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Abstract

Factorial clustering methods have been developed in rgeams thanks to the improving of com-
putational power. These methods perform a linear transftom of data and a clustering on
transformed data optimizing a common criterion. Factd®atclustering is based on Probabilistic
Distance clustering (PD-clustering). PD-clustering idtarative, distribution free, probabilistic,
clustering method. Factorial PD-clustering make a linesmdformation of original variables into
a reduced number of orthogonal ones using a common critevithnP D-Clustering. It is demon-
strated that Tucker 3 decomposition allows to obtain tlagformation. Factorial PD-clustering
makes alternatively a Tucker 3 decomposition and a PDalingt on transformed data until con-
vergence. This method could significantly improve the atgor performance and allows to work
with large dataset, to improve the stability and the robestrof the method.

1 Introduction

In a wide definition Cluster Analysis is a multivariate arsadytechnique that seeks to organize
information about variables in order to discover homogesegroups, or “clusters” into data.
The presence of groups in data depends on the associatianusér over the data. Clustering
algorithms aim at finding homogeneous groups with respettteio association structure among
variables. Proximity measures or distances can be propedg to separate homogeneous groups.
A measure of the homogeneity of a group is the variance. Bgalith numerical linearly inde-
pendent variables, clustering problem consists in mirimgizhe sum of the squared Euclidean
distances within classes: within groups deviance.

“The term cluster analysis refers to an entire process whdnstering maybe only a step”
[Gordon, 1999]. According to Gordon’s definition clusteaysis can be sketched in three main
stages:

« transformation of data into a similarity/dissimilarityatnix;
* clustering;
« validation.

Transformation of data into similarity/dissimilarity neaes depends on data type. On this trans-
formed matrix a clustering method can be applied. Cluggeniethods can be divided into four
main types: hierarchical, non hierarchical, probabdisind mixture model. Non hierarchical
clustering methods are considered in this paper. Among thenmost known and used method
is k-means. It is an iterative method that starts with a ramdhatial partition of units and keeps
reassigning the units into clusters based on the squarthdées between the unit and the cluster



centers until the convergence is reached. Interested neada refer to [Gordon, 1999]. Major
k-means issues are that clusters can be sensitive to theecbbthe initial centers and that the
algorithm could converge to local minima.

A well known problem of non hierarchical method is the cha€¢he number of clusters, this
problem will be not dealt in this paper where the number oftelts is assumed as a priori known.
Non hierarchical clustering methods performance can loagly affected by the dimensionality.
Let us consider an x J data matrixX, with n number of units and number of variables. Non
hierarchical methods easily deal with largehowever they can fail whed becomes large or
very large and when the variables are correlated. They deaamterge or they converge into a
different solution at each iteration. To cope with thesaéss French school éfhalyse de Dores
proposed théandem analysislgorithm to improve the overall quality of clustering, Aetand
Hubert in 1996 [Arabie et al., 1996] formalized the methaoat ttonsists in two phases: variables
transformation through a factorial method and clusterirjhod on transformed variables. The
choice of the factorial method is an important and tricky gghbecause it will affect the results.
Principal factorial methods are:

 quantitative data;
— Principal Component Analysis (PCA);
« binary data;

— Principal Component Analysis (PCA);
— Multiple Correspondence Analysis (MCA);

* nominal data;

— Multiple Correspondence Analysis (MCA);

The second phase of th@ndem analysisonsists in applying clustering methods.

Tandem analysis exploits the factor analysis capabilitiasconsist in obtaining a reduced number
of uncorrelated variables which are linear transformatibariginal variables. This method gives
more stability to the results and makes the procedure faskfiough tandem analysis minimizes
two different functions that can be in contrast and the fiastdrial step can in part obscure or
mask the clustering structure.

This technique has the advantage that it works on a redugatenof variables that are orthogonal
and ordered with respect to the borrowed information.

To cope with these issues Vichi and Kiers [Vichi and Kier)P0proposed Factorial k-means
analysis for two-way data. The aim of this method is to idgrttie best partition of the objects
and to find a subset of factors that best describe the clagfficaccording to the least squares
criterion. An alternating least squares algorithm (ALS3dxhon two steps solves this problem.
The advantage of Factorial k-means is that the two stepmiggtia single objective function.
Although the k-means algorithm itself, and as consequemedandem analysis and Factorial k-
means, is based on the arithmetic mean that gives rise taisfastory solutions when clusters
have not spherical shape.

Probabilistic clustering methods may allows us to obtaitiebeesults under this condition
because they assign a statistical unit to a cluster acgptdim probability function that can be
independently defined with respect to the arithmetic mean.

Probabilistic D-clustering [Ben-Israel and lyigun, 2008]an iterative, distribution free, proba-
bilistic, clustering method. PD-clustering assigns utotsluster according to their probability of
belonging to a cluster, under the constraint that the ragtaveen the probability and the distance



of each point to any cluster center is a constant.

When the number of variables is large and variables arelatete PD-Clustering becomes very
unstable and the correlation between variables can hideetdenumber of clusters. A linear

transformation of original variables into a reduced nundferthogonal ones using common cri-
teria with PD-Clustering can significantly improve the aitfon performance. The objective of
this paper is to introduce an improved version of Probatuli®-clustering called Factorial PD-

Clustering.

The paper has the following structure: section 1: shortgmedion of factorial clustering
methods; section 2: detailed presentation of ProbalilBticlustering method; section 3: pre-
sentation of our proposed Factorial PD-clustering metBedtion 4: application of Factorial PD-
clustering on a real dataset and comparison with Factonaghns.

2 Related methods

Factorial clustering methods have been proposed to copelavije dataset and to obtain stable
clusters. These methods perform a factorial step and aedingtstep iteratively, optimizing a
common criterion.

Iterative methods are used when the direct solution is sitfEsaor cannot be computed. These
methods attempt to solve a problem by finding successiveogppations to the solution, starting
from an initial guess.

Two-step clustering methods are the combination of a fadtorethod with an iterative clustering
procedure. Two quantities have to be computed: linear fioamsition of the dataset and cluster-
ing partition; they cannot be computed at the same time. Tvedegies are faceable: two-step
tandem analysis or iterative two-step methods. Two-stegeia analysis minimizes two differ-
ent functions that can be in contrast and the first factotigph san in part obscure or mask the
clustering structure. This issue can be overcame. De SoeteCarroll in 1994 proposed an
alternative method [De Soete and Carroll, 1994]. This mettiscan alternative k-means proce-
dure, after a clustering phase, it represents centroidsioawer dimensional space chosen such
that the distances between centroids and points belonginlget cluster are minimized. After
all the points are projected in this low-dimensional spaa&iaing a low-dimensional represen-
tation of points and clusters. This method can fail in findihg real clustering structure when
the data have much variance in directions orthogonal to tieecapturing the interesting cluster-
ing. lterative two-step methods overcome these issues.ngreo-step iterative methods a first
contribute was given by Vichi and Kiers [Vichi and Kiers, 2Q@vith Factorial k-means analy-
sis for two-way data. Related methods have been developeab® with categorical and binary
data. Some relevant methods are: multiple correspondevatgsis for identifying heterogeneous
subgroups of respondents [Hwang et al., 2006] and Iter&aatorial Clustering of Binary Data
[lodice D’Enza and Palumbo, 2010].

2.1 Factorial k-means

The aim of this method is to identify the best partition of tigects and to find a subset of factors
that best describe the classification according to the Egsires criterion. An alternating least
squares two-step algorithm solves this problem.

Defined with:

* X data matrix withn units andJ variables;

* A columnwisel x R orthonormal matrix, the elements are a linear combinatiasbeerved
variablesRis the number of factor to be used;



* U nx K of general element;; binary membership to each cluster matrix, wiimnumber
of clusters;

« E error components matrix;
« Y centroids matrix.

Factorial k-means model is defined as follow:
XAK =UYA+E (1)

The model is an orthogonal projection of units on a subsppe@red by the columns of the
columnwise orthonormal matri. The objective is to minimize the squared error:

min|[XA—UY|[2 (2)
subject to AA=I

J
U is a binary matrix andy ui; = 1vi
=1

Centroids matrixY can be expressed a¥:= (U'U) 1U’XA so the expression minimized in the
(2) becomesj|XA—U U'U)~U'XA||2. This quantity can be decomposed in two parts and the
function to be minimized becomes:

minftr (AX’XA) —tr(AX'U (U'U)"IU'XA)] (3)

The first component of the (3) is the total devianceXd, the second is the between classes
deviance. An ALS algorithm can be used to solve the (3).

The advantage of Factorial k-means is that the two stepsniggia single objective function.
Tandem analysis instead minimizes two different functitvet can be in contrast and the first
factorial step can in part obscure or mask the cluster streict

Another advantage is that clustering method is applied ctof@l axes. If the number of chosen
factors is lower than the number of variables the methodtisreal robust.

3 Probabilistic D-Clustering

Probabilistic D-clustering is a non hierarchical algaritithat assigns units to clusters according
to their belonging probability to the cluster. Given somedam centers, the probability of any
point to belong to each class is assumed inversely propaittio the distance from the centers of
clusters. Given aiX data matrix withn units andJ variables, giverK clusters that are assumed
not empty, Probabilistic D-Clustering is based on two qitiast the distance of each data point
x; from theK cluster centersy, d(x;, c), and the probabilities of each point to belong to a cluster,
p(x,ck) withk=1,...,K andi = 1,...,n. The relation between them is the basic assumption of
the method. Let us consider the general teynof X and a center matri€, of elements; with
k=1,...,K,i=1,...,nandj=1,...,J, their distance can be computed according to different
criteria, the squared norm is one of the most commonly usée.generic distance(x;, cx) rep-
resents the distance of the generic poitat the generic centde The probabilityp(x;, ck) of each
point to belong to a cluster can be computed according toatesmption: the product between
the distances and the probabilities is a constant depeairgD(x).
For short we usex (X)) = p(x,ck) anddk(x) = d(x,ck); PD-clustering basic assumption is ex-
pressed as:

Pe(X)ck(X) = D(¥) @)
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for a given value ok and for allk =1, ... K.

At the decreasing of the point closeness form the clusteiecehe belonging probability of
the point to the cluster decreases. The constant depengsioitie point and does not depend on
the clusteik.

Starting from the (4) it is possible to compytg(X):

X0 (X) = Pe(X)d(X); pe(X) = %; Vt=1,....K 5)

The termp(x) is a probability so, under the (:onstra@il p:(x) = 1, the sum ovet of (5) be-
comes:

< (dk(X)
pk(X)t;I (ﬁ) =1

I S e 10
Z{il(i“—m) SEAMjadi(x)]

Pk (X) k=1,...K. (6)

&
Starting from the (4) and using (6) it is possible to definevélele of the constarid(x):

D(X) = pk(X)dk(x),k=1,...K

M1 0k(X)
D(xX) = — k=t & 7
* SEaMjadi(®) ")

The quantityD(x), also calledJoint Distance FunctiofJDF), is a measure of the closeness of
x from all clusters centers. The JDF measures the classiftgati the point x with respect to
the centergy with k=1,...,K. If it is equal to zero, the point coincides with one of thestirs
centers, in this case the point belongs to the class withrgmity 1. If all the distances between the
point and the centers of the classes are equd) B X) = d/k and all the belonging probabilities
to each class are equg(x) = 1/K. Smaller is the value of the JDF higher is the probability of
the point to belong to one cluster.

The whole clustering problem consists in the identificatibthe centers that minimizes the JDF.
Without loss of generality the PD-Clustering optimalityterium can be demonstrated according
tok=2.

mindy (x) p? 4 da(X) 3 (8
subject to pr+p2=1
p17 p2 Z 0

The probabilities are squared because it is a smoothedwensithe original function. The La-
grangian of this problem is:

L(p1, p2,A) = di(X)p2 +da(X)p3 — A (pr+ p2— 1) 9

Setting to zero the partial derivates with respegbt@nd py, substituting the probabilities (6) and
considering the principl@; (x)di(X) = pz(X)d2(X) we obtain the optimal value of the Lagrangian.

d1 (X) d2 (X)

d1(X) +da(x) (10)

L(pl7 p27)\) -
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This value coincides with the JDF, the matrix of centers thiatimizes this principle minimizes

the JDF too. Substituting the generic valligx) with ||x— ck||, we can find the equations of the
centers that minimize the JDF (and maximize the probalslitgach point to belong to only one
cluster).

-5 (2,
*= i:Z’N (Zj—l,...,N Uk(Xj) o (11)
where
2
Uk (%) = Zkk((X'xi)) . (12)

As showed before, the value of JDF at all centeis equal to zero and it is necessary positive
elsewhere. So the centers are the global minimizer of the Tbdte exist other stationary points,
because the function is not convex neither quasi-convexthby are saddle points.

There are alternative ways for modeling the relation bebnmebabilities and distances, for
example the probabilities can decay exponentially asmlissincrease. In this case the probabil-
ities px(x) and the distancedk(x) are related by:

pe(x)e%M = E(x), (13)

whereE(x) is a constant depending an
Many results of the previous case can be extended to thidyasplacing the distanad(x) with
ek,

Interested readers are referred to [Ben-Israel and lyig0083]

3.1 Choice of the distance

The optimization problem presented in (8) is the originakian proposed by Ben-Israel and lyi-
gun. Notice that in the optimization problem the probaieiitpx are considered in squared form.
The authors affirm that it is possible to considiras Welldf. Both choices have some advan-
tages and drawbacks. Squared distances offer analyticahtatjes due to linear derivates. Using
simple distances endures robustness results and the ogtiiom problem can be reconducted to a
Fermat-Weber location problem. The Fermat-Weber locgiroblem aims at finding a point that
minimizes the sum of the Euclidean distances from m giventpoiThis problem can be solved
with the Weiszfeld method [Weiszfeld, 1937]. Convergent¢his method was established by
modifying the gradient so that it is always defined [Khun,3@7The modification is not carried
out in practice. The global solution is guaranteed only isecaf one cluster. Dealing with more
then one cluster, in practice, the method converges onlg fionited number of centers depending
on the data.

3.2 Probabilistic D-clustering algorithm

The solution of Probabilistic D-clustering problem can b¢ained through an iterative algorithm.
Given a data seX and a set of centeT:

step O random initialization of center matrix;
step 1 distanced(x) for all xe X withk=1,...K;

step 2 update the center mat@x;



step3  ifyiy ||ci — |, < € stop, else return to 1.

Wherecy is the generic center arti(x) is defined in (4).

Cluster centers and JDF change at each iteration, the mgjdahction decreases and the algo-
rithm converges.

Points are assigned to th¥ cluster according to the higher probability that are coragut pos-
teriori according to (6)

4 Factorial PD-Clustering

When the number of variables is large and variables arelatete PD-Clustering becomes very
unstable and the correlation between variables can hide#h@umber of clusters. A linear trans-
formation of original variables into a reduced number ofiogonal ones can significantly improve
the algorithm performance. Combination of PD-Clusterind gariables linear transformation im-
plies a common criterion. This section shows how the Tuckaetod [Kroonenberg, 2008] can
be properly adopted for the transformation in the Fact®Clustering.

Factorial PD-clustering is an iterative procedure thatsigia of two main step that are:

« Linear transformation of original data;
» PD-Clustering on transformed data.

Center matrixC of elementsc,; with k=1,..., K andj = 1,...,J is pseudorandomly defined
before starting the algorithm. So that probabilities arstaftice matrices can be computed. The
distance between a generic observakicend a generic centeg is the absolute difference between
each coordinate of the point and each coordinate of thercente

d(xi,ck) = Gijk = |Xij — C;] (14)

withi=1,...,n, k=1, ... K, for agiven value of.

The matrixG of elementgy;jk is a 3-way matrixn x J x K wheren is the number of units] the
number of variables and the clusters.

The aim is to transform variables in new ones obtained astiiaasformation of original variables
minimizing JDF.

The probabilitiesp are arranged i diagonaln x n matrices where the general term is given by:
(6). The problem is to transform original variable mininmgi

min (310 571 51106 — o) 7P (15)

In the section 4.2 we demonstrate that the minimization lprabin (15) corresponds to the
Tucker3 decomposition of distance matgxIt is demonstrated that this solution minimizes JDF
too. Consequently it is demonstrated that applying a TuBkdecomposition on the distance
matrix d it is obtained the space that better represents the datedamgaoo PD-Clustering criteria.

For anycg with k=1,...,K, it is defined aGy n x J distances matrices. Tucker3 method
decomposes the matri in three components, one for each mode, in a full core akragd in an
error termk.

R Q s
Oijk = Z Z ZArqs(UirquVks)+ij
r=1g=1s=
withi=1,...,n,j=1...,J,k=1,... K.
Defining with: R number of components &f, Q number of components & and S number of
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components of.
The units coordinates into the space of variables obtaigeiibker3 decomposition are obtained
by the following expression:

J
Xg = Y %jbjg- (16)
=1

On the projection of units on these fiRtfactorial axes PD-clustering algorithm can be ap-
plied. Using PD-clustering a new center matfixs obtained and the distance matrix is updated.
Basing on the new distances, the algorithm is reiterated Wtnole algorithm is reiterated until
convergence.

As in all factorial methods, factorial axes in Tucker 3 moaled sorted according to explained
variability. The first factorial axes explain the great pafrthe variability, latest factors represent
outliers or ground noise. For this reason the choice of a rumtfactors lower than the number of
variables makes the method externally robust. Consegui@rdkder to reduce the dimensionality
and to make the result robust a number of fa&et J can be chosen.

4.1 Factorial PD-clustering algorithm
Given a dataseX and a center matrig, the iterative algorithm can be summarized as follow.
step 0 PD-cluster algorithm: compute center mafix
step 1 distance§y for all xe X withk=1,...K;
step 2 Tucker3 decomposition and computatioXX bfnatrix;
step 3 PD-clustering of reduced data and update of the ceratieix;

step4  ifyi, || —cl|| < € stop, else return to 1.

4.2 Factorial PD-clustering method

In this section it is demonstrated that the space that betfgesents the data according to PD-
Clustering criteria is the one obtained with Tucker3 decositjpn on distance matrix.

The probability matrix can be written as a diagonal maRix diag(vedp)) of generic element
prwithh=1,... nx K. Each element of this matrix represents the probahiityhat the poink;
belongs to the clustdg, withi =1,...,nandk=1,... K. As we have seen before, the objective is
to minimize the JDF that is equivalent to minimize the pradetweerG andP that is still a 3-way
matrix. Factorial PD-Clustering is a soft modeling methioattaims at finding a unique solution
that at the same time minimizes JDF and that makes a lineeftnanation of data. We can prove
that using Tucker 3 transformation we obtain the space tliwitnizes the JDF, consequently we
can obtain a unique solution obtained optimizing the santeria in the two steps:

min <Zin:1 Si1 ka0 — ij)zpﬁ() :

The unknown quantities of this formula azg and pix.
THEOREM 1 To maximize —[3; 37 3 i 1(Xj — C;j)?p4] is equivalent to the decompose

(xj —cj) =3R4 z(?:l 52 1 Args(Uir DjqVks) + &ijk (Tucker3 decomposition).



PROOE Objective function is:

max[— (Z{Ll Yo Siea(Xij — ij)zpﬁ()]

n K

sub constraint Zl > i <n
=Tt

Replacing(x;; — c;j) with gijx (14) we obtain:
max(— PLEDY PP pﬁ()
n K
sub constraint ZI > p2 <n
i1

The Lagrangian is:

n J

K n K
L—— 2 02 4+ A Z—n
i; ]Zlkzlg”k Pik (i;kzl Pik )

whereA > 0 is the Lagrangian multiplier. In order to maximize the Laggian we have to compute
the first derivate.

SL _p
op
—23 N 3 kG Pk +2A YL Y Pk =0
Sy oSk Gk Pik =A Y11 Tk g Pk (17)

It can be demonstrated that the second derivate is notyamsitihe value ofA that optimize the
(17) can be find trough the research of the eigenvalues of &iBx.

R Q s
Oijk = Z Z ZArqs(Uir quVks)+ajk
r=1g=1s=
withi=1,....n,j=1...,J,k=1,... K.
Defining with: R number of components &f, Q number of components & and S number of
components of.
In matrix notation:

G=UA(\V'®B)+E (18)

That is the Tucker3 decomposition of matrix G.

|

PD-clusering objective function is: to maximize[y; 37 1 S 1 (Xj — j)?pg]. It can be
said that:
LEMMA 1 The space that better represents the data according tolidDefing criteria is the one
obtained with Tucker3 decomposition on distance majrix

Starting from the (16) the proof is the same as proof of Thadte

5 Application on a real dataset

Factorial PD-clustering has been applied on the dataset ims@Vichi and Kiers, 2001]. The
datasetiatest short-term indicators and economic performancecars: contains 6 macroe-
conomic variables measured on 20 countries members of tli@DOFariables are the six main

10ECD, Paris 1999



economic indicators: Gross Domestic Product (GDP), Leadimicator (LI), Unemployment
Rate (UR), Interest Rate (IR), Trade Balance (TB), Net NeticGavings (NNS). Table 1 contains

the dataset.

The first step of Factorial PD-clustering is the choice ofrthmber of cluster& that has been

fixed equal to 3.

The choice of the number of factors is a ticklish well knowsuis; however it will be not dealt

Country Label GDP LI UR IR TB NNS
Australia A-lia 480 8.40 8.10 532 0.70 4.70
Canada Can 320 250 840 5.02 160 5.20
Finland Fin 390 -1.00 11.80 3.60 8.80 7.70
France Fra 230 0.70 11.70 3.69 3.90 7.30
Spain Spa 3.60 250 19.00 483 1.20 9.60
Sweden Swe 410 1.10 890 420 7.00 4.00
United States USA 410 140 450 5.59 -1.40 7.00
Netherlands Net 290 1.60 4.20 3.69 7.00 15.80
Greece Gre 3.20 0.60 10.30 11.70 -8.30 8.00
Mexico Mex 230 5.60 3.20 20.99 0.00 12.70
Portugal Por 280 -7.50 4.90 484 -8.70 14.00
Austria A-tria  1.10 0.60 4.70 3.84 -0.60 9.40
Belgium Bel 140 -0.10 9.60 3.64 450 12.40
Denmark Den 1.00 1.50 5.30 4.08 3.30 5.00
Germany Ger 0.80 -2.00 9.50 3.74 150 7.70
Italy Ita 0.90 -0.40 12.30 6.08 4.30 8.20
Japan Jap 0.10 5.40 4.20 0.74 1.20 15.10
Norway Nor 1.40 0.90 3.30 447 7.10 15.10
Switzerland Swi 1.10 210 3.80 184 440 13.20
United Kingdom UK 1.20 4.90 6.40 7.70 -0.50 4.80

Table 1. Six macroeconomic performance indicators of tweDECD countries (percentage
change from the previous year, September 1999)

in this context. In this case the number of factors that haenlkchosen are: 4 factors for the
variables, 4 factors for the units and 2 factors for the elsstThe factors correspond to the values
of R, Q andSrespectively in the (18).
The factors used in the analysis explain the 88% of the \ifitiab

The method has been iterated 50 times, to test the resultilitgtaThe JDF index has been
measured at each iteration, fig. 6 represents the JDF valuihe Ibest case the value of JDF is
15.12, it occurs in 4% of cases. The modal valuel®6occurs in 35% of cases.
Table 3 displays Factorial PD-clustering iterations sumynséatistic.

The partition of units in clusters is:

cluster 1 Mexico, Austria, Denmark, Japan, Norway, Switzet, United Kingdom;
cluster 2 Finland, France, Spain, Netherlands, Portugdgim, Germany, Italy;

cluster 3 Australia, Canada, Sweden, United States, Greece

To describe the separating power of our variables in thevatig are shortly described results
illustrated in figures 2 to 5.
The differences between the medians have been evaluateddoicluster and for each variable, to
understand which are the variables that mostly contributbd class separability. The results can
be better understood looking at the box-plots in fig. 2. Thiéatée Net National savings presents
the highest difference between the medians. NNS varialplarates the second cluster from the

10
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Figure 1: Frequency of JDF on 200 iterations of the Factétiadclustering

JDF Frequency mean execution time mean number of iterations

15,12 4,08% 0,39 8
15,17 4,08% 0,46 12
15,61 6,12% 0,34 6
15,95 4,08% 0,18 5
15,99 8,16% 0,67 17,75
16,04 2,04% 0,3 8
16,09 4,08% 0,33 8
16,14 10,20% 0,33 8,6
16,19 34,69% 0,45 10,23
16,24 6,12% 0,29 6,33
16,33 2,04% 0,32 7
16,38 10,20% 0,24 5,6
16,53 2,04% 0,38 5
17,01 2,04% 0,12 3

Table 2: Summary statistics on 50 iterations of FactorialdRi3tering

others, where the values of the variable are lower, in dustihe variable has high variability.
The variable Unemployment Rate presents high differenbedsn clusters medians: in cluster 1
the values of this variables are smaller than in the othestets; in cluster 2 UR presents a small
variability. The variable Gross Domestic Product preshigh values in cluster 2 and small values
in cluster 1. The variable Trade Balance is low in cluster Be Tedians of the variables Interest
Rate and Leading Indicator are not significantly differembag clusters.

Fig. 3, 4 and 5 represent scatter-plots of units on the vasatrdered according to discrimi-
nating power.
Scatter-plots in figures 3 to 5 show that:
Mexico, Austria, Denmark, Japan, Norway, Switzerland andédl Kingdom have a low variation
of Gross Domestic Product but they have a low Unemploymetd Bad hight Trade Balance;
Australia, Canada, Sweden, United States and Greece hagh &foss Domestic Product varia-
tions, low Unemployment Rate but they have low values of teeMational Savings variable;
Finland, France, Spain, Netherlands, Portugal, Belgiuern@ny and Italy have average values

11
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Figure 2: Box-plot of variables for each cluster obtainethviAactorial PD-clustering

of Gross Domestic Product and Unemployment Rate and higlesaif Net National Savings.

The clusters description, presented in the foregoingesponds to the most frequent case of the
JDF, which is in the intervgb.6;5.7]. Taking into account all iterations, it is worth noticingath
three stable groups of countries are always together inaime €luster:
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Figure 4: Scatter-plot of units divided in clusters obtdimgth Factorial PD-clustering

5.1 A comparison with Factorial k-means

In order to evaluate Factorial PD-clustering results, tl¢hod has been compared with Factorial
k-means 2.1. The method have been iterated 200 times.

Using the same scheme adopted for Factorial PD-Clusteeswitrdescription, in the following
Factorial k-means results are shortly described. The nddihe been applied on the same dataset;
the results shown are consistent with those presented wriieal Vichi and Kiers’ paper.

To identify the most discriminating variables, in this cabe differences between the mean values
of the clusters have been evaluated. This because the ksmeatimizes the differences between
cluster centroids.

In order to easily compare the results the same graphicsegresented: box-plots in fig. 7;
Scatter-plots indicating the cluster membership are sgpried in fig.8, 9, 10.

Itis important to notice that Factorial k-means resultscargsistent with the Factorial PD-clustering
ones: in particular the method identifies the same stablgpgrof countries. The most significative
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Figure 6: Frequency of JDF on 200 iterations of Factorialéans

difference is in cluster 2: Factorial k-means identifiesustedr composed by Portugal, Greece and
Mexico; Factorial PD-clustering assigns Portugal, Gressa Mexico in three different clusters.
Looking at the scatter plot in fig. 8, where statistical u@ite represented according to the two
most separating variables, these three countries app#ar asst different from the global mean.
It is not surprising that the k-means algorithm separatisstiinee points from the others, because
it minimizes the variance within the clusters, and as a aquesiece it gives maximum importance
to the variables Trade Balance and Interest Rate.

To summarize: Factorial k-means has found a cluster of femehts and large variability
and two clusters having a larger number of elements (7 andelfiemts, respectively) and a
small variability. This partition emphasizes the diffeten between the variables: Interest Rate,
Trade Balance and Net National Savings. Differently Faatd?D-clustering have divided the
space in three regions defining three clusters having althessame variability and almost the
same number of elements (7,8 and 5 elements, respectiviedygllister emphasize the differences
between the variables: Net National Savings, UnemployrRat¢ and Gross Domestic Product.

Results obtained with Factorial k-means are differentiimgeof discriminating variables; the
two methods emphasize different aspects of the same phewome

Results presented in this section have been produced witlabia
The toolboxN-wayhave been integrated in Matlab code to obtain Tucker3 deositign. The
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Whitin variance

Frequency mean execution time

mean number faterations

5865,59 16,53% 0,004 2,63
961,92 23,14% 0,004 2,64
970,9 3,31% 0,004 2,75
999,52 54,55% 0,004 2,27
1256,42 2,48% 0,004 2

Table 3: Summary statistics on 200 iterations of Factoriaddans
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Figure 7: Box-plot of variables for each cluster obtainethviactorial k-means

toolbox is freely available at Matlab Central web Site.

2http://www.mathworks.com/matlabcentral/
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Figure 9: Scatter-plot of units divided in clusters obtdimath Factorial k-means

6 Conclusions

In this paper a new factorial two-step clustering methoddess proposed: Factorial PD-clustering.
This method can be inlaid into a new field of clustering teghri which has been developed in
recent years: iterative clustering methods. Two-steptetigy methods was proposed by French
school of Analyse de Données in order to cope with someetingf issues. Thanks to computer
developing in recent years iterative clustering methode eeen introduced. These methods it-
eratively perform a linear transformation of data and atelirsg optimizing a common criterion.
Factorial PD-clustering perform a linear transformatidédata and Probabilistic D-clustering iter-
atively. Probabilistic D-clustering is an iterative, distition free, probabilistic, clustering method.
When the number of variables is large and variables arelatete PD-Clustering becomes very
unstable and the correlation between variables can hidegh@umber of clusters. A linear trans-
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Figure 10: Scatter-plot of units divided in clusters ob¢ainwith Factorial k-means

formation of original variables into a reduced number ohogonal ones using common criteria
with PD-Clustering can significantly improve the algoritiperformance. Factorial PD-clustering
allows to work with large dataset, to improve the stabilityldhe robustness of the method.
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