N
N

N

HAL

open science

Temporal Logics for Concurrent Recursive Programs:
Satisfiability and Model Checking
Benedikt Bollig, Aiswarya Cyriac, Paul Gastin, Marc Zeitoun

» To cite this version:

Benedikt Bollig, Aiswarya Cyriac, Paul Gastin, Marc Zeitoun. Temporal Logics for Concurrent Re-
cursive Programs: Satisfiability and Model Checking. 2011. hal-00591139v1

HAL Id: hal-00591139
https://hal.science/hal-00591139v1

Submitted on 6 May 2011 (v1), last revised 23 Jun 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00591139v1
https://hal.archives-ouvertes.fr

Temporal Logics for Concurrent Recursive
Programs: Satisfiability and Model Checking*

Benedikt Bollig, Aiswarya Cyriac, Paul Gastin, and Marc Zeitoun

LSV, ENS Cachan, CNRS & INRIA, France
{bollig,cyriac,gastin,zeitoun}@lsv.ens-cachan.fr

Abstract. We develop a general framework for the design of temporal
logics for concurrent recursive programs. A program execution is modeled
as a partial order with multiple nesting relations. To specify properties of
executions, we consider any temporal logic whose modalities are definable
in monadic second-order logic and that, in addition, allows PDL-like path
expressions. This captures, in a unifying framework, a wide range of logics
defined for trees, nested words, and Mazurkiewicz traces that have been
studied separately. We show that satisfiability and model checking are
decidable in EXPTIME and 2EXPTIME, depending on the precise path

modalities.

1 Introduction

We are concerned with the analysis of computer programs and systems that
consist of several components sharing an access to resources such as variables
or channels. Any component itself might be built of several modules that can
be called recursively resulting in complex infinite-state systems. The analysis of
such programs, which consist of a fixed number of recursive threads communi-
cating with one another, is particularly challenging, due to the intrinsically high
complexity of interaction between its components. All the more, it is important
to provide tools and algorithms that support the design of correct programs, or
verify if a given program corresponds to a specification.

It is widely acknowledged that linear-time temporal logic (LTL) [I§] is a
yardstick among the specification languages, as it combines high expressiveness
(expressive equivalence to first-order logic [I4]) with a reasonable complexity
of related decision problems such as satisfiability and model checking. LTL has
originally been considered for finite-state sequential programs. However, real
programs are often concurrent or rely on recursive procedures. Therefore, LTL
has been extended in two directions.

First, asynchronous finite-state programs (or, asynchronous automata) [23]
are a formal model of shared-memory systems and properly generalize finite-
state sequential programs. Their executions are no longer sequential (i.e., totally
ordered) but can be naturally modeled as graphs or partial orders that describe

* Supported by ARCUS, DOTS (ANR-06-SETIN-003), and DIGITEO LoCoReP.

the simultaneous access by several processes to common resources. In the liter-
ature, these structures are known as Mazurkiewicz traces. They look back on a
long list of now classic results that smoothly extend the purely sequential setting
(e.g., expressive equivalence to first-order logic) [10/9].

Second, in an influential paper, Alur and Madhusudan extend the finite-state
sequential model to visibly pushdown automata (VPA) [3]. Equipped with a push-
down stack, VPA are a flexible model for recursive programs, where subroutines
can be called and executed while the current thread is suspended. This exten-
sion is quite different from that described before. The execution of a VPA is still
totally ordered. However, it comes with some extra information that relates a
subroutine call with the corresponding return position, which gives rise to the
notion of nested words [3]. Alur et al. recently defined versions of LTL towards
this infinite-state setting [2II] that can be considered as canonical counterparts
of the classical logic introduced by Pnueli.

To model programs that involve both recursion and concurrency, one needs
to mix both views. Most approaches to modeling concurrent recursive programs,
however, reduce concurrency to interleaving and neglect a behavioral semantics
that preserves independencies between program events [T9T5IT64]. A first model
for concurrent recursive programs with partial-order semantics was considered in
[5]. Executions of their concurrent VPA equip Mazurkiewicz traces with multiple
nesting relations. Temporal logics have not been considered, though, and there is
for now no canonical merge of the two existing approaches. It must be noted that
satisfiability is undecidable when considering multiple nesting relations, even
for simple logics. Yet, it becomes decidable if we restrict to system behaviors
that can be executed within a bounded number of phase switches, a notion
introduced in [I5]. A phase switch consists of a transfer of control from one
process to another. This allows for the discovery of many errors, since they
typically manifest themselves after a few phase switches [19].

In this paper, we present linear-time temporal logics for concurrent recursive
programs. A temporal logic is parametrized by a finite set of modalities that are
definable in monadic second-order logic. In addition, it provides path expressions
similar to those from PDL or XPath, which are orthogonal to the modalities.
This general framework captures temporal logics considered in [2TI8] when we
restrict to one process, and it captures those considered in [I1IT2] when we go
without recursion. Our decision procedures for the (bounded phase) satisfiability
problem are optimal in all these special cases, but provide a unifying proof. We
then use our logics for model checking, i.e., to verify an existing program against
a specification. To do so, we provide a system model whose behavioral semantics
preserves concurrency (unlike the models from [4[I5]). The complexity upper
bounds from satisfiability are preserved.

Summarizing, we provide a first framework to specify linear-time properties
of concurrent recursive programs appropriately over partial orders.

Outline In Section[2] we introduce some basic notions such as graphs and trees,
and we define nested traces, which serve as our model of program executions.

Section [3] provides a range of temporal logics over nested traces. In Section [] we
state and solve their satisfiability problem. Section [5| addresses model checking.

2 Graphs, Nested Traces, and Trees

To model the behavior of distributed systems, we consider labeled graphs, each
representing one single execution. A node of a graph is an event that can be
observed during an execution. Its labeling reveals its type (e.g., procedure call,
return, or internal) or some processes that are involved in its execution. Edges
reflect causal dependencies: an edge (u,v) from node u to node v implies that u
happens before v. A labeling of (u,v) may provide information about the kind
of causality between u and v (e.g., successive events on some process).
Accordingly, we consider a signature, which is a pair § = (X, I") consisting of
a finite set X' of node labelings and a finite set I" of edge labelings. Throughout
the paper, we assume | X| > 1 and |I’| > 2. An 8-graph is a structure G = (V, A\, v)
where V is a non-empty set of countably many nodes, A : V. — 2% is the node-
labeling function, and v : (V x V) — 21" is the edge-labeling function, with the
intuitive understanding that there is an edge between v and v iff v(u,v) # 0. For
o€ X, Vo:={ueV]|oe \u)} will denote the set of nodes that are labeled
with o. Moreover, for v € I', E, := {(u,v) € V. xV | v € v(u,v)} denotes the
set of edges that are labeled with ~. Then, E := U%F E, is the set of all the
edges. We suppose that graphs are acyclic, i.e., the transitive closure Et of E is
a (strict) partial order on V. We write <& or simply < for the partial order E*,
and we write <& or < for E*. Next, we consider concrete classes of 8-graphs.

Nested Traces To model executions of concurrent recursive programs that
communicate via shared variables, we introduce graphs with multiple nesting re-
lations. We fix non-empty finite sets Proc and Act, and let Type = {call, ret, int}.
With this, X' = Proc U Act U Type is the set of node labelings. Its component
Type indicates whether an action is a procedure call, a return, or, otherwise, an
internal action. A nesting edge connects a procedure call with the correspond-
ing return, which will be indicated by an edge labeling cr € I'. In addition,
we use succ, € I’ to label those edges that link successive events of process
p € Proc. Thus, I' = {succ, | p € Proc} U {cr}. We obtain the signature
8§ = (X, I'). Formally, a nested (Mazurkiewicz) trace over Proc and Act is an
8-graph G = (V, A, v) such that the following hold:

T1V = Ve & Viet & Vipt = &JaeAct Vo= UpEPmc VP

T2 for all p,q € Proc with p # ¢, we have V,, NV, C Viy

T3 for all p € Proc, Egycc, is the direct successor relation of a well founded total
order on V,

T4 Eer € (Veat % Viet) (1 Uy proc (Ve X V3)

T5 for all (u,v), (u',v") € Eer, we have u = o’ iff v =0’

T6 for all p € Proc and u € Veuy NV, and v' € Viee NV, if u < v’ then either
there exists v < v with (u,v) € E¢, or there exists v’ = u with (u/,v") € E¢p

Fig. 2. A 2-phase linearization

Intuitively, T1 says that each event has exactly one type and one action and
belongs to at least one process. T2 says that the synchronizing events are always
internal. T3 says that along any process the events are totally ordered. T4 says
that a nesting edge is always between a call node and a return node of the same
process. TH and T6 ensure that cr-edges restricted to any process are well nested.
Note that we may have unmatched calls or returns.

For u € V, we let Proc(u) = A(u) N Proc. When |Proc| = 1, then a nested
trace is a nested word in the classical sense [3]. The set of nested traces over
Proc and Act is denoted by Traces(Proc, Act). Figure [1| depicts a nested trace
over Proc = {p,q} and Act = {c,r,sv}. Action ¢ denotes a call, r a return,
and sv reveals some synchronization via a shared variable. Node labelings from
Proc are given by the gray-shaded regions. Edge labelings succ, and succ, are
abbreviated by p and ¢, respectively.

We introduce a restricted class of nested traces over Proc and Act. It is
parametrized by an (existential) upper bound k£ > 1 on the number of phases
that a trace needs to be executed. In each phase, return actions belong to one
dedicated process. Let us first introduce the notion of linearization. A lineariza-
tion of a nested trace G = (V, \,v) is any structure (V, A, <) such that < is a
total order extending <. Fig. [2| depicts a linearization of the nested trace from
Fig. [1} We identify isomorphic structures so that a linearization can be consid-
ered as a word over 2¥. Note that, for every word w € (2*)*, there is at most
one (up to isomorphism) nested trace G such that w is a linearization of G.

Now let & > 1. A word w € (2%)" is called a k-phase word if it can be written
as wy - - - wy where, for all ¢ € {1,...,k}, there is p € Proc such that for each
letter a of w; we have ret € a implies p € a.

A nested trace is called a k-phase nested trace if at least one of its lineariza-
tions is a k-phase word. The set of k-phase nested traces over Proc and Act
is denoted by Tracesy(Proc, Act). Moreover, we denote by Ling(G) the set of
linearizations of nested trace G that are k-phase words. In particular, G is a k-
phase nested trace iff Ling(G) # (0. The nested trace from Figure [1]is a 2-phase
trace: its linearization from Figure [2| schedules returns of ¢ before all returns
from process p.

Ranked Trees Let 8§ = (X, I") be a signature. An 8-tree is defined as an 8-
graph t = (V, A\, v) over 8. We require that there is a “root” ug € V such that
for all u,v,v’ € V and ~,7 € I' we have

(i) (ug,u) € E*, and (v,u), (v',u) € FE implies v = v/,
(i) (u,v),(u,v’") € Ey implies v = v" and (u,v) € E, N E,, implies v = 7'.

The tree structure is enforced by (i), and (ii) ensures that every node has at
most one y-successor and edges have a unique label from I', which can be seen
as a set of directions. Thus, I' = {left,right} yields binary trees. The set of
all 8-trees is denoted Trees(S).

Ordered Unranked Trees Each node in an ordered unranked tree can have
a potentially unbounded number of children, and the children of any node are
totally ordered. Formally it is an 8-graph ¢t = (V, A\, v) over 8§ = (X, I") where
I' = {child,next}. As before, we have a special node “root” ug € V such that
for all u,v,v" € V we have

(i) (uo,u) € E* and (ug,u) ¢ Enext

(i) (v,u), (v',u) € Ecpirqa implies v = ¢’ and (v,u), (v/,u) € FEpexy implies
v=1

(iii) (u,v), (u,v") € Fpexy implies v = v’ and (u,v) € E, N E, implies v =+

(iv) (u,v) € Ecpi1a implies that there exists vg € V such that (u,vg) € Eenia

and, (u,v") € Egpi1q if and only if (vg,v’) € EX

next-

The set of all ordered unranked trees over 8 is denoted o.u.Trees(8)

3 Temporal Logic

In this section, let § = (X, I') be any signature. We study temporal logics whose
modalities are defined in the monadic second-order (MSO) logic over 8-graphs,
which we recall in the following. We use z,y, ... to denote first-order variables
which vary over nodes of the graphs, and X,Y,... to denote second-order vari-
ables which vary over sets of nodes. The syntax of MSO(8) is given by the
grammar ¢ = o(z) | y(z,y) |z =y |z € X | ¢ | oVe| Izp | IXp where

o ranges over Y, v ranges over I', x and y are first-order variables, and X is a
second-order variable. We use <, the transitive closure of the relations induced
by I, freely as it can be expressed in MSO(8). For an 8-graph (V, A, v) and a for-
mula p(z1,...,2n, X1,...,X;,) with free variables in {z1,...,2,, X1,..., X},
we write G | o(u1, ..., upn, U, ..., Uy) if ¢ is evaluated to true when interpret-
ing the variables by uq,...,u, € V and Uy,...,U,, C V, respectively.

We will use MSO formulas to define modalities of a temporal logic. For ¢ €
MSO(8) and k > 1, we call ¢ a k-ary modality if its free variables consist of k
set variables X1, ..., Xy and one first order variable x.

A temporal logic over § is a triple £ = (M, arity, [—]) including a finite set
M of modality names, a mapping arity : M — IN = {0,1,2,...} assigning an
arity to each modality name, and a mapping [—] : M — MSO(8) such that, for
M e M with arity(M) = k, [M] is a k-ary modality. Its syntax, i.e., the set of
formulas ¢ € Form(L) is given by the grammar

o u= o | | eVve | Mg,....,p) | 3r
~——
arity(M)

7 ou= 20 |y |yt | aUr | N7 | mom | 7

where o ranges over X, M ranges over M, and ~ ranges over I'. We call ¢ a
node formula and m a path formula (or path expression). Their semantics wrt.
an 8-graph G = (V, \,v) is defined inductively: for subformulas ¢, we obtain
a set [p]e € V, which contains the nodes of G that satisfy . Accordingly,
[7le €V x V is the set of pairs of nodes linked with a path defined by 7. Then,
I is the set of nodes that admit a path following 7. Formally, [-]¢ is given as
follows:

[ole =Vo [~¢le =V \lele lo1Ve2]e:=lpi]eUle2]e
[M(pr, .. om)]e ={ueV |G E[M](u,le]e: - lecle)}
[3n]c := {u € V | there is v € V such that (u,v) € [7]a}
I
7]

Q

C)

[?¢]c = {(u,u) | u € [¢]c} Ve = E, [v e :=E;!
[r® = [7]e @ [7]a [= 7]

Q

where ® € {U,N,0}. We may write G,u = ¢ if u € [¢]¢ and G,u,v | 7 if
(u,v) € [r]e. We also use 7t :=mor*

An intersection free temporal logzc over 8 is defined as expected. The only
difference from the above definition is that path expressions do not contain
subformulas of the form m; N wo. Moreover, a path-expression free temporal logic
does not contain formulas of the form Jr.

Remark 1. We can easily include 7~ ! also in our syntax but it is redundant:
(2¢)~1 =20, (71'_1)_1 =7, (mUm) ' =a7 Umy !, (mNm) L =27t Ny,
1

(miom) ' =my omy ! and (n*)~! = (7~ 1)*

Ezample 2. We consider the path-expression free temporal logic CTL over (X, I')
(interpreted over (X, I')-trees). The modalities are M = {EX, EG, EU} with EX
and EG being unary and EU being binary. Node formula EX ¢ holds at a position
if there is a child satisfying ¢. Formula EG ¢ means that there is an infinite path
starting from the current node where ¢ always holds. Formula ¢ EU ¢ means
that there is a path starting from the current node satisfying ¢ until 1. We let

<y =V, @y

[EX](z,X) =Ty (x <y Ay € X)
[EG](2, X)=TFY (Y CX Az €Y AVz(2€Y =T (Z €Y Az ~<2)))
[EU](z, X1, X2) =Fz(z 2 2Az2€ XoAVy(z Xy <2z—y € X))

Ezample 3. The intersection free temporal logic £, with no modalities over
ordered unranked trees is precisely regular XPath [6].

Ezample 4. We give a property over nested traces using a path expression: ¢ :=
—3(er N (?qo (U er)t o ?(call Ap) o (U7€F7)+))' This means that process
p is not allowed to call a new procedure when it is in the scope of an active
procedure call from process ¢q. The first call node along process ¢ in Figure []
does not satisfy this property due to the second call of process p.

Ezxample 5. We now present a path-expression free temporal logic over nested
traces, NTrLTL = (M, arity, [—]). The unary modalities are {X*, Y }U{X,, Y, |
p € Proc}. Intuitively, X, ¢ means that ¢ holds at the next p-position and X
claims that we are at a call position and ¢ holds at the corresponding return
position. The dual past modalities are Y, and Y. Formally, the semantics of
the future modalities is given by

Xol(z, X) =Ty py) Az <yAye X AVz(p(z) AN <z =y < 2))
[X*](z, X) = 3y (cx(z,y) Ay € X)

The binary modalities consist of {EU, ES, AU, AS, EU* ES® EU® ES°} and
{U,,S,,U%,52 Us.S% | p € Proc}. Formula ¢ EU ¢ means that in the graph G

P2 p) ¥psJp
there is a path not using cr-edges from the current node satisfying ¢ until 1,

whereas ¢ AU ¢ means that in the partial order G there is a future node satis-
fying ¢, and ¢ should hold on all nodes in between. Formally, the semantics is
given by
[AU(z, X1, X2) =Tz (z 22 Az € XoAVy(x Sy <2z — 2 € X1))
[EU](z,X1,X2) =323Y (2, € Xo A Y C XiAVy(yeYVy=2)—>(y=zV

Ely/ (y/ € Y A \/qEP'roc Succq (y/7 y))))
A summary path in G is a path that may freely use cr-edges. Formally, the
semantics [EU®](z, X1, X2) is defined as

=AY (€ XoNY C X1 AVy(yeYVy=2)—=(y=aV
W (Y €Y A(er(y,9) V Ve proe Succq (', 9)))))

An abstract path in G is a path which does not take a succg,-edge from a call
node or to a return node. Restricting to abstract paths we obtain the modality
EU® whose semantics [EU*](z, X1, X2) is defined as

Y (2 € Xo N Y C X1 AVy(yeYVy=2)=(y=aV
W (Y €Y A(er(y,y) vV (—call(y’) A =ret(y) AV e proe Succq (¥))))))

Modalities Uy, Uy and U are obtained from EU, EU® and EU* by restricting to
paths on process p. The semantics is obtained easily by adding the constraint
p(z) and replacing quPmc succ, by succ, in the formulas above. For instance,
the formula T UJ ¢ says that in the abstract future (that is, in the scope of the
current procedure call and with the same stack contents) of process p, there is
a synchronizing action with process gq.

Modalities AS, ES, ES®, ES®, S;, S; and S are the past time counterparts
of the above future modalities. Note that this example captures various logics
defined in [I] for the case |Proc| = 1.

In the next section we show that satisfiability problem of any MSO-definable
temporal logic £ over any of the structures defined in Section [2| (that is, k-
phase nested traces, ranked trees and unranked trees) is decidable in 2EXPTIME.
Moreover, if £ is intersection free, then it is decidable in EXPTIME.

4 Satisfiability: From Trees to Nested Traces

Consider any signature 8 = (X, I") and temporal logic £ over 8. The following
decision problem is well known.

Problem 6. TREE-SAT(L):
INSTANCE: ¢ € Form(L)
QUESTION: Are there ¢t € Trees(8) and node u of t such that t,u = ¢?

Theorem 7. Let Ly be the temporal logic over 8§ with M = 0. The problem
TREE-SAT(Ly) is 2EXPTIME-complete [13]17]. The problem TREE-SAT(Ly) for
the intersection free fragment is EXPTIME-complete [Z])].

We will extend these results to logics £ and £~ including MSO modalities.
For this, we need the notion of alternating 2-way tree automata.

Alternating 2-way Tree Automata An alternating 2-way tree automaton
(A2A) of index r € IN and over 8§ = (X,I') is a tuple A = (Q, 4, qo, Acc)
where () is a finite set of states, ¢ € @ is the initial state, Acc : Q@ — IN
is a parity acceptance condition with r = max(4cc(Q)), and § : Q x 2¥ —
BT ((I'U{stay,up}) x Q) is the transition function. Here, BT (A) denotes the set
of positive boolean formulas over set A. We only give an intuitive explanation of
the semantics of A2A and refer to [2IJ13] for details. Roughly speaking, an A2A
walks in an 8-tree t = (V, A, v). A configuration is a set of “proof obligations” or

“threads” (¢q,u) where ¢ € Q and u € V is the current node. For every thread
(g, u), we have to choose some model {(d1,q1),. .., (dn,qn)} of §(¢, A(u)). Then,
we replace (g, u) with n new threads (¢;,u;) for 1 < i < n where u; is obtained
from u by following direction d; (if d; = stay, then u; = w). The parity accep-
tance condition has to be applied to all infinite paths when we consider the run
as a tree, threads (g;, u;) being the children of (¢, u). For u € V, a run over (t, u)
is a run that starts in the single configuration (go,w). The semantics [A]: of A
wrt. tree ¢ contains all nodes u of ¢ such that there is an accepting run of A over

(t,u).

Theorem 8 ([22]). Given an A2A A of index r with n states, one can check
in time ezponential in n - v if there is a tree t such that [A]; # 0.

The main ingredient of the proof of Theorem [7]is the construction of an A2A
from a given formula, whose existence is given by the following lemma.

Lemma 9 ([13]). Consider the temporal logic Lo over 8 with M = (). For every
formula ¢ € Lo, we can construct an A2A B, over § of exponential size such
that, for all 8-trees t, we have [p]; = [By]¢. Moreover, if p € Ly is intersection
free, then B, is of polynomial size.

Using Theorem [§| and Lemma [9} we can extend Theorem [7}

Theorem 10. Let £ be a temporal logic over 8. The problem TREE-SAT(L)
is 2EXPTIME-complete and the problem TREE-SAT(L™) for the intersection free
fragment is EXPTIME-complete.

Proof. The lower bounds follow from Theorem [7] We show the upper bounds.
Let ¢ be any £ formula. Let Subf(y) denote the set of subformulas of ¢ and let
top(&) denote the topmost symbol of & € Subf(p) which could be 3 or a modality
M € MU X U{~,V}: below, we treat atomic propositions o € X, negation —
and disjunction V as modalities of arities 0, 1 and 2 respectively.

For each modality M € MU X U {—,V} of arity m, we define an MSO(S)
formula 1), with free variables X, ..., X,, by

’l[}M(Xo,Xl,...,Xm) =V (.Z' - XO <— [[M]](.’L‘,Xl,. ;Xm>)

Let 8, = (X U{Xo,...,X;n}, I') so that the node labeling encodes the valua-
tions of the free set variables as usual. By Rabin’s theorem [20], there is a non
deterministic (N1A) tree automaton Ays recognizing all 8,,-trees satisfying 1.
Note that the automata Ays for M € X' U {—=,V} have only one state.

Let 3n(&1,...,&n) € Subf(p) where &, ...,&, are the node formulas that
are checked in path m. Replacing &1, ..., &y, by set variables X,..., X,, (or new
predicates) we will construct using Lemma@ an A2A Az, accepting all §,,-trees
satisfying the “formula”

’(/Jgﬂ-(XmX]_, . ,Xm) =V (.’1? € Xg +— 37’1’()(]_7 . ,Xm))

By Lemma @ we can construct automata B; and Bs for In(Xy,...,X,,) and
—3m(Xy,...,Xm), respectively, which are £y formulas. Let ¢; and 5 be the
initial states of By and Bs. The automaton As, includes the disjoint union of B
and Bs plus a new initial state ¢ and the transitions for 0 C X U{Xy,..., X, }

(stay,t1) f Xp€o
(stay,ta) otherwise.

0(¢,0) = /\ (v, 0) A

yel'

By Lemma @ the size of As, is exponential (resp. polynomial) in the size of
m(X1,...,Xm) (resp. if this path expression is intersection free).

The final automaton A will run over 8,-trees t where 8, = (X' USubf(yp),I")
so that the node labeling includes the (guessed) truth values of all subformulas
of . Automaton A will check that these guesses are correct by running an
automaton A for each £ € Subf(yp).

For each & = M(&1,...,&n) € Subf(p) with M € MU X U {—,V}, we
define an automaton A¢, over §,-trees by taking a copy of Ay which reads a
label o C X' U Subf(yp) of t as if it was o N (X U {&,...,&m}) with & further
replaced by X;. Similarly, for each & = Im(&1,...,&n) € Subf(p), we define
an automaton Ag, over 8 -trees by taking a copy of A3, which reads a label
o C X USubf(p) of ¢t as above.

Finally, A is the disjoint union of all A¢ for & € Subf(p) together with a
new initial state + which starts all the automata .4; with the initial transition
6(t,0) = Agesubt(y)(5tay; te). We can check that, an Se-tree t = (V,A,v) is
accepted by A iff its projection ' = (V,), v) on X' is an 8-tree and for each node
u € V we have A(u) \ X' = {£ € Subf(p) | t/,u |= &}. Therefore, satisfiability of
@ over S-trees is reduced to emptiness of the conjunction of A with a two state
automaton checking that ¢ € A(u) for some node u of the tree.

The size of A is at most exponential (resp. polynomial) in the size of .
Indeed, each A¢ with top(§) # 3 is of constant size since the MSO modalities
are fixed and not part of the input. If £ = 3n(&;, ..., &) then the size of A is
exponential in |7(Xy,...,X,,)| (note that & is replaced by X; so that its size
does not influence the size of A¢). Moreover, if 7 is intersection free then the
size of Ag is polynomial in |7(Xq,...,X,,)|. We deduce from Theorem (8] the
2EXPTIME upper bound for TREE-SAT(L) and the EXPTIME upper bound for
TREE-SAT(L ™), the intersection free case. O

Remark 11. Satisfiability for the path-expression free logic CTL considered in
Example|2|is known to be EXPTIME-complete [7]. The above procedure gives an
EXPTIME procedure for the satisfiability checking meeting the lower bound.

From Ordered Unranked Trees to Binary Trees We recall that an ordered
unranked tree can be encoded as a binary tree by removing the edges (u,v) €
FE.pi1q4 whenever v is not a first-child. Note that E.pi14 can be retrieved from
the binary encoding by the path expressions child o next*. Hence any path
expression over ordered unranked trees can be converted to a path expression
over binary trees (with only a linear blowup in the size), and any MSO(S)-
formula over ordered unranked trees can be translated to an MSO(8)-formula

10

over binary trees. Hence Theorem [10| holds for ordered unranked trees as well.
Stated as problem and theorem:

Problem 12. ORDRED-UNRANKED-TREE-SAT(L):
INSTANCE: ¢ € Form(£L)
QUESTION: Are there t € o.u. Trees(8) and node u of ¢ such that ¢t,u = ¢ ?

Theorem 13. Let L be a temporal logic over signature 8. Then, the prob-
lem ORDRED-UNRANKED-TREE-SAT(L) is in 2EXPTIME. Moreover, the prob-
lem ORDRED-UNRANKED-TREE-SAT(L™) for the intersection free fragment is
EXPTIME-complete.

The hardness result follows since the logic regular XPath [6] (cf. Example [3]) is
EXPTIME-hard.

From Nested Traces to Trees Now, we turn to nested traces and we will
reduce the satisfiability problems for formulas over nested traces to the satisfi-
ability problems over trees. More precisely, we will transform a given temporal
logic over nested traces into some temporal logic over tree encodings of nested
traces that “simulates” the original logic. This will allow us to solve the following
problem, which is parametrized by Proc, Act, k > 1, and a temporal logic £ over
the induced signature:

Problem 14. NESTED-TRACE-SAT(L, k):
INSTANCE: ¢ € Form(L)
QUESTION: Is there G € Tracesy(Proc, Act) and node u such that G,u = ¢ ?

Our main result in this section reads as follows:

Theorem 15. Let Proc and Act be finite sets inducing 8, let k > 1, and let L be
a temporal logic over 8. The problem NESTED-TRACE-SAT(L, k) is in 2EXPTIME
and the problem NESTED-TRACE-SAT(L™, k) for the intersection free fragment
is EXPTIME-complete.

The proof of Theorem[I5]will be developed in the following. In order to exploit
Theorem we interpret a k-phase nested trace G = (V, A, v) in a (binary) 8'-
tree (where 8 := (X W{1,...,k},{left,right})) using the encoding from [I5],
extended to infinite trees. Actually, [I5] does not consider nested traces but
k-phase words. Therefore, we will use linearizations of nested traces. Let w =
(V, A\, <) € Ling(G). By <, we denote the direct successor relation of <. Suppose
that V' = {ug,u1, us,...} and that ug < u; < ug < ... is the corresponding total
order. For 0 < i < |V|, we let phase, (u;) = min{j € {1,...,k} | A(uo) ... Mu;)
is a j-phase word}. Intuitively, this provides a “tight” factorization of w. We
associate with w the (X'W{1,...,k}, {left,right})-tree ¢}’ = (V, X', v) where
the node labeling is given by X (u;) = A(u;) U{phase,,(u;)} and the sets of edges
are defined by Ey;.. = Fer and Flg, = <\ {(u,v) € < | there is v’ such
that (u',v) € Ec}. That is, the tree encoding is obtained from the linearization

11

right

right

Fig. 3. The tree encoding of a 2-phase linearization

by adding the cr-edges as right children and removing the superfluous linear
edges to return nodes having a matching call. Figure [3| depicts the tree t§’ for
the linearization w that was illustrated in Figure 2] The edges removed from
the linearization are shown in dotted lines. The newly added edges are labelled
right. All O-nodes are phase 1 and the ()-nodes are phase 2.

By Treesi(Proc, Act), we denote the set {t} | w € Ling(G) for some G €
Tracesy(Proc, Act)} of valid tree encodings. The following was proved in [15]
for finite multiply nested words and their tree encodings, and extends easily to
infinite structures.

Lemma 16 ([15]). There is an MSO(8')-formula TreeEncy defining the set
Treesy(Proc, Act) of 8'-trees. Moreover, there is an MSO(8')-formula lessy(x, y)
such that for all k-phase multiply nested words w = (V, X\, <) and all pairs of
nodes u,v € V. we have u < v in w iff t}’ = lessy(u, v).

The formulas of the above lemma will be used to reduce nested-trace modal-
ities to tree modalities in the proof of Theorem But we also need to deal
with path expressions, which motivates the following lemma.

Lemma 17. Let w = (V,\, <) be a k-phase linearization. There exists a path
expression succ<y over 8 that encodes the successor relation < of < in the tree
encoding t}¥ of w. More precisely, [succ<y]w = {(u,v) € VZ | u<v}. Moreover,
the length of succ<y is exponential in k.

Proof. We give the path expression inductively by case analysis. The different
cases are illustrated in Figure [In the next paragraph we make a few observa-
tions which will ease the understanding of the path expressions.

— The phase numbers are monotonically non-decreasing in the linearization.
Recall that the tree encoding is obtained from the linearization by adding the
cr-edges as right children and removing the superfluous linear edges to return
nodes having a matching call. Hence the phase numbers are monotonically
non-decreasing in any path from the root to any node.

— The left-successor of the tree always corresponds to a successor in the
linearization.

12

Fig. 4. A 3-phase linearization and the corresponding tree encoding. Nodes in phase 1
are denoted [, those in phase 2 are denoted () and the nodes in phase 3 are denoted ¢.
There are two stacks. The call return edges corresponding to stack 1 are shown above
the line and those corresponding to stack 2 are shown below the line. Note that these
edges are uniquely determined by the linearization. The dotted edges in the tree are
the missing edges from the linearization. The sequence of nodes from the linearization
is recovered by traversing the left-edges whenever possible, and the dotted edges
otherwise. The label on the dotted edge says which case it corresponds to, in the path
expressions sucCm—1,m and SuCCm,m.

— If a node has a right-child, then it is a call node, and the right-child is its
corresponding return.

— If v < v in the linearization, then there is a path from node u to node v
in the tree which does not visit any node that comes after node v in the
linearization. This can be proved by induction on v (with the total order <).

— If u < v in the linearization and node v is not the left-successor of node u,
then node v is a return node which is attached to its call node.

13

— The first node of any phase greater than 1 is always a return. Moreover it
will be attached as a right-child if it is a matched return and as a left-child
otherwise.

We inductively define a path expression succ<,, for the successor relation
of the linearization restricted to the nodes with phase at most m. That is,
[succem]i = {(u,v) € V2 | u < v, phase,(u) < m, phase,(v) < m}. It
will be of the form

SuccC<,, = SucCC<,,—1 Usucc,,_1., Usucc,, m

(a) (b)

where cases (a) and (b) are specified below and illustrated in Figures [3[and
The base case will be succ<; = succy ;.

(a) We will consider the case when w is the last node in phase m — 1 and v
is the first node in phase m. If v is a pending return (that is, it does not have
a matching call), we have the path expression ?(m — 1) o left o ?m. If v is a
matched return, then v is the return of the most recent call with a return in
phase m. For example situations, we refer to the edges labelled (1) in Figures
and [l This can be reached by the path expression prev-call-ret,, which goes
back to the most recent call which has a return in phase m, and then moves to
that return.

prev-call-ret,, = (?—=3(right o ?m) o succ<,,—1 ')* oright o ?m

Note that these two cases are mutually exclusive. That is, if a phase starts with
a pending return, it is not possible to have a matched return in the same phase
with the corresponding call belonging to a smaller phase. Hence we get the path
expression from u to v in this case as:

sucCpm—_1,m = 7(m —1)olefto?m

U?(m — 1 A —3succ<y,—1) o prev-call-ret,, (1)

(b) If two successive nodes u and v in the linearization are in the same phase
m and are connected in the tree by a path where each node is in phase m,
then either (i) we can reach v from u by taking a left edge, or (ii) v is a return
appended to the latest pending call which is also in the phase m and has a return
in phase m. In that case, we can reach v by moving up the tree along nodes in
phase m until we find the first “pending call” and then taking the right edge
to node v. For example situations of case (ii), please refer to the edges labelled
(2) in Figures [3[and [4] Note that, while moving up the tree, if we move from
a right child to its parent, we are at a call node which cannot be a right child.
Hence it is not possible to take right~! twice in succession.

Assume finally that the successive nodes v and v are in the same phase m,
but there is no path from u to v visiting only nodes of phase m. This case arises
when v is a return whose corresponding call is in a different phase. Now we can
move up the tree from w until we see the first node, call it w, belonging to a

14

smaller phase. Clearly w is a call node with its return w’ in phase m. Since w’
and v are return nodes in the same phase, the corresponding call of v will be
before w, and in fact it will be the most recent call before w with its return in
phase m. Moving from the parent of w to v is abstracted by the path expression
prev-call-ret,,. Examples are edges labelled (3) in Figures|3| and

The path expression succ,, ,, is given by:

succy,m = (Tmolefto?m)U
?(m A —31left) o [(right ' U ?(=3(right o ?m)) o left ! o ?m]*o

[right o ?m U (2)

right ™' o ?(—m) o left ™!

oprev-call-ret,,] (3)
Note that right ! o left~! allows us to skip call nodes which were previously
matched.

All nodes in phase 1 will be connected in the tree, hence we get the basis for
the induction, succ<; := succ; ; which simplifies to:

lefto?1U
?2(1 A —Jleft) o [(right ' U ?-3(right o ?1)) o left '|* oright o 71

Note that the length of the path expression succ<,, is exponential in m. a
We are now ready to prove Theorem [T5]

Proof (of Theorem[15). Let 8 = (X, I") be the signature induced by Proc and
Act, and let £ = (M, arity, [-]) be the considered temporal logic over nested
traces. For 8’ = (YW {l,...,k},{left,right}), we define a new temporal logic
L = (M, arity’,[-]") over 8'-trees and give an inductive, linear-time com-
putable translation T of formulas over £ to “equivalent” formulas over £’. By
“equivalent”, we mean that for all G € Tracesy(Proc, Act) and all k-phase lin-
earizations w of G, we have [¢]c = [T(p)]s for each node formula ¢ over £
and [r]g = [T'(7)]sw for each path formula 7 over L.

We set M’ = MU{Enc} where Enc is a new modality with arity’(Enc) = 0 that
characterizes valid tree encodings: the semantics [Enc]’ is given by the formula
TreeEnc from Lemma We also change the semantics of the modalities from
M: for each M € M, the new semantics [M] € MSO(8') is obtained from
[M] € MSO(8) by replacing each occurrence of cr(z,y) by right(z,y) and each
occurrence of succ,(z,y) by

succ,(z,y) = p(z) Alessy(z,y) A p(y) A =3z (lessi(z, 2) A p(z) Alessi(z,y))

where lessy, is the formula from Lemma Note that these transformations of
the semantics of the modalities only depends on £ and on k (which are not part
of the input) and not on the formula for which we want to check satisfiability.

15

The translation T from formulas over £ to “equivalent” formulas over £’ is
defined inductively for node formulas by

T(o)=0 T(M(p1,---p0) = M(T(¢1),...,T(e))
T(~p) = ~T(p) T(3m) = 3T (m)
T(p1V@2) =T (1) VT (p2)

and for path formulas by

T(?¢) =1T(¢) T(my Umg) =T(m)UT(m2)
T(cr) = right T(m Nmy) =T(m) NT(mg)
T(cr™') =right™* T(m omg) = T(my) o T(ma)
T(succ,) = 7p o succ<y o (?—posucc<y) o ?p T(r*) =T(m)"
T'(succ, H=2o succ<,c (7-po succ<k) o?p

where succ<y, is defined in Lemma Note that the transformation T'(7) of a
path formula 7 is linear in |7| since k is not part of the input.

Now we check inductively that the translation T is correct. Let G = (V, A\, v) €
Tracesy(Proc, Act), let w = (V,\,<) be a k-phase linearization of G and let
ty = (V,N,V) be the tree encoding of w. We have to show that [p]c = [T'(¢)]s
for each node formula ¢ and [r]c = [T'(7)]s» for each path formula 7.

By definition of ¢} we have immediately [cr]g = Eer = Erignt = [[right]]t;cu.
The case succ, is more interesting. We have (u,v) € [succy]q iff u is on process
p and v is the first node (wrt. the ordering < of w) which is on process p. By
Lemma this is described by the formula T'(succ,) interpreted on the tree
encoding t}’. The cases cr~' and succ, ' are similar and the remaining cases for
path formulas are obtained directly by induction.

We turn now to node formulas. Again by definition of ¢}’ we have immediately
[ole ={uveV]oeu}={ueV|oeNu)}=][o]w for each o € X. The
cases T, 1V s, and 37 follow directly by induction. It remains to deal with a
modality M of arity . We prove by induction on the MSO formula [M] that for
allUy,...,U; CV and all nodes u € V, we have G |= [M](u, Uy, ...,Up) iff t} |=
[M] (u,Ux,...,Us). Among the atomic subformulas, the only non trivial case is
for succy(z,y) and it follows from Lemma [16{ and the definition of succ,(z,y)
given above. The non atomic cases follow directly by induction.

Finally, a formula ¢ € Form(L) is satisfiable over k-phase nested traces iff the
formula Enc AT'(¢) € Form(L') is satisfiable over 8'-trees. Using Theorem [10] we
get the upper bounds stated in Theorem [I5} The lower bound for the intersection
free fragment is proved in the following proposition. a

Proposition 18. Let Proc and Act be non-empty finite sets inducing 8, let
k > 1, and let L~ be an intersection free temporal logic over 8. The problem
NESTED-TRACE-SAT(L ™, k) is EXPTIME-hard.

Proof. We show a reduction from the EXPTIME complete logic NWTL [I] to the
temporal logic £, with no modalities and only one process p. The modalities

16

are X, Y, X, Y U® and S* which are the same as EX, EY, X", Y, EU® and ES?®
of the temporal logic NTrLTL defined in Example 5 when |Proc| = 1. Below we
give its semantics through path expressions. This also evinces the translation of
an NWTL formula ¢ into an equivalent £ -formula & (by induction).

X =3(succyop) Y= El(succ;1 °oP)
XFo=3(crop) @Us¢y=3((?po (succ,Ucr))* o)
YFp=3(cr 't op) S5 =3((?Po (succ, ' Ucr™'))* o 74) o

Remark 19. Note that, if k is given as part of the input, the above method for
modalities does not work: the new semantics [M] over trees of modality M
depend on k and are no more fixed and independent of the input. However,
if we consider the fragment £y with no MSO modalities, we get a 3EXPTIME
procedure even if k is part of the input since the length of the path expression
T(m) is linear in |7| and exponential in k. Moreover, for the intersection free
fragment L, we get a 2EXPTIME procedure.

5 Model Checking

Our approach extends to model checking. We can define a model of concur-
rent recursive programs, called concurrent recursive Kripke structures (CRK),
that generates nested traces. It is similar to the concurrent visibly pushdown
automata from [5].

Definition 20. A concurrent recursive Kripke structure (CRK) over finite sets
Proc and Act is a tuple I = ((Sp)peProc, A,). The Sy, are disjont finite sets of
local states (S, containing the local states of process p). Given a set P C Proc, we
let Sp := HpeP Sp. The tuple . € Sproc is a global initial state. Finally, A pro-

vides the transitions, which are divided into four sets: A = (Acan, Alyy, A2, Aint)
where
= Acan € Upe proc(Sp x Act x Sp),
— Alet C Upeproc(Sp x Act x Sp),
Az C Uperc(SP x Sp x Act x Sp), and
— Aint CUpc proc(Sp x Act x Sp).

Let S = Upcppe Sp. For s € S and p € Proc, we let s, be the p-th com-
ponent of s (if it exists). A run of a CRK K is an 8'-graph G = (V, \,v) where
8" = (X W ¢ proc Sps I') with X' = Proc U Act U Type and I' = {cr} U {succ, |
p € Proc}, and the following conditions hold:

— The graph G without the labeling from UpE Proc Op 15 a nested trace. That
is nt(G) := (V, X, v) where X (u) = A(u) N X is a nested trace over Proc and

Act.

17

— Every node u is labeled with one, and only one, state from S, for each
process p € Proc(u). This state is denoted p(u),. The label of a node u does
not contain any state from S, if p ¢ Proc(u). That is, for all p € Proc and
allu eV,

0 otherwise.

Mu)n S, = {{p(u)p} if p € \(u)

This defines a mapping p: V' — S by p(u) = (p(u)p)pe Proc(u)-
— Let us determine another mapping p~ : V. — S as follows: for u € V, we
u) €

let P (’LL) = (p_ (u))pGProc(u) where P (u)p (u);D if (ulau) S Esuccpa and
p~(u), = tp if there is no «’ such that (v/, Esuce,- The following hold,
for every u,u’ € V and a € Act:

(p~(u),a; p(u)) € Acan if u € Vean N Va,

(p~ (u) ,p(u)) € AL, if u € V,eeNV, and there is no v with (v,u) € Ec,
(p(u'), p~(u),a, p(u)) € A%, if u € Viee NV, and (v/,u) € Eer,

(p~(u),a, p(u)) € At if u € Vie N'V,.

We are only interested in maximal runs. We say that a run G of a CRK K is
mazimal if G is not a strict prefix of another run of K. The language L(K) of K
is the set {nt(G) | G is a maximal run of K}. By L;(K), we denote its restriction
L(K) N Tracesy(Proc, Act) to k-phase nested traces.

Let Proc and Act be non-empty finite sets inducing signature 8, let &k > 1,
and let £ be a temporal logic over §. We are interested in the following decision
problem.

Problem 21. MODEL-CHECKING(L, k):
INsTANCE: CRK K and ¢ € Form(L£)

QUESTION: Do we have K =, ¢, i.e.,
for all G € Li(K), is there a node u of G such that G,u = ?

We show the following result:

Theorem 22. Let Proc and Act be non-empty finite sets inducing signature
8, let k > 1, and let L be a temporal logic over 8. The problem MODEL-
CHECKING(L, k) is in 2EXPTIME and the problem MODEL-CHECKING(L™, k)
for the intersection free fragment is in EXPTIME.

Proof. We will reduce the model-checking problem to the satisfiability problem
by encoding maximal runs of a CRK K with a formula MAXRUN. For this, we
enrich £ to £’ with the additional unary modality EN (there exists a node) whose
semantics is defined by [EN](z, X) = Jy (y € X).

Now we will describe the maximal runs of the CRK K by the formula
MAXRUN = VAL A MAX A =EN —-TRANS. Here, VAL says that the labeling by
states is valid. That is, no node is labelled by two states of the same process,

18

and a node is labeled p iff it is labeled by some state from S,.

vaL=- \/ EN<ﬁ<p<—> \/s)v \/ (51A32)>

p€ Proc SES) 817#52€S)p

Formula MAX says that the maximal nodes of the nested run do not enable any
transition. Formula TRANS says that the labeling of the current node and its
predecessors comply with the transition relations.

For s € § we let Aine(s) = {(a,s’) € Act x S| (s,a,s") € Ajne} and we define
similarly Acai(s), Aret(s), and Aet(s1, s2). In the following, for all s € S and
p € Proc, let “s, = 1,” be a shorthand for true (T) if s, = ¢, and false (L)
otherwise. Then, we define MAX = MAXca A MAXjn: A Maxl, A Max?2 by

ret ret
MAXc = — \/ (“sp =1, A ENp) V EN(s, A p A =Isucc,)
pEProc|sp€Sp| Acan(sp)#0

MAXiy = — \/ /\ (“sp =t A= ENp) V EN(sp A p A =Isucc,)
PCProc|s€eSp|Aint(s)#D peP

MAXL, = - \/ (“sp =1," N-ENp)V
PE Procls, €5p| Are(sp) 70 (EN(sp A p A =3succ,) A =EN(p A call A —3cr))
MAXZ, = - \/ EN[s; Ap A call A =3cr A =3(succy, o succy, o ?(call A =3cr))]

pEProc|s1,52€5p| Are(s1,852)#0 EN(s2 A p A =3succ,)

Then, we define TRANS = TRANSq V TRANSL, V TRANSZ, V TRANSp.

TRANSq, = \/ calAaApAs A

(sﬁiﬁzzca” ((“s =1, A ﬁElsucc;I) V El(succ;1 07s))
TRANS ., = \/ retAaApAs A—TJer A

(sﬁffgiget ((“s = 1,” A —Fsucc, ') V I(succ, ' 0 ?s))

TRANSE, = \/ retAaApAs’ A El(succ;1 0?s8')AJ(cr™!o?s)
p€E Proc
(s,s',a,s”)GA2

ret

TRANSjwe = \/ intAan N\ —-pA /\ {p/\s;/\
PCProc, s,s'€Sp p¢P pEP
(5,,8") € A ((“sp = 1" A—=3succ, ") V 3(succ, ' o ?sp))}
Note that the sizes of MAX and TRANS are linear in the size of the CRK K.
Moreover, a nested trace decorated with states satisfies MAXRUN iff it defines a
maximal run of the CRK K. Thus, K | ¢ iff the formula MAXRUN A =EN ¢
is not satisfiable by a (state-labeled) k-phase nested trace. This concludes the
reduction. a

19

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

R. Alur, M. Arenas, P. Barceld, K. Etessami, N. Immerman, and L. Libkin. First-
order and temporal logics for nested words. Logical Methods in Computer Science,
4(4), 2008.

R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and
returns. In TACAS’04, volume 2988 of Lecture Notes in Computer Science, pages
467-481. Springer, 2004.

R. Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56:16:1—
16:43, May 2009.

M. F. Atig. Global Model Checking of Ordered Multi-Pushdown Systems. In
FSTTCS 2010, volume 8, pages 216-227, 2010.

B. Bollig, M.-L. Grindei, and P. Habermehl. Realizability of concurrent recursive
programs. In FoSSaCS’09, volume 5504 of Lecture Notes in Computer Science,
pages 410424, York, UK, 2009. Springer.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. An automata-
theoretic approach to regular xpath. In DBPL, pages 18-35, 2009.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, pages 5271, 1981.

C. Dax and F. Klaedtke. Alternation elimination for automata over nested words.
In In the Proceedings of the 14th International Conference on Foundations of Soft-
ware Science and Computation Structures (FoSSaCS’11), 2011. to appear.

V. Diekert and P. Gastin. LTL is expressively complete for Mazurkiewicz traces.
Journal of Computer and System Sciences, 64(2):396-418, March 2002.

V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

P. Gastin and D. Kuske. Satisfiability and model checking for MSO-definable
temporal logics are in PSPACE. In CONCUR’03, volume 2761 of LNCS, pages
222-236. Springer, 2003.

P. Gastin and D. Kuske. Uniform satisfiability problem for local temporal logics
over Mazurkiewicz traces. Information and Computation, 208(7):797-816, July
2010.

S. Géller, M. Lohrey, and C. Lutz. PDL with intersection and converse: satisfiability
and infinite-state model checking. J. Symb. Log., 74(1):279-314, 2009.

H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of
California, Los Angeles, 1968.

S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive
languages. In LICS’07, pages 161-170. IEEE Computer Society Press, 2007.

S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of concur-
rent queue systems. In TACAS’08, volume 4963 of LNCS, pages 299-314. Springer,
2008.

M. Lange and C. Lutz. 2-ExpTime lower bounds for Propositional Dynamic Logics
with intersection. Journal of Symbolic Logic, 70(5):1072-1086, 2005.

A. Pnueli. The temporal logic of programs. In Proceedings of FOCS 1977, pages
46-57. IEEE, 1977.

S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In TACAS’05, volume 3440 of LNCS, pages 93-107. Springer, 2005.

M. O. Rabin. Decidability of Second Order Theories and Automata on Infinite
Trees. Transactions of the American Mathematical Society, 141:1-35, 1969.

20

21. M. Y. Vardi. The taming of converse: Reasoning about two-way computations.
In Proceedings of the Conference on Logic of Programs, pages 413-423. Springer,
1985.

22. M. Y. Vardi. Reasoning about the past with two-way automata. In Proceedings of
ICALP’98, LNCS, pages 628-641. Springer, 1998.

23. W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. — Informatique
Théorique et Applications, 21:99-135, 1987.

21

	Temporal Logics for Concurrent Recursive Programs: Satisfiability and Model Checking

