm is a

good approximation for the standard deviation of the distri-

bution and Rm is a very good approximation for the average

radius of the distribution R, as defined by

R ¼

R1
0

Rf ðRÞ dR

R1
0

f ðRÞ dR

¼ Rm exp
�2

2

� �
ffi Rm: ð6Þ
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The intensity scattered by a single spherical particle of size R

and volume V at a scattering vector q is well known to be

equal to [see e.g. Guinier & Fournet (1955) or Glatter &

Kratky (1982)]

Isphereðq;RÞ ¼ KV2 sinðqRÞ � qR cosðqRÞ

ðqRÞ3

� �2

; ð7Þ

where K is proportional to the square of the contrast in

electron density. In the dilute approximation, interparticle

interference can be neglected, and thus the scattering due to a

distribution of spheres can be easily calculated as

IðqÞ ¼
R1
0

Isphereðq;RÞf ðRÞ dR: ð8Þ

Figs. 1 and 2 show SAS curves for lognormal PSDs of spheres,

changing the dispersion parameter s, in the Guinier and

Kratky representations, respectively, using an Rm value of

20 Å. For clarity, in the Guinier representation all the curves

have been shifted by a constant value (corresponding to a

multiplication factor), while the Kratky plots have been

normalized by the maximum value of Iq2.

For the Guinier representation, in the monodisperse case no

extended linear region appears in the plot; the theoretical

radius corresponding to equation (2) is found in the low-q

range. The q range where this estimate can be made is

restricted to about qR = 1 (i.e. q = 0.05 here). At larger scat-

tering vectors the behaviour deviates very quickly from the

linear Guinier approximation. This can be best observed by

representing the local apparent Guinier radius, which, for a

given scattering vector q, is

Rap
g ðqÞ ¼ �3�ðqÞ½ �

1=2; ð9Þ

where �(q) is the local derivative of ln(I) versus q2.

Fig. 3 shows such a plot for different values of s. When the

dispersion increases, the Guinier plot progressively changes

towards a less convex curve. For s = 0.2 (corresponding

approximately to a relative standard deviation of 20% in the

PSD), the Guinier plot is actually observed to be very linear

up to relatively large values of q. Calculating the Guinier

radius from the slope of the straight line of the plot leads to a

value very close to 20 Å, which is precisely that of the average

precipitate size and quite different from the value given by

equation (2). The validity range of the linear slope extends to

approximately qR = 2.5. As discussed above, this q range

corresponds to that used in several papers measuring preci-

pitate sizes with the Guinier approximation. For s values equal

to or larger than 0.3, the SAS curves loose their linear char-

acter and become markedly concave.

In the Kratky representation (Fig. 2), it is observed that all

the SAS curves present a well defined maximum, which can be

analysed in terms of a pseudo-Guinier radius. However,

although for all calculations the average radius was the same,

Figure 1
Scattered intensity calculated for lognormal distributions of spheres with
Rm = 20 Å and variable s in a Guinier representation.

Figure 2
Scattered intensity calculated for lognormal distributions of spheres with
Rm = 20 Å and variable s in a Kratky representation.

Figure 3
Apparent Guinier radius, plotted as a function of scattering vector q for
lognormal distributions of spheres with Rm = 20 Å and variable s.
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the measured pseudo-Guinier radius depends strongly on the

width of the PSD. It is interesting to normalize the q axis of the

Kratky representations by the scattering vector where they

show a maximum. This is done in Fig. 4, and shows that when

the dispersion increases the normalized width of the scattering

curve increases. Therefore, this normalized width could be

used for a rapid estimation of the width of the precipitate size

distribution. The absolute width of the Kratly plot peak, on

the other hand, is shown to decrease when the dispersion

increases, due to a stronger decrease in qmax.

A systematic study of Guinier and pseudo-Guinier radii

variations as a function of the width of the PSD will now be

presented. However, it is first necessary to devise a procedure

for measuring the Guinier radius in a self-consistent way. In

fact, self-consistency imposes that the boundaries of the

interval where the slope of the Guinier curve is measured must

be constant values of qRg. A starting estimate of Rg is thus

needed. The procedure that we apply is the following. First,

the pseudo-Guinier radius (Rmax) is calculated by measuring

precisely the location of the maximum of the Kratky plot and

using equation (4). This Rmax value is taken as a first estimate

for the boundaries of the linear fit in the Guiner plot, which

are taken as A/Rmax and B/Rmax. A and B are thus the para-

meters defining the extension of the Guinier fit. The Guinier

fit between these boundaries leads to a first value of the

Guinier radius, which is used to refine the fit boundaries. This

procedure is repeated until convergence is reached, and leads

to a final value of the Guinier radius. The procedure enables

the calculation of a self-consistent value of the Guinier radius,

irrespective of the actual precipitate size or size distribution.

In the following, we will use the values A = 1 and B = 2 for the

calculations.

In addition to the Guinier and pseudo-Guinier radii, we also

measured the Porod radius, which represents the radius of a

sphere of identical surface-to-volume ratio as the measured

precipitate size distribution (Glatter & Kratky, 1982; Kostorz,

1996):

Rp ¼ 3V=S; ð10Þ

where V is the total volume of the precipitates and S the total

surface of their interface with the matrix.

This radius is calculated by first estimating the asymptotic

behaviour at large scattering vectors,

IðqÞ ! I0 þ Kp=q4; ð11Þ

where I0 is a constant that represents the background noise of

the measurement. In practice it contains terms related to the

Laue scattering of the disordered solid solution, possible

fluorescence of secondary chemical species present in the

material and possible defaults in the estimation of the ground

level for the detector. In our numerical calculations, I0 = 0.

The estimation of the Porod radius is derived from the

measured value of Kp and also requires the value of the

integrated intensity of the scattering signal, namely the area

below the Kratky plot, extrapolated to infinite scattering

vector using the Porod asymptotic behaviour (such as used by

Dumont et al., 2005):

Q0 ¼
R1
0

Iq2 dq; ð12Þ

Rp ¼
3Q0

�Kp

: ð13Þ

It must be stressed that the measurement of the Porod radius

from experimental data is subject to much larger uncertainties

than the measurements of the Guinier and pseudo-Guinier

radii, since both Q0 and Kp are difficult to determine with high

precision.

Fig. 5 shows the values of Rg, Rmax and Rp measured by this

procedure on the SAS patterns calculated from lognormal

Figure 4
Scattered intensity calculated for lognormal distributions of spheres with
Rm = 20 Å and variable s in a Kratky representation, where the scattering
vectors of all curves have been normalized by the value at which Iq2

shows a maximum.

Figure 5
Values of pseudo-Guinier radius (Rmax), Guinier radius (Rg) and Porod
radius (Rp), measured using the procedure described in the text from
scattering curves calculated from lognormal distributions of spheres with
Rm = 20 Å and variable s. The exact value of Rp for these distributions,
calculated from the volume-to-surface ratio, is also indicated.
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distributions with Rm = 20 Å and variable s. In agreement with

Fig. 1, the measured radius increases monotonically with the

width of the distribution. For very narrow distributions, the

value of (3/5)1/2R is approached. However, it is not reached

because the chosen values of A and B do not satisfy the qR << 1

condition. For an s value of approximately 0.2, the Guinier

radius is shown to be equal to the average radius of the PSD.

Above a PSD width of 0.3, a large deviation is found between

the measured Guinier radius and the average precipitate size.

With this set of A and B parameters, the Guinier and pseudo-

Guinier measurements give very consistent results, even when

the ln(I) versus q2 curve is not straight. Consequently,

comparing both values may provide information on the

validity of the underlying hypotheses made here (spherical

particles, lognormal distribution).

The Porod radius is observed to increase when the disper-

sion increases. For a dispersion parameter below 0.25, the

Porod radius is significantly larger than the Guinier radius,

whereas the contrary is observed above. A comparison

between the Guinier and Porod radii is therefore a valuable

indication of the width of the precipitate size distribution in

the case of spheres. Furthermore, it is useful to check the

agreement of the Porod radius measurement from the calcu-

lated scattering curves with the exact value calculated from

the precipitate size distribution:

Rp ¼

R1
0

R3f ðRÞ dR

R1
0

R2f ðRÞ dR

: ð14Þ

Fig. 5 shows that the agreement between the measured and

calculated Porod radii is excellent, which validates this

procedure for radius estimation.

3. SAS from a lognormal distribution of ellipsoids

Similar calculations will now be performed for ellipsoids of

revolution. We will investigate both the oblate case (a = b > c,

where a, b and c are the three semi-axes), which corresponds

to platelet-like ellipsoids, and the prolate case (a = b < c),

which corresponds to needle-like ellipsoids. The ellipsoids will

be assumed to be distributed in terms of size according to a

lognormal distribution and to have a constant aspect ratio

(k = c/a).

The scattering behaviour of a single ellipsoid obeys the

same function as that of a virtual sphere, for which the radius

Req depends on the angles (�, �, �) between the three axes of

the ellipsoid and the scattering vector (Glatter & Kratky,

1982):

R2
eq ¼ a2 cos2 �þ b2 cos2 �þ c2 cos2 �: ð15Þ

Since two of the axes are equal, it is possible to set � = �/2 and

� = � � �/2. Then,

R2
eq ¼ a 1þ cos2 � k2 � 1

� �� 	1=2
: ð16Þ

It is possible to express this as a function of the radius of a

sphere of equivalent volume Rell, which we will use in the

following as the main parameter to describe the precipitate

size distribution:

Rell ¼ ak1=3
¼ c=k2=3; ð17Þ

ReqðRell; �Þ ¼
Rell

k1=3
1þ cos2 � k2 � 1

� �� 	1=2
: ð18Þ

It follows that, in order to obtain the intensity scattered by a

distribution of ellipsoids under the assumption that their

orientations are randomly distributed (no texture effect), one

has simply to integrate first on the orientation of the ellipsoid

and then on the precipitate size distribution:

Iellðq;RellÞ ¼
R�=2

0

Isphere q;ReqðRell; �Þ
� 	

sin � d�; ð19Þ

IðqÞ ¼
R1
0

Iellðq;RÞf ðRÞ dR: ð20Þ

Now we will evaluate, similarly to the case of spheres, the

effect of the aspect ratio of the particles on the Guinier,

Kratky and Porod behaviours of the scattered intensity. In

order to minimize the number of varying parameters, we will

keep the dispersion parameter of the lognormal distribution at

a constant value of 0.2. The average radius Rm of the preci-

pitate size distribution (which is here the radius of a sphere of

equivalent volume to the ellipsoid) is also kept at a constant

value of 20 Å.

Figs. 6 and 7 show the calculated scattering intensities for

different values of the aspect ratio in the Guinier and Kratky

representations, respectively. The first feature is that the effect

of changing the aspect ratio from that of a sphere is qualita-

tively similar whether it is increased or decreased. This means

that it is necessarily difficult to distinguish, from scattering

curves alone, a distribution of needle-like ellipsoids from one

Figure 6
Scattered intensity calculated for lognormal distributions of ellipsoids
with Rm = 20 Å and variable aspect ratio, s being kept constant at 0.2, in a
Guinier representation.
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of plate-like ellipsoids. In more detail, it is observed that

having an aspect ratio different from 1 disrupts the straight

line in the Guinier plot that is observed for the distribution of

spheres in the case when s = 0.2. However, this disruption is

moderate if the aspect ratio is between 0.5 and 2. On the

Kratky representation, the scattering at small angles (before

the maximum of Iq2) is little affected by the value of the aspect

ratio, but the scattering at wider angles increases dramatically

when the aspect ratio becomes very different from 1. Again,

little modification is observed when the aspect ratio stays in

the range 0.5–2.

This is further confirmed (see Fig. 8) by the evaluation of

the different parameters that can be extracted from the scat-

tering curves (pseudo-Guinier radius, Guinier radius, Porod

radius; see x2). If the aspect ratio stays in the range 0.5–2, the

Guinier and pseudo-Guinier radii stay close to the average

radius of the PSD. For more pronounced aspect ratios, these

radii depart moderately from this value (within a 25% preci-

sion for the range of aspect ratios investigated). The Porod

radius is also logically observed to decrease when pronounced

aspect ratios are used, in relation to the increase in the

developed surface of the ellipsoids. The exact Porod radius can

also be calculated in the present case:

Rp ¼

R1
0

VellðRÞf ðRÞ dR

R1
0

SellðRÞf ðRÞ dR

; ð21Þ

with

VellðRÞ ¼
4

3
�R3; ð22Þ

Oblate SellðRÞ ¼ 2� a2
þ c2 tanh�1

ðsin "Þ

sin "

� �
; ð23Þ

with " = cos�1(k), and

Prolate SellðRÞ ¼ 2� a2 þ c2 "

tan "


 �
; ð24Þ

with " = cos�1(1/k), where a and c are calculated from R using

equation (17). Fig. 8 shows good agreement between this exact

calculation of the Porod radius and that measured from the

calculated scattering curves, except for very large (or very

small) aspect ratios where a small deviation is observed. This

comes from the fact that the scattering curves corresponding

to these cases extend to very large scattering vectors, which

hinders precise evaluation of the asymptotic 1/q4 Porod.

4. Application to experimental data in the case of
spherical particles: the Fe–Cu system

The Fe–Cu system is a classical prototype system for the study

of precipitation (Othen et al., 1991; Osamura et al., 1993;

Deschamps et al., 2001; Perez et al., 2005). It is known that, in

the first stages of precipitation, the particles are spherical to a

good approximation, and furthermore the volume fraction is

low enough to prevent interparticle effects (fv ’ 1%) but still

sufficiently high to enable high-precision measurements. In

this system, scattering can be recorded using either X-rays or

neutrons, although the former are preferable for in situ

measurements during heat treatments. Measurements in this

case need to be performed using synchrotron radiation with a

wavelength close to the K�-edge of Fe, in order to increase the

weak contrast between Cu and Fe atoms. The results shown in

this section were obtained on a binary Fe-1.4 wt% alloy that

was solutionized for 5 h at 1123 K in a sealed tube and

subsequently quenched in cold water prior to ageing. The

grain size was between 50 and 100 mm. The sample was then

thinned mechanically to a thickness of 100 mm and electro-

chemically down to 50 mm prior to the in situ heating carried

Figure 7
Scattered intensity calculated for lognormal distributions of ellipsoids
with Rm = 20 Å and variable aspect ratio, s being kept constant at 0.2, in a
Kratky representation.

Figure 8
Values of pseudo-Guinier radius (Rmax), Guinier radius (Rg) and Porod
radius (Rp), measured using the procedure described in the text from
scattering curves calculated from lognormal distributions of ellipsoids
with variable aspect ratio. The exact value of Rp for these distributions,
calculated from the volume-to-surface ratio, is also indicated.
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out under the X-ray beam. Experiments were carried out at

the D2AM/BM02 beamline of the European Synchrotron

Research Facility (ESRF) in Grenoble, France, with an X-ray

energy of 7104 eV. The beam size was approximately

100 � 200 mm. Scattered intensity was recorded by a CCD

camera and corrected for read-out noise, flat field and grid

distortion, and background noise. We will present here

measurements made in situ at 873 K during the SAXS

recording, starting from a homogeneous solid solution.

Figs. 9(a), 9(b) and 9(c) show four selected scattering curves

in log–log, Guinier and Kratky representations, respectively. It

can be seen in the Guinier plots (Fig. 9b) that the scattering

curves are remarkably linear up to large values of the scat-

tering vector, which was shown in x2 to be characteristic of a

dispersion parameter of about 0.2. In the Kratky plot (Fig. 9c),

calculated scattering curves are also represented, for which the

two parameters of a lognormal distribution (Rm and s) have

been adjusted to the data. The fit is excellent, which further

validates the use of lognormal distributions to model the data.

Now the whole set of data can be evaluated using the

procedure described above, namely the Guinier, pseudo-

Guinier and Porod radii, and also the Rm and s parameters of

the PSD, by fitting of the whole scattering curve.

The results of this analysis are shown in Fig. 10. This

demonstrates that the procedure described for calculating the

Guinier and pseudo-Guinier radii leads to a very high repro-

ducibility, since almost no noise is present in the resulting data.

The Guinier and pseudo-Guinier radii are indistinguishable,

which is expected from a lognormal distribution of spheres

with a dispersion of the order of 0.2. The average radius Rm

resulting from the fit diverges by only about 5% from the

above two parameters, which is also consistent with the

calculations made in x2. The s parameter is shown to be

relatively constant throughout the whole heat treatment

process at values fluctuating between 0.22 and 0.2, showing

that the coarsening stage of precipitates occurs in a self-similar

fashion. Finally, the Porod radius, although noisier, shows

Figure 9
Scattering curves for four selected ageing times (0.3, 0.8, 1.7 and 3 h)
during heat treatment at 873 K on the Fe–Cu alloy. (a) Raw scattering
curves (symbols) and model fitting curves (solid lines). (b) Guinier plot.
The fitted straight lines were determined within the boundaries in a self-
consistent way (see x2). (c) Kratky plot. The average radius Rm and the
polydispersity parameter were determined from the model fitting curves
(solid lines).

Figure 10
Parameters extracted from the scattering curves through the whole 873 K
heat treatment on the Fe–Cu alloy.
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values equivalent to the other radii. From Fig. 5, it is expected

that this should happen for a dispersion of 0.25, which is close

to that found here.

It can be concluded from these results that the lognormal

distribution is a good approximation of the experimental PSD,

that 0.2 is a typical dispersion value during conventional heat

treatments, and that under these conditions the Guinier radius

(or pseudo-Guinier radius) is a very good estimate of the

average precipitate size.

5. Application to experimental data in the case of
ellipsoidal particles: the Fe–Nb–C system

In Fe, NbC precipitates as platelet-like particles, nucleated on

dislocations. Due to the low volume fraction (usually lower

than 0.1%), and the poor X-ray contrast between precipitate

and matrix, this system is best studied using neutron scat-

tering. The non-magnetic nature of the precipitate makes it

possible to perform the measurement under a saturating

magnetic field and extract from the data the magnetic scat-

tering contribution resulting only from the ‘magnetic holes’

present in the Fe matrix (Kostorz, 1996). The alloy, with a

composition (in atomic p.p.m.) of Fe–470 Nb–510 C, was

solutionized in a sealed quartz tube at 1513 K for 45 min in the

austenitic state and then quenched in cold water, resulting in a

quasipolygonal fully ferritic microstructure with a small grain

size (approximately 3 mm) and a relatively large dislocation

density. The material was then aged for 300 min at 973 K.

Samples were subsequently prepared to 3 mm thickness,

mirror-polished mechanically and slightly electropolished.

Measurements were carried out on the D22 beamline of the

Institut Laue–Langevin (ILL) in Grenoble, France, at a

neutron wavelength of 6 Å. Three distances were used to

obtain the full q range presented here. The data were analysed

using the beamline software GRASP (http://www.ill.eu/lss/

grasp).

Representative scattering curves (in log–log, Guinier and

Kratky representations, respectively) are shown in Figs. 11(a),

11(b) and 11(c). Fig. 11(b) shows that, as expected, no linear

Guinier behaviour is observed. However, the self-consistent

method for determining the Guinier radius, as detailed in x2,

can be used to obtain a value for Rg of 33.6 Å. The Kratky plot

shows a well defined peak, which can be used to calculate a

pseudo-Guinier radius of 30.7 Å. This radius is somewhat

smaller than the Guinier radius, which is consistent with the

calculations of x3 (see Fig. 8). The Porod radius can be

computed as well, and one finds a value of 21 Å, which is much

smaller than the pseudo-Guinier radius. Again, this is consis-

tent with the calculations presented in Fig. 8. From Fig. 8, the

precipitate aspect ratio, corresponding to the experimental

ratio between the pseudo-Guinier and Porod radii, can be

estimated to be 0.25. This value is relatively close to that

obtained by fitting the scattering curve with a distribution of

ellipsoids, namely 0.32 (note that, owing to parasitic scattering

of large objects at very small angles, it was only possible to fit

the data above q = 0.045 Å�1). Also, this fit gives an average

radius Rm of 25.4 Å, which is smaller than the Guinier radius,

as predicted by the calculations of Fig. 8.

The conclusion of this evaluation is that, although more

caution should be exercised when evaluating microstructures

consisting of ellipsoidal precipitates as opposed to spherical

Figure 11
Magnetic scattering data for the Fe–Nb–C alloy. (a) Raw scattering curve,
along with a fit for a model containing plate-like ellipsoidal precipitates.
(b) Guinier plot. (c) Kratky plot and the calculated parameters of the
microstructure.
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precipitates, the comparison between the different parameters

of the microstructure that can be obtained by simple

measurements (Rg, Rm, Rmax, Rp) provides good estimates of

the precipitate size and morphology.

6. Conclusions

The calculations performed in this paper make it possible to

assess the confidence in the measurement of precipitate sizes

using simple and straightforward methods, such as the

evaluation of the Guinier radius, the pseudo-Guinier radius

and the Porod radius. These methods are particularly suitable

when a large amount of data needs to be evaluated.

We have shown that, for a polydisperse collection of sphe-

rical particles following a lognormal size distribution, the

Guinier regime extends to relatively large values of q when the

dispersion parameter is about 20%. We have shown that this is

a situation often encountered in practice. In addition, we have

proposed a self-consistent method of determining the Guinier

radius to overcome the subjective choice of fit boundaries.

We have demonstrated that, when the precipitates have a

moderate aspect ratio and a dispersion of about 20%, the

measurement of the Guinier radius provides a precise estimate

of the average precipitate size. In such cases, the correction

factor that applies to the case of a monodisperse collection of

spheres should not be used, in contrast with what is sometimes

done in the literature. It has also been shown that simulta-

neously measuring the ‘pseudo-Guinier’ radius from the

Kratky plot provides an estimate of the confidence that one

can have in these measurements. In cases where the Guinier

and pseudo-Guinier radii deviate strongly, precipitates can be

predicted to have either a pronounced aspect ratio or a wider

precipitate size distribution. Furthermore, a comparison

between these radii and the Porod radius provides useful

estimates of the width of the precipitate size distribution or of

the precipitate aspect ratio.

When dealing with ellipsoid-shaped particles, we have

shown that the relationships existing between the above-

mentioned measured precipitate sizes and the average size of

the distribution are almost not affected for aspect ratios in the

range 0.5–2. For larger aspect ratios strong differences occur,

and one should use the Guinier radius, with caution, simply to

describe the average precipitate size. In such cases a full model

fitting is certainly indicated.
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