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Abstract

Factorial clustering methods have been developed in recentyears thanks to the improving of com-
putational power. These methods perform a linear transformation of data and a clustering on
transformed data optimizing a common criterion. FactorialPD-clustering is based on Probabilistic
Distance clustering (PD-clustering). PD-clustering is aniterative, distribution free, probabilistic,
clustering method. Factorial PD-clustering make a linear transformation of original variables into
a reduced number of orthogonal ones using a common criterionwith PD-Clustering. It is demon-
strated that Tucker 3 decomposition allows to obtain this transformation. Factorial PD-clustering
makes alternatively a Tucker 3 decomposition and a PD-clustering on transformed data until con-
vergence. This method could significantly improve the algorithm performance and allows to work
with large dataset, to improve the stability and the robustness of the method.

1 Introduction

In a wide definition Cluster Analysis is a multivariate analysis technique that seeks to organize
information about variables in order to discover homogeneous groups, or “clusters” into data.
The presence of groups in data depends on the association structure over the data. Clustering
algorithms aim at finding homogeneous groups with respect totheir association structure among
variables. Proximity measures or distances can be properlyused to separate homogeneous groups.
A measure of the homogeneity of a group is the variance. Dealing with numerical linearly inde-
pendent variables, clustering problem consists in minimizing the sum of the squared Euclidean
distances within classes: within groups deviance.

“The term cluster analysis refers to an entire process whereclustering maybe only a step”
[Gordon, 1999]. According to Gordon’s definition cluster analysis can be sketched in three main
stages:

• transformation of data into a similarity/dissimilarity matrix;

• clustering;

• validation.

Transformation of data into similarity/dissimilarity measures depends on data type. On this trans-
formed matrix a clustering method can be applied. Clustering methods can be divided into four
main types: hierarchical, non hierarchical, probabilistic and mixture model. Non hierarchical
clustering methods are considered in this paper. Among themthe most known and used method
is k-means. It is an iterative method that starts with a random initial partition of units and keeps
reassigning the units into clusters based on the squared distances between the unit and the cluster
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centers until the convergence is reached. Interested readers can refer to [Gordon, 1999]. Major
k-means issues are that clusters can be sensitive to the choice of the initial centers and that the
algorithm could converge to local minima.

A well known problem of non hierarchical method is the choiceof the number of clusters, this
problem will be not dealt in this paper where the number of clusters is assumed as a priori known.
Non hierarchical clustering methods performance can be strongly affected by the dimensionality.
Let us consider ann× J data matrixX, with n number of units andJ number of variables. Non
hierarchical methods easily deal with largen, however they can fail whenJ becomes large or
very large and when the variables are correlated. They do notconverge or they converge into a
different solution at each iteration. To cope with these issues, French school ofAnalyse de Donńees
proposed thetandem analysisalgorithm to improve the overall quality of clustering, Arbie and
Hubert in 1996 [Arabie et al., 1996] formalized the method that consists in two phases: variables
transformation through a factorial method and clustering method on transformed variables. The
choice of the factorial method is an important and tricky phase because it will affect the results.
Principal factorial methods are:

• quantitative data;

– Principal Component Analysis (PCA);

• binary data;

– Principal Component Analysis (PCA);

– Multiple Correspondence Analysis (MCA);

• nominal data;

– Multiple Correspondence Analysis (MCA);

The second phase of thetandem analysisconsists in applying clustering methods.
Tandem analysis exploits the factor analysis capabilitiesthat consist in obtaining a reduced number
of uncorrelated variables which are linear transformationof original variables. This method gives
more stability to the results and makes the procedure faster. Although tandem analysis minimizes
two different functions that can be in contrast and the first factorial step can in part obscure or
mask the clustering structure.
This technique has the advantage that it works on a reduced number of variables that are orthogonal
and ordered with respect to the borrowed information.
To cope with these issues Vichi and Kiers [Vichi and Kiers, 2001] proposed Factorial k-means
analysis for two-way data. The aim of this method is to identify the best partition of the objects
and to find a subset of factors that best describe the classification according to the least squares
criterion. An alternating least squares algorithm (ALS) based on two steps solves this problem.
The advantage of Factorial k-means is that the two steps optimize a single objective function.
Although the k-means algorithm itself, and as consequence the tandem analysis and Factorial k-
means, is based on the arithmetic mean that gives rise to unsatisfactory solutions when clusters
have not spherical shape.

Probabilistic clustering methods may allows us to obtain better results under this condition
because they assign a statistical unit to a cluster according to a probability function that can be
independently defined with respect to the arithmetic mean.
Probabilistic D-clustering [Ben-Israel and Iyigun, 2008]is an iterative, distribution free, proba-
bilistic, clustering method. PD-clustering assigns unitsto cluster according to their probability of
belonging to a cluster, under the constraint that the ratio between the probability and the distance
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of each point to any cluster center is a constant.
When the number of variables is large and variables are correlated, PD-Clustering becomes very
unstable and the correlation between variables can hide thereal number of clusters. A linear
transformation of original variables into a reduced numberof orthogonal ones using common cri-
teria with PD-Clustering can significantly improve the algorithm performance. The objective of
this paper is to introduce an improved version of Probabilistic D-clustering called Factorial PD-
Clustering.

The paper has the following structure: section 1: short presentation of factorial clustering
methods; section 2: detailed presentation of Probabilistic D-clustering method; section 3: pre-
sentation of our proposed Factorial PD-clustering method;section 4: application of Factorial PD-
clustering on a real dataset and comparison with Factorial k-means.

2 Related methods

Factorial clustering methods have been proposed to cope with large dataset and to obtain stable
clusters. These methods perform a factorial step and a clustering step iteratively, optimizing a
common criterion.
Iterative methods are used when the direct solution is unfeasible or cannot be computed. These
methods attempt to solve a problem by finding successive approximations to the solution, starting
from an initial guess.
Two-step clustering methods are the combination of a factorial method with an iterative clustering
procedure. Two quantities have to be computed: linear transformation of the dataset and cluster-
ing partition; they cannot be computed at the same time. Two strategies are faceable: two-step
tandem analysis or iterative two-step methods. Two-step tandem analysis minimizes two differ-
ent functions that can be in contrast and the first factorial step can in part obscure or mask the
clustering structure. This issue can be overcame. De Soete and Carroll in 1994 proposed an
alternative method [De Soete and Carroll, 1994]. This method is an alternative k-means proce-
dure, after a clustering phase, it represents centroids in alower dimensional space chosen such
that the distances between centroids and points belonging to the cluster are minimized. After
all the points are projected in this low-dimensional space obtaining a low-dimensional represen-
tation of points and clusters. This method can fail in findingthe real clustering structure when
the data have much variance in directions orthogonal to the one capturing the interesting cluster-
ing. Iterative two-step methods overcome these issues. Among two-step iterative methods a first
contribute was given by Vichi and Kiers [Vichi and Kiers, 2001] with Factorial k-means analy-
sis for two-way data. Related methods have been developed tocope with categorical and binary
data. Some relevant methods are: multiple correspondence analysis for identifying heterogeneous
subgroups of respondents [Hwang et al., 2006] and IterativeFactorial Clustering of Binary Data
[Iodice D’Enza and Palumbo, 2010].

2.1 Factorial k-means

The aim of this method is to identify the best partition of theobjects and to find a subset of factors
that best describe the classification according to the leastsquares criterion. An alternating least
squares two-step algorithm solves this problem.
Defined with:

• X data matrix withn units andJ variables;

• A columnwiseJ×Rorthonormal matrix, the elements are a linear combination of observed
variables,R is the number of factor to be used;
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• U n×K of general elementui j binary membership to each cluster matrix, withK number
of clusters;

• E error components matrix;

• Ȳ centroids matrix.

Factorial k-means model is defined as follow:

XAA′ =UȲA′+E (1)

The model is an orthogonal projection of units on a subspace spanned by the columns of the
columnwise orthonormal matrixA. The objective is to minimize the squared error:

min||XA−UȲ||2 (2)

subject to A′A= I

U is a binary matrix and
J

∑
j=1

ui j = 1∀i

Centroids matrixȲ can be expressed as:̄Y = (U ′U)−1U ′XA so the expression minimized in the
(2) becomes:||XA−U(U ′U)−1U ′XA||2. This quantity can be decomposed in two parts and the
function to be minimized becomes:

min[tr(A′X′XA)− tr(A′X′U(U ′U)−1U ′XA)] (3)

The first component of the (3) is the total deviance ofXA, the second is the between classes
deviance. An ALS algorithm can be used to solve the (3).
The advantage of Factorial k-means is that the two steps optimize a single objective function.
Tandem analysis instead minimizes two different functionsthat can be in contrast and the first
factorial step can in part obscure or mask the cluster structure.
Another advantage is that clustering method is applied on factorial axes. If the number of chosen
factors is lower than the number of variables the method is external robust.

3 Probabilistic D-Clustering

Probabilistic D-clustering is a non hierarchical algorithm that assigns units to clusters according
to their belonging probability to the cluster. Given some random centers, the probability of any
point to belong to each class is assumed inversely proportional to the distance from the centers of
clusters. Given anX data matrix withn units andJ variables, givenK clusters that are assumed
not empty, Probabilistic D-Clustering is based on two quantities: the distance of each data point
xi from theK cluster centersck, d(xi ,ck), and the probabilities of each point to belong to a cluster,
p(xi ,ck) with k= 1, . . . ,K andi = 1, . . . ,n. The relation between them is the basic assumption of
the method. Let us consider the general termxi j of X and a center matrixC, of elementsck j with
k = 1, . . . ,K, i = 1, . . . ,n and j = 1, . . . ,J, their distance can be computed according to different
criteria, the squared norm is one of the most commonly used. The generic distanced(xi ,ck) rep-
resents the distance of the generic pointi to the generic centerk. The probabilityp(xi ,ck) of each
point to belong to a cluster can be computed according to thisassumption: the product between
the distances and the probabilities is a constant dependingon x: D(x).
For short we usepk(xi) = p(xi ,ck) anddk(xi) = d(xi ,ck); PD-clustering basic assumption is ex-
pressed as:

pk(x)dk(x) = D(x) (4)
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for a given value ofx and for allk= 1, . . . ,K.
At the decreasing of the point closeness form the cluster center the belonging probability of

the point to the cluster decreases. The constant depends only on the point and does not depend on
the clusterk.
Starting from the (4) it is possible to computepk(x):

pt(x)dt(x) = pk(x)dk(x); pt(x) =
pk(x)dk(x)

dt(x)
; ∀t = 1, . . . ,K (5)

The termp(x) is a probability so, under the constraint∑K
t=1 pt(x) = 1, the sum overt of (5) be-

comes:

pk(x)
K

∑
t=1

(

dk(x)
dt(x)

)

= 1

pk(x) =
1

∑K
t=1

(

dk(x)
dt (x)

) =
∏ j 6= j d j(x)

∑K
t=1∏ j 6=t d j(x)

,k= 1, . . .K. (6)

Starting from the (4) and using (6) it is possible to define thevalue of the constantD(x):

D(x) = pk(x)dk(x),k= 1, . . .K

D(x) =
∏K

k=1 dk(x)

∑K
t=1 ∏ j 6=t d j(x)

. (7)

The quantityD(x), also calledJoint Distance Function(JDF), is a measure of the closeness of
x from all clusters centers. The JDF measures the classificability of the point x with respect to
the centersck with k= 1, . . . ,K. If it is equal to zero, the point coincides with one of the clusters
centers, in this case the point belongs to the class with probability 1. If all the distances between the
point and the centers of the classes are equal tod, D(X) = d/k and all the belonging probabilities
to each class are equal:p(x) = 1/K. Smaller is the value of the JDF higher is the probability of
the point to belong to one cluster.
The whole clustering problem consists in the identificationof the centers that minimizes the JDF.
Without loss of generality the PD-Clustering optimality criterium can be demonstrated according
to k= 2.

mind1(x)p2
1+d2(x)p2

2 (8)

subject to p1+ p2 = 1

p1, p2 ≥ 0

The probabilities are squared because it is a smoothed version of the original function. The La-
grangian of this problem is:

L(p1, p2,λ ) = d1(x)p
2
1+d2(x)p

2
2−λ (p1+ p2−1) (9)

Setting to zero the partial derivates with respect top1 andp2, substituting the probabilities (6) and
considering the principlep1(x)d1(x) = p2(x)d2(x) we obtain the optimal value of the Lagrangian.

L(p1, p2,λ ) =
d1(x)d2(x)

d1(x)+d2(x)
. (10)
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This value coincides with the JDF, the matrix of centers thatminimizes this principle minimizes
the JDF too. Substituting the generic valuedk(x) with ‖x−ck‖, we can find the equations of the
centers that minimize the JDF (and maximize the probabilityof each point to belong to only one
cluster).

ck = ∑
i=1,...,N

(

uk(xi)

∑ j=1,...,N uk(x j)

)

xi , (11)

where

uk(xi) =
pk(xi)

2

dk(xi)
. (12)

As showed before, the value of JDF at all centersk is equal to zero and it is necessary positive
elsewhere. So the centers are the global minimizer of the JDF. There exist other stationary points,
because the function is not convex neither quasi-convex, but they are saddle points.

There are alternative ways for modeling the relation between probabilities and distances, for
example the probabilities can decay exponentially as distances increase. In this case the probabil-
ities pk(x) and the distancesdk(x) are related by:

pk(x)e
dk(x) = E(x), (13)

whereE(x) is a constant depending onx.
Many results of the previous case can be extended to this caseby replacing the distancedk(x) with
edk(x).
Interested readers are referred to [Ben-Israel and Iyigun,2008]

3.1 Choice of the distance

The optimization problem presented in (8) is the original version proposed by Ben-Israel and Iyi-
gun. Notice that in the optimization problem the probabilities pk are considered in squared form.
The authors affirm that it is possible to considerdk as welld2

k . Both choices have some advan-
tages and drawbacks. Squared distances offer analytical advantages due to linear derivates. Using
simple distances endures robustness results and the optimization problem can be reconducted to a
Fermat-Weber location problem. The Fermat-Weber locationproblem aims at finding a point that
minimizes the sum of the Euclidean distances from m given points. This problem can be solved
with the Weiszfeld method [Weiszfeld, 1937]. Convergence of this method was established by
modifying the gradient so that it is always defined [Khun, 1973]. The modification is not carried
out in practice. The global solution is guaranteed only in case of one cluster. Dealing with more
then one cluster, in practice, the method converges only fora limited number of centers depending
on the data.

3.2 Probabilistic D-clustering algorithm

The solution of Probabilistic D-clustering problem can be obtained through an iterative algorithm.
Given a data setX and a set of centerC:

step 0 random initialization of center matrix;

step 1 distancesdk(x) for all x∈ X with k= 1, . . .K;

step 2 update the center matrixC∗;
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step 3 if∑K
k=1

∥

∥c∗k −ck
∥

∥

2 < ε stop, else return to 1.

Whereck is the generic center anddk(x) is defined in (4).
Cluster centers and JDF change at each iteration, the objective function decreases and the algo-
rithm converges.
Points are assigned to thekth cluster according to the higher probability that are computed a pos-
teriori according to (6)

4 Factorial PD-Clustering

When the number of variables is large and variables are correlated PD-Clustering becomes very
unstable and the correlation between variables can hide thereal number of clusters. A linear trans-
formation of original variables into a reduced number of orthogonal ones can significantly improve
the algorithm performance. Combination of PD-Clustering and variables linear transformation im-
plies a common criterion. This section shows how the Tucker 3method [Kroonenberg, 2008] can
be properly adopted for the transformation in the FactorialPD-Clustering.

Factorial PD-clustering is an iterative procedure that consists of two main step that are:

• Linear transformation of original data;

• PD-Clustering on transformed data.

Center matrixC of elementsck j with k = 1, . . . ,K and j = 1, . . . ,J is pseudorandomly defined
before starting the algorithm. So that probabilities and distance matrices can be computed. The
distance between a generic observationxi and a generic centerck is the absolute difference between
each coordinate of the point and each coordinate of the center:

d(xi ,ck) = gi jk = |xi j −ck j| (14)

with i = 1, . . . ,n, k= 1, . . . ,K, for a given value ofj.
The matrixG of elementsgi jk is a 3-way matrixn× J×K wheren is the number of units,J the
number of variables andK the clusters.
The aim is to transform variables in new ones obtained as liner transformation of original variables
minimizing JDF.
The probabilitiespik are arranged inK diagonaln×n matrices where the general term is given by:
(6). The problem is to transform original variable minimizing:

min
(

∑n
i=1∑J

j=1∑K
k=1(xi j −ck j)

2p2
ik

)

(15)

In the section 4.2 we demonstrate that the minimization problem in (15) corresponds to the
Tucker3 decomposition of distance matrixg. It is demonstrated that this solution minimizes JDF
too. Consequently it is demonstrated that applying a Tucker3 decomposition on the distance
matrixd it is obtained the space that better represents the data according to PD-Clustering criteria.

For anyck with k = 1, . . . ,K, it is defined aGk n× J distances matrices. Tucker3 method
decomposes the matrixG in three components, one for each mode, in a full core arrayΛ and in an
error termE.

gi jk =
R

∑
r=1

Q

∑
q=1

S

∑
s=1

λrqs(uir b jqvks)+ei jk

with i = 1, . . . ,n, j = 1, . . . ,J, k= 1, . . . ,K.
Defining with: R number of components ofU , Q number of components ofB andS number of
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components ofV.
The units coordinates into the space of variables obtained by Tucker3 decomposition are obtained
by the following expression:

x⋆iq =
J

∑
j=1

xi j b jq. (16)

On the projection of units on these firstR factorial axes PD-clustering algorithm can be ap-
plied. Using PD-clustering a new center matrixC is obtained and the distance matrix is updated.
Basing on the new distances, the algorithm is reiterated. The whole algorithm is reiterated until
convergence.

As in all factorial methods, factorial axes in Tucker 3 modelare sorted according to explained
variability. The first factorial axes explain the great partof the variability, latest factors represent
outliers or ground noise. For this reason the choice of a number of factors lower than the number of
variables makes the method externally robust. Consequently in order to reduce the dimensionality
and to make the result robust a number of factorR≤ J can be chosen.

4.1 Factorial PD-clustering algorithm

Given a datasetX and a center matrixC, the iterative algorithm can be summarized as follow.

step 0 PD-cluster algorithm: compute center matrixC;

step 1 distancesGk for all x∈ X with k= 1, . . .K;

step 2 Tucker3 decomposition and computation ofX⋆ matrix;

step 3 PD-clustering of reduced data and update of the centermatrix;

step 4 if∑K
k=1

∥

∥cJ∗
k −cJ

k

∥

∥< ε stop, else return to 1.

4.2 Factorial PD-clustering method

In this section it is demonstrated that the space that betterrepresents the data according to PD-
Clustering criteria is the one obtained with Tucker3 decomposition on distance matrix.
The probability matrix can be written as a diagonal matrixP= diag(vec(p)) of generic element
ph with h= 1, . . . ,n×K. Each element of this matrix represents the probabilitypik that the pointxi

belongs to the clusterk, with i = 1, . . . ,n andk= 1, . . . ,K. As we have seen before, the objective is
to minimize the JDF that is equivalent to minimize the product betweenG andP that is still a 3-way
matrix. Factorial PD-Clustering is a soft modeling method that aims at finding a unique solution
that at the same time minimizes JDF and that makes a linear transformation of data. We can prove
that using Tucker 3 transformation we obtain the space that minimizes the JDF, consequently we
can obtain a unique solution obtained optimizing the same criteria in the two steps:

min
(

∑n
i=1 ∑J

j=1 ∑K
k=1(xi j −ck j)

2p2
ik

)

.

The unknown quantities of this formula areck j andpik.
THEOREM 1: To maximize−[∑n

i=1∑J
j=1∑K

k=1(xi j − ck j)
2p2

ik] is equivalent to the decompose

(xi j −ck j) = ∑R
r=1∑Q

q=1 ∑S
s=1λrqs(uir b jqvks)+ei jk (Tucker3 decomposition).
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PROOF: Objective function is:

max
[

−
(

∑n
i=1 ∑J

j=1∑K
k=1(xi j −ck j)

2p2
ik

)]

sub constraint
n

∑
i=1

K

∑
k=1

p2
ik ≤ n

Replacing(xi j −ck j) with gi jk (14) we obtain:

max
(

−∑n
i=1∑J

j=1∑K
k=1 g2

i jk p2
ik

)

sub constraint
n

∑
i=1

K

∑
k=1

p2
ik ≤ n

The Lagrangian is:

L =−
n

∑
i=1

J

∑
j=1

K

∑
k=1

g2
i jk p2

ik +λ (
n

∑
i=1

K

∑
k=1

p2
ik −n)

whereλ ≥ 0 is the Lagrangian multiplier. In order to maximize the Lagrangian we have to compute
the first derivate.

δL
δ p = 0

−2∑n
i=1 ∑J

j=1∑K
k=1 g2

i jk pik +2λ ∑n
i=1∑K

k=1 pik = 0

∑n
i=1 ∑J

j=1∑K
k=1g2

i jk pik = λ ∑n
i=1∑K

k=1 pik (17)

It can be demonstrated that the second derivate is not positive. The value ofλ that optimize the
(17) can be find trough the research of the eigenvalues of the matrix G.

gi jk =
R

∑
r=1

Q

∑
q=1

S

∑
s=1

λrqs(uir b jqvks)+ei jk

with i = 1, . . . ,n, j = 1, . . . ,J, k= 1, . . . ,K.
Defining with: R number of components ofU , Q number of components ofB andS number of
components ofV.
In matrix notation:

G=UΛ(V ′⊗B′)+E (18)

That is the Tucker3 decomposition of matrix G.
�

PD-clusering objective function is: to maximize−[∑n
i=1∑J

j=1∑K
k=1(xi j − ck j)

2p2
ik]. It can be

said that:
LEMMA 1:The space that better represents the data according to PD-Clustering criteria is the one
obtained with Tucker3 decomposition on distance matrixg.

Starting from the (16) the proof is the same as proof of Theorem 1.

5 Application on a real dataset

Factorial PD-clustering has been applied on the dataset used in [Vichi and Kiers, 2001]. The
datasetlatest short-term indicators and economic performance indicators1 contains 6 macroe-
conomic variables measured on 20 countries members of the OECD. Variables are the six main

1OECD, Paris 1999
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economic indicators: Gross Domestic Product (GDP), Leading Indicator (LI), Unemployment
Rate (UR), Interest Rate (IR), Trade Balance (TB), Net National Savings (NNS). Table 1 contains
the dataset.

The first step of Factorial PD-clustering is the choice of thenumber of clustersK that has been
fixed equal to 3.
The choice of the number of factors is a ticklish well known issue; however it will be not dealt

Country Label GDP LI UR IR TB NNS
Australia A-lia 4.80 8.40 8.10 5.32 0.70 4.70
Canada Can 3.20 2.50 8.40 5.02 1.60 5.20
Finland Fin 3.90 -1.00 11.80 3.60 8.80 7.70
France Fra 2.30 0.70 11.70 3.69 3.90 7.30
Spain Spa 3.60 2.50 19.00 4.83 1.20 9.60
Sweden Swe 4.10 1.10 8.90 4.20 7.00 4.00
United States USA 4.10 1.40 4.50 5.59 -1.40 7.00
Netherlands Net 2.90 1.60 4.20 3.69 7.00 15.80
Greece Gre 3.20 0.60 10.30 11.70 -8.30 8.00
Mexico Mex 2.30 5.60 3.20 20.99 0.00 12.70
Portugal Por 2.80 -7.50 4.90 4.84 -8.70 14.00
Austria A-tria 1.10 0.60 4.70 3.84 -0.60 9.40
Belgium Bel 1.40 -0.10 9.60 3.64 4.50 12.40
Denmark Den 1.00 1.50 5.30 4.08 3.30 5.00
Germany Ger 0.80 -2.00 9.50 3.74 1.50 7.70
Italy Ita 0.90 -0.40 12.30 6.08 4.30 8.20
Japan Jap 0.10 5.40 4.20 0.74 1.20 15.10
Norway Nor 1.40 0.90 3.30 4.47 7.10 15.10
Switzerland Swi 1.10 2.10 3.80 1.84 4.40 13.20
United Kingdom UK 1.20 4.90 6.40 7.70 -0.50 4.80

Table 1: Six macroeconomic performance indicators of twenty OECD countries (percentage
change from the previous year, September 1999)

in this context. In this case the number of factors that have been chosen are: 4 factors for the
variables, 4 factors for the units and 2 factors for the clusters. The factors correspond to the values
of R, Q andSrespectively in the (18).
The factors used in the analysis explain the 88% of the variability.

The method has been iterated 50 times, to test the results stability. The JDF index has been
measured at each iteration, fig. 6 represents the JDF value. In the best case the value of JDF is
15.12, it occurs in 4% of cases. The modal value 16.19 occurs in 35% of cases.
Table 3 displays Factorial PD-clustering iterations summary statistic.

The partition of units in clusters is:

cluster 1 Mexico, Austria, Denmark, Japan, Norway, Switzerland, United Kingdom;

cluster 2 Finland, France, Spain, Netherlands, Portugal, Belgium, Germany, Italy;

cluster 3 Australia, Canada, Sweden, United States, Greece.

To describe the separating power of our variables in the following are shortly described results
illustrated in figures 2 to 5.
The differences between the medians have been evaluated foreach cluster and for each variable, to
understand which are the variables that mostly contribute to the class separability. The results can
be better understood looking at the box-plots in fig. 2. The variable Net National savings presents
the highest difference between the medians. NNS variable separates the second cluster from the
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Figure 1: Frequency of JDF on 200 iterations of the FactorialPD-clustering

JDF Frequency mean execution time mean number of iterations
15,12 4,08% 0,39 8
15,17 4,08% 0,46 12
15,61 6,12% 0,34 6
15,95 4,08% 0,18 5
15,99 8,16% 0,67 17,75
16,04 2,04% 0,3 8
16,09 4,08% 0,33 8
16,14 10,20% 0,33 8,6
16,19 34,69% 0,45 10,23
16,24 6,12% 0,29 6,33
16,33 2,04% 0,32 7
16,38 10,20% 0,24 5,6
16,53 2,04% 0,38 5
17,01 2,04% 0,12 3

Table 2: Summary statistics on 50 iterations of Factorial PD-clustering

others, where the values of the variable are lower, in cluster 1 the variable has high variability.
The variable Unemployment Rate presents high difference between clusters medians: in cluster 1
the values of this variables are smaller than in the other clusters; in cluster 2 UR presents a small
variability. The variable Gross Domestic Product presentshigh values in cluster 2 and small values
in cluster 1. The variable Trade Balance is low in cluster 2. The medians of the variables Interest
Rate and Leading Indicator are not significantly different among clusters.

Fig. 3, 4 and 5 represent scatter-plots of units on the variables ordered according to discrimi-
nating power.
Scatter-plots in figures 3 to 5 show that:
Mexico, Austria, Denmark, Japan, Norway, Switzerland and United Kingdom have a low variation
of Gross Domestic Product but they have a low Unemployment Rate and hight Trade Balance;
Australia, Canada, Sweden, United States and Greece have a high Gross Domestic Product varia-
tions, low Unemployment Rate but they have low values of the Net National Savings variable;
Finland, France, Spain, Netherlands, Portugal, Belgium, Germany and Italy have average values
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Figure 2: Box-plot of variables for each cluster obtained with Factorial PD-clustering

of Gross Domestic Product and Unemployment Rate and high values of Net National Savings.
The clusters description, presented in the foregoing, corresponds to the most frequent case of the

JDF, which is in the interval[5.6;5.7]. Taking into account all iterations, it is worth noticing that
three stable groups of countries are always together in the same cluster:

• Australia, Canada, United States;

• Finland, France, Spain;

• Belgium, Germany, Italy.

12



Figure 3: Scatter-plot of units divided in clusters obtained with Factorial PD-clustering

Figure 4: Scatter-plot of units divided in clusters obtained with Factorial PD-clustering

5.1 A comparison with Factorial k-means

In order to evaluate Factorial PD-clustering results, the method has been compared with Factorial
k-means 2.1. The method have been iterated 200 times.
Using the same scheme adopted for Factorial PD-Clustering result description, in the following
Factorial k-means results are shortly described. The method has been applied on the same dataset;
the results shown are consistent with those presented in theoriginal Vichi and Kiers’ paper.
To identify the most discriminating variables, in this case, the differences between the mean values
of the clusters have been evaluated. This because the k-means maximizes the differences between
cluster centroids.
In order to easily compare the results the same graphics are represented: box-plots in fig. 7;
Scatter-plots indicating the cluster membership are represented in fig.8, 9, 10.
It is important to notice that Factorial k-means results areconsistent with the Factorial PD-clustering
ones: in particular the method identifies the same stable groups of countries. The most significative

13



Figure 5: Scatter-plot of units divided in clusters obtained with Factorial PD-clustering
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Figure 6: Frequency of JDF on 200 iterations of Factorial k-means

difference is in cluster 2: Factorial k-means identifies a cluster composed by Portugal, Greece and
Mexico; Factorial PD-clustering assigns Portugal, Greeceand Mexico in three different clusters.
Looking at the scatter plot in fig. 8, where statistical unitsare represented according to the two
most separating variables, these three countries appear asthe most different from the global mean.
It is not surprising that the k-means algorithm separates this three points from the others, because
it minimizes the variance within the clusters, and as a consequence it gives maximum importance
to the variables Trade Balance and Interest Rate.

To summarize: Factorial k-means has found a cluster of few elements and large variability
and two clusters having a larger number of elements (7 and 10 elements, respectively) and a
small variability. This partition emphasizes the differences between the variables: Interest Rate,
Trade Balance and Net National Savings. Differently Factorial PD-clustering have divided the
space in three regions defining three clusters having almostthe same variability and almost the
same number of elements (7,8 and 5 elements, respectively) The cluster emphasize the differences
between the variables: Net National Savings, UnemploymentRate and Gross Domestic Product.

Results obtained with Factorial k-means are different in terms of discriminating variables; the
two methods emphasize different aspects of the same phenomenon.

Results presented in this section have been produced with Matlab.
The toolboxN-wayhave been integrated in Matlab code to obtain Tucker3 decomposition. The
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Whitin variance Frequency mean execution time mean number of iterations
5865,59 16,53% 0,004 2,63
961,92 23,14% 0,004 2,64
970,9 3,31% 0,004 2,75
999,52 54,55% 0,004 2,27
1256,42 2,48% 0,004 2

Table 3: Summary statistics on 200 iterations of Factorial k-means

Figure 7: Box-plot of variables for each cluster obtained with Factorial k-means

toolbox is freely available at Matlab Central web site.2.

2http://www.mathworks.com/matlabcentral/
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Figure 8: Scatter-plot of units divided in clusters obtained with Factorial k-means

Figure 9: Scatter-plot of units divided in clusters obtained with Factorial k-means

6 Conclusions

In this paper a new factorial two-step clustering method hasbeen proposed: Factorial PD-clustering.
This method can be inlaid into a new field of clustering technique which has been developed in
recent years: iterative clustering methods. Two-step clustering methods was proposed by French
school of Analyse de Données in order to cope with some clustering issues. Thanks to computer
developing in recent years iterative clustering methods have been introduced. These methods it-
eratively perform a linear transformation of data and a clustering optimizing a common criterion.
Factorial PD-clustering perform a linear transformation of data and Probabilistic D-clustering iter-
atively. Probabilistic D-clustering is an iterative, distribution free, probabilistic, clustering method.
When the number of variables is large and variables are correlated PD-Clustering becomes very
unstable and the correlation between variables can hide thereal number of clusters. A linear trans-
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Figure 10: Scatter-plot of units divided in clusters obtained with Factorial k-means

formation of original variables into a reduced number of orthogonal ones using common criteria
with PD-Clustering can significantly improve the algorithmperformance. Factorial PD-clustering
allows to work with large dataset, to improve the stability and the robustness of the method.
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