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Abstract

We consider strongly coupled field theories at large N on black hole backgrounds.
At sufficiently high Hawking temperature TH , one expects a phase where the black hole
is in equilibrium with a deconfined plasma. We explore this phase in the context of
the AdS/CFT correspondence, and argue that two possible behaviors may result. At
a given Hawking temperature TH , field theories on large black hole backgrounds will
result in a plasma that interacts strongly with the black hole. Such cases will be dual
to novel bulk spacetimes having a single connected horizon which we dub black funnels.
We construct examples of black funnels in low spacetime dimensions for different classes
of field theory black holes. In this case, perturbing the equilibrium state results in the
field theory exchanging heat with the black hole at a rate typical of conduction through
deconfined plasma. In contrast, we argue that due to the finite physical size of plasma
excitations, smaller black holes will couple only weakly to the field theory excitations.
This situation is dual to bulk solutions containing two disconnected horizons which
remain to be constructed. Here perturbations lead to heat exchange at a level typical
of confined phases, even when TH remains far above any deconfinement transition. At
least at large N and strong coupling, these two behaviors are separated by a sharp
transition. Our results also suggest a richer class of brane-world black holes than
hitherto anticipated.
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1 Introduction

Studies of quantum field theories in curved spacetimes over the last few decades have revealed
an intriguing variety of physical phenomena such as vacuum polarization, particle production
etc., see e.g. [1, 2, 3] for reviews. In particular, the discovery of Hawking radiation by
black holes has led to deep and fundamental issues, which have played an important role
in attempts to formulate a quantum theory of gravity. However, much of this discussion is
rooted in the study of free field theories in curved spacetimes. The details, and even what
one might call the basic physical processes, are much less clear when the field theory interacts
strongly. Gaining some insight into the strong coupling case will be the primary focus of the
current work.

Let us begin by reviewing the situation for free fields on a fixed black hole spacetime.
As is well known, the black hole radiates and absorbs field theory quanta in a manner much
like an ideal black body at the Hawking temperature TH , with absorption and emission
coefficients modulated slightly by grey-body factors which depend on the details of the black
hole geometry [4, 5]. Several states for the field theory are commonly discussed. In particular,
the so-called Hartle-Hawking vacuum describes radiation in equilibrium with the black hole,
so that the ingoing and outgoing fluxes are balanced. The renormalized stress tensor in this
state is regular on both future and past horizons, and the state is conveniently defined by
a Euclidean path integral periodic in imaginary time. However, one can also consider the
time-asymmetric Unruh vacuum which describes only the outgoing flux of Hawking quanta

1



from the black hole, or one may directly study the radiation emanating from a black hole
formed in a gravitational collapse process. This radiation rapidly approaches precisely what
one would expect from the above grey-body description at temperature TH [4, 5]. In any of
the above settings, it is straightforward to compute occupation numbers and the expected
stress tensor far from the black hole, though this becomes more difficult close to the horizon.
If we now allow the field theory quanta to interact weakly, one expects this basic picture to
hold at least in perturbation theory.

In contrast, for strongly interacting theories it is a challenge to obtain even a qualitative
understanding of Hawking radiation. One can still formally define the Hartle-Hawking state
via a Euclidean path integral and, due to periodicity in Euclidean time, it will satisfy the
Kubo-Martin-Schwinger (KMS) condition. In this sense the state is thermal; see e.g. [6, 3]
for reviews and references. In addition, since this construction reduces to the thermal path
integral in flat space in the region far from the black hole, the stress tensor in this region will
again be thermal. However, more detailed information is sorely lacking. In particular one
has little knowledge of the corresponding Unruh states or other out-of-equilibrium situations.
See e.g., [7, 5, 8, 9] for further comments.

One tool that can be used to probe field theories at strong coupling is the Anti-de
Sitter/conformal field theory (AdS/CFT) correspondence [10, 11, 12]. This correspondence
maps the dynamics of the field theory to string theory (or classical gravity) in a higher
dimensional Anti-de Sitter (AdS) spacetime. The field theories in question are typically
non-abelian gauge theories; denoting the rank of the gauge group by N and the ’t Hooft
coupling by λ, in the limit of large rank and strong ’t Hooft coupling (N, λ � 1) the
dual description of the field theory reduces to classical gravitational dynamics in the higher
dimensional AdS spacetime.1 Following standard convention, we refer to AdS/CFT as a
holographic duality due to this difference in dimensions and refer to the field theory as living
on the conformal boundary of AdS.

We should be clear that Unruh-like and other out-of-equlibrium states remain challenging
to describe even in the context of AdS/CFT and may require significant numerical work. In
this paper, we restrict explicit constructions to configurations which, at least in the large
N , strong coupling limit, describe equilibrium states. These states are Hartle-Hawking-like
in the sense that there is no net transport of heat in this limit. Because Hartle-Hawking
states do not exist for rotating asymptotically flat black holes [13], we focus on non-rotating
black holes below. The rotating case will be discussed elsewhere [14]. However, as the reader
will see, the dual AdS description of these Hartle-Hawking-like states strongly suggests that
novel behaviors arise for nearby out-of-equilibrium states.

Interestingly, as we review in §2, studies of strongly coupled Hawking radiation performed
to date via AdS/CFT suggest that the effects of Hawking radiation may be parametrically
smaller as a function of N at strong coupling than in free theories with the same field content.
Naively one would expect the energy density of Hawking radiation to scale with some positive

1For example, in the case of N = 4 super Yang-Mills dual to AdS5 ×S5, the ’t Hooft coupling λ controls
the curvature radius of the AdS spacetime in string units, while the string interactions are governed by
gs ∼ 1

N . Classical gravity is a good description when string interactions are suppressed and the curvatures
are small. More generally, the field theory degrees of freedom are measured by a central charge c and for the
field theories with known holographic duals c ∼ Nα for some α > 0.
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power of N , since the black hole can radiate any of the microscopic field theory degrees of
freedom with equal probability. However, an explicit analysis using the bulk gravitational
description reveals an O(1) energy density. This conclusion is arrived at by studying known
black hole solutions in AdS spacetimes which asymptote to the given black hole metric on
the boundary of AdS, as this is the black hole background on which the field theory lives
[15, 16, 17, 18]. A partial explanation of this feature was offered in [17], which noted that
the field theories under study exhibit confined phases2 where, even at large N , the density of
propagating modes remains only O(1) and does not grow with N . In such a phase, Hawking
radiation far from the black hole would be correspondingly reduced.

However, the field theories also exhibit deconfined phases, where the density of propa-
gating modes is much larger (of O(Nα) for some α > 0). Furthermore, at high temperatures
the confined phase is thermodynamically unstable or, at best, meta-stable and decays to the
deconfined phase. It therefore remains to understand Hawking radiation in the deconfined
phase, as well as transitions between the two phases in the presence of black holes. For
example, to what extent does a hot black hole tend to “melt” the confined phase and to
catalyze a transition to a deconfined phase? These are the questions we begin to explore
below.

The previous literature on this subject has largely focussed on the case where the large
N field theory is coupled to dynamical gravity. This situation is holographically dual [19]
to Randall-Sundrum braneworld models [20], and much of the interest centered on possible
implications for brane-world phenomenology. In particular, it was argued in [21, 22] that
considerations of Hawking radiation in the large N theory implied that black holes in such
a brane-world setting would rapidly disappear from the brane. The point here was that, if
free field theory could be used as a guide, the timescale for black hole evaporation would be
a certain function of N and the black hole mass (M) times the effective Newton constant
(Gbrane) on the brane, M Gbrane, which, under the holographic duality, maps to a classical
timescale in the bulk gravitational description. As a result, even at the purely classical level
in the bulk, refs. [21, 22] argued that there should be no static black hole solutions in these
braneworld scenarios. While the above argument was later countered by the observation of
[17] that the large N theory might be in a confined phase, many issues remain open; see e.g.
[15, 23, 24, 25, 26, 27, 28, 29] for summaries and recent progress.

Although the braneworld questions continue to be of interest, we find it useful at both the
conceptual and practical level to focus on the limit in which gravity on the brane decouples
and the field theory propagates on a fixed non-dynamical black hole background. From the
bulk perspective, this is the limit where the brane recedes to the AdS boundary and the
metric on the brane becomes simply a boundary condition that one imposes by hand. We
focus on this limiting case throughout most of this work, though we mention implications
for dynamical braneworld black holes in §5.

We begin by using AdS/CFT to give a heuristic picture of Hawking radiation for strongly
coupled large N field theories in §2, where we also review the relevant known results. In a
deconfined phase, we argue that two possible behaviors may result, depending on the size

2Our focus will be on large N gauge theories which do not exhibit a dynamical mass gap (unlike QCD).
The notion of confinement versus deconfinement is simply the statement about the free energy; it is O(1) in
the confined and O

(
N2
)

in the deconfined phases.
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R and the Hawking temperature TH of the black hole in relation to various scales in the
field theory. Note that since our field theory lives on a fixed background spacetime in which
gravity is non-dynamical, we are free to consider arbitrary black hole geometries which need
not satisfy any equations of motion. As a result, we may regard R and TH as completely
independent quantities. In terms of more familiar examples, one may think of Reisner-
Nordstrom black holes where one may adjust the relative size of R and TH by changing the
charge. We refer to these arbitrarily specified black holes as either field theory black holes
or boundary black holes to distinguish them from bulk black holes that arise in the dual AdS
description; the latter will satisfy Einstein’s equation with a cosmological constant as well
as a boundary condition determined by the field theory black hole metric.

At given TH , we will argue that large asymptotically flat field theory black holes couple
strongly to the deconfined plasma. Here we use the term coupling in a loose sense that char-
acterizes how excitations around the Hartle-Hawking state interact with the (non-dynamical)
black hole. Strong coupling means that deviations from the Hartle-Hawking state relax back
to equilibrium on a timescale set by the black hole size, while weak coupling means that
such deviations decay much more slowly.

Consider first strongly coupled large field theory black holes as defined above. For these
the bulk AdS duals of the corresponding Hartle-Hawking states will be novel spacetimes
having a single connected horizon which we dub black funnels (see Fig. 1a). In this case,
performing work on the system or introducing additional heat sources or sinks will result in
heat exchange with the field theory black hole at a rate typical of heat flow through deconfined
plasma. In the bulk, this heat will simply flow along the horizon from the boundary black
hole down the throat of the funnel and out along the shoulders.

In contrast, we argue that the Hartle-Hawking states of smaller asymptotically flat black
holes will be dual to bulk AdS solutions containing two disconnected horizons. One bulk
horizon reaches the AdS boundary, where it ends on the horizon of the boundary black hole.
We refer to this bulk horizon as a black droplet, as we expect this horizon to cap off smoothly
in the bulk (see Fig. 1b). The other horizon will asymptotically approach that of a planar
black hole3. In a slight abuse of language, it will be convenient to overlook this distortion
and continue to refer to this horizon as a planar black hole.

The lack of connection between the two bulk horizons for small boundary black holes
suggests that performing work on the system or introducing additional heat sources or sinks
results in rather little heat exchange between the two bulk black holes, and thus rather little
exchange between the field theory black hole and the field theory plasma. As a result, the
amount of heat and other quantities transported outward from the field theory black hole
will be similar to what one would expect in a confined phase, even if TH is far above the
temperature TD of any deconfinement transition. From the field theory point of view, we
interpret the weak coupling between the black hole and plasma as being due to the finite
(and large) physical size Re of plasma excitations relative to the black hole, Re � R.

Following this heuristic discussion, we construct examples of black funnels in low space-
time dimensions for various classes of boundary black holes. In §3 we consider asymptotically

3For asymptotically flat boundary metrics. We will also consider boundaries which are asymptotically
Hn × R, in which case this bulk horizon approaches that of the black holes discussed in [30].
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Fig. 1: A sketch of our two novel classes of solutions: (a): black funnel and (b): black droplet above

a deformed planar black hole. In both cases the boundary metric is that of a black hole of

temperature TH and horizon size R (the top line corresponds to the boundary, the dots denote

the horizon of the boundary black hole). Here we fix TH and vary R; (a) for sufficiently large

R, we expect the bulk solution to have a single connected horizon in a “funnel” shape, while

(b) for small R, we expect two disconnected horizons, a “droplet” and a planar black hole.

The shaded regions are those inside the bulk horizons.

flat 1+1 field theory black holes. As we discuss below, all 1+1 black holes should be thought
of as having a large size R in comparison with any other scale. As a result, only black funnel
solutions will be expected from the arguments of §2 and this is indeed what we find.

We then turn to higher dimensional examples; §4 considers 2+1 black holes on the bound-
ary of asymptotically AdS4 spacetimes exploiting the known AdS C-metric solutions. Here
our particular method of constructing the solution generates 2+1 boundary black holes which
are asymptotic to H2×R where H2 is the (Riemannian-signature) hyperbolic plane. In this
context we find both black funnels and black droplets suspended above disconnected hori-
zons. We conclude with a summary and a discussion of the implications for braneworld black
holes in §5.

2 Phases of CFTs on black hole backgrounds

As described in the Introduction, we wish to investigate strongly interacting quantum fields
in a black hole spacetime. To this end we will employ the AdS/CFT correspondence in the
planar limit. Thus, at least for the moment, we restrict attention to field theories for which
this correspondence applies. Our goal, however, is to extract certain general lessons which
we hope will be applicable to a much wider set of models.

The essence of the AdS/CFT correspondence is that the strongly coupled field theory
dynamics is recorded in terms of string theory (or classical gravity if the field theory admits
an appropriate planar limit) with appropriate asymptotically Anti-de Sitter boundary con-
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ditions. If the bulk AdS spacetime geometry is some negatively curved (d + 1)-dimensional
Lorentzian manifold,Md+1, with conformal boundary ∂Md, then the field theory lives on a
spacetime Bd of dimension d in the same conformal class as ∂Md. Choosing an appropriate
conformal frame, one may identify Bd and ∂Md and speak of the field theory as living on
the AdS boundary. From the standpoint of the bulk theory, the choice of metric on Bd fixes
a boundary condition that the bulk solution must satisfy.4 The correspondence is simplest
to state for conformal field theories in dimensions where the trace anomaly vanishes, but
with appropriate care the correspondence also holds in the presence of a trace anomaly and
it can accommodate non-conformal deformations.

Given this set-up we can probe the details of Hawking radiation in the strongly coupled
field theory. More interestingly, as described in §1, if the field theory under consideration
exhibits non-trivial phase structure we should be able to ascertain the holographic duals of
each distinct phase. To consider field theory in a black hole background, we merely choose
Bd to be a black hole spacetime. The space of field theory states on Bd then corresponds to
the space of asymptotically AdS states of string theory subject to the boundary condition
above. In the planar limit of the field theory, the latter is essentially the solution space of
classical (super-)gravity with the given boundary condition. The different phases of the CFT
on Bd should thus correspond to different bulk spacetime geometries Md+1 in this solution
space.

We work in a universal sector of the AdS/CFT correspondence, wherein the bulk space-
time Md+1 is a solution to Einstein’s equations with a negative cosmological constant. The
bulk action is therefore taken to be5

Sbulk =
1

16π G
(d+1)
N

∫
dd+1x

√
−g (R− 2 Λ) , (2.1)

where we can express the cosmological constant as Λ = −d (d−1)
2

`−2
d+1 in terms of the AdSd+1

radius `d+1. From the field theory side we concentrate on the response of the energy-
momentum tensor to the non-trivial background on Bd.

Let us consider the simple case where the boundary spacetime Bd has a Killing field ξB
which generates the black hole horizon and which is timelike in some asymptotic region far
from the black hole. For simplicity we also take the black hole horizon in Bd to have a
single connected component, although this is not imposed on us by any equations of motion.
Field theory states that are stationary with respect to ξB are dual to bulk solutions with a
Killing field ξ which agrees with ξB on the boundary. We will focus on equilibrium states so
that, as with the Hartle-Hawking vacuum, the field theory stress tensor should be regular
on both future and past horizons. As a result, the bulk spacetime should also have a regular
Killing horizon. The problem at hand thus reduces to finding distinct black hole solutions
for a gravitational theory in d + 1 spacetime dimensions, all of which obey the prescribed

4In standard AdS/CFT parlance, this amounts to fixing the non-normalizable mode of the bulk graviton
to obtain the desired metric on Bd.

5We will use gAB to denote the bulk metric on Md+1 with uppercase Latin indices indicating the bulk
spacetime dimensions. The metric on Bd will be denoted as γµν with lowercase Greek indices labeling
boundary directions.
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boundary conditions. The phase structure of the CFT on Bd is just the classical phase
structure of the corresponding black hole spacetimes.

After a brief review of deconfinement transitions in AdS/CFT in §2.1, we give a heuristic
discussion of the desired bulk black hole spacetimes in §2.2 below. The main conclusion is
that bulk solutions dual to field theory black holes in equilibrium with a deconfined plasma
may display two possible behaviors. The bulk Killing horizon may be connected, a case
we refer to as a black funnel, or it may be disconnected. Which possibility is realized is
determined by the size R and the temperature TH of the boundary black hole in comparison
with certain scales set by the field theory. A sharp phase transition is expected as one tunes
the values of R, TH though the critical values.6 In §2.3 we interpret our conclusions in field
theory language: in the connected case the black hole couples strongly to the deconfined
plasma while there is no such coupling in the disconnected case. In this latter situation it
appears that this coupling is prohibited by the intrinsic size of the field theory excitations
which have condensed to form the plasma. This discussion sets the stage for the rest of the
paper, which focusses on constructing such solutions.

2.1 Brief Review: Deconfinement transitions in AdS/CFT

It is useful to begin by reviewing the AdS/CFT description of the confinement/deconfinement
transition; we will first discuss the case where there is no black hole on the boundary.
Moreover, we take Bd to have compact spatial sections where there is a sharp transition in
the planar (large N) limit. For instance, one can consider a CFT on the Einstein Static
Universe, i.e., Bd = R × Sd−1, which is the boundary of the global AdS spacetime. As a
prototype example, the reader can keep in mind the phase structure of the four dimensional
N = 4 Super-Yang Mills (SYM) in d = 4, but the discussion extends analogously to other
dimensions.

At low temperature we have the confined phase with O(1) free energy and at high tem-
peratures a deconfined phase with O(c) free energy, where c is the central charge7 of the
CFT which we take to scale as c ∼ Nα. In the case of N = 4 SYM, α = 2, reflect-
ing the non-abelian gluon degrees of freedom. In the holographic dual this transition is the
Hawking-Page transition [31] where the thermal AdSd+1 geometry exchanges dominance with
the Schwarschild-AdSd+1 spacetime [32].8 The phase transition occurs at the deconfinement
temperature TD which is set by the curvature radius of the Sd−1 (which is the only other
dimensionful parameter in the problem if we consider conformal field theories).

One can also consider the situation where the boundary is just a Minkowski space, Bd =

6Tuning R and TH involves changing the metric on the boundary manifold Bd. We will treat the back-
ground spacetime as an external parameter for the field theory and describe the different possibilities as
distinct phases of the field theory.

7The central charge c can be defined either from the two point function of the energy momentum tensor,
or by looking at the entropy density of a CFT at finite temperature, which from dimensional analysis scales
as s ∼ c T d−1.

8A similar confinement-deconfinement transition can be seen at weak coupling as well for four dimensional
large N gauge theories on compact spatial manifolds [33, 34]. See also [35] for analogous results for three
dimensional Chern-Simons matter theories.
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Rd−1,1, which is of greater relevance to our immediate considerations. In this case there isn’t
a phase transition since the only scale in the problem is the temperature. As we will describe
below, at any non-zero temperature the field theory always prefers to live in the deconfined
phase. Formally, however, one can consider the two distinct phases and their dual geometries
to gain intuition for the physics of the field theories. The relevant bulk solutions are i) pure
AdSd+1 spacetime expressed in a conformal frame such that the boundary metric just the
flat Minkowski metric, e.g.,

ds2
planar AdS =

1

z2

(
−dt2 + dx2

d−1 + dz2
)
, (2.2)

which is dual to the confined phase, and ii) the planar Schwarschild-AdSd+1 black hole,

ds2
planar BH =

1

z2

(
−df(z) dt2 + dx2

d−1 +
dz2

df(z)

)
, (2.3)

dual to the deconfined phase. Here and below we use t, xi to denote coordinates along the
boundary at z = 0. In this sense, z is a radial coordinate in AdS. In addition we have

df(z) = 1− zd

zd0
, (2.4)

so that the horizon is located at z = z0 and has temperature T = d
4π z0

. The stress tensor

of the large N field theory is given by the boundary stress tensor (aka “holographic stress
tensor”) of the bulk solution [36, 37], which is readily computed (following, say, [38]) from
the Fefferman-Graham expansion [39]; i.e., by expanding the metric in powers of z in the
above coordinates. One finds (see for example [40]):

T planar AdS
µν = 0, T planar BH

µν =
(πT )4

16πG
(d+1)
N

(ηµν + 4 δµt δ
ν
t ) . (2.5)

In particular, we should note that the correspondence relates the central charge of the field

theory to the AdS radius measured in Planck units, i.e., c =
`d−1
d+1

16πG
(d+1)
N

, providing the desired

mapping between the field theory and the gravitational parameters. In the case of N = 4
SYM in four dimensions we have c = N2 = π

2πG
(5)
N

. The planar black hole corresponds to

a field theory state with stress energy of order c, consistent with the interpretation as a
deconfined phase.

Comparing the free energies of the corresponding Euclidean spacetimes, one finds that
the planar black hole has lower free energy for any T > 0. In fact, for T > 0 the confined
phase is thermodynamically unstable. This can be seen from the fact that the horizon of
(2.2) is degenerate. As a result, while the thermal circle in the Euclidean solution shrinks to
zero size near the horizon, it remains non-contractible. This means that strings wrapped on
the thermal circle have a tachyon near the horizon [41], rendering the phase unstable.9 In
contrast, the planar black hole is thermodynamically stable.

9A similar instability would be expected in any theory of quantum gravity that allows topology change,
as reducing the size of the infinite throat tends to decrease the action.
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2.2 Boundary black holes and deconfined plasmas: the bulk description

It is an interesting fact that, for the only known asymptotically locally AdS solutions with
asymptotically flat boundary black holes, the boundary stress tensor vanishes far from the
black hole [16, 17]. These solutions are essentially the Schwarzschild black string solution
of [15] up to minor modifications.10 Numerical investigations to date [25, 27] also suggest
solutions of this sort; see however [28].11 As a result, these solutions appear to represent a
confined phase of the dual field theory in the black hole background.

In contrast, we wish to study Hartle-Hawking-like states of the field theory on black
hole spacetimes. For concreteness, we suppose that Bd is asymptotically flat and contains
a single connected horizon. Other cases where ξB becomes asymptotically constant are
similar, though the AdS-like case where the norm grows asymtotically is more subtle and
will be discussed elsewhere [14]. As noted in §1, for the asymptotically flat case the Euclidean
path integral tells us that Tµν should approach the stress tensor of a thermal fluid in the
asymptotic region. As a result, the AdSd+1 bulk dual should approach the planar AdS black
hole (2.3) at large xi, with a corresponding horizon localized near z = d

4π TH
. Furthermore,

in any region near the AdSd+1 boundary (z = 0), there must be a horizon, whose restriction
to Bd coincides with that of the boundary black hole.

There are clearly two possibilities: either these two horizons join to form a single con-
nected horizon, or they are disconnected, see Fig. 1. We now argue that which possibility
occurs is primarily determined by the size R of the boundary black hole and its temperature
TH . In particular, we expect disconnected horizons for RTH � 1, but connected horizons
for RTH � 1, though the precise value of RTH at the transition may depend on the details
of both the black hole geometry Bd and the particular field theory in question.

The basic argument is quite simple. Consider the planar black hole (2.3) at some temper-
ature T = TH . This solution is stable to small perturbations. We now wish to perturb this
solution by adding a black hole of the same temperature TH to the boundary metric. Our
general experience with AdS spaces suggests that the effect of a disturbance of size R on the
boundary falls off deep in the bulk and typically extends to z ∼ R. This phenomenon is seen
in perturbative studies12 or, in perhaps a closer parallel to black hole horizons, studies of
minimal surfaces which intersect the boundary in spheres of size R, see e.g., [42]. Thus, since
the planar black hole horizon is at z = d

4π TH
, the effect on this horizon of adding the black

hole to the boundary should be perturbative for RTH � d
4π

. In this case we expect to find a
static bulk solution with two disconnected horizons: one horizon will be a perturbed planar
black hole, while the other should hang down into the bulk from the boundary black hole,

10Ref. [17] cuts off the singular part of the solution with a so-called IR brane. Perhaps a nicer modification
is to replace the boundary metric with a Schwarzschild black string compactified on a Scherk-Schwarz circle
so that the spacetime develops a smooth IR floor. See §5 for comments on this situation.

11Here the numerical investigations have been carried out for the case of braneworld models with a UV
brane located at a finite radial scale in the bulk AdS spacetime so that gravity on the brane is also dynamical.

12For instance one can consider a Gaussian source φ0(x) = e−
x2

2R2 for some gauge invariant operator on
the boundary. In the bulk this source will produce a field φ(z, x) which can be determined using the bulk
to boundary propagator [12]. A simple calculation of convolving the Gaussian waveform with the bulk to
boundary propagator reveals that the bulk field penetrates down to z ∼ R.
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with the horizon capping off smoothly far above the (perturbed) planar horizon. We refer
to the first horizon as simply the planar black hole, while the second horizon we christen a
black droplet. See Fig. 1b for a sketch of the solution.

In contrast, for RTH � d
4π

the horizon of the planar black hole will be strongly perturbed.
If one imagined a two-horizon solution containing a black droplet and a separate planar
black hole, the horizons would nearly touch. It is natural to assume that the horizons merge,
resulting in a single connected horizon which we call a black funnel. It is an interesting
question whether black funnels also exist for RTH � d

4π
and, if so, how their free energies

compare to the corresponding two horizon (droplet + planar black hole) solution.

We note that the above argument can be generalized in several ways. One could consider
non-equilibrium solutions in which the horizons have different temperatures. So long as the
horizons remain disconnected, this need not be a problem in classical gravity; i.e. in the
limit N, λ� 1. Our argument suggests that only the size R of the boundary black hole and
the temperature Tplanar of the planar black hole are relevant, and that the horizons should
again remain disconnected for RTplanar � d/4π, and in particular in the limit Tplanar → 0,
in which the planar black hole horizon becomes just the Poincaré horizon of planar AdS.
For RTplanar � d/4π we again expect the horizons to join. However, from the field theory
viewpoint, any stationary non-equilibrium situation must have a constant flow of heat. Such
terms in the boundary stress tensor necessarily diverge on either the past or the future
horizon, as is familiar from Unruh states. Thus, only in equilibrium states can the stress
tensor be regular on both horizons. As a result, a bulk black funnel with a smooth bifurcate
Killing horizon should exist only when the temperature TH of the boundary black hole
satisfies TH = Tplanar.

The above discussion raises many interesting questions concerning both non-equilibrium
black holes and the detailed phase diagram of equilibrium AdS black holes when the boundary
metric Bd is a black hole spacetime. However, since these issues are a departure from our
main focus, we save such discussion for §5.

2.3 Field theory interpretation: excitations of finite size

It is natural to ask what each class of AdS solutions suggested above would imply for the
dual quantum field theory. The black funnels are easy to interpret. On the field theory side,
they represent black holes in equilibrium with a deconfined plasma with which they interact
strongly. In particular, the bulk horizon will conduct heat, charge, etc to the boundary black
hole at a rate determined by an appropriate (positive) power of N . From the field theory
perspective, the state resembles a large-N analogue of the free Hartle-Hawking state, with
the energy density scaled up by an appropriate power of N . In particular, consider such a
state at finite volume (e.g., on a torus). If the volume is either increased or decreased by
a small amount, one expects heat to flow either out of or into the black hole so that the
solution quickly settles down to a new Hartle-Hawking-like state at the same temperature.
More dramatic non-equilibrium effects may also be possible and will be discussed in §5.

In contrast, the two-horizon solutions present a greater surprise. They represent black
holes in equilibrium with a deconfined plasma to which they are only very weakly coupled in
the following sense: One notes that the plasma excitations, thought of as small deformations
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of the bulk planar black hole, can pass directly under the black droplet with minimal inter-
action. The two horizons can exchange heat only via the O(1) fields that propagate in the
bulk. For example, suppose we have such a state for a field theory in finite volume and then
either increase or decrease this volume by a small amount. At the classical level, the bulk
AdS solution clearly responds by increasing or decreasing the height of the planar black hole
horizon; i.e., by heating or cooling the plasma so that its temperature T no longer matches
TH of the boundary black hole. It is only over very long time scales that quantum effects

in the bulk (which are suppressed by a factor of G
(d+1)
N T d−1

H ) will return the plasma to the
black hole temperature TH . This slow rate of heat exchange with the field theory black hole
is more typical of what one would expect in a confined phase.

The reader will note that such behavior is radically different from the Hawking effect
for free fields. We should thus give some explanation from the field theory perspective of
how this weak coupling might arise. We believe that the answer is best understood by
thinking of the plasma excitations as having a finite physical size Re, which happens to be
rather larger than the size R of the black hole. An analogy might be the absorption and
emission of, say, protons by a TeV-scale Schwarschild black hole:13 even if the proton center-
of-mass wavefunction is tuned to hit the black hole smack-on, and even if the width of this
wavefunction is much smaller than the black hole size, the most likely scenario is that the
black hole just encounters empty space between the constituents and that the proton passes
right “around” the black hole. There is, of course, a small probability that the constituents
will happen to be very close together (and thus close to the center of mass) when they pass
the black hole, so that the proton is in fact absorbed. If, say, a single quark is absorbed,
the result will depend on the total momentum of the proton and the fraction of momentum
carried by the absorbed quark. While the proton will be briefly attached to the proton by a
QCD string, the string will quickly break if the proton momentum is high enough. The net
result will be just a scattering of the proton by the black hole. See e.g. [43] for a previous
discussion of emission of macroscopic objects by black holes. This is in contrast with the
behavior of free fields for which excitations are always effectively point-like and therefore
Re = 0.

Our picture of the plasma excitations having a large physical size Re � R is analogous
to the situation for glueball states in AdS/CFT. A notion of the physical size of glueballs
was discussed in [44], associated with their distribution of stress energy; i.e., a gravitational
form factor. Glueballs in Minkowski space are represented by gravitational waves in the
AdS dual, and gravitational waves at some z in the coordinates of (2.2) corresponded to
glueballs of size ∼ z. Let us now add a black hole on the boundary. For a small black hole
of size R on the boundary, one expects to find a droplet solution that extends in the bulk to
roughly z ∼ R. Gravitational waves at z � R will thus pass directly under the horizon, as
did our plasma perturbations above.14 The observation that the tail of the graviton’s radial
wavefunction at the black hole horizon will determine the absorption probability gives an
additional argument for thinking of the graviton’s radial wavefunction as a wavefunction for
the physical size of the glueball. It would be very interesting to study such scattering and

13Or, more picturesquely, of battleships by Schwarzschild black holes with, say, M ∼ 1011 kg and R ∼ 1 fm.
14The weak coupling of such glueballs to the black hole was also noted in [17]. There it was ascribed to

a presumed modification of the glueball spectrum by the black hole background which was not explained in
detail.
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absorption processes in detail.

In summary, we find that both black-funnel and two-horizon scenarios for AdS bulk
solutions admit consistent field theory interpretations. In a given field theory, the result
that occurs will be determined by the size Re of plasma excitations relative to the size R of
the black hole at a given temperature T . For field theories with AdS duals, Re ∼ T−1 and the
relevant criterion is RT � 1 or RT � 1. The details of the intermediate region (RT ∼ 1;
i.e., Schwarschild black holes) would be interesting to explore, as would the dependence on
the details of the field theory. However, in §3 and §4 below we simply focus on constructing
simple analytic examples of asymptotically AdS spacetimes contains black funnels and black
droplets.

3 Black funnels in AdS3

We now turn to the construction of bulk AdS solutions which we expect to be dual to field
theory Hartle-Hawking states. Since both gravity and conformal field theories are known
to simplify in low dimensions, we begin with AdS3 duals to 1+1 CFTs. To begin, recall
from [45] that given any smooth static asymptotically flat 1+1 black hole spacetime with
TH 6= 0, there is a unique time-translation-invariant stress tensor which is i) smooth on both
past and future horizons, ii) conserved in the sense ∇µT

µν = 0, and iii) consistent with the
trace anomaly for given central charge c. Furthermore, in the asymptotic region Tµν reduces
to the thermal stress tensor at the Hawking temperature TH . This thermal stress tensor is
proportional to c T 2

H , so that it necessarily represents a deconfined phase; no confined phase
can be in equilibrium with the black hole.

This uniqueness result can be derived using the fact that any 1+1 spacetime is related to
Minkowski space by a conformal transformation, and then using the associated transforma-
tion rules for stress tensors. Similar reasoning can be applied to the boundary stress tensor
Tµν of any AdS3 solution with a similar conclusion: for any static smooth AdS3 solution
whose boundary is a static asymptotically flat 1+1 dimensional black hole spacetime with
TH 6= 0, Tµν must approach that of the planar black hole at large xi. We note that black
droplets are consistent with this result only when accompanied by planar black holes at
temperature TH . But since all solutions of the 2+1 Λ < 0 Einstein equations are quotients
of AdS3, we also know that any Killing horizon is connected. It follows that droplet/planar
black hole pairs cannot arise and we can find only black funnels.

This is consistent with the general reasoning in §2. Since the bifurcation surface of a
1+1 horizon consists only of a single point, there is no real notion of the size R for such
horizons. However, 1+1 black holes are most closely associated with planar black holes in
higher dimensions for which R = ∞. From the field theory point of view, this is because
1+1 horizons can absorb any excitation, no matter how large. Larger excitations merely
take more time to fully cross the horizon. From the bulk AdS3 point of view, this connection
is suggested by the analogy between black droplets and membranes dangling from the AdS
boundary. Since a horizon in AdS3 would be modeled by the worldsheet of a string with
only one endpoint attached to the AdS boundary, the string will extend infinitely far into
the bulk and will intersect the horizon of any planar black hole. The arguments of §2 thus
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suggest that Hartle-Hawking states for 1+1 field theory black holes of any TH are dual to
black funnels in AdS3.

Our construction of the funnels is also closely connected to the reasoning in [45]. As
noted above, any bulk solution is locally diffeormorphic to AdS3. Since we wish to study
1+1 black hole spacetimes with topology R2, we will seek solutions diffeormorphic to AdS3

in Poincare coordinates,

ds2 =
−dU dV + dZ2

Z2
. (3.1)

Using the conformal factor Z, the boundary metric for (3.1) is ds2
bdy = −dUdV on R2. We

wish to find coordinates u, v, z associated with a change of conformal frame so that the
boundary metric becomes that of a static 1+1 black hole. For definiteness, we choose the
boundary metric

ds2
bndy =

(
−1

1− u v

)
du dv = − tanh2 r dt2 + dr2, (3.2)

where
u = et sinh r and v = −e−t sinh r. (3.3)

Our coordinate transformation must be smooth near the boundary and, in order to sim-
plify the computation of the boundary stress tensor, we assume it to preserve the so-called
Fefferman-Graham form [39]:

ds2 =
1

z2

[(
−1

1− u v
+O(z2)

)
du dv +O(z2)(du2 + dv2) + dz2

]
. (3.4)

In particular, we require

gzz =
Z2
,z − U,z V,z

Z2
=

1

z2
, Z2 guz = 0, and Z2 gvz = 0. (3.5)

Since we seek bulk solutions dual to equilibrium states, the Killing field ∂t = u ∂u − v ∂v
of the boundary metric must also Lie derive the boundary stress tensor, which is essentially
a trace-reversed version of the O(z2) u, v components of (3.4) [38]. Because the boundary
metric and stress tensor determine the full Fefferman-Graham expansion [39], it follows
that ∂t = u ∂u − v ∂v must be an isometry of the full bulk metric as well. But all AdS3

isometries with a fixed point on the boundary are related by conjugation to U ∂U − V ∂V ,
so we may choose ∂t = u ∂u − v ∂v = U ∂U − V ∂V without loss of generality. It follows that
U = u Ũ(uv, z), V = v Ṽ (uv, z), and Z = Z̃(uv). Symmetry under U ↔ V and u↔ v then
implies Ũ = Ṽ . Expanding Ũ = Ṽ and Z̃ in powers of z and solving (3.5) order-by-order
then gives a unique series solution which can be summed to yield:

Ũ = Ṽ = 1− 2 (1− u v) z2

4 (1− u v)− u v z2
, Z̃ =

4 (1− u v)3/2 z

4 (1− u v)− u v z2
. (3.6)

Applying (3.6) and (3.3) to AdS3 in the form (3.1), one arrives at the metric

ds2 = 1
z2

(
−f(r, z) dt2 + g(r, z) dr2 + dz2

)
,
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where f(r, z) = tanh2 r

(
1− z2 cosh2 r + 1

4 cosh2 r

)2

,

and g(r, z) =

(
1 + z2 cosh2 r − 3

4 cosh2 r

)2

. (3.7)

In this form, the solution is simply a quartic polynomial15 in z.

The horizon is located at the roots of f(r, z) = 0:

zH(r) =
2 cosh r√
cosh2 r + 1

, or r = 0 (3.8)

As a result, in these coordinates the horizon takes the shape of a funnel whose neck has
collapsed, see Fig. 2. One might worry that there is a double root of f(r, z) at the point
r = 0, z = zH(r = 0) =

√
2. However, the above analysis shows that this is an artifact of

the coordinate transformation (3.6), which is singular at (r, z) = (0,
√

2). The full solution
is merely AdS3. In particular, the horizon is simply UV = 0 and has constant temperature
TH = 1

2π
. For large r the bulk horizon asymptotes to that of a planar BTZ black hole at this

temperature. This follows from the fact that the horizon is at constant z = 2 as r →∞.

z

AdS boundary

Boundary black hole

r

Fig. 2: The plot of the bulk horizon for the black funnel geometry whose boundary is the two

dimensional black hole (3.2). We plot the location of the horizon in the {r, z} coordinates.

The shaded region lies inside the black hole as in Fig. 1.

It is straightforward to compute the boundary stress tensor from (3.7), following the
strategy outlined in [38]. We find Trt = 0 and

Ttt =
2 `3

16π G
(3)
N

tanh2 r

(
cosh2 r − 3

2 cosh2 r

)
, Trr =

2 `3

16π G
(3)
N

cosh2 r + 1

2 cosh2 r
, (3.9)

15As such, (3.7) can be found by solving the Einstein equations order by order in z for a static ansatz.
The series truncates at order z4. One finds a single arbitrary parameter whose value is fixed by smoothness,
which requires the temperature of the bulk horizon to match that of the boundary black hole. A similar
structure arises for any static two-dimensional boundary metric.
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which indeed takes the form of a perfect fluid at temperature 1
2π

as r → ∞. Note that the
trace of the stress tensor (3.9) is non-zero at finite r reflecting the conformal anomaly due
to vacuum polarization effects. Other temperatures can be obtained by rescaling u, v with
corresponding results. In the limit TH → 0 one finds zH → ∞, so that the planar part of
the horizon recedes to the Poincaré horizon. This is just what one expects from our general
arguments for black funnels dual to Hartle-Hawking states of 1+1 CFTs.

While we have focussed on the particular boundary metric (3.2), the general case displays
similar features. This follows from several facts noted above. In particular, any static 1+1
asymptotically flat TH 6= 0 black hole metric on the boundary i) is continuously related to
(3.2) by a Weyl transformation, ii) has a unique smooth static stress tensor [45], and thus
iii) determines a unique smooth AdS3 solution in Fefferman-Graham coordinates (which is
in fact a 4th order polynomial in z). As a result, this new solution will be related to (3.7)
by a so-called Penrose-Brown-Henneaux transformation [46, 47] (see e.g. the discussion in
[48]). The TH → 0 limits are also related in this way.

4 Funnels and Droplets from the AdS4 C-metric

Having completed our study of AdS3 black funnels, we now consider AdS4 solutions dual
to states of 2 + 1-dimensional CFTs on black hole backgrounds. Since the boundary metric
need not satisfy any particular equations of motion, the lack of Ricci-flat 2+1 black holes will
not be a hindrance. Below, we focus on boundary metrics that arise naturally in a family
of exact bulk solutions known as the AdS4 C-metrics. This family has previously been used
to construct localized black holes on UV branes [49, 50] and also more recently to construct
plasma ball solutions on IR branes [51]. In contrast, we study smooth solutions in which no
branes are present.

The family of AdS4 C-metrics will provide examples both of black funnels and of black
droplets suspended above a disconnected horizon. The black funnel geometries are candidate
duals to field theory Hartle-Hawking states. However, black droplets in the C-metric are
generically suspended above a second horizon having a different temperature T 6= TH . While
these solutions are static, this is an artifact of the bulk classical limit (or the large N, λ limit
from the field theory perspective). Such solutions do not represent true equilibria and cannot
be dual to Hartle-Hawking states. Nevertheless, they support our basic picture of black
droplets and suggest that equilbrium configurations might be found in some more general
family of solutions.

Below, we concentrate on certain critical values of the parameters for which the C-metric
spacetime splits into two disconnected pieces separated by a new infinity, associated with
new asymptotic regions. On the boundary, the metric in the asymptotic region is R ×H2.
Roughly speaking, we will find that one piece contains a black funnel, while the other piece
contains a black droplet suspended above a deformed version of the black holes described in
[50]. Note that the black holes of [50] are the analogues of planar black holes for R ×H2

boundaries. For more general values of the parameters, the asymptotic region disappears
and the two pieces merge, making the solution difficult to interpret. This general case will
be discussed separately in [52]. We describe the geometry of the AdS4 C-metric for the
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desired critical cases containing asymptotic regions in §4.1 and then identify black funnels
and droplets in §4.2.

4.1 The geometry of the critical AdS C-metric

The C-metric solution in four dimensions corresponds physically to a pair of black holes
being uniformly accelerated by a cosmic string. The most general form was found in [53] as
a solution to Einstein-Maxwell theory with a cosmological constant. This solution is spec-
ified by seven parameters, corresponding to the mass, angular momentum, an acceleration
parameter, electric and magnetic charges, cosmological constant and a NUT parameter.

When the angular momentum and electric, magnetic, and NUT charges all vanish, the
C-metric takes the form [50]

ds2 =
`2

(x− y)2

(
− F (y)

1 + λ
dt2 +

dy2

F (y)
+

dx2

G(x)
+G(x) dφ2

)
, (4.1)

where F (ξ) = λ+ κ ξ2 + 2µ ξ3, and G(ξ) = λ+ 1− F (ξ) = 1− κ ξ2 − 2µ ξ3 . (4.2)

In (4.1) we have rescaled t by a constant relative to the form of the C-metric used in [50].
This metric satisfies Einstein’s equations with negative cosmological constant,

Eµν = Rµν +
3

`24
gµν = 0 , where `4 =

`√
λ+ 1

. (4.3)

The limit λ→ −1 is thus Ricci flat and λ < −1 would give de Sitter-C metrics. We consider
only the asymptotically AdS case, λ > −1, for which the AdS boundary is the surface x = y.
(A particular scaling limit with λ→ −1 will be considered in Appendix A.)

In the metric (4.1), ` captures the (inverse) acceleration, while λ is related to the cos-
mological constant and µ ≥ 0 is the mass parameter of the black hole(s). Finally, κ is a
discrete variable taking values ±1, 0 and corresponds to different allowed topologies for the
black holes; κ = 1 corresponds to topologically spherical horizons while κ = −1, 0 corre-
sponds to non-compact horizons with R2 topology. For κ = 1 one recovers the pure AdS4

spacetime when µ = 0. Likewise by taking a suitable `−1 → 0 limit one can recover the
standard Schwarschild-AdS4 black hole for κ = 1. For κ = −1 one obtains the topological
black hole of [30] and one can get the planar AdS black hole in the case when λ = 0. A
detailed discussion of the AdS C-metric properties can be found in [49, 54] for κ = 1 and in
[50] for other values of κ (see also [52]).

We are, of course, particularly interested in the boundary metric, since we wish to restrict
attention to geometries with a boundary black hole. By choosing the conformal factor
(x− y)/` , we may take the boundary metric to be

ds2
bdy = γµν dx

µ dxν = −F (x)

1 + λ
dt2 +

(1 + λ) dx2

F (x)G(x)
+G(x) dφ2. (4.4)

We focus on cases where Hawking radiation can be cleanly separated from e.g., vacuum
polarization effects due to spacetime curvature near the black hole. In particular, we seek
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Fig. 3: The functions F (x) and G(x) are plotted for µ = µc. The solid curve is the function G(x)
while the dashed curves correspond to F (x) plotted for various values of λ. The direction of

increasing λ is indicated in the figure. The middle curve is λ = 0.

boundary metrics having a well-defined asymptotic region in which ∂t has constant non-zero
norm but spatial distances become arbitrarily large.

To classify possible asymptotic regions, note that x → +∞ has G(x) < 0 and thus
violates Lorentz signature. Similarly F (x) < 0 as x→ −∞, so that this region is not static,
but instead lies inside a horizon. Furthermore, zeros of F (x) describe horizons where ∂t
becomes null. As a result, the desired asymptotic regions can arise only at roots of G(x).
Since F (x) = 1 +λ−G(x) and λ > −1, single roots xi of G(x) lie at finite distance from the
horizons. Triple roots of G(x) cannot arise from (4.2), so we consider only the case where
G(x) has a double root x0 = x1. Near this root ||∂t|| → −1 and the spatial part of the metric
reduces to

ds2
2 =

dx2

(x− x0)2
+ (x− x0)

2 dφ2, (4.5)

which is a metric on the Euclidean hyperboloid H2. This situation occurs only for κ = 1
and µ = µc = 1

3
√

3
, in which case the roots are x0 = x1 = −

√
3 and x2 =

√
3/2. We restrict

attention to this case below, so that (since we hold `4 in (4.3) fixed) the only parameter left
to vary is λ > −1.16 It is worth recording that at µ = µc we have G′(x0) = 0 and G′′(x0) = 2,
and that the corresponding derivatives for F (ξ) can be determined by using the algebraic
constraint F (ξ) + G(ξ) = 1 + λ. Plots of the functions F and G for µ = µc are shown in
Fig. 3.

Recall that we seek solutions that, from a field theory point of view, describe a deconfined
plasma which permeates the asymptotic region. For the AdS C-metric, this will be the region
near x = x0, where the boundary metric approaches that of R × H2. Fortuitously, AdS
solutions dual to deconfined plasmas on R×H2 were studied in [30], where they were shown
to minimize the free energy for all T > 0. In [30], these solutions were called “topological

16Of course, one can introduce an additional asymptotic region at some xnew by changing the conformal
frame. However, this process sends either ||∂t|| or ||∂φ|| (or both) to infinity, so that the new asymptotic
region is not of the desired form.
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AdS black holes”, but we prefer the term “hyperbolic black holes” which we use below. The
solution is

ds2 = −f(ρ) dt2 +
dρ2

f(ρ)
+ ρ2 dΣ2

2, (4.6)

where

f(ρ) =
ρ2

`24
− 1− M

ρ
, (4.7)

and dΣ2
2 is the metric on a unit H2. The mass parameter M must satisfy M ≥ − 2

3
√

3
`4 and

saturating the bound yields a smooth extremal black hole.

To compare the full AdS C-metric (4.1) (for κ = 1, µ = µc) with (4.6), it is useful to
consider the scaling limit

ε→ 0 with X =
x− x0

ε
, Φ = ε φ, t, y fixed, (4.8)

which zooms in on the asymptotic region. This limit reduces the boundary metric to (4.5)
(i.e., to H2 × R), while the bulk metric becomes

ds2 =
`2

(x0 − y)2

(
− F (y)

1 + λ
dt2 +

dy2

F (y)
+
dX2

X2
+X2 dΦ2

)
. (4.9)

Here we used the fact that G′′(x0) = 2. The metric (4.9) is just (4.6) in disguise. To recast
(4.9) into the form (4.6) we define

ρ ≡ `

(x0 − y)
. (4.10)

A calculation then yields

`2 F (y)

(x0 − y)2
= (1 + λ) `24 f(ρ), and

`2dy2

(x− y)2F (y)
=

dρ2

f(ρ)
, (4.11)

where we have identified
M = 2 `4 µc

√
1 + λ . (4.12)

This confirms the equality of (4.9) and (4.6). Thus the solutions we obtain from the C-metric
asymptote in an appropriate fashion to hyperbolic AdS black holes.

4.2 Black funnels and droplets with asymptotically R×H2 boundary metric

We now have the pieces in place to identify the presence of any black-funnel- or black-
droplet-like solutions. The only parameter from (4.1) left to vary is λ, which controls both
the location and the temperature of the horizons. However, we have not yet specified the
ranges of various coordinates. To this end we introduce z = x− y, which plays the role of a
radial coordinate. The AdS boundary lies at z = 0, so choosing either z > 0 or z < 0 yields
an asymptotically AdS spacetime. In this sense our solutions come in pairs having the same
boundary metric (4.4).

In the x direction, Lorentz signature (non-negativity of G(x)) requires x ≤ x2. However,
since the surface x = x0 is infinitely far from other values of x, we can restrict attention
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Fig. 4: Real roots of F (curved lines) are shown for λ > −1 with µ = µc and κ = 1. The values

of x0, x2 (straight lines) are shown for comparison. At each λ, the smallest root y0 satisfies

y0 < x0. All roots lie below x2, and y0 is the only real root for λ > 0.

to a range of x which terminates at x = x0, such that G(x) stays positive. This can be
achieved by choosing either x < x0 or x0 < x < x2; either choice yields a spacetime which
is geodesically complete near x = x0. As a result, it is useful to refer to quadrants17 in the
(x, z) plane as shown in figure Fig. 5, below. The range of φ will be discussed later.

It remains to interpret our solutions and to identify black funnels and black droplets.
Note that horizons occur on surfaces of fixed y = x − z which lie at the roots of the cubic
F (y). Depending on the value of λ, we can have either one real root (y0) or three real roots
(ordered as y0 < y1 < y2). As shown in Fig. 4, for µ = µc and κ = 1, the smallest root y0

satisfies y0 < x0, while y1, y2 > x0 when they exist (for −1 < λ ≤ 0). We therefore have
only the two situations which are sketched in Fig. 5, except for various degenerate limits on
which we comment below.

We are concerned only with “outer horizons,” which by definition are those visible from
the point z = 0, x = x0, i.e., from the asymptotic region of the boundary metric. Such
horizons are associated either with the root y0 or with the root y1. A plot showing the

temperature T = |F ′(yi)|
4π
√

1+λ
of each horizon is provided in Fig. 6, but the temperature of

any outer horizon near x = x0 must agree with that of the hyperbolic black hole (4.9).
Furthermore, as one may explicitly check, the agreement of the bulk metric near x = x0

with the hyperbolic black hole (4.9) implies that the boundary stress near x = x0 also agrees
with that of the hyperbolic black hole (4.9). So we indeed recover a thermal stress tensor
in the asymptotic region (for a detailed discussion see [52]). Since we know from [30] that
this result describes the dual of the deconfined phase for any T > 0, we have candidate
geometries describing the deconfined phase of the field theory on asymptotically R × H2

black holes as desired.

Due to this agreement, from the perspective of a given quadrant, an outer horizon is a

17The quadrants are defined with the origin in x translated to x = x0, i.e., quadrant I = (z < 0, x < x0),
quadrant II = (z < 0, x0 < x < x2), etc.
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Fig. 5: Horizons (diagonal lines) are plotted in the x, z plane. Note that z increases downward while

x increases to the right. Dotted lines denote infinities at z = 0 and x = x0. As a result, each

quadrant may be considered a complete spacetime unto itself. The left panel (a) corresponds

to the situation when −1 < λ < 0 where F (y) has three real roots and the right panel (b)

corresponds to λ > 0; compare with Fig. 3. Note that in either case a conical singularity at

x = x2 will be visible from the point x = x0, z = 0 in quadrant IV.
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Fig. 6: The temperatures for the various horizons y = {y0, y1, y2} as a function λ for the κ = 1,

µ = µc family of AdS C-metrics. Note from Fig. 5 that the horizon at y2 is always an inner

horizon, so its temperature is not observable from outside the black hole.
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black funnel if it extends continuously from the AdS boundary at z = 0 through the bulk into
the region near x = x0; i.e. into the region that describes the bulk dual of the field theory
asymptotic region. This is precisely the analogue of the statement from section §2 that, for
asymptotically flat boundaries, a black funnel horizon will asymptote to the geometry of the
planar AdS black hole. From Fig. 5 we can see that this occurs for the y1 horizon in quadrant
II and for the y0 horizon in quadrant III.

In contrast, we also encounter horizons that extend to the field theory asymptotic region
x = x0 in the bulk, but do not reach the AdS boundary at z = 0. These horizons are
deformations of the hyperbolic black hole horizons (4.6) from [30]. This situation occurs for
horizons at y1 in quadrant I and y0 in quadrant IV. One can think of these horizons as being
deformed in the bulk due to a combination of two effects: the acceleration provided by the
cosmic string and the non-trivial boundary condition (4.4) at the AdS boundary.

Finally, an outer horizon is a black droplet if it does not reach the field theory asymptopia
x = x0 in the bulk of the spacetime. This occurs only for the y0 horizon in quadrant I and
for the y1 horizon (when it exists) in quadrant IV. As we discuss below, the quadrant I case
is singular. However, the quadrant IV case closes off smoothly in the bulk, satisfying our
criterion for a black droplet. These horizons are analogs of the brane-world black holes of
[49, 50] without the UV-brane (and in the specific region of parameter space κ = 1, µ = µc).

Before proceeding to take stock of the various solutions, let us note an interesting subtlety
in our identification of the mass parameter M for the hyperbolic black hole in §4.1. If we
take the coordinate region z > 0, then we have ρ > 0 from (4.10). Then the mass parameter
is indeed M = 2 `4 µc

√
1 + λ as in §4.1. As a result, for λ → ∞ we find M → ∞ and thus

T →∞ from [30] (in particular, at large λ, T ∼ λ1/6). For the choice z < 0 however, (4.10)
would yield ρ < 0. But ρ→ −ρ in (4.7) is equivalent to M → −M . So, for z < 0 we should
identify M = −2 `4 µc

√
1 + λ as the mass parameter.

It remains only to discuss singularities. The metric (4.1) has curvature singularities at
x = ±∞ and y = ±∞. The singularity at x = +∞ is irrelevant since we restrict to x < x2.
In addition, the singularity at y = −∞ is always shielded by a horizon. However, the
singularity at y = +∞ is shielded by a horizon only for λ ≤ 0. For λ > 0 it yields a naked
singularity in quadrants I and II. In particular, in the region near x0 it coincides with the
naked singularity of (4.4) for M < − 2

3
√

3
`4. In addition, the singularity at x = −∞ is visible

in quadrant I; e.g., along a curve of constant y.

There is also a potential conical singularity associated with the fact that the φ circle
degenerates only at x = x2. Smoothness at x2 would imply that φ is periodic with period

∆φ =
∣∣∣ 4π
G′(x2)

∣∣∣ = 8π
√

3
9

. However, this is relevant only in quadrants II and IV. Furthermore,

we are interested in quadrant II only for λ ≤ 0, in which case the potential conical singularity
at x = x2 is shielded by a horizon. Thus, at least for the interesting cases of quadrants I,II,
and III, we are free to take φ to range either over R or over a circle of any size. However, in
quadrant IV the potential singularity is visible from z = 0, x = x0 even when horizons are

present and we must take ∆φ = 8π
√

3
9

.

In summary, for the AdS C-metric solutions (4.1) with µ = µc, κ = 1 and λ > −1 we
encounter the following possibilites:
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• Quadrant I: There is a naked singularity at x = −∞. However, the horizon at
y0 may be thought of as a singular black droplet and, for λ < 0, y1 is a (singular)
deformed hyperbolic black hole with 0 > M = −2 `4 µc

√
1 + λ ≥ − 2

3
√

3
`4. For λ = 0

this horizon is degenerate (the roots y1 and y2 merge), and asymptotes to the extreme
hyperbolic black hole. It disappears for λ > 0, revealing a second curvature singularity
at y = +∞.

• Quadrant II: For λ < 0, y1 is a black funnel. It asymptotes to a hyperbolic black
hole with 0 > M = −2 `4 µc

√
1 + λ ≥ − 2

3
√

3
`4. For λ = 0 this horizon is degenerate,

and asymptotes to the extreme hyperbolic black hole. No singularities are visible for
λ ≤ 0, but the horizon disappears for λ > 0, revealing a naked curvature singularity
and a potential conical singularity.

• Quadrant III: The horizon at y0 is a black funnel. It asymptotes to a hyperbolic
black hole with M = 2 `4 µc

√
1 + λ > 0. No singularities are visible.

• Quadrant IV: The horizon at y0 is a deformed hyperbolic black hole with M =
2`4µc

√
1 + λ > 0. For λ < 0, the horizon at y1 is a black droplet. It becomes degenerate

at λ = 0 and disappears for λ > 0. The potential conical singularity at x = x2 is visible

for all λ, but taking ∆φ = 8π
√

3
9

yields a spacetime with no visible singularities.

The above black funnels are candidate duals of field theory Hartle-Hawking states as
discussed in §2. However, the black droplet solutions are not, since they are accompanied by
a hyperbolic black hole with a different temperature T 6= TH ; see Fig. 6. Nonetheless, these
solutions support the general picture of droplets discussed in §2 and suggest that equilibrium
solutions may exist within some larger family of solutions.

We conclude with a brief discussion of issues associated with taking the range of φ to be
compact. In this case, the boundary spacetime near x = x0 is a quotient of R ×H2. This
quotient is non-compact, but the metric (4.5) shows that any region near x = x0 has finite
volume. Now, conformal field theories on hyperbolic manifolds with finite volume are prone
to instabilities, as conformally coupled scalars will pick up negative masses. In the gravity
description the tunneling amplitude may be easily computed by looking for the nucleation
probability of M2-branes [55]. If (4.5) were the full boundary metric, this would not be of
concern as the field theory would live on a space of infinite volume even when φ has finite
range, suppressing the rate for the scalars to tunnel out to infinity from a local minimum.
However, a black hole horizon in (4.4) cuts off this divergence, so that the field theory lives
on a spacetime for which the volume outside the horizon is finite. We therefore expect our
AdS4 solutions to be unstable to bulk quantum processes (boundary 1/N effects) when the
range of φ is compact. It would be interesting to understand if this feature is associated in
an essential way with the properties of quadrant IV, and in particular with black droplets
suspended above M > 0 hyperbolic black holes.
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5 Discussion

Motivated by the desire to better understand Hawking radiation in strongly coupled field
theories, we have analyzed a dual formulation of the problem using the AdS/CFT corre-
spondence. The quantum dynamics of the field theory maps via this correspondence to the
classical dynamics of Einstein’s equations in a bulk AdS spacetime. Given a field theory
in a black hole background Bd we are instructed to find all the negatively curved Einstein
manifolds Md+1 whose boundary is Bd.

We have two distinct possible duals for the Hartle-Hawking state of the field theory in
the boundary black hole background:

• The black funnel, which is a bulk solution with a single connected horizon.

• A black droplet and a planar or hyperbolic AdS black hole, i.e., a solution with two
disconnected horizons.

A black hole spacetime Bd typically has a horizon size R and a temperature TH and, as
we have argued in §2, general considerations indicate that at least for asymptotically flat
boundary black holes the black funnel is preferred for RTH � 1 while the multiple-horizon
solution dominates for RTH � 1. In either case the bulk solution is dual to the deconfined
phase of the field theory in the boundary black hole background, i.e., the free energy and the
quantum stress tensor of the field theory scales like the central charge c of the CFT. From
the field theory point of view, which possibility occurs depends on the rate at which the
field theory plasma equilibrates with the (non-dynamical) field theory black hole, a concept
we refer to as the “coupling” of plasma excitations to the black hole in the sense that strong
coupling means fast equilibration. We interpreted the weak coupling case as arising when
the plasma excitations have a typical physical size Re which is greater than the size R of
the black hole. The size of such excitations is an analogue of the gravitational form factors
discussed in [44].

While pointlike particles display no sharp transition in the strength of their coupling to
black holes, our arguments indicate a new kind of phase transition in the large N , strong
coupling (λ� 1) limit. Due to the change in connectivity of the bulk horizon, the on-shell
action in the bulk will be non-analytic in parameters that control the size of the boundary
black hole. This then implies that the partition function of the field theory in the boundary
black hole background will exhibit non-analytic behavior characteristic of phase transitions.
It would be very interesting to probe this transition, and in particular the regime RTH ∼ 1
which is relevant for the field theory in an asymptotically flat Schwarzschild black hole
background. It would be natural for this transition to be similar to the Gregory-Laflamme
transition, and to display corresponding singular solutions with “pinched horizons” connect-
ing parts of the phase diagram with different topologies.

We focussed here on constructing simple analytic examples of funnels and droplets in
low dimensions. We showed that only funnels can arise for 1+1 boundary black holes, and
constructed a corresponding AdS3 solution in §3. We then explored the AdS C-metric family
of spacetimes in §4 to find examples of funnels and droplets for 2+1 boundary black holes.
Both types of solutions were found, but only for boundary black holes that are asymptotic
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to R ×H2. Asymptotically flat boundary black holes simply do not arise in this family of
spacetimes. Also, due to the peculiarities of the C-metric family, the droplet solutions did
not describe true equilibrium configurations. Instead, the droplets were suspended above
hyperbolic black holes of different temperatures T 6= TH . Nevertheless, these droplet solu-
tions support the general picture described in §2 and suggest that equilibrium droplets may
exist in some larger class of solutions.

It would be interesting to compare the AdS4 C-metric solutions of §4 in detail with the
predictions of §2.2 for asymptotically flat boundary black holes. However, several factors
make this difficult: i) there is an extra scale from the curvature of the H2, ii) our droplet
solutions are not in equilibrium, and iii) we have at hand only those solutions that belong
to the C-metric family; more general solutions will certainly exist. As a result, we content
ourselves with the following observations:

• The only outer horizon whose temperature can be large is the y0 horizon, which is a
smooth horizon only in quadrants III and IV of Fig. 5. High temperatures occur at
large values of the parameter λ, for which quadrant III contains a black funnel and
quadrant IV contains a hyperbolic black hole which does not reach the boundary.18

Thus, while we find high temperature black funnels, as predicted by §2 there are no
droplets suspended above high temperature hyperbolic black holes.

• The only TH → 0 limit of a smooth outer horizon occurs for the y1 horizon in quadrant
II for λ→ 0. This horizon is a black funnel, and not the droplet predicted by §2. This
may be related to the H2 curvature, which one expects to be relevant for small TH . It
may also be that a droplet solution exists in some larger family of solutions, and that
this droplet solution is thermodynamically preferred.

• Limits where the outer horizons horizons approach x2 might be thought of as small
black holes, i.e., “small R” in the sense of §2, but this situation doesn’t arise within
the AdS C-metric family of solutions.

• One might also wish to study “large R” limits. It might appear that λ→ −1 provides
such a limit, where the y0 and y1 horizons approach x0. However, we must take
this limit holding the bulk AdS scale `4 fixed, so that ` → 0 and our metric (4.1)
degenerates. A λ → −1 scaling limit is described in Appendix A. This limit yields
boundary black holes of finite size, and bulk solutions corresponding to either black
funnels or (non-compact analogues of) black droplets suspended above hyperbolic black
holes. This time, however, the droplets and hyperbolic black holes are in equilibrium.
The scaling limit takes an especially simple form (A.2).

In summary, while the AdS C-metric family of solutions yields interesting examples of black
funnels and droplets, these unfortunately don’t lend themselves to a detailed verification of
the predictions of §2.

Our work raises a number of interesting questions and suggests many directions for further
research. These include exploring the above phase transition and a more thorough explo-

18For λ > 0 the quadrant IV boundary metric has no horizon and contains no black hole.
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ration of the space of solutions (probably through numerical work) in both 2+1 and higher
dimensions. Some particularly interesting further avenues for exploration are as follows:

Confining field theories, plasma balls, black funnels, and black droplets: It is
interesting to consider field theories with a first order deconfinement transition at some
TD > 0. These may be addressed using AdS/CFT [32] by making a so-called Scherk-Schwarz
compactification of the boundary field theory, for which Bd asymptotes to S1 × Rd−2,1 with
anti-periodic boundary conditions on any fermions along the S1. The presence of a new scale
in the problem, viz., the size of the S1 (call it L) ensures that one can have a proper phase
transition as one varies the product T L.

When Bd is precisely S1×Rd−2,1, the deconfined phase is again the planar black hole (2.3)
while the confined phase is the so-called AdS soliton [56]. The latter contains an “infra-red
(IR) floor” where the S1 smoothly caps off at a finite value of the AdS radial coordinate
(or the Fefferman-Graham coordinate z) without generating a horizon, so that the bulk
spacetime looks like a cigar geometry. This situation leads to interesting new solutions with
compact horizons localized near the IR floor [57]. Such solutions are called “plasma balls”
since they are dual to balls of deconfined plasma that nucleate from the confined state. They
have a characteristic size which depends on how close the temperature is to the deconfinement
temperature TD ∼ 1/L, and in fact their size diverges as the temperature approaches TD.
We expect that similar solutions should arise when Bd contains a black hole. In addition, this
setting allows a simple smooth solution where the boundary metric is S1 times any Ricci-flat
black hole (e.g., Schwarzschild), where the bulk horizon is a string that extends from the AdS
boundary to the IR floor.19 This solution should probably be called the Schwarzschild-black
string AdS soliton, but we will refer to it as the Schwarzschild soliton string.

One would like to explore the full phase diagram as one varies R, TH of the boundary black
hole (keeping the size of the circle L fixed) in order to understand how these Schwarzschild
soliton strings are connected to plasma balls, black funnels, black droplets, and so forth.
One also wishes to understand which solutions are dynamically and/or thermodynamically
stable. In particular, the Schwarzschild soliton strings should be dynamically unstable for
R ∼ T−1 � T−1

D . One might expect that the instability leads to black droplets as originally
conjectured by [15] in the context of AdS black strings, but the possibility of a rather
more spectacular instability to black funnel formation has not been ruled out. Indeed,
even if this does not occur for Schwarzschild soliton strings, it may occur for more general
boundary metrics, providing contexts in which black holes in some sense “melt” confined
phases dynamically and catalyze their transition to deconfined phases.

Other field theory asymptotics: It is also interesting to discuss the case studied in [18]
where the field theory itself lives in an asymptotically AdSd spacetime such as Schwarzschild-
AdSd or BTZ for d = 3. In such cases, the bulk dual is an asymptotically AdSd+1 spacetime
whose boundary metric is asymptotically AdSd. This case appears to have additional sub-
tleties (owing to the norm of the timelike Killing field growing on the boundary) and will be
discussed separately in a forthcoming work [14].

Rotation: Rotating asymptotically flat field theory black holes do not admit well-defined
Hartle-Hawking states [13] due to features associated with super-radiance. From the bulk

19We thank Rob Myers for pointing this out to us.
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perspective, one expects that black funnels cannot exist for rotating boundary black holes,
since it is not possible for the funnels to be rigidy rotating. As a result, in this work we
have focussed on non-rotating field theory black holes. However, the rotating case will be
explored in [14].

Non-equilibrium solutions: Small disturbances of equilibrium solutions generally result
in flows of heat. We suggested interesting examples in §2, based on placing black funnels, or
droplets suspended above planar black holes, in finite volume. In the funnel case, changing
the volume should result in a large flow of heat along the horizon on short timescales. In
the droplet/planar case, the planar horizon will respond rapidly to the change in volume
by changing its temperature. It is only over very long timescales associated with Hawking
radiation in the bulk that it will re-equilibrate with the droplet, whose temperature is fixed
to be TH by its connection to the boundary black hole. Though we consider only deconfined
phases, in this latter case the heat exchange with the black hole would be more typical of
what one would expect in a confined phase of the field theory.

The solutions from §4 containing black droplets suspended above hyperbolic black holes
with a different temperature provide some support for this picture. These solutions are
static in the limit of a classical AdS bulk, though they will feature a flow of heat when bulk
quantum effects are included. It would be interesting to explore the space of such solutions
more thoroughly, especially for asymptotically flat black holes.

Black funnel solutions displaying a constant flow of heat either into or out of the boundary
black hole may also prove tractable, at least with numerical methods. One may be able to
fix the temperature of the shoulder region of Fig. 1 independently of the boundary black
hole temperature TH . This is a stationary situation, in which one expects a stationary bulk
AdS solution. However, rather remarkably, the event horizon cannot be a smooth Killing
horizon, as such horizons have uniform temperature. While stationary black holes without
Killing horizons are unfamiliar, there is no contradiction with the known rigidity theorems
(e.g. [58]) which require a compactly generated horizon. Furthermore, the constant flow of
heat implies that the boundary stress tensor must diverge on the past horizon of the field
theory black hole, suggesting that the bulk solution is also singular on the past horizon. The
situation is reminiscent of the considerations of the fluid-gravity correspondence [40] where
arbitrary fluid flows in the field theory were mapped to inhomogeneous, dynamical black
holes in the bulk AdS spacetime, albeit with a crucial distinction: since the fluid-gravity
solutions are necessarily dynamical, no novel stationary solutions are known in that context.

The possibility of such novel solutions raises many further questions about the relation
between the boundary heat flow and the bulk horizon generators, compatibility with Ray-
chaudhuri’s theorem, and the bulk description of the flows of negative energy across the
horizon of the field theory black holes that one associates with Hawking radiation in the
field theory. After all, from the field theory perspective, it must be this Hawking radiation
that carries heat outward from the field theory black hole.

Implications for Braneworlds: In this work we have concentrated on bulk solutions
which extend to the AdS boundary, where we can fix any metric as a boundary condition.
However, one may imagine attempting to cut off such solutions with a so-called “ultra-violet
(UV) brane” so that the solution instead ends on a dynamical boundary at finite distance.
One expects this to be possible at least at the level of initial data, though because the UV
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brane is dynamical the resulting evolution may take a rather different form. Nevertheless,
it would be very interesting to understand the dynamics that result from cutting off any of
the classes of solutions described above. One expects equilibrium solutions to remain static,
but not necessarily stable.

A primary question in this field remains the end-state of the instability associated with
the AdS black strings (or equivalently the Schwarzschild soliton strings from our discussion
of confining theories). While one expects a decay to a stable droplet attached to the brane,
an instability to the formation of a black funnel is not ruled out. If it arises, this would lead
to a drastic modification of our understanding of brane-world black holes.

Acknowledgements

It is a pleasure to thank Roberto Emparan, Jim Hartle, Gary Horowitz, Shamit Kachru, Hong
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A The limit λ→ −1 for µ = µc, κ = 1

This appendix studies the limit λ → −1 for µ = µc, κ = 1, holding the bulk AdS scale `4
fixed. Since `→ 0, the metric (4.1) degenerates. In contrast, taking the scaling limit :

λ→ −1, µ = µc, with

X =
x− x0√
λ+ 1

, Y =
y − x0√
λ+ 1

,
`√

1 + λ
, Φ =

√
1 + λφ, t, fixed, (A.1)

yields the finite result:

ds2 =
`24

(X − Y )2

(
−(1− Y 2) dt2 +

dY 2

1− Y 2
+
dX2

X2
+X2 dΦ2

)
, (A.2)

with horizons at Y = ±1. The induced metric on the boundary (4.4) in this limit reduces to

ds2 = −(1−X2) dt2 +
dX2

X2 (1−X2)
+X2 dΦ2 . (A.3)

We see that the horizons in the boundary metric (A.3) are of finite size and finite tem-
perature, TH = 1/2π, so that they do not probe the large RTH regime discussed in §2.

27



Nevertheles, quadrants II and III describe black funnels, while quadrants I and IV describe
non-compact versions of black droplets20 suspended above hyperbolic black holes. This time
the droplets and hyperbolic black holes are in equilibrium. All singularities have disappeared.
Furthermore, near X = 0 the solution asymptotes to the M = 0 hyperbolic black hole (4.6),
which is just AdS4 in accelerated coordinates [30]. The boundary stress tensor vanishes for
this solution, and can be shown to vanish for (A.2) as well.
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