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Temporal Logics for Concurrent Recursive Programs: Satisfiability and Model Checking ⋆

We develop a general framework for the design of temporal logics for concurrent recursive programs. A program execution is modeled as a partial order with multiple nesting relations. To specify properties of executions, we consider any temporal logic whose modalities are definable in monadic second-order logic and that, in addition, allows PDL-like path expressions. This captures, in a unifying framework, a wide range of logics defined for ranked and unranked trees, nested words, and Mazurkiewicz traces that have been studied separately. We show that satisfiability and model checking are decidable in EXPTIME and 2EXPTIME, depending on the precise path modalities.

Introduction

We are concerned with the analysis of computer programs and systems that consist of several components sharing an access to resources such as variables or channels. Any component itself might be built of several modules that can be called recursively resulting in complex infinite-state systems. The analysis of such programs, which consist of a fixed number of recursive threads communicating with one another, is particularly challenging, due to the intrinsically high complexity of interaction between its components. All the more, it is important to provide tools and algorithms that support the design of correct programs, or verify if a given program corresponds to a specification.

It is widely acknowledged that linear-time temporal logic (LTL) [START_REF] Pnueli | The temporal logic of programs[END_REF] is a yardstick among the specification languages. It combines high expressiveness (equivalence to first-order logic [START_REF] Kamp | Tense Logic and the Theory of Linear Order[END_REF]) with a reasonable complexity of decision problems such as satisfiability and model checking. LTL has originally been considered for finite-state sequential programs. As real programs are often concurrent or rely on recursive procedures, LTL has been extended in two directions.

First, asynchronous finite-state programs (asynchronous automata) [START_REF] Zielonka | Notes on finite asynchronous automata[END_REF] are a formal model of shared-memory systems and properly generalize finite-state sequential programs. Their executions are no longer sequential (i.e., totally ordered) but can be naturally modeled as graphs or partial orders. In the literature, these structures are known as Mazurkiewicz traces. They look back on a long list of now classic results that smoothly extend the purely sequential setting (e.g., expressive equivalence to first-order logic) [START_REF] Diekert | The Book of Traces[END_REF][START_REF] Diekert | Pure future local temporal logics are expressively complete for Mazurkiewicz traces[END_REF].

Second, in an influential paper, Alur and Madhusudan extend the finite-state sequential model to visibly pushdown automata (VPA) [START_REF] Alur | Adding nesting structure to words[END_REF]. VPA are a flexible model for recursive programs, where subroutines can be called and executed while the current thread is suspended. The execution of a VPA is still totally ordered. However, it comes with some extra information that relates a subroutine call with the corresponding return position, which gives rise to the notion of nested words [START_REF] Alur | Adding nesting structure to words[END_REF]. Alur et al. recently defined versions of LTL towards this infinitestate setting [START_REF] Alur | A temporal logic of nested calls and returns[END_REF][START_REF] Alur | Firstorder and temporal logics for nested words[END_REF] that can be considered as canonical counterparts of the classical logic introduced by Pnueli.

To model programs that involve both recursion and concurrency, one needs to mix both views. Most approaches to modeling concurrent recursive programs, however, reduce concurrency to interleaving and neglect a behavioral semantics that preserves independencies between program events [START_REF] Qadeer | Context-bounded model checking of concurrent software[END_REF][START_REF] La Torre | A robust class of context-sensitive languages[END_REF][START_REF] La Torre | Context-bounded analysis of concurrent queue systems[END_REF][START_REF] Atig | Global Model Checking of Ordered Multi-Pushdown Systems[END_REF]. A first model for concurrent recursive programs with partial-order semantics was considered in [START_REF] Bollig | Realizability of concurrent recursive programs[END_REF]. Executions of their concurrent VPA equip Mazurkiewicz traces with multiple nesting relations. Temporal logics have not been considered, though, and there is for now no canonical merge of the two existing approaches. It must be noted that satisfiability is undecidable when considering multiple nesting relations, even for simple logics. Yet, it becomes decidable if we restrict to system behaviors that can be executed within a bounded number of phase switches, a notion introduced in [START_REF] La Torre | A robust class of context-sensitive languages[END_REF]. A phase switch consists of a transfer of control from one process to another. This allows for the discovery of many errors, since they typically manifest themselves after a few phase switches [START_REF] Qadeer | Context-bounded model checking of concurrent software[END_REF].

In this paper, we present linear-time temporal logics for concurrent recursive programs. A temporal logic is parametrized by a finite set of modalities that are definable in monadic second-order logic (cf. [START_REF] Gastin | Satisfiability and model checking for MSO-definable temporal logics are in PSPACE[END_REF]). In addition, it provides path expressions similar to those from PDL [START_REF] Fischer | Propositional dynamic logic of regular programs[END_REF] or XPath [START_REF] Libkin | Logics for Unranked Trees: An Overview[END_REF], which are orthogonal to the modalities. This general framework captures temporal logics considered in [START_REF] Alur | A temporal logic of nested calls and returns[END_REF][START_REF] Alur | Firstorder and temporal logics for nested words[END_REF][START_REF] Dax | Alternation elimination for automata over nested words[END_REF] when we restrict to one process, and it captures those considered in [START_REF] Diekert | Pure future local temporal logics are expressively complete for Mazurkiewicz traces[END_REF][START_REF] Gastin | Satisfiability and model checking for MSO-definable temporal logics are in PSPACE[END_REF][START_REF] Gastin | Uniform satisfiability problem for local temporal logics over Mazurkiewicz traces[END_REF] when we go without recursion. Our decision procedures for the (bounded phase) satisfiability problem are optimal in all these special cases, but provide a unifying proof. They also apply to other structures such as ranked and unranked trees. We then use our logics for model checking. To do so, we provide a system model whose behavioral semantics preserves concurrency (unlike the models from [START_REF] Qadeer | Context-bounded model checking of concurrent software[END_REF][START_REF] Atig | Global Model Checking of Ordered Multi-Pushdown Systems[END_REF][START_REF] La Torre | A robust class of context-sensitive languages[END_REF]). The complexity upper bounds from satisfiability are preserved.

Summarizing, we provide a first framework to specify linear-time properties of concurrent recursive programs appropriately over partial orders.

Outline In Section 2, we introduce some basic notions such as graphs and trees, and we define nested traces, which serve as our model of program executions. Section 3 provides a range of temporal logics over nested traces. In Section 4, we state and solve their satisfiability problem. Section 5 addresses model checking.

Graphs, Nested Traces, and Trees

To model the behavior of distributed systems, we consider labeled graphs, each representing one single execution. A node of a graph is an event that can be observed during an execution. Its labeling reveals its type (e.g., procedure call, return, or internal) or some processes that are involved in its execution. Edges reflect causal dependencies: an edge (u, v) from node u to node v implies that u happens before v. A labeling of (u, v) may provide information about the kind of causality between u and v (e.g., successive events on some process).

Accordingly, we consider a signature, which is a pair S = (Σ, Γ ) consisting of a finite set Σ of node labelings and a finite set Γ of edge labelings. Throughout the paper, we assume |Σ| ≥ 1 and |Γ | ≥ 2. An S-graph is a structure G = (V, λ, ν) where V is a non-empty set of countably many nodes, λ : V → 2 Σ is the nodelabeling function, and ν : (V × V ) → 2 Γ is the edge-labeling function, with the intuitive understanding that there is an edge between u and v iff ν(u, v) = ∅.

For σ ∈ Σ, V σ := {u ∈ V | σ ∈ λ(u)} denotes the set of nodes that are labeled with σ. Moreover, for γ ∈ Γ , E γ := {(u, v) ∈ V × V | γ ∈ ν(u, v)}
denotes the set of edges with labeling γ. Then, E := γ∈Γ E γ is the set of all the edges. We require that the transitive closure E + of E is a well-founded (strict) partial order on V . We write ≺ G or simply ≺ for E + , and we write G or for E * . Next, we consider concrete classes of S-graphs.

Nested Traces

To model executions of concurrent recursive programs that communicate via shared variables, we introduce graphs with multiple nesting relations. We fix non-empty finite sets Proc and Act, and let Type = {call, ret, int}. Then, Σ = Proc ∪ Act ∪ Type is the set of node labelings. Its component Type indicates whether an event is a procedure call, a return, or an internal action. A nesting edge connects a procedure call with the corresponding return, and will be labeled by cr ∈ Γ . In addition, we use succ p ∈ Γ to label those edges that link successive events of process p ∈ Proc. Thus, Γ = {succ p | p ∈ Proc} ∪ {cr}. We obtain the signature S = (Σ, Γ ). Formally, a nested (Mazurkiewicz) trace over Proc and Act is an S-graph G = (V, λ, ν) such that the following hold:

T1 V = V call ⊎ V ret ⊎ V int = a∈Act V a = p∈Proc V p
T2 for all processes p, q ∈ Proc with p = q, we have

V p ∩ V q ⊆ V int T3 for all p ∈ Proc, E succ p is the direct successor relation of a total order on V p T4 E cr ⊆ (V call × V ret ) ∩ p∈Proc (V p × V p ) T5 for all (u, v), (u ′ , v ′ ) ∈ E cr , we have u = u ′ iff v = v ′ T6 for all p ∈ Proc and u ∈ V call ∩ V p and v ′ ∈ V ret ∩ V p , if u ≺ v ′ then either there exists v v ′ with (u, v) ∈ E cr or there exists u ′ u with (u ′ , v ′ ) ∈ E cr
Intuitively, each event has exactly one type and one action and belongs to at least one process (T1), synchronizing events are always internal (T2), along any process the events are totally ordered (T3), a nesting edge is always between a call and a return of the same process (T4), and cr-edges restricted to any process are well nested (T5 and T6). Note that we may have unmatched calls or returns. For u ∈ V , we let Proc(u) = λ(u) ∩ Proc. When |Proc| = 1, then a nested trace is a nested word in the classical sense [START_REF] Alur | Adding nesting structure to words[END_REF]. The set of nested traces over Proc and Act is denoted by Traces(Proc, Act). Figure 1 depicts a nested trace over Proc = {p, q} and Act = {c, r, sv }. Action c denotes a call, r a return, and sv reveals some synchronization via a shared variable. Node labelings from Proc are given by the gray-shaded regions, i.e., sv -events involve both p and q. Edge labelings succ p and succ q are abbreviated by p and q, resp.

We introduce a restricted class of nested traces over Proc and Act . It is parametrized by an (existential) upper bound k ≥ 1 on the number of phases that a trace needs to be executed. In each phase, return events belong to one dedicated process. Let us first introduce the notion of linearization. A linearization of a nested trace G = (V, λ, ν) is any structure (V, λ, ≤) such that ≤ is a total order extending . Fig. 2 depicts a linearization of the nested trace from Fig. 1. We identify isomorphic structures so that a linearization can be considered as a word over 2 Σ . Note that, for every word w ∈ (2 Σ ) * , there is at most one (up to isomorphism) nested trace G such that w is a linearization of G [START_REF] Diekert | The Book of Traces[END_REF].

For k ≥ 1, a word w ∈ (2 Σ ) * is a k-phase word if it can be written as

w 1 • • • w k
where, for all i ∈ {1, . . . , k}, there is p ∈ Proc such that for each letter a of w i we have ret ∈ a implies p ∈ a. A nested trace is called a k-phase nested trace if at least one of its linearizations is a k-phase word. The set of k-phase nested traces over Proc and Act is denoted by Traces k (Proc, Act). We denote by Lin k (G) the set of linearizations of nested trace G that are k-phase words. In particular, G is a k-phase nested trace iff Lin k (G) = ∅. The nested trace from Fig. 1 is a 2-phase trace: its linearization from Fig. 2 schedules returns of q before all returns of p.

Ranked Trees Let S = (Σ, Γ ). An S-tree is an S-graph t = (V, λ, ν). We require that there is a "root" u 0 ∈ V such that for all u, v, v ′ ∈ V and γ, γ ′ ∈ Γ :

(i) (u 0 , u) ∈ E * , and (v, u), (v ′ , u) ∈ E implies v = v ′ (ii) (u, v), (u, v ′ ) ∈ E γ implies v = v ′ , and (u, v) ∈ E γ ∩ E γ ′ implies γ = γ ′
The tree structure is enforced by (i), and (ii) ensures that every node has at most one γ-successor and edges have a unique label from Γ , which can be seen as a set of directions. Thus, Γ = {left, right} yields binary trees. The set of all S-trees is denoted Trees(S).

Ordered Unranked Trees Each node in an ordered unranked tree can have a potentially unbounded number of children, and the children of any node are totally ordered. Formally it is an S-graph t = (V, λ, ν) over S = (Σ, Γ ) where

Γ = {child, next}. Again, there is a "root" u 0 ∈ V such that for all u, v, v ′ ∈ V : (i) (u 0 , u) ∈ E * and (u 0 , u) / ∈ E next (ii) (v, u), (v ′ , u) ∈ E child implies v = v ′ , and (v, u), (v ′ , u) ∈ E next implies v = v ′ (iii) (u, v), (u, v ′ ) ∈ E next implies v = v ′ and (u, v) ∈ E γ ∩ E γ ′ implies γ = γ ′ (iv) (u, v) ∈ E child implies that there exists v 0 ∈ V such that (u, v 0 ) ∈ E child and, (u, v ′ ) ∈ E child if and only if (v 0 , v ′ ) ∈ E * next .
The set of all ordered unranked trees over S is denoted o.u.Trees(S).

Temporal Logic

In this section, let S = (Σ, Γ ) be any signature. We study temporal logics whose modalities are defined in the monadic second-order (MSO) logic over S-graphs, which we recall in the following. We use x, y, . . . to denote first-order variables which vary over nodes of the graphs, and X, Y, . . . to denote second-order variables which vary over sets of nodes. The syntax of MSO(S) is given by the grammar ϕ ::

= σ(x) | γ(x, y) | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ |
∃Xϕ where σ ranges over Σ, γ ranges over Γ , x and y are first-order variables, and X is a second-order variable. We use ≺, the transitive closure of the relations induced by Γ , freely as it can be expressed in MSO(S). For an S-graph G = (V, λ, ν) and a formula ϕ(x 1 , . . . , x n , X 1 , . . . , X m ) with free variables in {x 1 , . . . , x n , X 1 , . . . , X m }, we write G |= ϕ(u 1 , . . . , u n , U 1 , . . . , U m ) if ϕ is evaluated to true when interpreting the variables by u 1 , . . . , u n ∈ V and U 1 , . . . , U m ⊆ V , respectively.

We will use MSO formulas to define modalities of a temporal logic. For m ∈ N = {0, 1, 2, . . .}, we call ϕ ∈ MSO(S) an m-ary modality if its free variables consist of m set variables X 1 , . . . , X m and one first-order variable x.

A temporal logic over S is given by a triple L = (M, arity, [[-]]) including a finite set M of modality names, a mapping arity : M → N, and a mapping

[[-]] : M → MSO(S) such that, for M ∈ M with arity(M ) = m, [[M ]
] is an m-ary modality. Its syntax, i.e., the set of formulas ϕ ∈ Form(L) is given by

ϕ ::= σ | ¬ϕ | ϕ ∨ ϕ | M (ϕ, . . . , ϕ arity(M) ) | ∃π π ::= ?ϕ | γ | γ -1 | π ∪ π | π ∩ π | π • π | π * [[σ]] G := V σ [[¬ϕ]] G := V \ [[ϕ]] G [[ϕ 1 ∨ ϕ 2 ]] G := [[ϕ 1 ]] G ∪ [[ϕ 2 ]] G [[M (ϕ 1 , . . . , ϕ m )]] G := {u ∈ V | G |= [[M ]](u, [[ϕ 1 ]] G , . . . , [[ϕ m ]] G )} [[∃π]] G := {u ∈ V | there is v ∈ V such that (u, v) ∈ [[π]] G } [[?ϕ]] G := {(u, u) | u ∈ [[ϕ]] G } [[γ]] G := E γ [[γ -1 ]] G := E -1 γ [[π ⊗ τ ]] G := [[π]] G ⊗ [[τ ]] G [[π * ]] G := [[π]] * G Fig. 3. Semantics of temporal logic
where σ ranges over Σ, M ranges over M, and γ ranges over Γ . We call ϕ a node formula and π a path formula (or path expression). Their semantics wrt. an S-graph G = (V, λ, ν) is defined inductively: for subformulas ϕ, we obtain a set

[[ϕ]] G ⊆ V , containing the nodes of G that satisfy ϕ. Accordingly, [[π]] G ⊆ V × V
is the set of pairs of nodes linked with a path defined by π. Then, ∃π is the set of nodes that admit a path following π. Formally, [[-]] G is given in Fig. 3 where

⊗ ∈ {∪, ∩, •} (• denotes the product of two relations). We may write G, u |= ϕ if u ∈ [[ϕ]] G and G, u, v |= π if (u, v) ∈ [[π]] G . We also use π + := π • π * .
An intersection free temporal logic over S is defined as expected: path expressions do not contain subformulas of the form π 1 ∩π 2 . Moreover, a path-expression free temporal logic does not contain formulas of the form ∃π.

Remark 1. We can easily include π -1 also in our syntax but it is redundant:

(?ϕ) -1 = ?ϕ, (π -1 ) -1 = π, (π 1 ∪ π 2 ) -1 = π -1 1 ∪ π -1 2 , (π 1 ∩ π 2 ) -1 = π -1 1 ∩ π -1 2 , (π 1 • π 2 ) -1 = π -1 2 • π -1 1 and (π * ) -1 = (π -1 ) * Example 2.
We consider the path-expression free temporal logic CTL over (Σ, Γ ) (interpreted over (Σ, Γ )-trees) [START_REF] Clarke | Design and synthesis of synchronization skeletons using branching-time temporal logic[END_REF]. The modalities are M = {EX, EG, EU} with EX and EG being unary and EU being binary. Node formula EX ϕ holds at a node if there is a child satisfying ϕ. Thus,

[[EX]](x, X) = ∃y (x ≺• y ∧ y ∈ X)
where x ≺• y := γ∈Γ γ(x, y). Formula EG ϕ means that there is an infinite path starting from the current node where ϕ always holds. Formula ϕ EU ψ means that there is a path starting from the current node satisfying ϕ until ψ :

[[EG]](x, X) = ∃Y (Y ⊆ X ∧ x ∈ Y ∧ ∀z (z ∈ Y → ∃z ′ (z ′ ∈ Y ∧ z ≺• z ′ ))) [[EU]](x, X 1 , X 2 ) = ∃z (x z ∧ z ∈ X 2 ∧ ∀y (x y ≺ z → y ∈ X 1 ))
Example 3. Our approach captures various logics over unranked trees (see [START_REF] Libkin | Logics for Unranked Trees: An Overview[END_REF] for an overview). E.g., the intersection free temporal logic L - 0 with no modalities over ordered unranked trees is precisely regular XPath [START_REF] Calvanese | An Automata-Theoretic Approach to Regular XPath[END_REF].

Example 4. We give a property over nested traces using a path expression: ϕ = ¬∃(cr ∩ (?q • ( γ∈Γ γ) + • ?(call ∧ p) • ( γ∈Γ γ) + )) means that process p is not allowed to call a new procedure when it is in the scope of an active procedure call from q. The first call node along q in Fig. 1 does not satisfy this property due to the second call of p.

Example 5. We now present a path-expression free temporal logic over nested traces, NTrLTL = (M, arity, [[-]]). The unary modalities are given by {X cr , Y cr } ∪ {X p , Y p | p ∈ Proc}. Intuitively, X p ϕ means that ϕ holds at the next p-position and X cr claims that we are at a call position and ϕ holds at the corresponding return position. The dual past modalities are Y p and Y cr . Formally, the semantics of the future modalities is given by

[[X p ]](x, X) = ∃y (p(y) ∧ x ≺ y ∧ y ∈ X ∧ ∀z (p(z) ∧ x ≺ z → y z)) [[X cr ]](x, X) = ∃y (cr(x, y) ∧ y ∈ X)
The binary modalities consist of {EU, ES, AU, AS, EU a , ES a , EU s , ES s } and {U p , S p , U a p , S a p , U s p , S s p | p ∈ Proc}. Formula ϕ EU ψ means that in the graph G there is a path not using cr-edges from the current node satisfying ϕ until ψ, whereas ϕ AU ψ means that in the partial order G there is a future node satisfying ψ, and ϕ should hold on all nodes in between. Formally, the semantics is given by

[[AU]](x, X 1 , X 2 ) = ∃z (x z ∧ z ∈ X 2 ∧ ∀y (x y ≺ z → z ∈ X 1 )) [[EU]](x, X 1 , X 2 ) = ∃z∃Y (z ∈ X 2 ∧ Y ⊆ X 1 ∧ ∀y (y ∈ Y ∨ y = z) → (y = x ∨ ∃y ′ (y ′ ∈ Y ∧ q∈Proc succ q (y ′ , y))))
A summary path in G is a path that may freely use cr-edges. Formally, the semantics [

[EU s ]](x, X 1 , X 2 ) is defined as ∃z∃Y (z ∈ X 2 ∧ Y ⊆ X 1 ∧ ∀y (y ∈ Y ∨ y = z) → (y = x ∨ ∃y ′ (y ′ ∈ Y ∧ (cr(y ′ , y) ∨ q∈Proc succ q (y ′ , y)))))
An abstract path in G is a path which does not take a succ q -edge from a call node or to a return node. Restricting to abstract paths we obtain the modality

EU a whose semantics [[EU a ]](x, X 1 , X 2 ) is defined as ∃z∃Y (z ∈ X 2 ∧ Y ⊆ X 1 ∧ ∀y (y ∈ Y ∨ y = z) → (y = x ∨ ∃y ′ (y ′ ∈ Y ∧ (cr(y ′ , y) ∨ (¬call(y ′ ) ∧ ¬ret(y) ∧ q∈Proc succ q (y ′ , y))))))
Modalities U p , U s p and U a p are obtained from EU, EU s and EU a by restricting to paths on process p. The semantics is obtained easily by adding the constraint p(x) and replacing q∈Proc succ q by succ p in the formulas above. For instance, the formula ⊤ U a p q says that in the abstract future (that is, in the scope of the current procedure call and with the same stack contents) of process p, there is a synchronizing action with process q.

Modalities AS, ES, ES s , ES a , S p , S s p , and S a p are the past-time counterparts of the above future modalities.

Note that this example captures various logics defined in [START_REF] Alur | Firstorder and temporal logics for nested words[END_REF] for the case |Proc| = 1. For example, when we choose {X cr , Y cr , X p , Y p , EU s , ES s } to be our modalities (where p is the only process in Proc), our logic is precisely NWTL.

In the next section we show that satisfiability problem of any MSO-definable temporal logic L over any of the structures defined in Section 2 (that is, kphase nested traces, ranked trees, and unranked trees) is decidable in 2EXPTIME. Moreover, if L is intersection free, then it is decidable in EXPTIME. Question: Are there t ∈ Trees(S) and node u of t such that t, u |= ϕ ? Theorem 7 ( [START_REF] Göller | PDL with intersection and converse: satisfiability and infinite-state model checking[END_REF][START_REF] Lange | 2-ExpTime lower bounds for Propositional Dynamic Logics with Intersection[END_REF][START_REF] Fischer | Propositional dynamic logic of regular programs[END_REF][START_REF] Vardi | The taming of converse: Reasoning about two-way computations[END_REF]). Let L 0 be the temporal logic over S with M = ∅. The problem Tree-Sat(L 0 ) is 2EXPTIME-complete [START_REF] Göller | PDL with intersection and converse: satisfiability and infinite-state model checking[END_REF][START_REF] Lange | 2-ExpTime lower bounds for Propositional Dynamic Logics with Intersection[END_REF]. For the intersection free fragment L - 0 , the problem Tree-Sat(L - 0 ) is EXPTIME-complete [START_REF] Fischer | Propositional dynamic logic of regular programs[END_REF][START_REF] Vardi | The taming of converse: Reasoning about two-way computations[END_REF]. We will extend these results to logics L and L -including MSO modalities. For this, we need the notion of an alternating 2-way tree automaton.

Alternating 2-way Tree Automata An alternating 2-way tree automaton (A2A) over S = (Σ, Γ ) of index r ∈ N is a tuple A = (Q, δ, q 0 , Acc) where Q is a finite set of states, q 0 ∈ Q is the initial state, Acc : Q → N is a parity acceptance condition with r = max(Acc(Q)), and

δ : Q × 2 Σ × 2 D → B + (D × Q)
is the transition function where D = Γ ∪ {stay, up} and B + (D × Q) is the set of positive boolean formulas over D × Q. We only give an intuition of the semantics of A2A and refer to [START_REF] Vardi | The taming of converse: Reasoning about two-way computations[END_REF][START_REF] Göller | PDL with intersection and converse: satisfiability and infinite-state model checking[END_REF] for details. An A2A walks in an S-tree t = (V, λ, ν). A configuration is a set of "threads" (q, u) where q ∈ Q and u ∈ V is the current node. For every thread (q, u), we have to choose some model {(d 1 , q 1 ), . . . , (d n , q n )} of δ(q, λ(u), D ′ ) where D ′ is the set of directions available at u. Then, we replace (q, u) with n new threads (q i , u i ) for 1 ≤ i ≤ n where u i is obtained from u by following direction d i (if d i = stay, then u i = u). The parity acceptance condition has to be applied to all infinite paths when we consider the run as a tree, threads (q i , u i ) being the children of (q, u). For u ∈ V , a run over (t, u) is a run that starts in the single configuration (q 0 , u). The semantics [[A]] t contains all nodes u of t such that there is an accepting run of A over (t, u).

Theorem 8 ([23]

). Given an A2A A of index r with n states, one can check in time exponential in n • r if there is a tree t such that

[[A]] t = ∅.
The main ingredient of the proof of Theorem 7 is the construction of an A2A from a given formula, whose existence is given by the following lemma.

Lemma 9 ([14]

). Consider the temporal logic L 0 over S with M = ∅. For every formula ϕ ∈ Form(L 0 ), we can construct an A2A B ϕ over S of exponential size such that, for all S-trees t, we have

[[ϕ]] t = [[B ϕ ]] t . Moreover, if ϕ ∈ Form(L - 0 ) is intersection free, then B ϕ is of polynomial size.
Using Theorem 8 and Lemma 9, we can extend Theorem 7: Theorem 10. Let L be a temporal logic over S. The problem Tree-Sat(L) is 2EXPTIME-complete. For the intersection free fragment L -, Tree-Sat(L -) is

EXPTIME-complete.
Proof. The lower bounds follow from Theorem 7. We show the upper bounds. Let ϕ be any L formula. Let Subf(ϕ) denote the set of subformulas of ϕ and let top(ξ) denote the topmost symbol of ξ ∈ Subf(ϕ) which could be ∃ or a modality M ∈ M ∪ Σ ∪ {¬, ∨}: below, we treat atomic propositions σ ∈ Σ, negation ¬, and disjunction ∨ as modalities of arities 0, 1, and 2 resp.

For each modality M ∈ M ∪ Σ ∪ {¬, ∨} of arity m, we define an MSO(S) formula ψ M with free variables X 0 , . . . , X m by

ψ M (X 0 , X 1 , . . . , X m ) := ∀x (x ∈ X 0 ←→ [[M ]](x, X 1 , . . . , X m )) .
Let S m = (Σ ∪ {X 0 , . . . , X m }, Γ ) so that the node labeling encodes the valuations of the free set variables as usual. By Rabin's theorem, there is a nondeterministic (N1A) tree automaton A M recognizing all S m -trees satisfying ψ M . Note that A M for M ∈ Σ ∪ {¬, ∨} has only one state.

Let ∃π(ξ 1 , . . . , ξ m ) ∈ Subf(ϕ) where ξ 1 , . . . , ξ m are the node formulas checked in path π. Replacing ξ 1 , . . . , ξ m by set variables X 1 , . . . , X m (or new predicates) we will construct using Lemma 9 an A2A A ∃π accepting all S m -trees satisfying the "formula"

ψ ∃π (X 0 , X 1 , . . . , X m ) := ∀x (x ∈ X 0 ←→ ∃π(X 1 , . . . , X m )) .
By Lemma 9, we can construct automata B 1 and B 2 for ∃π(X 1 , . . . , X m ) and ¬∃π(X 1 , . . . , X m ), resp., which are L 0 formulas. Let ι 1 and ι 2 be the initial states of B 1 and B 2 . The automaton A ∃π includes the disjoint union of B 1 and B 2 plus a new initial state ι (with even priority in the acceptance condition) and, for σ ⊆ Σ ∪ {X 0 , . . . , X m } and D ′ ⊆ D, the transition

δ(ι, σ, D ′ ) = γ∈D ′ (γ, ι) ∧ (stay, ι 1 ) if X 0 ∈ σ (stay, ι 2 ) otherwise.
By Lemma 9, the size of A ∃π is exponential (resp. polynomial) in the size of π(X 1 , . . . , X m ) (resp. if this path expression is intersection free). The final automaton A runs over S ϕ -trees t where S ϕ = (Σ ∪ Subf(ϕ), Γ ), i.e., the node labeling includes the (guessed) truth values for Subf(ϕ). To check that these guesses are correct, A runs an automaton A ξ for each ξ ∈ Subf(ϕ).

For each ξ 0 = M (ξ 1 , . . . , ξ m ) ∈ Subf(ϕ) with M ∈ M ∪ Σ ∪ {¬, ∨}, we define an automaton A ξ0 over S ϕ -trees by taking a copy of A M which reads a label σ ⊆ Σ ∪ Subf(ϕ) of t as if it was σ ∩ (Σ ∪ {ξ 0 , . . . , ξ m }) with ξ i further replaced by X i . Similarly, for each ξ 0 = ∃π(ξ 1 , . . . , ξ m ) ∈ Subf(ϕ), we define an automaton A ξ0 over S ϕ -trees by taking a copy of A ∃π which reads a label σ ⊆ Σ ∪ Subf(ϕ) of t as above.

Finally, A is the disjoint union of all A ξ for ξ ∈ Subf(ϕ) together with a new initial state ι which starts all the automata A ξ with the initial transitions δ(ι, σ, D ′ ) = ξ∈Subf(ϕ) (stay, ι ξ ) for all D ′ ⊆ D. We can check that an S ϕ -tree t = (V, λ, ν) is accepted by A iff its projection t ′ = (V, λ ′ , ν) on Σ is an S-tree and for each node u ∈ V we have λ(u)\Σ = {ξ ∈ Subf(ϕ) | t ′ , u |= ξ}. Therefore, satisfiability of ϕ over S-trees is reduced to emptiness of the conjunction of A with a two state automaton checking that ϕ ∈ λ(u) for some node u of the tree.

The size of A is at most exponential (resp. polynomial) in the size of ϕ. Indeed, each A ξ with top(ξ) = ∃ is of constant size since the MSO modalities are fixed and not part of the input. If ξ = ∃π(ξ 1 , . . . , ξ m ) then the size of A ξ is exponential in |π(X 1 , . . . , X m )| (note that ξ i is replaced by X i so that its size does not influence the size of A ξ ). Moreover, if π is intersection free then the size of A ξ is polynomial in |π(X 1 , . . . , X m )|. We deduce from Theorem 8 the 2EXPTIME upper bound for Tree-Sat(L) and the EXPTIME upper bound for Tree-Sat(L -), the intersection free case.

⊓ ⊔ Remark 11. Satisfiability for the path-expression free logic CTL considered in Example 2 is known to be EXPTIME-complete [START_REF] Clarke | Design and synthesis of synchronization skeletons using branching-time temporal logic[END_REF]. The above procedure gives an EXPTIME procedure for the satisfiability checking meeting the lower bound.

From Ordered Unranked Trees to Binary Trees We recall that an ordered unranked tree can be encoded as a binary tree by removing the edges (u, v) ∈ E child whenever v is not a first-child. Note that E child can be retrieved from the binary encoding by the path expression child • next * . Hence any path expression over ordered unranked trees can be converted to a path expression over binary trees (with only a linear blowup in the size), and any MSO(S)formula over ordered unranked trees can be translated to an MSO(S)-formula over binary trees. Thus, Theorem 10 holds for ordered unranked trees as well: The 2EXPTIME lower bound follows from [START_REF] Lange | 2-ExpTime lower bounds for Propositional Dynamic Logics with Intersection[END_REF]. The EXPTIME lower bound is inherited from regular XPath [START_REF] Calvanese | An Automata-Theoretic Approach to Regular XPath[END_REF] (cf. Example 3).

From Nested Traces to Trees Now, we turn to nested traces and we will reduce the satisfiability problems for formulas over nested traces to the satisfiability problems over trees. More precisely, we will transform a given temporal logic over nested traces into some temporal logic over tree encodings of nested traces that "simulates" the original logic. This will allow us to solve the following problem, which is parametrized by Proc, Act, k ≥ 1, and a temporal logic L over the induced signature: The proof of Theorem 15 will be developed in the following. In order to exploit Theorem 10, we interpret a k-phase nested trace G = (V, λ, ν) in a (binary) S ′tree (where S ′ := (Σ ⊎ {1, . . . , k}, {left, right})) using the encoding from [START_REF] La Torre | A robust class of context-sensitive languages[END_REF], extended to infinite trees. Actually, [START_REF] La Torre | A robust class of context-sensitive languages[END_REF] does not consider nested traces but k-phase words. Therefore, we will use linearizations of nested traces. Let w = (V, λ, ≤) ∈ Lin k (G). By ⋖, we denote the direct successor relation of ≤. Suppose that V = {u 0 , u 1 , u 2 , . . .} and that u 0 ⋖ u 1 ⋖ u 2 ⋖ . . . is the corresponding total order. For 0 ≤ i < |V |, we let phase w (u i ) = min{j ∈ {1, . . . , k} | λ(u 0 ) . . . λ(u i ) is a j-phase word}. Intuitively, this provides a "tight" factorization of w. We associate with w the S ′ -tree t w k = (V, λ ′ , ν ′ ) where the node labeling is given by λ ′ (u i ) = λ(u i ) ∪ {phase w (u i )} and the sets of edges are defined by

E ′ right = E cr and E ′ left = ⋖ \ {(u, v) ∈ ⋖ | there is u ′ such that (u ′ , v) ∈ E cr }.
That is, the tree encoding is obtained from the linearization by adding the cr-edges as right children and removing the superfluous linear edges to return nodes having a matching call. Figure 4 depicts the tree t w 2 for the linearization w that was illustrated in Fig. 2. The edges removed from the linearization are shown in dotted lines. The newly added edges are labelled right. All -nodes are phase 1 and the -nodes are phase 2.

By Trees k (Proc, Act), we denote the set {t w k | w ∈ Lin k (G) for some G ∈ Traces k (Proc, Act)} of valid tree encodings. The following was proved in [START_REF] La Torre | A robust class of context-sensitive languages[END_REF] for finite structures, and extends easily to infinite structures.

Lemma 16 ([16]

). There is a formula TreeEnc k ∈ MSO(S ′ ) defining the set Trees k (Proc, Act). Also, there is less k (x, y) ∈ MSO(S ′ ) such that for all k-phase words w = (V, λ, ≤) and all u, v ∈ V , we have u < v in w iff t w k |= less k (u, v). Lemma 16 will be used to reduce nested-trace modalities to tree modalities in the proof of Theorem 15. We also need to deal with path expressions, which motivates the following lemma: Lemma 17. There exists a path expression succ ≤k over S ′ such that, for all kphase linearizations w = (V, λ, ≤), we have

[[succ ≤k ]] t w k = {(u, v) ∈ V 2 | u ⋖ v}.
In other words, succ ≤k encodes the successor relation ⋖ of ≤ in the tree encoding t w k of w. Moreover, the length of succ ≤k is exponential in k. 

Fig. 5. A 3-phase linearization and the corresponding tree encoding. Nodes in phase 1 are denoted , those in phase 2 are denoted and the nodes in phase 3 are denoted ♦. There are two stacks. The call return edges corresponding to stack 1 are shown above the line and those corresponding to stack 2 are shown below the line. Note that these edges are uniquely determined by the linearization. The dotted edges in the tree are the missing edges from the linearization. The sequence of nodes from the linearization is recovered by traversing the left-edges whenever possible, and the dotted edges otherwise. The label on the dotted edge says which case it corresponds to, in the path expressions succm-1,m and succm,m.

Proof. We give the path expression inductively by case analysis. The different cases are illustrated in Figure 5. In the next paragraph we make a few observations which will ease the understanding of the path expressions.

-The phase numbers are monotonically non-decreasing in the linearization.

Recall that the tree encoding is obtained from the linearization by adding the cr-edges as right children and removing the superfluous linear edges to return nodes having a matching call. Hence the phase numbers are monotonically non-decreasing in any path from the root to any node. -The left-successor of the tree always corresponds to a successor in the linearization.

-If a node has a right-child, then it is a call node, and the right-child is its corresponding return. -If u < v in the linearization, then there is a path from node u to node v in the tree which does not visit any node that comes after node v in the linearization. This can be proved by induction on v (with the total order ≤).

-If u ⋖ v in the linearization and node v is not the left-successor of node u, then node v is a return node which is attached to its call node. -The first node of any phase greater than 1 is always a return. Moreover it will be attached as a right-child if it is a matched return and as a left-child otherwise.

We inductively define a path expression succ ≤m for the successor relation of the linearization restricted to the nodes with phase at most m. That is,

[[succ ≤m ]] t w k = {(u, v) ∈ V 2 | u ⋖ v, phase w (u) ≤ m, phase w (v) ≤ m}. It will be of the form succ ≤m = succ ≤m-1 ∪ succ m-1,m (a) ∪ succ m,m (b) 
where cases (a) and (b) are specified below and illustrated in Figures 4 and5. The base case will be succ ≤1 = succ 1,1 .

(a) We will consider the case when u is the last node in phase m -1 and v is the first node in phase m. If v is a pending return (that is, it does not have a matching call), we have the path expression ?(m -1) • left • ?m. If v is a matched return, then v is the return of the most recent call with a return in phase m. For example situations, we refer to the edges labelled (1) in Figures 4 and5. This can be reached by the path expression prev-call-ret m which goes back to the most recent call which has a return in phase m, and then moves to that return.

prev-call-ret m = (?¬∃(right

• ?m) • succ ≤m-1 -1 ) * • right • ?m
Note that these two cases are mutually exclusive. That is, if a phase starts with a pending return, it is not possible to have a matched return in the same phase with the corresponding call belonging to a smaller phase. Hence we get the path expression from u to v in this case as:

succ m-1,m = ?(m -1) • left • ?m ∪ ?(m -1 ∧ ¬∃succ ≤m-1 ) • prev-call-ret m (1) 
(b) If two successive nodes u and v in the linearization are in the same phase m and are connected in the tree by a path where each node is in phase m, then either (i) we can reach v from u by taking a left edge, or (ii) v is a return appended to the latest pending call which is also in the phase m and has a return in phase m. In that case, we can reach v by moving up the tree along nodes in phase m until we find the first "pending call" and then taking the right edge to node v. For example situations of case (ii), please refer to the edges labelled (2) in Figures 4 and5. Note that, while moving up the tree, if we move from a right child to its parent, we are at a call node which cannot be a right child. Hence it is not possible to take right -1 twice in succession. Assume finally that the successive nodes u and v are in the same phase m, but there is no path from u to v visiting only nodes of phase m. This case arises when v is a return whose corresponding call is in a different phase. Now we can move up the tree from u until we see the first node, call it w, belonging to a smaller phase. Clearly w is a call node with its return w ′ in phase m. Since w ′ and v are return nodes in the same phase, the corresponding call of v will be before w, and in fact it will be the most recent call before w with its return in phase m. Moving from the parent of w to v is abstracted by the path expression prev-call-ret m . Examples are edges labelled (3) in Figures 4 and5.

The path expression succ m,m is given by:

succ m,m = (?m • left • ?m) ∪ ?(m ∧ ¬∃left) • [(right -1 ∪ ?(¬∃(right • ?m)) • left -1 • ?m] * • [right • ?m ∪ (2) right -1 • ?(¬m) • left -1 • prev-call-ret m ] (3) 
Note that right -1 • left -1 allows us to skip call nodes which were previously matched.

All nodes in phase 1 will be connected in the tree, hence we get the basis for the induction, succ ≤1 := succ 1,1 which simplifies to:

left • ?1 ∪ ?(1 ∧ ¬∃left) • [(right -1 ∪ ?¬∃(right • ?1)) • left -1 ] * • right • ?1
Note that the length of the path expression succ ≤m is exponential in m.

⊓ ⊔

We are now ready to prove Theorem 15. where less k is the formula from Lemma 16. Note that these transformations of the semantics of the modalities only depends on L and on k (which are not part of the input) and not on the formula for which we want to check satisfiability.

Proof (of

The translation T from formulas over L to "equivalent" formulas over L ′ is defined inductively for node formulas by

T (σ) = σ T (M (ϕ 1 , . . . , ϕ ℓ )) = M (T (ϕ 1 ), . . . , T (ϕ ℓ )) T (¬ϕ) = ¬T (ϕ) T (∃π) = ∃T (π) T (ϕ 1 ∨ ϕ 2 ) = T (ϕ 1 ) ∨ T (ϕ 2 )
and for path formulas by

T (?ϕ) = ?T (ϕ) T (π 1 ∪ π 2 ) = T (π 1 ) ∪ T (π 2 ) T (cr) = right T (π 1 ∩ π 2 ) = T (π 1 ) ∩ T (π 2 ) T (cr -1 ) = right -1 T (π 1 • π 2 ) = T (π 1 ) • T (π 2 ) T (succ p ) = ?p • succ ≤k • (?¬p • succ ≤k ) * • ?p T (π * ) = T (π) * T (succ -1 p ) = ?p • succ -1 ≤k • (?¬p • succ -1 ≤k ) * • ?p
where succ ≤k is defined in Lemma 17. Note that the transformation T (π) of a path formula π is linear in |π| since k is not part of the input. Now we check inductively that the translation T is correct. Let G = (V, λ, ν) ∈ Traces k (Proc, Act), let w = (V, λ, ≤) be a k-phase linearization of G and let t w k = (V, λ ′ , ν ′ ) be the tree encoding of w. We have to show that [

[ϕ]] G = [[T (ϕ)]] t w k for each node formula ϕ and [[π]] G = [[T (π)]] t w k for each path formula π. By definition of t w k we have immediately [[cr]] G = E cr = E right = [[right]] t w k .
The case succ p is more interesting. We have (u, v) ∈ [[succ p ]] G iff u is on process p and v is the first node (wrt. the ordering < of w) which is on process p. By Lemma 17, this is described by the formula T (succ p ) interpreted on the tree encoding t w k . The cases cr -1 and succ -1 p are similar and the remaining cases for path formulas are obtained directly by induction.

We turn now to node formulas. Again by definition of t w k we have immediately

[[σ]] G = {u ∈ V | σ ∈ λ(u)} = {u ∈ V | σ ∈ λ ′ (u)} = [[σ]] t w k for each σ ∈ Σ. The cases ¬ϕ, ϕ 1 ∨ ϕ 2 ,
and ∃π follow directly by induction. It remains to deal with a modality M of arity ℓ. We prove by induction on the MSO formula [[M ]] that for all U 1 , . . . , U ℓ ⊆ V and all nodes u ∈ V , we have G

|= [[M ]](u, U 1 , . . . , U ℓ ) iff t w k |= [[M ]] ′ (u, U 1 
, . . . , U ℓ ). Among the atomic subformulas, the only non trivial case is for succ p (x, y) and it follows from Lemma 16 and the definition of succ p (x, y) given above. The non atomic cases follow directly by induction.

Finally, a formula ϕ ∈ Form(L) is satisfiable over k-phase nested traces iff the formula Enc ∧ T (ϕ) ∈ Form(L ′ ) is satisfiable over S ′ -trees. Using Theorem 10 we get the upper bounds stated in Theorem 15. The lower bound for the intersection free fragment is proved in the following proposition.

⊓ ⊔ Proposition 18. Let Proc and Act be non-empty finite sets inducing S, let k ≥ 1, and let L -be an intersection free temporal logic over S. The problem Nested-Trace-Sat(L -, k) is EXPTIME-hard.

Proof. We show a reduction from the EXPTIME complete logic NWTL [START_REF] Alur | Firstorder and temporal logics for nested words[END_REF] to the temporal logic L - 0 with no modalities and only one process p. The modalities are X, Y, X cr , Y cr , U s and S s which are the same as EX, EY, X cr , Y cr , EU s and ES s of the temporal logic NTrLTL defined in Example 5 when |Proc| = 1. Below we give its semantics through path expressions. This also evinces the translation of an NWTL formula ϕ into an equivalent L - 0 -formula ϕ (by induction).

X ϕ = ∃(succ p • ϕ) Y ϕ = ∃(succ -1 p • ϕ) X cr ϕ = ∃(cr • ϕ) ϕ U s ψ = ∃((?ϕ • (succ p ∪ cr)) * • ?ψ) Y cr ϕ = ∃(cr -1 • ϕ) ϕ S s ψ = ∃((?ϕ • (succ -1 p ∪ cr -1 )) * • ?ψ) ⊓ ⊔ Remark 19.
If k is given as part of the input, the above method for modalities does not work: the new semantics [[M ]] ′ over trees depend on k and are no more fixed and independent of the input. However, if we consider the fragment L 0 with no MSO modalities, we get a 3EXPTIME procedure even if k is part of the input since the length of the path expression T (π) is linear in |π| and exponential in k.

Moreover, for the intersection free fragment L - 0 , we get a 2EXPTIME procedure.

Model Checking

Our approach extends to model checking. We can define a model of concurrent recursive programs, called concurrent recursive Kripke structures (CRK), that generates nested traces. It is similar to the concurrent visibly pushdown automata from [START_REF] Bollig | Realizability of concurrent recursive programs[END_REF]. Let S = P ⊆Proc S P . For s ∈ S and p ∈ Proc, we let s p be the p-th component of s (if it exists). A run of a CRK K is an S ′ -graph G = (V, λ, ν) where S ′ = (Σ ⊎ p∈Proc S p , Γ ) with Σ = Proc ∪ Act ∪ Type and Γ = {cr} ∪ {succ p | p ∈ Proc}, and the following conditions hold:

-The graph G without the labeling from p∈Proc S p is a nested trace. That is nt(G) := (V, λ ′ , ν) where λ ′ (u) = λ(u) ∩ Σ is a nested trace over Proc and Act.

-Every node u is labeled with one, and only one, state from S p for each process p ∈ Proc(u). This state is denoted ρ(u) p . The label of a node u does not contain any state from S p if p / ∈ Proc(u). That is, for p ∈ Proc and all u ∈ V ,

λ(u) ∩ S p = {ρ(u) p } if p ∈ λ(u) ∅ otherwise.
This defines a mapping ρ : V → S by ρ(u) = (ρ(u) p ) p∈Proc(u) . -Let us determine another mapping ρ -: V → S as follows: for u ∈ V , we let ρ -(u) = (ρ -(u) p ) p∈Proc(u) where ρ -(u) p = ρ(u ′ ) p if (u ′ , u) ∈ E succ p , and ρ -(u) p = ι p if there is no u ′ such that (u ′ , u) ∈ E succ p . The following hold, for every u, u ′ ∈ V and a ∈ Act:

• (ρ -(u), a, ρ(u)) ∈ ∆ call if u ∈ V call ∩ V a • (ρ -(u), a, ρ(u)) ∈ ∆ 1 ret if u ∈ V ret ∩ V a
and there is no v with (v, u) ∈ E cr • (ρ(u ′ ), ρ -(u), a, ρ(u)) ∈ ∆ 2 ret if u ∈ V ret ∩ V a and (u ′ , u) ∈ E cr • (ρ -(u), a, ρ(u))

∈ ∆ int if u ∈ V int ∩ V a
We are only interested in maximal runs. We say that a run G of a CRK K is maximal if G is not a strict prefix of another run of K. The language L(K) of K is the set {nt(G) | G is a maximal run of K}. By L k (K), we denote its restriction L(K) ∩ Traces k (Proc, Act) to k-phase nested traces.

Let Proc and Act be non-empty finite sets inducing signature S, let k ≥ 1, and let L be a temporal logic over S. We are interested in the following decision problem. Note that the sizes of Max and Trans are linear in the size of the CRK K. Moreover, a nested trace decorated with states satisfies MaxRun iff it defines a maximal run of the CRK K. Thus, K |= k ϕ iff the formula MaxRun ∧ ¬ EN ϕ is not satisfiable by a (state-labeled) k-phase nested trace. This concludes the reduction. ⊓ ⊔

Fig. 1 .Fig. 2 .

 12 Fig. 1. A nested trace over Proc = {p, q} and Act = {c, r, sv }
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  Satisfiability: From Trees to Nested Traces Consider any signature S = (Σ, Γ ) and temporal logic L over S. The following decision problem is well known. Problem 6. Tree-Sat(L): Instance: ϕ ∈ Form(L)

Problem 12 .Theorem 13 .

 1213 O-U-Tree-Sat(L): Instance: ϕ ∈ Form(L) Question: Are there t ∈ o.u.Trees(S) and node u of t such that t, u |= ϕ ? The problem O-U-Tree-Sat(L) is 2EXPTIME-complete. For the intersection free fragment L -, O-U-Tree-Sat(L -) is EXPTIME-complete.

Problem 14 .Fig. 4 .

 144 Fig. 4. The tree encoding of a 2-phase linearization

  Theorem 15). Let S = (Σ, Γ ) be the signature induced by Proc and Act, and let L = (M, arity, [[-]]) be the considered temporal logic over nested traces. For S ′ = (Σ ⊎ {1, . . . , k}, {left, right}), we define a new temporal logic L ′ = (M ′ , arity ′ , [[-]] ′ ) over S ′ -trees and give an inductive, linear-time computable translation T of formulas over L to "equivalent" formulas over L ′ . By "equivalent", we mean that for all G ∈ Traces k (Proc, Act) and all k-phase linearizations w of G, we have[[ϕ]] G = [[T (ϕ)]] t w k for each node formula ϕ over L and [[π]] G = [[T (π)]] t wk for each path formula π over L.We set M ′ = M ∪ {Enc} where Enc is a new modality with arity ′ (Enc) = 0 that characterizes valid tree encodings: the semantics [[Enc]] ′ is given by the formula TreeEnc k from Lemma 16. We also change the semantics of the modalities from M: for each M ∈ M, the new semantics [[M ]] ′ ∈ MSO(S ′ ) is obtained from [[M ]] ∈ MSO(S) by replacing each occurrence of cr(x, y) by right(x, y) and each occurrence of succ p (x, y) by succ p (x, y) := p(x) ∧ less k (x, y) ∧ p(y) ∧ ¬∃z (less k (x, z) ∧ p(z) ∧ less k (z, y))

Definition 20 .

 20 A concurrent recursive Kripke structure (CRK) over finite sets Proc and Act is a tuple K = ((S p ) p∈Proc , ∆, ι). The S p are disjont finite sets of local states (S p containing the local states of process p). Given a set P ⊆ Proc, we let S P := p∈P S p . The tuple ι ∈ S Proc is a global initial state. Finally, ∆ provides the transitions, which are divided into four sets:∆ = (∆ call , ∆ 1 ret , ∆ 2 ret , ∆ int ) where -∆ call ⊆ p∈Proc (S p × Act × S p ), -∆ 1 ret ⊆ p∈Proc (S p × Act × S p ),-∆ 2 ret ⊆ p∈Proc (S p × S p × Act × S p ), and -∆ int ⊆ P ⊆Proc (S P × Act × S P ).

Problem 21 .Theorem 22 .

 2122 Model-Checking(L, k):Instance: CRK K and ϕ ∈ Form(L) Question: Do we have K |= k ϕ, i.e., for all G ∈ L k (K), is there a node u of G such that G, u |= ϕ ?We show the following result: The problem Model-Checking(L, k) is in 2EXPTIME. For the intersection free fragment L -, Model-Checking(L -, k) in EXPTIME.

, and DIGITEO LoCoReP.

Proof. We will reduce the model-checking problem to the satisfiability problem by encoding maximal runs of a CRK K with a formula MaxRun. For this, we enrich L to L ′ with the additional unary modality EN (there exists a node) whose semantics is defined by [[EN]](x, X) = ∃y (y ∈ X). Now we will describe the maximal runs of the CRK K by the formula MaxRun = Val ∧ Max ∧ ¬ EN ¬Trans. Here, Val says that the labeling by states is valid. That is, no node is labelled by two states of the same process, and a node is labeled p iff it is labeled by some state from S p .

Formula Max says that the maximal nodes of the nested run do not enable any transition. Formula Trans says that the labeling of the current node and its predecessors comply with the transition relations.

For s ∈ S we let ∆ int (s) = {(a, s ′ ) ∈ Act × S | (s, a, s ′ ) ∈ ∆ int } and we define similarly ∆ call (s), ∆ ret (s), and ∆ ret (s 1 , s 2 ). In the following, for all s ∈ S and p ∈ Proc, let "s p = ι p " be a shorthand for true (⊤) if s p = ι p and false (⊥) otherwise. Then, we define

Then, we define Trans = Trans call ∨ Trans 1 ret ∨ Trans 2 ret ∨ Trans int .