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Introduction

Convolution model

Consider the convolution model where the observed sample {Y j } 1≤j≤n comes from the independent sum of independent and identically distributed (i.i.d.) random variables X j and i.i.d. noise variables ε j . Variables X j have unknown density f and Fourier transform Φ (where Φ(u) = exp(ixu)f (x)dx) and the noise variables ε j have known density g and Fourier transform Φ g Y j = X j + ε j , 1 ≤ j ≤ n.

(

) 1 
The density of the observations is denoted by p and its Fourier transform Φ p . Note that we have p = f * g where * denotes the convolution product and Φ p = Φ • Φ g .

The underlying unknown density f is always supposed to belong to L 1 ∩ L 2 . We shall consider probability density functions belonging to the class

F (α, r, β, L) = f : R → R + , f = 1, 1 2π |Φ (u)| 2 |u| 2β exp (2α|u| r ) du ≤ L , (2) 
for L a positive constant, α > 0, 0 ≤ r ≤ 2, β ≥ 0 and either r > 0 or r = 0 and then β > 0. Note that the case r = 0 corresponds to Sobolev densities whereas r > 0 corresponds to infinitely differentiable (or supersmooth) densities.

We consider noise distributions whose Fourier transform does not vanish on R: Φ g (u) = 0, ∀ u ∈ R. Typically, in nonparametric estimation in convolution models the distinction of two different behaviours for the noise distribution occurs: for some constant c g > 0,

polynomially smooth noise

|Φ g (u)| ∼ c g |u| -σ , |u| → ∞, σ > 1; (3) 
exponentially smooth noise |Φ g (u)| ∼ c g exp (-γ |u| s ) , |u| → ∞, γ, s > 0.

The exponentially smooth noise case is studied in a separate article and in a more general semiparametric framework [START_REF] Butucea | Adaptive estimation and goodness-of-fit tests in convolution models with partially known noise distribution[END_REF].

There is a huge literature on convolution models published during the past two decades and focusing mainly on estimation problems. Our purpose here is to provide goodness-of-fit testing procedures on f , for the test of the hypothesis H 0 : f = f 0 , with alternatives expressed with respect to L 2 -norm, and being adaptive with respect to the unknown smoothness parameter of f . Nonparametric goodness-of-fit testing has extensively been studied in the context of direct observations (namely a sample distributed from the density f to be tested), but also for regression or in the Gaussian white noise model. We refer to [START_REF] Ingster | Nonparametric goodness-of-fit testing under Gaussian models[END_REF] for an overview on the subject. Analytic densities (namely densities in F(α, r, β, L) with r = 1 and β = 0) first appeared in [START_REF] Pouet | On testing non-parametric hypotheses for analytic regression functions in Gaussian noise[END_REF] who gives goodness-of-fit testing procedures with respect to pointwise and L ∞ -risks in the Gaussian white noise model. Procedures with respect to L 2 -risk are given in [START_REF] Ingster | Nonparametric goodness-of-fit testing under Gaussian models[END_REF] for Sobolev and analytic densities in the same model.

However, in the case of direct observations, there are few adaptive procedures. The pioneering work of [START_REF] Spokoiny | Adaptive hypothesis testing using wavelets[END_REF] introduced adaptive testing procedures over scales of Besov classes and with respect to L 2 -risk. Let us also mention [START_REF] Gayraud | Adaptive minimax testing in the discrete regression scheme[END_REF] and [START_REF] Fromont | Adaptive goodness-of-fit tests in a density model[END_REF] for adaptive goodness-of-fit tests with a composite null hypothesis. Up to our knowledge, adaptive procedures do not exist in the case of indirect observations. The convolution model provides an interesting setup where observations may come from a signal observed through some noise.

There are two natural but very different approaches for the goodness-of-fit testing problem in the noisy setup. One can think of testing either the resulting density p or the initial density f . As density g is known, the null hypothesis H 0 may be expressed equivalently in the form f = f 0 or p = p 0 . Moreover, testing p would result in better rates of testing than those obtained for f (as the convoluted density p is smoother than f ). However, the alternative hypotheses in those two setups are not in a one-to-one correspondence. Here, we would like to emphasise that we only consider the latter problem of goodness-of-fit testing on f . Indeed, we think it more appropriate to express the alternatives by using the L 2 -distance between f and the null density f 0 , which is always larger than the L 2 -distance between p and p 0 . Moreover, there are cases where aspects of the underlying density f (apart from its smoothness) may be relevant to the statistician, like its modality, symmetry, monotonicity on some interval and these features may be strongly perturbed after convolution with some noise.

These two different points of view arise from a more general issue: how is the direct observations case related to the noisy one? As we want to focus on alternatives of the form

ψ -2 n f -f 0 2 2 ≥ C (rather than ψ -2 n p -p 0 2 2 ≥ C
), results from the direct observations case cannot be used directly in our setting. Moreover, adaptivity of our procedure relies on the construction of a grid over the set of densities f . Then, using the corresponding grid on the set of densities p would not necessarily lead to an adaptive procedure.

However, one can compare the rates obtained in the two settings. Indeed, one can note that the rate we obtain for polynomially smooth densities in the alternative, namely (n/ √ log log n) -2β/(4β+4σ+1) , corresponds to the rate obtained by [START_REF] Spokoiny | Adaptive hypothesis testing using wavelets[END_REF] in the Gaussian white noise setting, namely (n/ log log(n)) -2β/(4β+1) . Moreover, the rate we get for supersmooth densities in the alternative, namely n -1/2 (log n) (4σ+1)/(4r) (log log log n) 1/4 , shows an extra log log log n factor with respect to the non-adaptive result in [START_REF] Ingster | Nonparametric goodness-of-fit testing under Gaussian models[END_REF], in the particular case of supersmooth densities with r = 1, namely n -1/2 (log n) 1/4 . Thus, we conjecture that the loss for adaptation on the direct observations case should be at most (log log log n) 1/4 . We deduce these rates when f 0 is smoother than the functions belonging to the alternative hypothesis, which is the usual setup for goodness-of-fit testing. Moreover, we also derive rates of testing when f 0 is less smooth than the functions belonging to the alternative hypothesis, which is a new setup. In the latter case, we observe that the testing rate is the minimax testing rate associated to the smoothness of f 0 .

Nonparametric goodness-of-fit tests in convolution models were studied in [START_REF] Holzmann | Density testing in a contaminated sample[END_REF] and in [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF]. The approach used in [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF] is based on a minimax point of view combined with estimation of the quadratic functional f 2 . Assuming the smoothness parameter of f to be known, the authors of [START_REF] Holzmann | Density testing in a contaminated sample[END_REF] define a version of the Bickel-Rosenblatt test statistic and study its asymptotic distribution under the null hypothesis and under fixed and local alternatives, while [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF] provides a different goodness-of-fit testing procedure attaining the minimax rate of test-ing in each of the three following setups: Sobolev densities and polynomial noise, supersmooth densities and polynomial noise, Sobolev densities and exponential noise. The case of supersmooth densities and exponential noise is also studied but the optimality of the procedure is not established in the case r > s.

Our goal here is to provide adaptive versions of these last procedures with respect to the parameter τ = (α, r, β). As we restrict our attention to testing problems where alternatives are expressed with respect to L 2 -norm (namely, the alternative has the form

H 1 : ψ -2 n f -f 0 2 2 ≥ C
), the problem is strongly related to asymptotically minimax estimation of f 2 and (ff 0 ) 2 . Our test statistic is based on a collection of kernel estimators of (ff 0 ) 2 for convolution models, with a given set of regularity parameters τ . Then, adaptation to a scale of classes is obtained by rejecting the null hypothesis whenever at least one of the tests in the collection does, see for example [START_REF] Gayraud | Adaptive minimax testing in the discrete regression scheme[END_REF].

Notation, definitions, assumptions

In the sequel, • 2 denotes the L 2 -norm, M is the complex conjugate of M and < M, N >= M (x) N (x)dx is the scalar product of complex-valued functions in L 2 (R). Moreover, probability and expectation with respect to the distribution of Y 1 , . . . , Y n induced by the unknown density f will be denoted by P f and E f . We denote more generally by τ = (α, r, β) the smoothness parameter of the unknown density f and by F(τ, L) the corresponding class. As the density f is unknown, the a priori knowledge of its smoothness parameter τ could appear unrealistic. Thus, we assume that τ belongs to a closed subset T , included in (0, +∞) × (0, 2] × (0, +∞). For a given density f 0 in the class F(τ 0 ), we want to test the hypothesis

H 0 : f = f 0 from observations Y 1 , .
. . , Y n given by [START_REF] Butucea | Asymptotic normality of the integrated square error of a density estimator in the convolution model[END_REF]. We extend the results of [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF] by giving the family of sequences Ψ n = {ψ n,τ } τ ∈T which separates (with respect to L 2 -norm) the null hypothesis from a larger alternative

H 1 (C, Ψ n ) : f ∈ ∪ τ ∈T {f ∈ F(τ, L) and ψ -2 n,τ f -f 0 2 2 ≥ C}.
We recall that the usual procedure is to construct, for any 0 < ǫ < 1, a test statistic ∆ ⋆ n (an arbitrary function, with values in {0, 1}, which is measurable with respect to Y 1 , . . . , Y n and such that we accept H 0 if ∆ ⋆ n = 0 and reject it otherwise). We prove then that there exists some C 0 > 0 such that lim sup

n→∞ P 0 [∆ ⋆ n = 1] + sup f ∈H 1 (C,Ψn) P f [∆ ⋆ n = 0] ≤ ǫ, (4) 
holds for all C > C 0 . This part is called the upper bound of the testing rate. Then, we prove the minimax optimality of this procedure, i.e. the lower bound lim inf n→∞ inf

∆n P 0 [∆ n = 1] + sup f ∈H 1 (C,Ψn) P f [∆ n = 0] ≥ ǫ, (5) 
for some C 0 > 0 and for all 0 < C < C 0 , where the infimum is taken over all test statistics ∆ n .

Let us first remark that as we use noisy observations (and unlike what happens with direct observations), this test cannot be reduced to testing uniformity of the distribution density of the observed sample (i.e. f 0 = 1 with support on the finite interval [0; 1]). As a consequence, additional assumptions used in [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF] on the tail behaviour of f 0 (ensuring it does not vanish arbitrarily fast) are needed to obtain the optimality result of the testing procedure in the case of Sobolev density (r = 0) observed with polynomial noise ((T) and (P)). We recall these assumptions here for reader's convenience.

Assumption (T) ∃c 0 > 0, ∀x ∈ R, f 0 (x) ≥ c 0 (1 + |x| 2 ) -1 .
Moreover, we also need to control the derivatives of known Fourier transform Φ g when establishing optimality results.

Assumption (P) (Polynomial noise) If the noise satisfies (3), then assume that Φ g is three times continuously differentiable and there exist

A 1 , A 2 such that |(Φ g ) ′ (u)| ≤ A 1 |u| σ+1 and |(Φ g ) ′′ (u)| ≤ A 2 |u| σ+2 , |u| → ∞.
Remark 1 We can generalise assumption (T) and assume the existence of some p ≥ 1 such that f 0 (x) is bounded from below by c 0 (1 + |x| p ) -2 for large enough x. In such a case, we obtain the same results if the Fourier transform Φ g of the noise density is assumed to be p times continuously differentiable, with derivatives up to order p satisfying the same kind of bounds as in Assumption (P).

Let us give some comments on the proofs. In the case of Sobolev null density f 0 , the fact that our testing procedure attains the minimax rate of testing (upper bound of the testing rate (4)), relies on a very sharp control on the approximation of the distribution of some U -statistic by the Gaussian distribution. Indeed, in our context, the classical approach using a central limit theorem is not sufficient, nor are the classical exponential inequalities on U -statistics (see for instance [START_REF] Giné | Exponential and moment inequalities for U -statistics[END_REF] or [START_REF] Houdré | Exponential inequalities, with constants, for U-statistics of order two[END_REF]). Thus, we had to establish a new Berry-Esseen inequality for degenerate U -statistics of order 2. We took into account the fact that in our case, as in most statistical problems, the function defining the U -statistic is depending on the number n of observations. This approach appeared to be powerful and is very promising to tackle other similar problems. Concerning the minimax optimality of our procedure (lower bound of the testing rate (5), established for Sobolev null densities f 0 ), we used an approach proposed by [START_REF] Gayraud | Adaptive minimax testing in the discrete regression scheme[END_REF] but had to combine it with the use of some specific kernel, previously introduced in [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF].

Roadmap

In Section 2, we provide a goodness-of-fit testing procedure for the test H 0 : f = f 0 , in two different cases : the density f 0 to be tested is either ordinary smooth (r 0 = 0) or supersmooth (r 0 > 0). The procedures are adaptive with respect to the smoothness parameter (α, r, β) of f . The auxiliary result on a Berry-Esseen inequality for degenerate U -statistics of order 2 is described in Section 3. In some cases, a loss for adaptation is noted with respect to known testing rates for fixed known parameters. When the loss is of order log log n to some power, we prove that this price is unavoidable. Proofs are postponed to Section 4.

Test procedures and main results

The unknown density f belongs to the class F(α, r, β, L). We are interested in adaptive, with respect to the parameter τ = (α, r, β), goodness-of-fit testing procedures. We assume that this unknown parameter belongs to the following set

T = {τ = (α, r, β); τ ∈ [α; +∞) × [r; r] × [β; β]}, where α > 0, 0 ≤ r ≤ r ≤ 2, 0 ≤ β ≤ β and either r > 0 and α ∈ [α, α] or both r = r = 0 and β > 0.
Let us introduce some notation. We consider a preliminary kernel J, with Fourier transform Φ J , defined by

∀x ∈ R, J(x) = sin(x) πx , ∀u ∈ R, Φ J (u) = 1 |u|≤1 ,
where 1 A is the indicator function of the set A. For any bandwidth h = h n → 0 as n tends to infinity, we define the rescaled kernel J h by

∀x ∈ R, J h (x) = h -1 J(x/h) and ∀u ∈ R, Φ J h (u) = Φ J (hu) = 1 |u|≤1/h .
Now, the deconvolution kernel K h with bandwidth h is defined via its Fourier transform Φ K h as

Φ K h (u) = (Φ g (u)) -1 Φ J (uh) = (Φ g (u)) -1 Φ J h (u), ∀u ∈ R. (6) 
Next, the quadratic functional (ff 0 ) 2 is estimated by the statistic T n,h

T n,h = 2 n(n -1) 1≤k<j≤n < K h (• -Y k ) -f 0 , K h (• -Y j ) -f 0 > . (7) 
Note that T n,h may take negative values, but its expected value is positive.

In order to construct a testing procedure which is adaptive with respect to the parameter τ we introduce a sequence of finite regular grids over the set T of unknown parameters:

T N = {τ i ; 1 ≤ i ≤ N }.
For each grid point τ i we choose a testing threshold t 2 n,i and a bandwidth h i n giving a test statistic T n,h i n .

The test rejects the null hypothesis as soon as at least one of the single tests based on the parameter τ i is rejected.

∆ ⋆ n =      1 if sup 1≤i≤N |T n,h i n |t -2 n,i > C ⋆ 0 otherwise, (8) 
for some constant C ⋆ > 0 and finite sequences of bandwidths {h i n } 1≤i≤N and thresholds {t 2 n,i } 1≤i≤N .

We note that our asymptotic results work for large enough constant C ⋆ . In practice we may choose it by Monte-Carlo simulation under the null hypothesis, for known f 0 , such that we control the first-type error of the test and bound it from above, e.g. by ǫ/2.

Typically, the structure of the grid accounts for two different phenomena. A first part of the points is dedicated to the adaptation with respect to β in case r = r = 0, whereas the rest of the points is used to adapt the procedure with respect to r, in case r > 0 (whatever the value of β).

In the two next theorems, the parameter σ is fixed and defined in (3). We note that the testing procedures and the associated convergence rates are different according to whether the tested density f 0 (which is known) is polynomially or exponentially smooth. Therefore, we separate the two different cases where f 0 belongs to a Sobolev class (r 0 = 0, α 0 ≥ α and we assume β 0 = β) and where f 0 is a supersmooth function (α 0 ∈ [α, α], r 0 > 0 and β 0 ∈ [β, β] and then we focus on r 0 = r and α 0 = α). Note that in the first case, the alternative contains functions f which are smoother (r > 0) than the null hypothesis f 0 .

To our knowledge, this kind of result is new in goodness-of-fit testing.

When f 0 belongs to Sobolev class F(α 0 , 0, β, L), the grid is defined as follows.

Let N and choose

T N = {τ i ; 1 ≤ i ≤ N + 1} such that              ∀1 ≤ i ≤ N, τ i = (0; 0; β i ) and β 1 = β < β 2 < . . . < β N = β, ∀1 ≤ i ≤ N -1, β i+1 -β i = ( β -β)/(N -1),
and τ N +1 = (α; r; 0)

In this case, the first N points are dedicated to the adaptation with respect to β when r = r = 0, whereas the last point τ N +1 is used to adapt the procedure with respect to r (whatever the value of β).

Theorem 1 Assume f 0 ∈ F(α 0 , 0, β, L). The test statistic ∆ ⋆ n given by (8) with parameters

N = ⌈log n⌉; ∀1 ≤ i ≤ N :          h i n = n √ log log n -2/(4β i +4σ+1) t 2 n,i = n √ log log n -4β i /(4β i +4σ+1) , h N +1 n = n -2/(4 β+4σ+1) ; t 2 n,N +1 = n -4 β/(4 β+4σ+1) ,
and any large enough positive constant C ⋆ , satisfies (4) for any ǫ ∈ (0, 1), with testing rate Ψ n = {ψ n,τ } τ ∈T given by

ψ n,τ = n √ log log n -2β/(4β+4σ+1) 1 r=0 +n -2 β/(4 β+4σ+1) 1 r>0 , ∀ τ = (α, r, β) ∈ T .
Moreover, if f 0 ∈ F(α 0 , 0, β, cL) for some 0 < c < 1 and if Assumptions (T) and (P) hold, then this testing rate is adaptive minimax over the family of classes

{F(τ, L), τ ∈ [α, ∞) × {0} × [β, β]} (i.e. (5) holds).
We note that our testing procedure attains the polynomial rate n -2 β/(4 β+4σ+1) over the union of all classes containing functions smoother than f 0 . Up to our knowledge, this phenomenon has never been identified in the literature. Note moreover that this rate is known to be a minimax testing rate over the class F(0, 0, β, L) by results in [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF]. Therefore we prove that the loss of some power of log log n with respect to the minimax rate is unavoidable. A loss appears when the alternative contains classes of functions less smooth than f 0 .

The proof that our adaptive procedure attains the above rate relies on the Berry-Esseen inequality presented in Section 3.

When f 0 belongs to class F(α, r, β 0 , L) of infinitely differentiable functions, the grid is defined as follows. Let N 1 , N 2 and choose

T N = {τ i ; 1 ≤ i ≤ N = N 1 + N 2 } such that                    ∀1 ≤ i ≤ N 1 , τ i = (0; 0; β i ) and β 1 = β < β 2 < . . . < β N 1 = β, ∀1 ≤ i ≤ N 1 -1, β i+1 -β i = ( β -β)/(N 1 -1),
and

∀1 ≤ i ≤ N 2 , τ N 1 +i = (α; r i ; β 0 ) and r 1 = r < r 2 < . . . < r N 2 = r, ∀1 ≤ i ≤ N 2 -1, r i+1 -r i = (r -r)/(N 2 -1).
In this case, the first N 1 points are used for adaptation with respect to β in case r = r = 0, whereas the last N 2 points are used to adapt the procedure with respect to r (whatever the value of β).

Theorem 2 Assume f 0 ∈ F(α, r, β 0 , L) for some β 0 ∈ [β, β].
The test statistic ∆ ⋆ n given by (8) with C ⋆ large enough and

N 1 = ⌈log n⌉; ∀1 ≤ i ≤ N 1 :          h i n = n √ log log n -2/(4β i +4σ+1) t 2 n,i = n √ log log n -4β i /(4β i +4σ+1) , N 2 = ⌈log log n/(r-r)⌉; ∀1 ≤ i ≤ N 2 :      h N 1 +i n = log n 2c -1/r i , c < α exp -1 r t 2 n,N 1 +i = (log n) (4σ+1)/(2r i ) n √ log log log n , satisfies (4) 
, with testing rate Ψ n = {ψ n,τ } τ ∈T given by

ψ n,τ = n √ log log n -2β/(4β+4σ+1) 1 r=0 + (log n) (4σ+1)/(4r) √ n (log log log n) 1/4 1 r∈[r,r] .
We note that if Assumptions (T) and (P) hold for f 0 in F(α, r, β 0 , L), the same optimality proof as in Theorem 1 gives us that the loss of the log log n to some power factor is optimal over alternatives in α∈[α,α],β∈[β, β] F(α, 0, β, L).

A loss of a (log log log n) 1/4 factor appears over alternatives of supersmooth densities (less smooth than f 0 ) with respect to the minimax rate in [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF]. We do not prove that this loss is optimal.

3 Auxiliary result: Berry-Esseen inequality for degenerate U -statistics of order 2

This section is dedicated to the statement of a non-uniform Berry-Esseen type theorem for degenerate U -statistics. It draws its inspiration from [START_REF] Hall | Central limit theorem for integrated square error of multivariate nonparametric density estimators[END_REF] which provides a central limit theorem for degenerate U -statistics. Given a sample Y 1 , . . . , Y n of i.i.d. random variables, we shall consider U -statistics of the form

U n = 1≤i<j≤n H(Y i , Y j ),
where H is a symmetric function. We recall that degenerate U -statistic means E{H(Y 1 , Y 2 )|Y 1 } = 0 , almost surely. Thus, the statistic U n is centered.

Limit theorems for degenerate U -statistics when H is fixed (independent of the sample size n) are well-known and can be found in any monograph on the subject (see for instance [START_REF] Korolyuk | Theory of U -statistics. Mathematics and its Applications[END_REF]). In that case, the limit distribution is a linear combination of independent and centered χ 2 (1) (chi-square with one degree of freedom) distributions. However, as noticed in [START_REF] Hall | Central limit theorem for integrated square error of multivariate nonparametric density estimators[END_REF], a normal distribution may result in some cases where H depends on n. In such a context, [START_REF] Hall | Central limit theorem for integrated square error of multivariate nonparametric density estimators[END_REF] provides a central limit theorem. But this result is not enough for our purpose (namely, optimality in Theorem 1). Indeed, we need to control the convergence to zero of the difference between the cumulative distribution function (cdf) of our U -statistic, and the cdf of the Gaussian distribution. Such a result may be derived using classical Martingale methods.

In the rest of this section, n is fixed. Denote by F i the σ-field generated by the random variables {Y 1 , . . . , Y i }. Define

v 2 n = E(U 2 n ) ; Z i = 1 v n i-1 j=1 H(Y i , Y j ), 2 ≤ i ≤ n
and note that as the U -statistic is degenerate, we have E(Z i |Y 1 , . . . , Y i-1 ) = 0. Thus,

S k = k i=2 Z i , 2 ≤ k ≤ n,
is a centered Martingale (with respect to the filtration {F k } k≥2 ) and S n = v -1 n U n . We use a non-uniform Berry-Esseen type theorem for Martingales provided by [START_REF] Hall | Martingale limit theory and its application[END_REF], Theorem 3.9. Denote by φ the cdf of the standard Normal distribution and introduce the conditional variance of the increments Z j 's,

V 2 n = n i=2 E(Z 2 i |F i-1 ) = 1 v 2 n n i=2 E        i-1 j=1 H(Y i , Y j )   2 F i-1     
.

Theorem 3 Fix 0 < δ ≤ 1 and define

L n = n i=2 E|Z i | 2+2δ + E|V 2 n -1| 1+δ .
There exists a positive constant C (depending only on δ) such that for any 0 < ǫ < 1/2 and any real x

|P(U n ≤ x) -φ(x/v n )| ≤ 16ǫ 1/2 exp - x 2 4v 2 n + C ǫ 1+δ L n .

Proofs

We use C to denote an absolute constant which values may change along the lines.

Proof of Theorem 1 (Upper bound).

Let us give the sketch of proof concerning the upper-bound of the test. The statistic T n,h i will be abbreviated by T n,i . We first need to control the first-type error of the test.

P 0 (∆ ⋆ n = 1) = P 0 (∃i ∈ {1, . . . , N + 1} such that |T n,i | > C ⋆ t 2 n,i ) ≤ N +1 i=1 P 0 (|T n,i -E 0 (T n,i )| > C ⋆ t 2 n,i -E 0 (T n,i )).
The proof relies on the two following lemmas.

Lemma 1 For any large enough C ⋆ > 0, we have

N i=1 P 0 (|T n,i -E 0 (T n,i )| > C ⋆ t 2 n,i -E 0 (T n,i )) = o(1).
Lemma 2 For large enough C ⋆ , there is some ǫ ∈ (0, 1), such that

P 0 (|T n,N +1 -E 0 (T n,N +1 )| > C ⋆ t 2 n,N +1 -E 0 (T n,N +1 )) ≤ ǫ.
Lemma 1 relies on the Berry-Esseen type theorem (Theorem 3) presented in Section 3. Its proof is postponed to the end of the present section as the proof of Lemma 2.

Thus, the first type error term is as small as we need, as soon as we choose a large enough constant C ⋆ > 0 in [START_REF] Hall | Martingale limit theory and its application[END_REF]. We now focus on the second-type error of the test. We write

sup τ ∈T sup f ∈F (τ,L) P f (∆ ⋆ n = 0) ≤ 1 r>0 sup r∈[r;r],α≥α,β∈[β, β] sup f ∈F (τ,L) f -f 0 2 2 ≥Cψ 2 n,τ P f (|T n,N +1 | ≤ C ⋆ t 2 n,N +1 ) + 1 r=r=0 sup α≥α,β∈[β; β] sup f ∈F (α,0,β,L) f -f 0 2 2 ≥Cψ 2 n,(α,0,β) P f (∀1 ≤ i ≤ N, |T n,i | ≤ C ⋆ t 2 n,i ).
Note that when the function f in the alternative is supersmooth (r > 0), we only need the last test (with index N + 1), whereas when it is ordinary smooth (r = r = 0), we use the family of tests with indexes i ≤ N . In this second case, we use in fact only the test based on parameter β f defined as the smallest point on the grid larger than β (see the proof of Lemma 4 below).

Lemma 3 Fix r > 0, for any α ≥ α, r ∈ [r; r], β ∈ [β; β]. For any ǫ ∈ (0; 1), there exists some large enough C 0 such that for any C > C 0 and any f ∈ F(α, r, β, L) such that ff 0 2 2 ≥ Cψ n,(α,r,β) , we have

P f (|T n,N +1 | ≤ C ⋆ t 2 n,N +1 ) ≤ ǫ. Lemma 4 We have sup α≥α sup β∈[β; β] sup f ∈F (α,0,β,L) f -f 0 2 2 ≥Cψ 2 n,(α,0,β) P f (∀1 ≤ i ≤ N, |T n,i | ≤ C ⋆ t 2 n,i ) = o(1).
The proofs of Lemma 3 and Lemma 4 are postponed to the end of the present section. Thus, the second type error of the test converges to zero. This ends the proof of (4).

Proof of Theorem 1 (Lower bound).

As we already noted after the theorem statement, our test procedure attains the minimax rate associated to the class F(α 0 , 0, β, L) where f 0 belongs, whenever the alternative f belongs to classes of functions smoother than f 0 . Therefore, the lower bound we need to prove concerns the optimality of the loss of order (log log n) 1/2 due to alternatives less smooth than f 0 .

More precisely, we prove [START_REF] Gayraud | Adaptive minimax testing in the discrete regression scheme[END_REF], where the alternative

H 1 (C, Ψ n ) is now restricted to ∪ β∈[β, β] {f ∈ F(0, 0, β, L) and ψ -2 n,β f -f 0 2
2 ≥ C} and ψ n,β denotes the rate ψ n,τ when τ = (0, 0, β, L).

The general approach for proving such a lower bound ( 5) is to exhibit a finite number of regularities {β k } 1≤k≤K and corresponding probability distributions {π k } 1≤k≤K on the alternatives H 1 (C, ψ n,β k ) (more exactly, on parametric subsets of these alternatives) such that the distance between the distributions induced by f 0 (the density being tested) and the mean distribution of the alternatives is small. We use a finite grid B =

{β 1 < β 2 < . . . < β K } ⊂ [β, β] such that ∀β ∈ [β, β], ∃k : |β k -β| ≤ 1 log n .
To each point β in this grid, we associate a bandwidth

h β = (nρ n ) -2 4β+4σ+1 , ρ n = (log log n) -1/2 , and M β = h -1 β .
We use the same deconvolution kernel as in [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF], constructed as follows. Let G be defined as in Lemma 2 in [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF]. The function G is an infinitely differentiable function, compactly supported on [-1, 0] and such that G = 0. Then, the deconvolution kernel H β is defined via its Fourier transform Φ H β by

Φ H β (u) = Φ G (h β u)(Φ g (u)) -1 .
Note that the factor ρ n in the bandwidth's expression corresponds to the loss for adaptation.

We also consider for each β, a probability distribution π β (also denoted π k when β = β k ) defined on {-1, +1} M β which is in fact the product of Rademacher distributions on {-1, +1} and a parametric subset of H 1 (C, ψ n,β ) containing the following functions

f θ,β (x) = f 0 (x)+ M β j=1 θ j h β+σ+1 β H β (x -x j,β ) ,      θ j i.i.d. with P(θ j = ±1) = 1/2, x j,β = jh β ∈ [0, 1].
Convolution of these functions with g induces another parametric set of functions

p θ,β (y) = p 0 (y) + M β j=1 θ j h β+σ+1 β G β (y -x j,β )
where

G β (y) = h -1 β G (y/h β ) = H β * g(y).
As established in [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF] (Lemmas 2 and 4), for any β, any θ ∈ {-1, +1} M β and small enough h β (i.e. large enough n) the function f θ,β is a probability density and belongs to the Sobolev class F(0, 0, β, L) and p θ,β is also a probability density. Moreover we have

1 K β∈ B π β f θ,β -f 0 2 2 ≥ Cψ 2 n,β -→ n→+∞ 1,
which means that for each β, the random parametric family {f θ,β } θ belongs almost surely (with respect to the measure π β ) to the alternative set H 1 (C, ψ n,β ). The subset of functions which are not in the alternative H 1 (C, Ψ n ) is asymptotically negligible. We then have,

γ n inf ∆n P 0 (∆ n = 1) + sup f ∈H 1 (C,Ψn) P f (∆ n = 0) ≥ inf ∆n    P 0 (∆ n = 1) + 1 K K k=1 sup f ∈H 1 (C,ψ n,β k ) P f (∆ n = 0)    ≥ inf ∆n P 0 (∆ n = 1) + 1 K K k=1 θ P f θ,β k (∆ n = 0)π k (dθ) -π k ( f θ,β k -f 0 2 2 < Cψ 2 n,β k ) ≥ inf ∆n P 0 (∆ n = 1) + 1 K K k=1 θ P f θ,β k (∆ n = 0)π k (dθ) + o(1).
Let us denote by

π = 1 K K k=1 π k and P π = 1 K K k=1 P k = 1 K K k=1 θ P f θ,β k π k (dθ).
Those notations lead to

γ n ≥ inf ∆n {P 0 (∆ n = 1) + P π (∆ n = 0)} ≥ inf ∆n 1 - ∆n=0 dP 0 + ∆n=0 dP π ≥ 1 -sup A A (dP 0 -dP π ) ≥ 1 - 1 2 P π -P 0 1 , (9) 
where we used Scheffé's Lemma.

The finite grid B is split into subsets B = ∪ l Bl with Bl ∩ Bk = ∅ when l = k and such that

∀l, ∀β 1 = β 2 ∈ Bl , c log log n log n ≤ |β 1 -β 2 |.
The number of subsets Bl is denoted by K 1 = O(log log n) and the cardinality | Bl | of each subset Bl is of the order O(log n/ log log n), uniformly with respect to l.

The lower bound ( 5) is then obtained from (9) in the following way

γ n ≥ 1 - 1 2K 1 K 1 l=1 1 | Bl | β∈ Bl P β -P 0 1
, where P β = θ P f θ,β π β (dθ) .

Here we do not want to apply the triangular inequality to the whole set of indexes B. Indeed, this would lead to a lower bound equal to 0. Yet, if we do not apply some sort of triangular inequality, we cannot deal with the sum because of too much dependency. This is why we introduced the subsets Bl with the property that two points in the same subset Bl are far enough away from each other. This technique was already used in [START_REF] Gayraud | Adaptive minimax testing in the discrete regression scheme[END_REF] for the discrete regression model.

Let us denote by ℓ β the likelihood ratio

ℓ β = dP β dP 0 = dP f θ,β dP 0 π β (dθ).
We thus have

γ n ≥ 1- 1 2K 1 K 1 l=1   1 | Bl | β∈ Bl ℓ β -1   dP 0 = 1- 1 2K 1 K 1 l=1 1 | Bl | β∈ Bl ℓ β -1 L 1 (P 0 )
. Now we use the usual inequality between L 1 and L 2 -distances to get that

γ n ≥ 1- 1 2K 1 K 1 l=1 1 | Bl | β∈ Bl ℓ β -1 L 2 (P 0 ) = 1- 1 2K 1 K 1 l=1      E 0   1 | Bl | β∈ Bl ℓ β -1   2      1/2 .
Let us focus on the expected value appearing in the lower bound. We have

E 0   1 | Bl | β∈ Bl ℓ β -1   2 = 1 | Bl | 2 β∈ Bl Q β + 1 | Bl | 2 β,ν∈ Bl β =ν Q β,ν ,
where there are two quantities to evaluate

Q β = E 0 (ℓ β -1) 2 and Q β,ν = E 0 (ℓ β ℓ ν -1) .
The first term Q β is treated as in [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF]. It corresponds to the computation of a χ 2 -distance between the two models induced by P β and P 0 (see term ∆ 2 in [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF]). Indeed we have

Q β ≤ CM β n 2 h 4β+4σ+2 β ≤ C 1 ρ 2 n .
This upper bound goes to infinity very slowly. The number of β's in each Bl compensates this behaviour

1 | Bl | 2 β∈ Bl Q β ≤ 1 | Bl |ρ 2 n = O (log log n) 2 log n = o(1).
The second term is a new one (with respect to non-adaptive case). As G is compactly supported and the points β and ν are far away from each other, we can prove that this term is asymptotically negligible. Recall the expression of the likelihood ratio for a fixed β

ℓ β = dP f θ,β dP 0 π β (dθ) = n r=1   1 + M β j=1 θ j,β h β+σ+1 β G β (Y r -x j,β ) p 0 (Y r )   π β (dθ) .
Thus,

ℓ β ℓ ν = dP f θ,β dP 0 π β (dθ) dP f θ,ν dP 0 π ν (dθ) = n r=1   1 + M β j=1 θ j,β h β+σ+1 β G β (Y r -x j,β ) p 0 (Y r )   × 1 + Mν i=1 θ i,ν h ν+σ+1 ν G ν (Y r -x i,ν ) p 0 (Y r ) π β (dθ .,β ) π ν (dθ .,ν ) .
The random variables Y r are i.i.d. and E 0 G β (Y rx j,β ) p 0 (Y r ) = 0. Thus we have

E 0 (ℓ β ℓ ν ) =   1 + M β j=1 Mν i=1,i⊂j θ j,β θ i,ν h β+σ+1 β h ν+σ+1 ν E 0 G β (Y 1 -x j,β ) G ν (Y 1 -x i,ν ) p 2 0 (Y 1 ) n π β (dθ .,β ) π ν (dθ .,ν ) .
where the second sum concerns only some indexes i, denoted by i ⊂ j. This notation stands for the set of indexes i such that

[(i-1)h β ; ih β ]∩[(j -1)h ν ; jh ν ] = ∅.
From now on, we fix β > ν. Denote by G ′ (resp. p ′ 0 ) the first derivative of G (resp. p 0 ). (The density p 0 is continuously differentiable as it is the convolution product f 0 * g where the noise density g is at least continuously differentiable).

Lemma 5 For any β > ν and any (i, j) ∈ {1, . . . , M ν } × {1, . . . , M β }, we have

E 0 G β (Y 1 -x j,β ) G ν (Y 1 -x i,ν ) p 2 0 (Y 1 ) = h ν h 2 β R i,j , where R ij satisfies |R i,j | ≤ (inf [0,1] p 0 ) -1 G ∞ G ′ ∞ (1 + o(1))
and o( 1) is uniform with respect to (i, j).

The proof of this lemma is omitted. Applying Lemma 5, we get

Q β,ν +1 =   1 + M β j=1 Mν i=1,i⊂j θ j,β θ i,ν h β+σ+1 β h ν+σ+1 ν h ν (h β ) 2 R i,j   n π β (dθ .,β ) π ν (dθ .,ν ) .
Lemma 6 Let U be a real valued random variable such that ∀k ∈ N, E U 2k+1 = 0. We have, for any integer n ≥ 1,

E (1 + U ) n ≤ 1 + ⌊ n 2 ⌋ k=1 n 2k (2k)! E U 2k ,
where ⌊x⌋ is the largest integer which is smaller than x.

The proof of Lemma 6 is obvious and therefore omitted. Apply Lemma 6 to get the inequality

Q β,ν ≤ ⌊ n 2 ⌋ k=1 n 2k (2k)! (h β+σ-1 β h ν+σ+2 ν ) 2k E π   M β j=1 Mν i=1,i⊂j θ j,β θ i,ν R i,j   2k .
But the θ's are i.i.d. Rademacher variables and the R i,j 's are deterministic, thus

E π   M β j=1 Mν i=1,i⊂j θ j,β θ i,ν R i,j   2k = 1≤j 1 ,...,j k ≤M β 1≤i 1 ,...,i k ≤Mν ∀l,i l ⊂j l k l=1 R 2 i l ,j l .
Using the bound on the R i,j given by Lemma 5,

E π   M β j=1 Mν i=1,i⊂j θ j,β θ i,ν R i,j   2k ≤ (inf [0,1] p 0 ) -1 G ∞ G ′ ∞ (1 + o(1)) 2k h k ν .
Indeed, each index j l may take at most

M β = h -1 β different values but the constraint i l ⊂ j l implies that each index i l is limited to at most h β /h ν different values. Thus we get Q β,ν ≤ C ⌊ n 2 ⌋ k=1 n 2k (2k)! Ch β+σ+1 β h ν+σ+1 ν h ν h 2 β 2k h -k ν ≤ C ⌊ n 2 ⌋ k=1   n 2 h 2β+2σ+1/2 β h 2ν+2σ+1/2 ν h 5/2 ν h 5/2 β   k ≤ C ⌊ n 2 ⌋ k=1   h 5/2 ν ρ 2 n h 5/2 β   k ≤ C 1 ρ 2 n h 5/2 ν h 5/2 β .
As β > ν both belong to some set Bl , we have βν ≥ c(log log n)/(log n) and according to the choice of the bandwidths,

h 5/2 ν h 5/2 β = (nρ n ) - 20(β-ν) (4β+4σ+1)(4ν+4σ+1) ≤ exp - 20 c log log n (4 β + 4σ + 1) 2 (1+o(1)) ≤ (log n) -w ,
where the constant w (depending on the constant c used in the construction of the sets Bl ) can be tailored to our need. Therefore

1 | Bl | 2 β,ν∈| Bl | β =ν Q β,ν ≤ C ρ 2 n (log n) w
which goes to 0 as n goes to +∞. We finally obtain the upper bound

E 0      1 | Bl | β∈| Bl | ℓ β -1   2    ≤ O 1 | Bl |ρ 2 n + O 1 ρ 2 n (log n) w = o(1),
which leads to

γ n ≥ 1 - 1 2 1 K 1 K 1 l=1 O 1 | Bl |ρ 2 n + O 1 ρ 2 n (log n) c 1/2 = 1 + o(1).
Proof of Theorem 2.

Assume now that f 0 ∈ F(α, r, β 0 , L), for some β 0 ∈ [β, β]. The proof follows the same lines as the proof of Theorem 1.

For the first-type error we write

P 0 (∆ * n = 1) = N 1 i=1 P 0 (|T n,i -E 0 (T n,i )| > C ⋆ t 2 n,i -E 0 (T n,i )) + N 2 i-N 1 =1 P 0 (|T n,i -E 0 (T n,i )| > C ⋆ t 2 n,i -E 0 (T n,i )).
For the first N 1 terms we apply Lemma 1 with E 0 (T n,i ) = o(1)L(h i ) 2β 0 exp(-2α/h r i ) which is smaller than t 2 n,i for all i = 1, . . . , N 1 and the same result follows. For the last N 2 terms we also use the Berry-Esseen inequality as in the proof of Lemma 1 for

x = C ⋆ t 2 n,i -E 0 (T n,i ) ≥ C ⋆ t 2 n,i (1 -o(1)) as E 0 (T n,i ) = o(1)h 2β 0 i exp(-2α/h r i ) = o(1/n). We get x/v n = O(1)(log log log n) 1/2 N 2 i-N 1 =1 P 0 (|T n,i -E 0 (T n,i )| > C ⋆ t 2 n,i -E 0 (T n,i )) ≤ N 2 v n C ⋆ t 2 n,i exp - (C ⋆ ) 2 t 4 n,i 4v 2 n ≤ C 1 (log log log n) -1/2 (log log n) b-1 = o(1),
for some b > 1 for C ⋆ large enough. Indeed, all other calculations are similar as they are related mostly to the distribution of the noise which didn't change.

As for the second-type error,

sup τ ∈T sup f ∈F (τ,L) P f (∆ ⋆ n = 0) ≤ 1 r=r=0 sup α≥α,β∈[β; β] sup f ∈F (α,0,β,L) f -f 0 2 2 ≥Cψ 2 n,(α,0,β) P f (∀1 ≤ i ≤ N 1 , |T n,i | ≤ C ⋆ t 2 n,i ) +1 r>0 sup r∈[r;r],α∈[α,α],β∈[β, β] sup f ∈F (τ,L) f -f 0 2 2 ≥Cψ 2 n,τ P f (∀N 1 +1 ≤ i ≤ N 1 +N 2 , |T n,i | ≤ C ⋆ t 2 n,i ).
For the first term in the previous sum we actually apply precisely Lemma 4.

For the second term we mimic the proof of Lemma 4 and choose some f in F(α, r, β, L) such that f -f 0 2 2 ≥ Cψ 2 n,r , where we denote ψ n,r = ψ n,τ 1 r>0 . We define r f as the smallest point on the grid {r 1 , . . . , r N 2 } such that r ≤ r f . We denote by h f , t 2 n,f and T n,f the bandwidth, the threshold and the test statistic associated to parameters α and r f (they do not depend on β). Then

P f (∀N 1 + 1 ≤ i ≤ N 1 + N 2 , |T n,i | ≤ C ⋆ t 2 n,i ) ≤ P f (|T n,f -E f (T n,f )| ≥ f -f 0 2 2 -C ⋆ t 2 n,f -B f (T n,f )), (10) 
where, as in Theorem 1

|B f (T n,f )| = | J h * f -f 2 2 + 2 f -J h * f, f 0 | ≤ Lh 2β f exp(-2α/h r f ) + 2Lh β+β 0 f exp(-α/h r f -α/h r f ) (1 + o(1)) ≤ L(h 2β f + h β+β 0 f ) exp(-2α/h r f )(1 + o(1)) ≤ L(h β+β∧β 0 f ) exp(-2α/h r f )(1 + o(1)).
Using Markov's inequality, we get the following upper bound for (10)

Var f (T n,f ) ( f -f 0 2 2 -C ⋆ t 2 n,f -B f (T n,f )) 2 . ( 11 
)
The variance is bounded from above by

E f (T n,f -E f (T n,f )) 2 ≤ C n 2 h 4σ+1 f + 4Ω 2 g (f -f 0 ) n , (12) 
and similarly to [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF] we show that Ω 2 g (f

-f 0 ) ≤ f -f 0 2 2 (log f -f 0 - 2 
2 ) 2σ/r . We have

t 2 n,f ψ -2 n,r = (log n) (4σ+1)(1/r f -1/r)/2 ≤ 1, and thus f -f 0 2 2 -C ⋆ t 2 n,f ≥ (C -C ⋆ )ψ 2 n,r . Moreover, B f (T n,f )ψ -2 n,r ≤ C(log log log n) -1/2 (log n) -(β+β∧β 0 )/r f -(4σ+1)/(2r) × exp    -2α log n 2c r/r f + log n    .
The construction of the grid ensures that -1/(log log n) ≤ rr f ≤ 0 and thus exp

   -2α log n 2c r/r f + log n    = exp - log n c α exp r -r f r f log log n(1 + o(1)) -c ≤ exp - log n c α exp -1 r (1 + o(1)) -c = O(1),
as we chose the constant c < α exp(-1/r). Finally, we have B f (T n,f )ψ -2 n,r = o(1). Let us come back to [START_REF] Ingster | Nonparametric goodness-of-fit testing under Gaussian models[END_REF]. We distinguish two cases whether the first or the second term in [START_REF] Korolyuk | Theory of U -statistics. Mathematics and its Applications[END_REF] is dominant. If the first term in the variance dominates, we have the following bound for ( 11)

n -2 h -(4σ+1) f (C -C ⋆ ) 2 ψ 4 n,τ ≤ C log log log n → 0.
On the other hand, if the second term in ( 12) is the larger one, the bound [START_REF] Ingster | Nonparametric goodness-of-fit testing under Gaussian models[END_REF] writes

n -1 f -f 0 2 2 (log f -f 0 -2 2 ) 2σ/r f -f 0 4 2 (1 -C ⋆ /C + o(1)) 2 ≤ Cn -1 ψ -2 n,r (log ψ -2 n,r ) 2σ/r = C(log n) -1/(2r) (log log log n) -1/2 = o(1).
This finishes the proof.

Proof of Theorem 3.

This proof follows the lines of Theorem 3.9 in [START_REF] Hall | Martingale limit theory and its application[END_REF]. Combining the Skorokhod representation Theorem and Lemma 3.3 in [START_REF] Hall | Martingale limit theory and its application[END_REF], there exists a nonnegative random variable T n such that for any 0 < ǫ < 1/2 and any real x,

|P(U n ≤ x) -φ(x)| = |P(S n ≤ v -1 n x) -φ(x/v n )| ≤ 16ǫ 1/2 exp{-x 2 /(4v 2 n )} + P(|T n -1| > ǫ).
Moreover, for any δ > 0,

P(|T n -1| > ǫ) ≤ 4ǫ -1-δ E |T n -V 2 n | 1+δ + |V 2 n -1| 1+δ ,
where T n -V 2 n is a sum of Martingale differences. In the same way as in [START_REF] Hall | Martingale limit theory and its application[END_REF], we obtain (as δ ≤ 1)

P(|T n -1| > ǫ) ≤ Cǫ -1-δ n i=1 E|Z i | 2+2δ + E|V 2 n -1| 1+δ ,
which concludes the proof.

We now present the proofs of the lemmas.

Proof of Lemma 1.

Let us set ρ n = (log log n) -1/2 and fix 1 ≤ i ≤ N . We use the obvious notation p 0 = f 0 * g. As we have

E 0 (T n,i ) = K h i * p 0 -f 0 2 2 = J h i * f 0 -f 0 2 2 , and < K h (• -Y 1 ) -J h * f 0 , J h * f 0 -f 0 >= 0 we easily get T n,i -E 0 (T n,i ) = 2 n(n -1) 1≤k<j≤n < K h i (•-Y k )-J h i * f 0 , K h i (•-Y j )-J h i * f 0 > .

Let us set

H(Y j , Y k ) = 2{n(n -1)} -1 < K h i (• -Y k ) -J h i * f 0 , K h i (• -Y j ) -J h i * f 0 > and note that H is a symmetric function with E 0 {H(Y 1 , Y 2 )} = 0 and E 0 {H(Y 1 , Y 2 )|Y 1 } = 0. As a consequence, T n,i -E 0 (T n,i
) is a degenerate Ustatistic. Using Theorem 3 (and the notation of Section 3) to control its cdf, we get that for any 0 < δ ≤ 1, for any 0 < ε < 1/2 and any x

|P 0 (T n,i -E 0 (T n,i ) > x) -(1 -φ(x/v n ))| ≤ 16ε 1/2 exp - x 2 4v 2 n + C ε 1+δ n i=2 E 0 |Z i | 2+2δ + E 0 |V 2 n -1| 1+δ ,
where v 2 n = Var 0 (T n,i ) and

Z i = 1 v n i-1 j=1 H(Y i , Y j ) and V 2 n = n i=2 E 0 (Z 2 i |F i-1 )
as in Section 3. Choose δ = 1 and consider ε as a constant (optimisation in ε is not necessary in our context), thus

|P 0 (T n,i -E 0 (T n,i ) > x) -(1 -φ(x/v n ))| ≤ C exp - x 2 4v 2 n + C n i=2 E 0 |Z i | 4 + E 0 |V 2 n -1| 2 . ( 13 
)
We want to apply this inequality at the point

x = C ⋆ t 2 n,i -E 0 (T n,i ). First, note that E 0 (T n,i ) = J h i * f 0 -f 0 2 2 = 1 2π |u|>1/(h i ) |Φ 0 (u)| 2 du ≤ L(h i ) 2 β ≤ Lt 2 n,i , leading to x ≥ (C ⋆ -L)t 2 n,i = (C ⋆ -L)(nρ n ) -4β i /(4β i +4σ+1
) and we choose C ⋆ > L. Now, the variance term v 2 n satisfies (see [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF])

v 2 n = E 0 (T n,i -E 0 (T n,i )) 2 = C n 2 (h i ) 4σ+1 (1 + o(1)).
Using the choice of the bandwidth h i , we obtain a bound of the first term in (13)

C exp - x 2 4v 2 n ≤ C exp - (C ⋆ ) 2 C ′ ρ -2 n = C(log n) -b ,
where b = (C ⋆ ) 2 /(C ′ ) can be chosen as large as we need. Let us deal with the other terms appearing in [START_REF] Pouet | On testing non-parametric hypotheses for analytic regression functions in Gaussian noise[END_REF]. For large enough n,

| < K h i (• -Y k ) -J h i * f 0 , K h i (• -Y j ) -J h i * f 0 > | ≤ 2 π |u|≤1/h i |Φ g (u)| -2 du ≤ C (h i ) 2σ+1
and thus, for any p ≥ 2,

E 0 {|H(Y 1 , Y 2 )| 2p } ≤ Cn -4p (h i ) -2p(2σ+1) .

This leads to

n i=2 E 0 |Z i | 4 ≤ 1 v 4 n n i=2   i-1 j=1 E 0 (H(Y i , Y j ) 4 ) + 3 1≤j =k≤i-1 E 0 (H(Y i , Y j ) 2 H(Y i , Y k ) 2 )   ≤ 1 v 4 n n i=2 (i -1)E 0 (H(Y 1 , Y 2 ) 4 ) + 3(i -1)(i -2)E 0 (H(Y 1 , Y 2 ) 2 H(Y 1 , Y 3 ) 2 ) ≤ O(1) v 4 n n 2 E 0 (H(Y 1 , Y 2 ) 4 ) + O(1) v 4 n n 3 E 0 (H(Y 1 , Y 2 ) 2 H(Y 1 , Y 3 ) 2 ) ≤ O(1) n 3 n 8 (h i ) 4(2σ+1) n 4 (h i ) 2(4σ+1) = O(1) n(h i ) 2 .
Moreover, following the lines of the proof of Theorem 1 in [START_REF] Hall | Central limit theorem for integrated square error of multivariate nonparametric density estimators[END_REF] we get

E 0 |V 2 n -1| 2 ≤ 1 v 4 n E 0 (G 2 (Y 1 , Y 2 )) + 1 n E 0 (H 4 (Y 1 , Y 2 )) , where G(x, y) = E 0 (H(Y 1 , x)H(Y 1 , y)).
In [START_REF] Butucea | Asymptotic normality of the integrated square error of a density estimator in the convolution model[END_REF] this last term was bounded from above for this model by Ch i so

E 0 |V 2 n -1| 2 ≤ Ch i .
Returning to (13) we finally get for

x = C ⋆ t 2 n,i -E 0 (T n,i ), |P 0 (T n,i -E 0 (T n,i ) > x) -{1 -φ(x/v n )}| ≤ C (log n) -b + h i ≤ C(log n) -b .
Finally we obtain, for b large when C ⋆ is large

N i=1 P 0 (|T n,i -E 0 (T n,i )| > C ⋆ t 2 n,i -E 0 (T n,i )) ≤ N (1 -φ(x/v n ) + C(log n) -b ) ≤ CN v n x -1 exp(-x 2 /(2v 2 n )) + (log n) -b ≤ CN ρ n (log n) -b ≤ C (log log n) -1/2 log n b-1 .
Proof of Lemma 2.

Using a Markov inequality and the usual controls on bias and variance, we get

P 0 (|T n,N +1 -E 0 (T n,N +1 )| > C ⋆ t 2 n,N +1 -E 0 (T n,N +1 )) ≤ Cn -2 (h N +1 ) -(4σ+1) (C ⋆ t 2 n,N +1 -C(h N +1 ) 2 β ) 2 which is O((C ⋆ -C) -1
) and by choosing C ⋆ large enough, this term is smaller than some ǫ > 0.

Proof of Lemma 3.

Let us write

P f (|T n,N +1 | ≤ C ⋆ t 2 n,N +1 ) ≤ P f (|T n,N +1 -E f T n,N +1 | ≥ f -f 0 2 2 -C ⋆ t 2 n,N +1 -B f (T n,N +1 ))
where

|B f (T n,N +1 )| = |E f (T n,N +1 ) -f -f 0 2 2 | ≤ |u|≥1/h N +1 |Φ(u)| 2 du + 2 |u|≥1/h N +1 |Φ(u)| 2 du |u|≥1/h N +1 |Φ 0 (u)| 2 du 1/2 ≤ L(h N +1 ) 2β exp{-2α/(h N +1 ) r } + 2L(h N +1 ) β+ β exp{-α/(h N +1 ) r } ≤ 2L(h N +1 ) β+ β exp{-α/(h N +1 ) r }(1 + o(1)).
In the same way as in the proof of Lemma 4, we have

E f (T n,N +1 -E f (T n,N +1 )) 2 ≤ C n 2 (h N +1 ) 4σ+1 + 4Ω 2 g (f -f 0 ) n 1 β≥σ = w 2 n,f ,
and Ω g (ff 0 ) is a constant depending on f and g (but not n) and satisfying

|Ω 2 g (f -f 0 )| ≤ C f -f 0 2-2σ/ β 2
. The rest of the proof follows the same lines as Lemma 4. Indeed, Markov's Inequality leads the following bound on the second type error term

w 2 n,f ( f -f 0 2 2 -C ⋆ t 2 n,N +1 -2L(h N +1 ) 2β exp{-α/(h N +1 ) r }(1 + o(1))) 2 ≤ max   Cn -2 (h N +1 ) -4σ-1 (C 0 -C ⋆ ) 2 ψ 4 n,r ; C n f -f 0 2+2σ/ β 2 (C 0 -C ⋆ ) 2  
The first term in the right hand side is a constant which can be as small as we need, by choosing a large enough constant C 0 . The second term converges to zero.

Proof of Lemma 4.

When r = r = 0, let us fix some constant C > C 0 (C 0 will be chosen later) and a density f belonging to F(α, 0, β, L) for some unknown α > α and β ∈ [β; β] which satisfies ff 0 2 2 ≥ Cψ 2 n,(α,0,β) (choose β as the largest one). In this proof, we abbreviate ψ n,(α,0,β) to ψ n,β since in this case, the rate only depends on β. We define β f as the smallest point on the finite grid {β = β 1 < β 2 < . . . < β N = β} such that β ≤ β f β f ∈ {β = β 0 < β 1 < . . . < β N = β}, f ∈ F(α, 0, β, L), ff 0 2 2 ≥ Cψ 2 n,β , β ≤ β f and ∀β i < β f , we have β > β i . [START_REF] Spokoiny | Adaptive hypothesis testing using wavelets[END_REF] We shall abbreviate to h f , t 2 n,f and T n,f the bandwidth, the threshold (both defined in Theorem 1) and the statistic [START_REF] Hall | Central limit theorem for integrated square error of multivariate nonparametric density estimators[END_REF] corresponding to parameter β f . We write

P f (∀i ∈ {1, . . . , N }, |T n,i | ≤ C ⋆ t 2 n,i ) ≤ P f (|T n,f -E f (T n,f )| ≥ -C ⋆ t 2 n,f + E f (T n,f )) ≤ P f (|T n,f -E f (T n,f )| ≥ f -f 0 2 2 -C ⋆ t 2 n,f + B f (T n,f )), (15) 
where

B f (T n,f ) = E f (T n,f ) -f -f 0 2 2 = J h * f 2 2 -f 2 2 + 2 f -J h * f, f 0
is in fact a bias term. It satisfies

|B f (T n,f )| ≤ |u|≥1/h f |Φ(u)| 2 du + 2( |u|≥1/h f |Φ(u)| 2 du |u|≥1/h f |Φ 0 (u)| 2 du) 1/2 ≤ Le -2α (h 2β f + 2h β+β f ) ≤ 3e -2α Lh 2β f ,
as f belongs to F(α, 0, β, L) ⊆ F(α, 0, β, L).

Let us study the variance term E f (T n,f -E f (T n,f )) 2 . According to [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF], this term is upper-bounded by w 2 n,f given by

E f (T n,f -E f (T n,f )) 2 ≤ C n 2 h 4σ+1 f + 4Ω 2 g (f -f 0 ) n 1 β≥σ = w 2 n,f ,
and Ω g (ff 0 ) is a constant depending on f and g (but not n) and satisfying

|Ω 2 g (f -f 0 )| ≤ C f -f 0 2-2σ/β 2
(see proof of Theorem 6 in [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF]).

Using Markov's inequality, this leads to the following upper bound of (15)

w 2 n,f ( f -f 0 2 2 -C ⋆ t 2 n,f -3e -2α Lh 2β f ) 2
.

We will proceed differently when β < σ and when β ≥ σ. Let us first consider the term concerning β < σ. The point is to use that f satisfies ff 0 

2 2≤

 2 . Note that we have β f ≥ β, constants C > C ⋆ andψ 2 n,β t -2 n,f = (nρ n ) 4(β f -β)(4σ+1)/{(4β f +4σ+1)(4β+4σ+1)} , ensuring that the term Cψ 2 n,β -C ⋆ t 2 n,f is always positive. Moreover, as 0 ≥ ββ f ≥ -( ββ)/ log n, we have ψ 2 n,β h -2β f = exp 16β(ββ f ) (4β f + 4σ + 1)(4β + 4σ + 1) log(nρ n ) ≥ exp -16 β( ββ) (4β + 4σ + 1) 2 (1 + o(1)) =: C 1 (1 + o(1)).Thus, we choose C 0 = C ⋆ + 3e -2α L/C 1 such that for any C > C 0 , we haveff 0 -C ⋆ t 2 n,f -3e -2α Lh 2β f ≥ (C -C * -3e -2α L/C 1 )ψ 2 n,β = aψ 2 n,β ,with a > 0. Thus, we getsup α>α sup β∈[β; β] sup f ∈F (α,0,β,L) f -f 0 2 2 ≥Cψ 2 n,β P f (∀i ∈ {1, . . . , N }, |T n,i | ≤ C ⋆ t 2 n,i ) ρ n ,which converges to zero as n tends to infinity.Proof of Lemma 5.As β > ν, the bandwidths satisfy h ν h -1 β = o(1). Then, as G is compactly

which ends the proof of Lemma 5.

supported on [-1, 0], we have

Apply the Taylor Formula to get

where 0 ≤ ũ1 ≤ u and ≤ ũ2 ≤ u. As G = 0, we obtain

This leads to

where

satisfies