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Abstract

In a convolution model, we observe random variables whose distribution is the con-
volution of some unknown density f and some known noise density g. We assume
that g is polynomially smooth. We provide goodness-of-fit testing procedures for
the test H0 : f = f0, where the alternative H1 is expressed with respect to L2-norm
(i.e. has the form ψ−2

n ‖f −f0‖2
2 ≥ C). Our procedure is adaptive with respect to the

unknown smoothness parameter τ of f . Different testing rates (ψn) are obtained
according to whether f0 is polynomially or exponentially smooth. A price for adap-
tation is noted and for computing this, we provide a non-uniform Berry-Esseen type
theorem for degenerate U -statistics. In the case of polynomially smooth f0, we prove
that the price for adaptation is optimal. We emphasise the fact that the alternative
may contain functions smoother than the null density to be tested, which is new in
the context of goodness-of-fit tests.

Résumé

Dans un modèle de convolution, les observations sont des variables aléatoires réelles
dont la distribution est la convoluée entre une densité inconnue f et une densité
de bruit g supposée entièrement connue. Nous supposons que g est de régularité
polynomiale. Nous proposons un test d’adéquation de l’hypothèse H0 : f = f0

lorsque l’alternative H1 est exprimée à partir de la norme L2 (i.e. de la forme
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ψ−2
n ‖f − f0‖2

2 ≥ C). Cette procédure est adaptative par rapport au paramètre in-
connu τ qui décrit la régularité de f . Nous obtenons différentes vitesses de test
(ψn) en fonction du type de régularité de f0 (polynomiale ou bien exponentielle).
L’adaptativité induit une perte sur la vitesse de test, perte qui est calculée grâce à
un théorème de type Berry-Esseen non-uniforme pour des U -statistiques dégénérées.
Dans le cas d’une régularité polynomiale pour f0, nous prouvons que cette perte
est optimale. Soulignons que l’alternative peut éventuellement inclure des densités
qui sont plus régulières que la densité à tester sous l’hypothèse nulle, ce qui est un
point de vue nouveau pour les tests d’adaptation.

Key words: Adaptive nonparametric tests, convolution model, goodness-of-fit
tests, infinitely differentiable functions, partially known noise, quadratic functional
estimation, Sobolev classes, stable laws
PACS: 62F12, 62G05, 62G10, 62G20

1 Introduction

Convolution model

Consider the convolution model where the observed sample {Yj}1≤j≤n comes
from the independent sum of independent and identically distributed (i.i.d.)
random variables Xj and i.i.d. noise variables εj. Variables Xj have unknown
density f and Fourier transform Φ (where Φ(u) =

∫

exp(ixu)f(x)dx) and the
noise variables εj have known density g and Fourier transform Φg

Yj = Xj + εj, 1 ≤ j ≤ n. (1)

The density of the observations is denoted by p and its Fourier transform Φp.
Note that we have p = f ∗ g where ∗ denotes the convolution product and
Φp = Φ · Φg.

The underlying unknown density f is always supposed to belong to L1 ∩ L2.
We shall consider probability density functions belonging to the class

F (α, r, β, L) =
{

f : R → R+,
∫

f = 1,
1

2π

∫

|Φ (u)|2 |u|2β exp (2α|u|r) du ≤ L
}

,

(2)
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for L a positive constant, α > 0, 0 ≤ r ≤ 2, β ≥ 0 and either r > 0 or r = 0 and
then β > 0. Note that the case r = 0 corresponds to Sobolev densities whereas
r > 0 corresponds to infinitely differentiable (or supersmooth) densities.

We consider noise distributions whose Fourier transform does not vanish on
R: Φg(u) 6= 0, ∀ u ∈ R. Typically, in nonparametric estimation in convolution
models the distinction of two different behaviours for the noise distribution
occurs: for some constant cg > 0,

polynomially smooth noise

|Φg (u)| ∼ cg |u|−σ , |u| → ∞, σ > 1; (3)

exponentially smooth noise |Φg (u)| ∼ cg exp (−γ |u|s) , |u| → ∞, γ, s > 0.

The exponentially smooth noise case is studied in a separate article and in a
more general semiparametric framework [3].

There is a huge literature on convolution models published during the past two
decades and focusing mainly on estimation problems. Our purpose here is to
provide goodness-of-fit testing procedures on f , for the test of the hypothesis
H0 : f = f0, with alternatives expressed with respect to L2-norm, and being
adaptive with respect to the unknown smoothness parameter of f .
Nonparametric goodness-of-fit testing has extensively been studied in the con-
text of direct observations (namely a sample distributed from the density f to
be tested), but also for regression or in the Gaussian white noise model. We
refer to [11] for an overview on the subject. Analytic densities (namely den-
sities in F(α, r, β, L) with r = 1 and β = 0) first appeared in [13] who gives
goodness-of-fit testing procedures with respect to pointwise and L∞-risks in
the Gaussian white noise model. Procedures with respect to L2-risk are given
in [11] for Sobolev and analytic densities in the same model.

However, in the case of direct observations, there are few adaptive procedures.
The pioneering work of [14] introduced adaptive testing procedures over scales
of Besov classes and with respect to L2-risk. Let us also mention [5] and [4]
for adaptive goodness-of-fit tests with a composite null hypothesis. Up to our
knowledge, adaptive procedures do not exist in the case of indirect observa-
tions. The convolution model provides an interesting setup where observations
may come from a signal observed through some noise.

There are two natural but very different approaches for the goodness-of-fit
testing problem in the noisy setup. One can think of testing either the result-
ing density p or the initial density f . As density g is known, the null hypothesis
H0 may be expressed equivalently in the form f = f0 or p = p0. Moreover, test-
ing p would result in better rates of testing than those obtained for f (as the
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convoluted density p is smoother than f). However, the alternative hypotheses
in those two setups are not in a one-to-one correspondence. Here, we would
like to emphasise that we only consider the latter problem of goodness-of-fit
testing on f . Indeed, we think it more appropriate to express the alternatives
by using the L2-distance between f and the null density f0, which is always
larger than the L2-distance between p and p0. Moreover, there are cases where
aspects of the underlying density f (apart from its smoothness) may be rel-
evant to the statistician, like its modality, symmetry, monotonicity on some
interval and these features may be strongly perturbed after convolution with
some noise.

These two different points of view arise from a more general issue: how is
the direct observations case related to the noisy one? As we want to focus on
alternatives of the form ψ−2

n ‖f − f0‖2
2 ≥ C (rather than ψ−2

n ‖p − p0‖2
2 ≥ C),

results from the direct observations case cannot be used directly in our set-
ting. Moreover, adaptivity of our procedure relies on the construction of a grid
over the set of densities f . Then, using the corresponding grid on the set of
densities p would not necessarily lead to an adaptive procedure.

However, one can compare the rates obtained in the two settings. Indeed, one
can note that the rate we obtain for polynomially smooth densities in the alter-
native, namely (n/

√
log log n)−2β/(4β+4σ+1), corresponds to the rate obtained

by [14] in the Gaussian white noise setting, namely (n/
√

log log(n))−2β/(4β+1).
Moreover, the rate we get for supersmooth densities in the alternative, namely
n−1/2(log n)(4σ+1)/(4r)(log log log n)1/4, shows an extra log log log n factor with
respect to the non-adaptive result in [11], in the particular case of super-
smooth densities with r = 1, namely n−1/2(log n)1/4. Thus, we conjecture that
the loss for adaptation on the direct observations case should be at most
(log log log n)1/4. We deduce these rates when f0 is smoother than the func-
tions belonging to the alternative hypothesis, which is the usual setup for
goodness-of-fit testing. Moreover, we also derive rates of testing when f0 is
less smooth than the functions belonging to the alternative hypothesis, which
is a new setup. In the latter case, we observe that the testing rate is the min-
imax testing rate associated to the smoothness of f0.

Nonparametric goodness-of-fit tests in convolution models were studied in [9]
and in [2]. The approach used in [2] is based on a minimax point of view com-
bined with estimation of the quadratic functional

∫

f 2. Assuming the smooth-
ness parameter of f to be known, the authors of [9] define a version of the
Bickel-Rosenblatt test statistic and study its asymptotic distribution under
the null hypothesis and under fixed and local alternatives, while [2] provides a
different goodness-of-fit testing procedure attaining the minimax rate of test-
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ing in each of the three following setups: Sobolev densities and polynomial
noise, supersmooth densities and polynomial noise, Sobolev densities and ex-
ponential noise. The case of supersmooth densities and exponential noise is
also studied but the optimality of the procedure is not established in the case
r > s.

Our goal here is to provide adaptive versions of these last procedures with
respect to the parameter τ = (α, r, β). As we restrict our attention to testing
problems where alternatives are expressed with respect to L2-norm (namely,
the alternative has the form H1 : ψ−2

n ‖f − f0‖2
2 ≥ C), the problem is strongly

related to asymptotically minimax estimation of
∫

f 2 and
∫

(f −f0)
2. Our test

statistic is based on a collection of kernel estimators of
∫

(f − f0)
2 for convo-

lution models, with a given set of regularity parameters τ . Then, adaptation
to a scale of classes is obtained by rejecting the null hypothesis whenever at
least one of the tests in the collection does, see for example [5].

Notation, definitions, assumptions

In the sequel, ‖·‖2 denotes the L2-norm, M̄ is the complex conjugate of M and
< M,N >=

∫

M(x)N̄(x)dx is the scalar product of complex-valued functions
in L2(R). Moreover, probability and expectation with respect to the distribu-
tion of Y1, . . . , Yn induced by the unknown density f will be denoted by Pf

and Ef .

We denote more generally by τ = (α, r, β) the smoothness parameter of the
unknown density f and by F(τ, L) the corresponding class. As the density f is
unknown, the a priori knowledge of its smoothness parameter τ could appear
unrealistic. Thus, we assume that τ belongs to a closed subset T , included in
(0,+∞)× (0, 2]× (0,+∞). For a given density f0 in the class F(τ0), we want
to test the hypothesis

H0 : f = f0

from observations Y1, . . . , Yn given by (1). We extend the results of [2] by
giving the family of sequences Ψn = {ψn,τ}τ∈T which separates (with respect
to L2-norm) the null hypothesis from a larger alternative

H1(C,Ψn) : f ∈ ∪τ∈T {f ∈ F(τ, L) and ψ−2
n,τ‖f − f0‖2

2 ≥ C}.

We recall that the usual procedure is to construct, for any 0 < ǫ < 1, a test
statistic ∆⋆

n (an arbitrary function, with values in {0, 1}, which is measurable
with respect to Y1, . . . , Yn and such that we accept H0 if ∆⋆

n = 0 and reject it
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otherwise). We prove then that there exists some C0 > 0 such that

lim sup
n→∞

{

P0[∆
⋆
n = 1] + sup

f∈H1(C,Ψn)

Pf [∆⋆
n = 0]

}

≤ ǫ, (4)

holds for all C > C0. This part is called the upper bound of the testing rate.
Then, we prove the minimax optimality of this procedure, i.e. the lower bound

lim inf
n→∞

inf
∆n

{

P0[∆n = 1] + sup
f∈H1(C,Ψn)

Pf [∆n = 0]

}

≥ ǫ, (5)

for some C0 > 0 and for all 0 < C < C0, where the infimum is taken over all
test statistics ∆n.

Let us first remark that as we use noisy observations (and unlike what happens
with direct observations), this test cannot be reduced to testing uniformity of
the distribution density of the observed sample (i.e. f0 = 1 with support on
the finite interval [0; 1]). As a consequence, additional assumptions used in [2]
on the tail behaviour of f0 (ensuring it does not vanish arbitrarily fast) are
needed to obtain the optimality result of the testing procedure in the case of
Sobolev density (r = 0) observed with polynomial noise ((T) and (P)). We
recall these assumptions here for reader’s convenience.

Assumption (T) ∃c0 > 0,∀x ∈ R, f0(x) ≥ c0(1 + |x|2)−1.

Moreover, we also need to control the derivatives of known Fourier transform
Φg when establishing optimality results.

Assumption (P) (Polynomial noise) If the noise satisfies (3), then assume
that Φg is three times continuously differentiable and there exist A1, A2 such
that

|(Φg)′(u)| ≤ A1

|u|σ+1
and |(Φg)

′′

(u)| ≤ A2

|u|σ+2
, |u| → ∞.

Remark 1 We can generalise assumption (T) and assume the existence of
some p ≥ 1 such that f0(x) is bounded from below by c0(1 + |x|p)−2 for large
enough x. In such a case, we obtain the same results if the Fourier transform
Φg of the noise density is assumed to be p times continuously differentiable,
with derivatives up to order p satisfying the same kind of bounds as in As-
sumption (P).

Let us give some comments on the proofs. In the case of Sobolev null density f0,
the fact that our testing procedure attains the minimax rate of testing (upper
bound of the testing rate (4)), relies on a very sharp control on the approx-
imation of the distribution of some U -statistic by the Gaussian distribution.
Indeed, in our context, the classical approach using a central limit theorem is
not sufficient, nor are the classical exponential inequalities on U -statistics (see
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for instance [6] or [10]). Thus, we had to establish a new Berry-Esseen inequal-
ity for degenerate U -statistics of order 2. We took into account the fact that in
our case, as in most statistical problems, the function defining the U -statistic
is depending on the number n of observations. This approach appeared to be
powerful and is very promising to tackle other similar problems.
Concerning the minimax optimality of our procedure (lower bound of the test-
ing rate (5), established for Sobolev null densities f0), we used an approach
proposed by [5] but had to combine it with the use of some specific kernel,
previously introduced in [2].

Roadmap

In Section 2, we provide a goodness-of-fit testing procedure for the test H0 :
f = f0, in two different cases : the density f0 to be tested is either ordinary
smooth (r0 = 0) or supersmooth (r0 > 0). The procedures are adaptive with
respect to the smoothness parameter (α, r, β) of f . The auxiliary result on a
Berry-Esseen inequality for degenerate U -statistics of order 2 is described in
Section 3. In some cases, a loss for adaptation is noted with respect to known
testing rates for fixed known parameters. When the loss is of order log logn
to some power, we prove that this price is unavoidable. Proofs are postponed
to Section 4.

2 Test procedures and main results

The unknown density f belongs to the class F(α, r, β, L). We are interested in
adaptive, with respect to the parameter τ = (α, r, β), goodness-of-fit testing
procedures. We assume that this unknown parameter belongs to the following
set

T = {τ = (α, r, β); τ ∈ [α; +∞) × [r; r̄] × [β; β̄]},
where α > 0, 0 ≤ r ≤ r̄ ≤ 2, 0 ≤ β ≤ β̄ and either r > 0 and α ∈ [α, α] or
both r = r̄ = 0 and β > 0.

Let us introduce some notation. We consider a preliminary kernel J , with
Fourier transform ΦJ , defined by

∀x ∈ R, J(x) =
sin(x)

πx
, ∀u ∈ R, ΦJ(u) = 1|u|≤1,

where 1A is the indicator function of the set A. For any bandwidth h = hn → 0
as n tends to infinity, we define the rescaled kernel Jh by

∀x ∈ R, Jh(x) = h−1J(x/h) and ∀u ∈ R, ΦJh(u) = ΦJ(hu) = 1|u|≤1/h.
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Now, the deconvolution kernel Kh with bandwidth h is defined via its Fourier
transform ΦKh as

ΦKh(u) = (Φg(u))−1 ΦJ(uh) = (Φg(u))−1 ΦJh(u), ∀u ∈ R. (6)

Next, the quadratic functional
∫

(f − f0)
2 is estimated by the statistic Tn,h

Tn,h =
2

n(n− 1)

∑∑

1≤k<j≤n

< Kh(· − Yk) − f0, Kh(· − Yj) − f0 > . (7)

Note that Tn,h may take negative values, but its expected value is positive.

In order to construct a testing procedure which is adaptive with respect to the
parameter τ we introduce a sequence of finite regular grids over the set T of
unknown parameters: TN = {τi; 1 ≤ i ≤ N}. For each grid point τi we choose
a testing threshold t2n,i and a bandwidth hin giving a test statistic Tn,hi

n
.

The test rejects the null hypothesis as soon as at least one of the single tests
based on the parameter τi is rejected.

∆⋆
n =











1 if sup1≤i≤N |Tn,hi
n
|t−2
n,i > C⋆

0 otherwise,
(8)

for some constant C⋆ > 0 and finite sequences of bandwidths {hin}1≤i≤N and
thresholds {t2n,i}1≤i≤N .

We note that our asymptotic results work for large enough constant C⋆. In
practice we may choose it by Monte-Carlo simulation under the null hypoth-
esis, for known f0, such that we control the first-type error of the test and
bound it from above, e.g. by ǫ/2.

Typically, the structure of the grid accounts for two different phenomena. A
first part of the points is dedicated to the adaptation with respect to β in case
r̄ = r = 0, whereas the rest of the points is used to adapt the procedure with
respect to r, in case r > 0 (whatever the value of β).

In the two next theorems, the parameter σ is fixed and defined in (3). We note
that the testing procedures and the associated convergence rates are different
according to whether the tested density f0 (which is known) is polynomially or
exponentially smooth. Therefore, we separate the two different cases where f0

belongs to a Sobolev class (r0 = 0, α0 ≥ α and we assume β0 = β̄) and where
f0 is a supersmooth function (α0 ∈ [α, α], r0 > 0 and β0 ∈ [β, β̄] and then
we focus on r0 = r̄ and α0 = α). Note that in the first case, the alternative
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contains functions f which are smoother (r > 0) than the null hypothesis f0.
To our knowledge, this kind of result is new in goodness-of-fit testing.

When f0 belongs to Sobolev class F(α0, 0, β̄, L), the grid is defined as follows.
Let N and choose TN = {τi; 1 ≤ i ≤ N + 1} such that



























∀1 ≤ i ≤ N, τi = (0; 0;βi) and β1 = β < β2 < . . . < βN = β̄,

∀1 ≤ i ≤ N − 1, βi+1 − βi = (β̄ − β)/(N − 1),

and τN+1 = (α; r̄; 0)

In this case, the first N points are dedicated to the adaptation with respect to
β when r̄ = r = 0, whereas the last point τN+1 is used to adapt the procedure
with respect to r (whatever the value of β).

Theorem 1 Assume f0 ∈ F(α0, 0, β̄, L). The test statistic ∆⋆
n given by (8)

with parameters

N = ⌈log n⌉; ∀1 ≤ i ≤ N :



















hin =
(

n√
log logn

)−2/(4βi+4σ+1)

t2n,i =
(

n√
log logn

)−4βi/(4βi+4σ+1) ,

hN+1
n = n−2/(4β̄+4σ+1); t2n,N+1 = n−4β̄/(4β̄+4σ+1),

and any large enough positive constant C⋆, satisfies (4) for any ǫ ∈ (0, 1), with
testing rate Ψn = {ψn,τ}τ∈T given by

ψn,τ =

(

n√
log log n

)−2β/(4β+4σ+1)

1r=0+n
−2β̄/(4β̄+4σ+1)1r>0, ∀ τ = (α, r, β) ∈ T .

Moreover, if f0 ∈ F(α0, 0, β̄, cL) for some 0 < c < 1 and if Assumptions (T)
and (P) hold, then this testing rate is adaptive minimax over the family of
classes {F(τ, L), τ ∈ [α,∞) × {0} × [β, β̄]} (i.e. (5) holds).

We note that our testing procedure attains the polynomial rate n−2β̄/(4β̄+4σ+1)

over the union of all classes containing functions smoother than f0. Up to our
knowledge, this phenomenon has never been identified in the literature. Note
moreover that this rate is known to be a minimax testing rate over the class
F(0, 0, β̄, L) by results in [2]. Therefore we prove that the loss of some power
of log log n with respect to the minimax rate is unavoidable. A loss appears
when the alternative contains classes of functions less smooth than f0.

The proof that our adaptive procedure attains the above rate relies on the
Berry-Esseen inequality presented in Section 3.
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When f0 belongs to class F(α, r̄, β0, L) of infinitely differentiable functions,
the grid is defined as follows. Let N1, N2 and choose TN = {τi; 1 ≤ i ≤ N =
N1 +N2} such that







































∀1 ≤ i ≤ N1, τi = (0; 0;βi) and β1 = β < β2 < . . . < βN1 = β̄,

∀1 ≤ i ≤ N1 − 1, βi+1 − βi = (β̄ − β)/(N1 − 1),

and ∀1 ≤ i ≤ N2, τN1+i = (α; ri; β0) and r1 = r < r2 < . . . < rN2 = r̄,

∀1 ≤ i ≤ N2 − 1, ri+1 − ri = (r̄ − r)/(N2 − 1).

In this case, the first N1 points are used for adaptation with respect to β in
case r̄ = r = 0, whereas the last N2 points are used to adapt the procedure
with respect to r (whatever the value of β).

Theorem 2 Assume f0 ∈ F(α, r̄, β0, L) for some β0 ∈ [β, β̄]. The test statis-
tic ∆⋆

n given by (8) with C⋆ large enough and

N1 = ⌈log n⌉; ∀1 ≤ i ≤ N1 :



















hin =
(

n√
log logn

)−2/(4βi+4σ+1)

t2n,i =
(

n√
log logn

)−4βi/(4βi+4σ+1) ,

N2 = ⌈log log n/(r̄−r)⌉;∀1 ≤ i ≤ N2 :











hN1+i
n =

(

logn
2c

)−1/ri
, c < α exp

(

−1
r

)

t2n,N1+i = (logn)(4σ+1)/(2ri)

n

√
log log log n

,

satisfies (4), with testing rate Ψn = {ψn,τ}τ∈T given by

ψn,τ =

(

n√
log log n

)−2β/(4β+4σ+1)

1r=0+
(log n)(4σ+1)/(4r)

√
n

(log log log n)1/41r∈[r,r̄].

We note that if Assumptions (T) and (P) hold for f0 in F(α, r̄, β0, L), the
same optimality proof as in Theorem 1 gives us that the loss of the log logn to
some power factor is optimal over alternatives in

⋃

α∈[α,α],β∈[β,β̄] F(α, 0, β, L).

A loss of a (log log log n)1/4 factor appears over alternatives of supersmooth
densities (less smooth than f0) with respect to the minimax rate in [2]. We do
not prove that this loss is optimal.

3 Auxiliary result: Berry-Esseen inequality for degenerate U-statistics
of order 2

This section is dedicated to the statement of a non-uniform Berry-Esseen type
theorem for degenerate U -statistics. It draws its inspiration from [7] which
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provides a central limit theorem for degenerate U -statistics. Given a sample
Y1, . . . , Yn of i.i.d. random variables, we shall consider U -statistics of the form

Un =
∑∑

1≤i<j≤n

H(Yi, Yj),

where H is a symmetric function. We recall that degenerate U -statistic
means

E{H(Y1, Y2)|Y1} = 0 , almost surely.

Thus, the statistic Un is centered.

Limit theorems for degenerate U -statistics when H is fixed (independent of
the sample size n) are well-known and can be found in any monograph on the
subject (see for instance [12]). In that case, the limit distribution is a linear
combination of independent and centered χ2(1) (chi-square with one degree of
freedom) distributions. However, as noticed in [7], a normal distribution may
result in some cases where H depends on n. In such a context, [7] provides a
central limit theorem. But this result is not enough for our purpose (namely,
optimality in Theorem 1). Indeed, we need to control the convergence to zero
of the difference between the cumulative distribution function (cdf) of our
U -statistic, and the cdf of the Gaussian distribution. Such a result may be
derived using classical Martingale methods.

In the rest of this section, n is fixed. Denote by Fi the σ-field generated by
the random variables {Y1, . . . , Yi}. Define

v2
n = E(U2

n) ; Zi =
1

vn

i−1
∑

j=1

H(Yi, Yj), 2 ≤ i ≤ n

and note that as the U -statistic is degenerate, we have E(Zi|Y1, . . . , Yi−1) = 0.
Thus,

Sk =
k
∑

i=2

Zi, 2 ≤ k ≤ n,

is a centered Martingale (with respect to the filtration {Fk}k≥2) and Sn =
v−1
n Un. We use a non-uniform Berry-Esseen type theorem for Martingales pro-

vided by [8], Theorem 3.9. Denote by φ the cdf of the standard Normal dis-
tribution and introduce the conditional variance of the increments Zj’s,

V 2
n =

n
∑

i=2

E(Z2
i |Fi−1) =

1

v2
n

n
∑

i=2

E















i−1
∑

j=1

H(Yi, Yj)





2
∣

∣

∣

∣

Fi−1











.

Theorem 3 Fix 0 < δ ≤ 1 and define

Ln =
n
∑

i=2

E|Zi|2+2δ + E|V 2
n − 1|1+δ.
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There exists a positive constant C (depending only on δ) such that for any
0 < ǫ < 1/2 and any real x

|P(Un ≤ x) − φ(x/vn)| ≤ 16ǫ1/2 exp

(

− x2

4v2
n

)

+
C

ǫ1+δ
Ln.

4 Proofs

We use C to denote an absolute constant which values may change along the
lines.

Proof of Theorem 1 (Upper bound).

Let us give the sketch of proof concerning the upper-bound of the test. The
statistic Tn,hi will be abbreviated by Tn,i. We first need to control the first-type
error of the test.

P0(∆
⋆
n = 1) = P0(∃i ∈ {1, . . . , N + 1} such that |Tn,i| > C⋆t2n,i)

≤
N+1
∑

i=1

P0(|Tn,i − E0(Tn,i)| > C⋆t2n,i − E0(Tn,i)).

The proof relies on the two following lemmas.

Lemma 1 For any large enough C⋆ > 0, we have

N
∑

i=1

P0(|Tn,i − E0(Tn,i)| > C⋆t2n,i − E0(Tn,i)) = o(1).

Lemma 2 For large enough C⋆, there is some ǫ ∈ (0, 1), such that

P0(|Tn,N+1 − E0(Tn,N+1)| > C⋆t2n,N+1 − E0(Tn,N+1)) ≤ ǫ.

Lemma 1 relies on the Berry-Esseen type theorem (Theorem 3) presented in
Section 3. Its proof is postponed to the end of the present section as the proof
of Lemma 2.

Thus, the first type error term is as small as we need, as soon as we choose a
large enough constant C⋆ > 0 in (8). We now focus on the second-type error
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of the test. We write

sup
τ∈T

sup
f∈F(τ,L)

Pf (∆⋆
n = 0)

≤ 1r>0 sup
r∈[r;r̄],α≥α,β∈[β,β̄]

sup
f∈F(τ,L)

‖f−f0‖2
2≥Cψ2

n,τ

Pf (|Tn,N+1| ≤ C⋆t2n,N+1)

+ 1r=r̄=0 sup
α≥α,β∈[β;β̄]

sup
f∈F(α,0,β,L)

‖f−f0‖2
2≥Cψ2

n,(α,0,β)

Pf (∀1 ≤ i ≤ N, |Tn,i| ≤ C⋆t2n,i).

Note that when the function f in the alternative is supersmooth (r > 0), we
only need the last test (with index N+1), whereas when it is ordinary smooth
(r = r̄ = 0), we use the family of tests with indexes i ≤ N . In this second
case, we use in fact only the test based on parameter βf defined as the smallest
point on the grid larger than β (see the proof of Lemma 4 below).

Lemma 3 Fix r > 0, for any α ≥ α, r ∈ [r; r̄], β ∈ [β; β̄]. For any ǫ ∈ (0; 1),
there exists some large enough C0 such that for any C > C0 and any f ∈
F(α, r, β, L) such that ‖f − f0‖2

2 ≥ Cψn,(α,r,β), we have

Pf (|Tn,N+1| ≤ C⋆t2n,N+1) ≤ ǫ.

Lemma 4 We have

sup
α≥α

sup
β∈[β;β̄]

sup
f∈F(α,0,β,L)

‖f−f0‖2
2≥Cψ2

n,(α,0,β)

Pf (∀1 ≤ i ≤ N, |Tn,i| ≤ C⋆t2n,i) = o(1).

The proofs of Lemma 3 and Lemma 4 are postponed to the end of the present
section. Thus, the second type error of the test converges to zero. This ends
the proof of (4).

Proof of Theorem 1 (Lower bound).

As we already noted after the theorem statement, our test procedure attains
the minimax rate associated to the class F(α0, 0, β̄, L) where f0 belongs, when-
ever the alternative f belongs to classes of functions smoother than f0. There-
fore, the lower bound we need to prove concerns the optimality of the loss of
order (log log n)1/2 due to alternatives less smooth than f0.

More precisely, we prove (5), where the alternative H1(C,Ψn) is now restricted
to ∪β∈[β,β̄]{f ∈ F(0, 0, β, L) and ψ−2

n,β‖f −f0‖2
2 ≥ C} and ψn,β denotes the rate

ψn,τ when τ = (0, 0, β, L).

The general approach for proving such a lower bound (5) is to exhibit a finite
number of regularities {βk}1≤k≤K and corresponding probability distributions
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{πk}1≤k≤K on the alternatives H1(C, ψn,βk
) (more exactly, on parametric sub-

sets of these alternatives) such that the distance between the distributions
induced by f0 (the density being tested) and the mean distribution of the
alternatives is small.

We use a finite grid B̄ = {β1 < β2 < . . . < βK} ⊂ [β, β̄] such that

∀β ∈ [β, β̄],∃k : |βk − β| ≤ 1

log n
.

To each point β in this grid, we associate a bandwidth

hβ = (nρn)−
2

4β+4σ+1 , ρn = (log log n)−1/2, and Mβ = h−1
β .

We use the same deconvolution kernel as in [2], constructed as follows. Let G
be defined as in Lemma 2 in [2]. The function G is an infinitely differentiable
function, compactly supported on [−1, 0] and such that

∫

G = 0. Then, the
deconvolution kernel Hβ is defined via its Fourier transform ΦHβ by

ΦHβ(u) = ΦG(hβu)(Φg(u))−1.

Note that the factor ρn in the bandwidth’s expression corresponds to the loss
for adaptation.

We also consider for each β, a probability distribution πβ (also denoted πk
when β = βk) defined on {−1,+1}Mβ which is in fact the product of Rademacher
distributions on {−1,+1} and a parametric subset of H1(C, ψn,β) containing
the following functions

fθ,β(x) = f0(x)+
Mβ
∑

j=1

θjh
β+σ+1
β Hβ (x− xj,β) ,











θj i.i.d. with P(θj = ±1) = 1/2,

xj,β = jhβ ∈ [0, 1].

Convolution of these functions with g induces another parametric set of func-
tions

pθ,β(y) = p0(y) +
Mβ
∑

j=1

θjh
β+σ+1
β Gβ (y − xj,β)

where Gβ(y) = h−1
β G (y/hβ) = Hβ ∗ g(y).

As established in [2] (Lemmas 2 and 4), for any β, any θ ∈ {−1,+1}Mβ and
small enough hβ (i.e. large enough n) the function fθ,β is a probability density
and belongs to the Sobolev class F(0, 0, β, L) and pθ,β is also a probability
density. Moreover we have

1

K

∑

β∈B̄

πβ
(

‖fθ,β − f0‖2
2 ≥ Cψ2

n,β

)

−→
n→+∞

1,
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which means that for each β, the random parametric family {fθ,β}θ belongs al-
most surely (with respect to the measure πβ) to the alternative set H1(C, ψn,β).
The subset of functions which are not in the alternative H1(C,Ψn) is asymp-
totically negligible. We then have,

γn , inf
∆n

{

P0(∆n = 1) + sup
f∈H1(C,Ψn)

Pf (∆n = 0)

}

≥ inf
∆n







P0(∆n = 1) +
1

K

K
∑

k=1

sup
f∈H1(C,ψn,βk

)
Pf (∆n = 0)







≥ inf
∆n

{

P0(∆n = 1) +
1

K

K
∑

k=1

( ∫

θ
Pfθ,βk

(∆n = 0)πk(dθ)

−πk(‖fθ,βk
− f0‖2

2 < Cψ2
n,βk

)
)}

≥ inf
∆n

{

P0(∆n = 1) +
1

K

K
∑

k=1

(∫

θ
Pfθ,βk

(∆n = 0)πk(dθ)
)

}

+ o(1).

Let us denote by

π =
1

K

K
∑

k=1

πk and Pπ =
1

K

K
∑

k=1

Pk =
1

K

K
∑

k=1

∫

θ
Pfθ,βk

πk(dθ).

Those notations lead to

γn≥ inf
∆n

{P0(∆n = 1) + Pπ(∆n = 0)}

≥ inf
∆n

{

1 −
∫

∆n=0
dP0 +

∫

∆n=0
dPπ

}

≥ 1 − sup
A

∫

A
(dP0 − dPπ)

≥ 1 − 1

2
‖Pπ − P0‖1, (9)

where we used Scheffé’s Lemma.

The finite grid B̄ is split into subsets B̄ = ∪lB̄l with B̄l ∩ B̄k = ∅ when l 6= k
and such that

∀l, ∀β1 6= β2 ∈ B̄l,
c log log n

log n
≤ |β1 − β2|.

The number of subsets B̄l is denoted by K1 = O(log log n) and the cardinality
|B̄l| of each subset B̄l is of the order O(log n/ log log n), uniformly with respect
to l.
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The lower bound (5) is then obtained from (9) in the following way

γn ≥ 1 − 1

2K1

K1
∑

l=1

∥

∥

∥

∥

∥

∥

1

|B̄l|
∑

β∈B̄l

Pβ − P0

∥

∥

∥

∥

∥

∥

1

,

where Pβ =
∫

θ Pfθ,β
πβ(dθ) .

Here we do not want to apply the triangular inequality to the whole set of
indexes B̄. Indeed, this would lead to a lower bound equal to 0. Yet, if we do not
apply some sort of triangular inequality, we cannot deal with the sum because
of too much dependency. This is why we introduced the subsets B̄l with the
property that two points in the same subset B̄l are far enough away from each
other. This technique was already used in [5] for the discrete regression model.

Let us denote by ℓβ the likelihood ratio

ℓβ =
dPβ
dP0

=
∫ dPfθ,β

dP0

πβ (dθ).

We thus have

γn ≥ 1− 1

2K1

K1
∑

l=1

∫





1

|B̄l|
∑

β∈B̄l

ℓβ − 1



 dP0 = 1− 1

2K1

K1
∑

l=1

∥

∥

∥

∥

∥

∥

1

|B̄l|
∑

β∈B̄l

ℓβ − 1

∥

∥

∥

∥

∥

∥

L1(P0)

.

Now we use the usual inequality between L1 and L2-distances to get that

γn ≥ 1− 1

2K1

K1
∑

l=1

∥

∥

∥

∥

∥

∥

1

|B̄l|
∑

β∈B̄l

ℓβ − 1

∥

∥

∥

∥

∥

∥

L2(P0)

= 1− 1

2K1

K1
∑

l=1











E0





1

|B̄l|
∑

β∈B̄l

ℓβ − 1





2










1/2

.

Let us focus on the expected value appearing in the lower bound. We have

E0





1

|B̄l|
∑

β∈B̄l

ℓβ − 1





2

=
1

|B̄l|2
∑

β∈B̄l

Qβ +
1

|B̄l|2
∑

β,ν∈B̄l

β 6=ν

Qβ,ν ,

where there are two quantities to evaluate

Qβ = E0

(

(ℓβ − 1)2
)

and Qβ,ν = E0 (ℓβℓν − 1) .

The first term Qβ is treated as in [2]. It corresponds to the computation of
a χ2-distance between the two models induced by Pβ and P0 (see term ∆2 in
[2]). Indeed we have

Qβ ≤ CMβn
2h4β+4σ+2

β ≤ C
1

ρ2
n

.
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This upper bound goes to infinity very slowly. The number of β’s in each B̄l
compensates this behaviour

1

|B̄l|2
∑

β∈B̄l

Qβ ≤ 1

|B̄l|ρ2
n

= O

(

(log log n)2

log n

)

= o(1).

The second term is a new one (with respect to non-adaptive case). As G is
compactly supported and the points β and ν are far away from each other, we
can prove that this term is asymptotically negligible. Recall the expression of
the likelihood ratio for a fixed β

ℓβ =
∫ dPfθ,β

dP0

πβ (dθ) =
∫ n
∏

r=1



1 +
Mβ
∑

j=1

θj,βh
β+σ+1
β

Gβ (Yr − xj,β)

p0 (Yr)



 πβ (dθ) .

Thus,

ℓβℓν =
∫ dPfθ,β

dP0

πβ (dθ)
∫ dPfθ,ν

dP0

πν (dθ)

=
∫ n
∏

r=1



1 +
Mβ
∑

j=1

θj,β h
β+σ+1
β

Gβ (Yr − xj,β)

p0 (Yr)





×
(

1 +
Mν
∑

i=1

θi,νh
ν+σ+1
ν

Gν (Yr − xi,ν)

p0 (Yr)

)

πβ (dθ.,β)πν (dθ.,ν) .

The random variables Yr are i.i.d. and E0

(

Gβ (Yr − xj,β)

p0 (Yr)

)

= 0. Thus we have

E0 (ℓβℓν) =
∫



1 +
Mβ
∑

j=1

Mν
∑

i=1,i⊂j

θj,βθi,νh
β+σ+1
β hν+σ+1

ν

E0

(

Gβ (Y1 − xj,β)Gν (Y1 − xi,ν)

p2
0 (Y1)

)]n

πβ (dθ.,β)πν (dθ.,ν) .

where the second sum concerns only some indexes i, denoted by i ⊂ j. This no-
tation stands for the set of indexes i such that [(i−1)hβ; ihβ]∩[(j−1)hν ; jhν ] 6=
∅. From now on, we fix β > ν. Denote by G′ (resp. p′0) the first derivative of G
(resp. p0). (The density p0 is continuously differentiable as it is the convolution
product f0∗g where the noise density g is at least continuously differentiable).

Lemma 5 For any β > ν and any (i, j) ∈ {1, . . . ,Mν} × {1, . . . ,Mβ}, we
have

E0

(

Gβ (Y1 − xj,β)Gν (Y1 − xi,ν)

p2
0 (Y1)

)

=
hν
h2
β

Ri,j,
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where Rij satisfies

|Ri,j| ≤ (inf
[0,1]

p0)
−1‖G‖∞‖G′‖∞(1 + o(1))

and o(1) is uniform with respect to (i, j).

The proof of this lemma is omitted. Applying Lemma 5, we get

Qβ,ν+1 =
∫



1 +
Mβ
∑

j=1

Mν
∑

i=1,i⊂j

θj,βθi,νh
β+σ+1
β hν+σ+1

ν

hν
(hβ)2

Ri,j





n

πβ (dθ.,β)πν (dθ.,ν) .

Lemma 6 Let U be a real valued random variable such that ∀k ∈ N, E

(

U2k+1
)

=
0. We have, for any integer n ≥ 1,

E (1 + U)n ≤ 1 +

⌊n
2
⌋

∑

k=1

n2k

(2k)!
E

(

U2k
)

,

where ⌊x⌋ is the largest integer which is smaller than x.

The proof of Lemma 6 is obvious and therefore omitted. Apply Lemma 6 to
get the inequality

Qβ,ν ≤
⌊n

2
⌋

∑

k=1

n2k

(2k)!
(hβ+σ−1

β hν+σ+2
ν )2k

Eπ





Mβ
∑

j=1

Mν
∑

i=1,i⊂j

θj,βθi,νRi,j





2k

.

But the θ’s are i.i.d. Rademacher variables and the Ri,j’s are deterministic,
thus

Eπ





Mβ
∑

j=1

Mν
∑

i=1,i⊂j

θj,βθi,νRi,j





2k

=
∑

1≤j1,...,jk≤Mβ

∑

1≤i1,...,ik≤Mν

∀l,il⊂jl

(

k
∏

l=1

R2
il,jl

)

.

Using the bound on the Ri,j given by Lemma 5,

Eπ





Mβ
∑

j=1

Mν
∑

i=1,i⊂j

θj,βθi,νRi,j





2k

≤
(

(inf
[0,1]

p0)
−1‖G‖∞‖G′‖∞(1 + o(1))

)2k

hkν .

Indeed, each index jl may take at most Mβ = h−1
β different values but the

constraint il ⊂ jl implies that each index il is limited to at most hβ/hν different
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values. Thus we get

Qβ,ν ≤ C

⌊n
2
⌋

∑

k=1

n2k

(2k)!

(

Chβ+σ+1
β hν+σ+1

ν

hν
h2
β

)2k

h−kν

≤ C

⌊n
2
⌋

∑

k=1



n2h
2β+2σ+1/2
β h2ν+2σ+1/2

ν

h5/2
ν

h
5/2
β





k

≤ C

⌊n
2
⌋

∑

k=1





h5/2
ν

ρ2
nh

5/2
β





k

≤ C
1

ρ2
n

h5/2
ν

h
5/2
β

.

As β > ν both belong to some set B̄l, we have β−ν ≥ c(log log n)/(log n) and
according to the choice of the bandwidths,

h5/2
ν

h
5/2
β

= (nρn)−
20(β−ν)

(4β+4σ+1)(4ν+4σ+1) ≤ exp
{

− 20 c log log n

(4β̄ + 4σ + 1)2
(1+o(1))

}

≤ (log n)−w,

where the constant w (depending on the constant c used in the construction
of the sets B̄l) can be tailored to our need. Therefore

1

|B̄l|2
∑

β,ν∈|B̄l|

β 6=ν

Qβ,ν ≤
C

ρ2
n (log n)w

which goes to 0 as n goes to +∞. We finally obtain the upper bound

E0











1

|B̄l|
∑

β∈|B̄l|

ℓβ − 1





2




 ≤ O

(

1

|B̄l|ρ2
n

)

+O

(

1

ρ2
n (log n)w

)

= o(1),

which leads to

γn ≥ 1 − 1

2

1

K1

K1
∑

l=1

{

O

(

1

|B̄l|ρ2
n

)

+O

(

1

ρ2
n (log n)c

)}1/2

= 1 + o(1).

Proof of Theorem 2.

Assume now that f0 ∈ F(α, r̄, β0, L), for some β0 ∈ [β, β̄]. The proof follows
the same lines as the proof of Theorem 1.

For the first-type error we write

P0(∆
∗
n = 1) =

N1
∑

i=1

P0(|Tn,i − E0(Tn,i)| > C⋆t2n,i − E0(Tn,i))

+
N2
∑

i−N1=1

P0(|Tn,i − E0(Tn,i)| > C⋆t2n,i − E0(Tn,i)).
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For the firstN1 terms we apply Lemma 1 with E0(Tn,i) = o(1)L(hi)
2β0 exp(−2α/hr̄i )

which is smaller than t2n,i for all i = 1, . . . , N1 and the same result follows. For
the last N2 terms we also use the Berry-Esseen inequality as in the proof of
Lemma 1 for

x = C⋆t2n,i − E0(Tn,i) ≥ C⋆t2n,i(1 − o(1))

as E0(Tn,i) = o(1)h2β0
i exp(−2α/hr̄i ) = o(1/n). We get x/vn = O(1)(log log log n)1/2

N2
∑

i−N1=1

P0(|Tn,i − E0(Tn,i)| > C⋆t2n,i − E0(Tn,i))

≤N2
vn

C⋆t2n,i
exp

(

−(C⋆)2t4n,i
4v2

n

)

≤ C1
(log log log n)−1/2

(log log n)b−1
= o(1),

for some b > 1 for C⋆ large enough. Indeed, all other calculations are similar as
they are related mostly to the distribution of the noise which didn’t change.

As for the second-type error,

sup
τ∈T

sup
f∈F(τ,L)

Pf (∆⋆
n = 0)

≤ 1r=r̄=0 sup
α≥α,β∈[β;β̄]

sup
f∈F(α,0,β,L)

‖f−f0‖2
2≥Cψ2

n,(α,0,β)

Pf (∀1 ≤ i ≤ N1, |Tn,i| ≤ C⋆t2n,i)

+1r>0 sup
r∈[r;r̄],α∈[α,α],β∈[β,β̄]

sup
f∈F(τ,L)

‖f−f0‖2
2≥Cψ2

n,τ

Pf (∀N1+1 ≤ i ≤ N1+N2, |Tn,i| ≤ C⋆t2n,i).

For the first term in the previous sum we actually apply precisely Lemma 4.
For the second term we mimic the proof of Lemma 4 and choose some f in
F(α, r, β, L) such that ‖f−f0‖2

2 ≥ Cψ2
n,r, where we denote ψn,r = ψn,τ1r>0. We

define rf as the smallest point on the grid {r1, . . . , rN2} such that r ≤ rf . We
denote by hf , t2n,f and Tn,f the bandwidth, the threshold and the test statistic
associated to parameters α and rf (they do not depend on β). Then

Pf (∀N1 + 1 ≤ i ≤ N1 +N2, |Tn,i| ≤ C⋆t2n,i)
≤Pf (|Tn,f − Ef (Tn,f )| ≥ ‖f − f0‖2

2 − C⋆t2n,f −Bf (Tn,f )), (10)

where, as in Theorem 1

|Bf (Tn,f )|= |‖Jh ∗ f − f‖2
2 + 2〈f − Jh ∗ f, f0〉|

≤
(

Lh2β
f exp(−2α/hrf ) + 2Lhβ+β0

f exp(−α/hrf − α/hr̄f )
)

(1 + o(1))

≤L(h2β
f + hβ+β0

f ) exp(−2α/hrf )(1 + o(1))

≤L(hβ+β∧β0

f ) exp(−2α/hrf )(1 + o(1)).
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Using Markov’s inequality, we get the following upper bound for (10)

Varf (Tn,f )

(‖f − f0‖2
2 − C⋆t2n,f −Bf (Tn,f ))2

. (11)

The variance is bounded from above by

Ef (Tn,f − Ef (Tn,f ))2 ≤ C

n2h4σ+1
f

+
4Ω2

g(f − f0)

n
, (12)

and similarly to [2] we show that Ω2
g(f − f0) ≤ ‖f − f0‖2

2(log ‖f − f0‖−2
2 )2σ/r.

We have

t2n,fψ
−2
n,r = (log n)(4σ+1)(1/rf−1/r)/2 ≤ 1,

and thus ‖f − f0‖2
2 − C⋆t2n,f ≥ (C − C⋆)ψ2

n,r. Moreover,

Bf (Tn,f )ψ−2
n,r ≤ C(log log log n)−1/2 (log n)−(β+β∧β0)/rf−(4σ+1)/(2r)

× exp







−2α

(

log n

2c

)r/rf

+ log n







.

The construction of the grid ensures that −1/(log log n) ≤ r−rf ≤ 0 and thus

exp







−2α

(

log n

2c

)r/rf

+ log n







= exp

{

− log n

c

[

α exp

(

r − rf
rf

log log n(1 + o(1))

)

− c

]}

≤ exp

{

− log n

c

[

α exp
(−1

r
(1 + o(1))

)

− c
]

}

= O(1),

as we chose the constant c < α exp(−1/r). Finally, we have Bf (Tn,f )ψ−2
n,r =

o(1). Let us come back to (11). We distinguish two cases whether the first or
the second term in (12) is dominant. If the first term in the variance dominates,
we have the following bound for (11)

n−2h
−(4σ+1)
f

(C − C⋆)2ψ4
n,τ

≤ C

log log log n
→ 0.

On the other hand, if the second term in (12) is the larger one, the bound (11)
writes

n−1‖f − f0‖2
2(log ‖f − f0‖−2

2 )2σ/r

‖f − f0‖4
2(1 − C⋆/C + o(1))2

≤ Cn−1ψ−2
n,r(logψ−2

n,r)
2σ/r

= C(log n)−1/(2r)(log log log n)−1/2 = o(1).
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This finishes the proof.

Proof of Theorem 3.

This proof follows the lines of Theorem 3.9 in [8]. Combining the Skorokhod
representation Theorem and Lemma 3.3 in [8], there exists a nonnegative
random variable Tn such that for any 0 < ǫ < 1/2 and any real x,

|P(Un ≤ x) − φ(x)|= |P(Sn ≤ v−1
n x) − φ(x/vn)|

≤ 16ǫ1/2 exp{−x2/(4v2
n)} + P(|Tn − 1| > ǫ).

Moreover, for any δ > 0,

P(|Tn − 1| > ǫ) ≤ 4ǫ−1−δ
E

[

|Tn − V 2
n |1+δ + |V 2

n − 1|1+δ
]

,

where Tn − V 2
n is a sum of Martingale differences. In the same way as in [8],

we obtain (as δ ≤ 1)

P(|Tn − 1| > ǫ) ≤ Cǫ−1−δ

[

n
∑

i=1

E|Zi|2+2δ + E|V 2
n − 1|1+δ

]

,

which concludes the proof.

We now present the proofs of the lemmas.

Proof of Lemma 1.

Let us set ρn = (log log n)−1/2 and fix 1 ≤ i ≤ N . We use the obvious notation
p0 = f0 ∗ g. As we have

E0(Tn,i) = ‖Khi ∗ p0 − f0‖2
2 = ‖Jhi ∗ f0 − f0‖2

2,

and < Kh(· − Y1) − Jh ∗ f0, Jh ∗ f0 − f0 >= 0

we easily get

Tn,i−E0(Tn,i) =
2

n(n− 1)

∑∑

1≤k<j≤n

< Khi(·−Yk)−Jhi∗f0, Khi(·−Yj)−Jhi∗f0 > .

Let us set

H(Yj, Yk) = 2{n(n− 1)}−1 < Khi(· − Yk) − Jhi ∗ f0, Khi(· − Yj) − Jhi ∗ f0 >

and note that H is a symmetric function with E0{H(Y1, Y2)} = 0 and
E0{H(Y1, Y2)|Y1} = 0. As a consequence, Tn,i − E0(Tn,i) is a degenerate U -
statistic. Using Theorem 3 (and the notation of Section 3) to control its cdf,
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we get that for any 0 < δ ≤ 1, for any 0 < ε < 1/2 and any x

|P0(Tn,i − E0(Tn,i) > x) − (1 − φ(x/vn))|

≤ 16ε1/2 exp

(

− x2

4v2
n

)

+
C

ε1+δ

{

n
∑

i=2

E0|Zi|2+2δ + E0|V 2
n − 1|1+δ

}

,

where v2
n = Var0(Tn,i) and

Zi =
1

vn

i−1
∑

j=1

H(Yi, Yj) and V 2
n =

n
∑

i=2

E0(Z
2
i |Fi−1)

as in Section 3. Choose δ = 1 and consider ε as a constant (optimisation in ε
is not necessary in our context), thus

|P0(Tn,i − E0(Tn,i) > x) − (1 − φ(x/vn))|

≤ C exp

(

− x2

4v2
n

)

+ C

{

n
∑

i=2

E0|Zi|4 + E0|V 2
n − 1|2

}

. (13)

We want to apply this inequality at the point x = C⋆t2n,i−E0(Tn,i). First, note
that

E0(Tn,i) = ‖Jhi ∗ f0 − f0‖2
2 =

1

2π

∫

|u|>1/(hi)
|Φ0(u)|2du ≤ L(hi)2β̄ ≤ Lt2n,i,

leading to

x ≥ (C⋆ − L)t2n,i = (C⋆ − L)(nρn)−4βi/(4βi+4σ+1)

and we choose C⋆ > L. Now, the variance term v2
n satisfies (see [2])

v2
n = E0(Tn,i − E0(Tn,i))

2 =
C

n2(hi)4σ+1
(1 + o(1)).

Using the choice of the bandwidth hi, we obtain a bound of the first term in
(13)

C exp

(

− x2

4v2
n

)

≤ C exp

(

−(C⋆)2

C ′
ρ−2
n

)

= C(log n)−b,

where b = (C⋆)2/(C ′) can be chosen as large as we need. Let us deal with the
other terms appearing in (13). For large enough n,

| < Khi(· − Yk) − Jhi ∗ f0, Khi(· − Yj) − Jhi ∗ f0 > |

≤ 2

π

∫

|u|≤1/hi
|Φg(u)|−2du ≤ C

(hi)2σ+1

and thus, for any p ≥ 2,

E0{|H(Y1, Y2)|2p} ≤ Cn−4p(hi)−2p(2σ+1).
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This leads to

n
∑

i=2

E0|Zi|4 ≤
1

v4
n

n
∑

i=2





i−1
∑

j=1

E0(H(Yi, Yj)
4) + 3

∑∑

1≤j 6=k≤i−1

E0(H(Yi, Yj)
2H(Yi, Yk)

2)





≤ 1

v4
n

n
∑

i=2

(

(i− 1)E0(H(Y1, Y2)
4) + 3(i− 1)(i− 2)E0(H(Y1, Y2)

2H(Y1, Y3)
2)
)

≤ O(1)

v4
n

n2
E0(H(Y1, Y2)

4) +
O(1)

v4
n

n3
E0(H(Y1, Y2)

2H(Y1, Y3)
2)

≤ O(1)
n3

n8(hi)4(2σ+1)
n4(hi)2(4σ+1) =

O(1)

n(hi)2
.

Moreover, following the lines of the proof of Theorem 1 in [7] we get

E0|V 2
n − 1|2 ≤ 1

v4
n

(

E0(G
2(Y1, Y2)) +

1

n
E0(H

4(Y1, Y2))
)

,

where G(x, y) = E0(H(Y1, x)H(Y1, y)). In [1] this last term was bounded from
above for this model by Chi so

E0|V 2
n − 1|2 ≤ Chi.

Returning to (13) we finally get for x = C⋆t2n,i − E0(Tn,i),

|P0(Tn,i − E0(Tn,i) > x) − {1 − φ(x/vn)}| ≤ C
(

(log n)−b + hi
)

≤ C(log n)−b.

Finally we obtain, for b large when C⋆ is large

N
∑

i=1

P0(|Tn,i − E0(Tn,i)| > C⋆t2n,i − E0(Tn,i)) ≤ N(1 − φ(x/vn) + C(log n)−b)

≤ CN
(

vnx
−1 exp(−x2/(2v2

n)) + (log n)−b
)

≤ CNρn(log n)−b ≤ C
(log log n)−1/2

log nb−1
.

Proof of Lemma 2.

Using a Markov inequality and the usual controls on bias and variance, we get

P0(|Tn,N+1−E0(Tn,N+1)| > C⋆t2n,N+1−E0(Tn,N+1)) ≤
Cn−2(hN+1)−(4σ+1)

(C⋆t2n,N+1 − C(hN+1)2β̄)2
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which is O((C⋆ −C)−1) and by choosing C⋆ large enough, this term is smaller
than some ǫ > 0.

Proof of Lemma 3.

Let us write

Pf (|Tn,N+1| ≤ C⋆t2n,N+1) ≤
Pf (|Tn,N+1 − EfTn,N+1| ≥ ‖f − f0‖2

2 − C⋆t2n,N+1 −Bf (Tn,N+1))

where

|Bf (Tn,N+1)| = |Ef (Tn,N+1) − ‖f − f0‖2
2|

≤
∫

|u|≥1/hN+1
|Φ(u)|2du+ 2

(

∫

|u|≥1/hN+1
|Φ(u)|2du

∫

|u|≥1/hN+1
|Φ0(u)|2du

)1/2

≤
(

L(hN+1)2β exp{−2α/(hN+1)r} + 2L(hN+1)β+β̄ exp{−α/(hN+1)r}
)

≤ 2L(hN+1)β+β̄ exp{−α/(hN+1)r}(1 + o(1)).

In the same way as in the proof of Lemma 4, we have

Ef (Tn,N+1 − Ef (Tn,N+1))
2 ≤ C

n2(hN+1)4σ+1
+

4Ω2
g(f − f0)

n
1β≥σ = w2

n,f ,

and Ωg(f − f0) is a constant depending on f and g (but not n) and satisfying

|Ω2
g(f − f0)| ≤ C‖f − f0‖2−2σ/β̄

2 . The rest of the proof follows the same lines
as Lemma 4. Indeed, Markov’s Inequality leads the following bound on the
second type error term

w2
n,f

(‖f − f0‖2
2 − C⋆t2n,N+1 − 2L(hN+1)2β exp{−α/(hN+1)r}(1 + o(1)))2

≤ max





Cn−2(hN+1)−4σ−1

(C0 − C⋆)2ψ4
n,r

;
C

n‖f − f0‖2+2σ/β̄
2 (C0 − C⋆)2





The first term in the right hand side is a constant which can be as small as
we need, by choosing a large enough constant C0. The second term converges
to zero.

Proof of Lemma 4.

When r̄ = r = 0, let us fix some constant C > C0 (C0 will be chosen later)
and a density f belonging to F(α, 0, β, L) for some unknown α > α and

25



β ∈ [β; β̄] which satisfies ‖f − f0‖2
2 ≥ Cψ2

n,(α,0,β) (choose β as the largest
one). In this proof, we abbreviate ψn,(α,0,β) to ψn,β since in this case, the rate
only depends on β. We define βf as the smallest point on the finite grid
{β = β1 < β2 < . . . < βN = β̄} such that β ≤ βf

βf ∈ {β = β0 < β1 < . . . < βN = β̄}, f ∈ F(α, 0, β, L), ‖f − f0‖2
2 ≥ Cψ2

n,β,

β ≤ βf and ∀βi < βf , we have β > βi. (14)

We shall abbreviate to hf , t2n,f and Tn,f the bandwidth, the threshold (both
defined in Theorem 1) and the statistic (7) corresponding to parameter βf .
We write

Pf (∀i ∈ {1, . . . , N}, |Tn,i| ≤ C⋆t2n,i)
≤Pf (|Tn,f − Ef (Tn,f )| ≥ −C⋆t2n,f + Ef (Tn,f ))

≤Pf (|Tn,f − Ef (Tn,f )| ≥ ‖f − f0‖2
2 − C⋆t2n,f +Bf (Tn,f )), (15)

where

Bf (Tn,f ) = Ef (Tn,f ) − ‖f − f0‖2
2 = ‖Jh ∗ f‖2

2 − ‖f‖2
2 + 2〈f − Jh ∗ f, f0〉

is in fact a bias term. It satisfies

|Bf (Tn,f )| ≤
∫

|u|≥1/hf

|Φ(u)|2du+ 2(
∫

|u|≥1/hf

|Φ(u)|2du
∫

|u|≥1/hf

|Φ0(u)|2du)1/2

≤Le−2α(h2β
f + 2hβ̄+β

f ) ≤ 3e−2αLh2β
f ,

as f belongs to F(α, 0, β, L) ⊆ F(α, 0, β, L).

Let us study the variance term Ef (Tn,f − Ef (Tn,f ))2. According to [2], this
term is upper-bounded by w2

n,f given by

Ef (Tn,f − Ef (Tn,f ))2 ≤ C

n2h4σ+1
f

+
4Ω2

g(f − f0)

n
1β≥σ = w2

n,f ,

and Ωg(f − f0) is a constant depending on f and g (but not n) and satisfying

|Ω2
g(f − f0)| ≤ C‖f − f0‖2−2σ/β

2 (see proof of Theorem 6 in [2]).

Using Markov’s inequality, this leads to the following upper bound of (15)

w2
n,f

(‖f − f0‖2
2 − C⋆t2n,f − 3e−2αLh2β

f )2
.

We will proceed differently when β < σ and when β ≥ σ. Let us first consider
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the term concerning β < σ. The point is to use that f satisfies ‖f − f0‖2
2 ≥

Cψ2
n,β. Note that we have βf ≥ β, constants C > C⋆ and

ψ2
n,βt

−2
n,f = (nρn)4(βf−β)(4σ+1)/{(4βf+4σ+1)(4β+4σ+1)},

ensuring that the term Cψ2
n,β − C⋆t2n,f is always positive. Moreover, as 0 ≥

β − βf ≥ −(β̄ − β)/ log n, we have

ψ2
n,βh

−2β
f = exp

{

16β(β − βf )

(4βf + 4σ + 1)(4β + 4σ + 1)
log(nρn)

}

≥ exp

{

− 16β̄(β̄ − β)

(4β + 4σ + 1)2
(1 + o(1))

}

=: C1(1 + o(1)).

Thus, we choose C0 = C⋆ + 3e−2αL/C1 such that for any C > C0, we have

‖f − f0‖2
2 − C⋆t2n,f − 3e−2αLh2β

f ≥ (C − C∗ − 3e−2αL/C1)ψ
2
n,β = aψ2

n,β,

with a > 0. Thus, we get

sup
α>α

sup
β∈[β;β̄]

sup
f∈F(α,0,β,L)

‖f−f0‖2
2≥Cψ2

n,β

Pf (∀i ∈ {1, . . . , N}, |Tn,i| ≤ C⋆t2n,i)

≤ max







sup
β<σ

sup
f

C

n2h4σ+1
f ψ4

n,β

; sup
β≥σ

sup
f

C‖f − f0‖2−2σ/β
2

n(‖f − f0‖2
2 − C⋆t2n,f − 3e−2αLh2β

f )2







.

Finally, this leads to the bound

max

{

sup
β<σ

sup
f

C

n2h4σ+1
f ψ4

n,β

; sup
β≥σ

C

n‖f − f0‖2+2σ/β
2 (a/C)2

}

≤max







sup
β<σ

sup
f

C

n2h4σ+1
f ψ4

n,β

; sup
β≥σ

C

nψ
2+2σ/β
n,β







≤ ρn,

which converges to zero as n tends to infinity.

Proof of Lemma 5.

As β > ν, the bandwidths satisfy hνh
−1
β = o(1). Then, as G is compactly
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supported on [−1, 0], we have

E0

(

Gβ (Y1 − xj,β)Gν (Y1 − xi,ν)

p2
0 (Y1)

)

=
∫

R

Gβ (y − xj,β)Gν (y − xi,ν)

p0 (y)
dy

=
∫

[−1, 0]

Gβ (hνu+ xi,ν − xj,β)G (u)

p0 (hνu+ xi,ν)
du.

Apply the Taylor Formula to get

Gβ (hνu+ xi,ν − xj,β) =Gβ (xi,ν − xj,β) +
hν
h2
β

uG′

(

hν ũ1 + xi,ν − xj,β
hβ

)

and
1

p0 (hνu+ xi,ν)
=

1

p0 (xi,ν)
− p′0 (hν ũ2 + xi,ν)

p0 (hν ũ2 + xi,ν)
2hνu,

where 0 ≤ ũ1 ≤ u and 0 ≤ ũ2 ≤ u. As
∫

G = 0, we obtain

∫

[−1,0]

Gβ (hνu+ xi,ν − xj,β)G (u)

p0 (hνu+ xi,ν)
du

=
1

p0 (xi,ν)

hν
h2
β

∫

[−1,0]
uG′

(

hν ũ1 + xi,ν − xj,β
hβ

)

G(u)du

−hνGβ (xi,ν − xj,β)
∫

[−1,0]

p′0 (hν ũ2 + xi,ν)

p0 (hν ũ2 + xi,ν)
2uG (u) du

− h2
ν

h2
β

∫

[−1,0]

p′0 (hν ũ2 + xi,ν)

p0 (hν ũ2 + xi,ν)
2u

2G′

(

hν ũ1 + xi,ν − xj,β
hβ

)

G (u) du.

This leads to

E0

(

Gβ (Y1 − xj,β)Gν (Y1 − xi,ν)

p2
0 (Y1)

)

=
hν
h2
β

Ri,j

where

Ri,j =
1

p0 (xi,ν)

∫

[−1,0]
uG′

(

hν ũ1 + xi,ν − xj,β
hβ

)

G(u)du

−hβG
(

xi,ν − xj,β
hβ

)

∫

[−1,0]

p′0 (hν ũ2 + xi,ν)

p0 (hν ũ2 + xi,ν)
2uG (u) du

−hν
∫

[−1,0]

p′0 (hν ũ2 + xi,ν)

p0 (hν ũ2 + xi,ν)
2u

2G′

(

hν ũ1 + xi,ν − xj,β
hβ

)

G (u) du.

satisfies

|Rij| ≤ (inf
[0,1]

p0)
−1‖G‖∞‖G′‖∞ + ‖G‖∞‖p′0‖∞( inf

[−1,1]
p0)

−2(hβ‖G‖∞ + hν‖G′‖∞),
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which ends the proof of Lemma 5.
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