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Abstract In the modern version of Arbitrage Pricing Theory suggested by Ka-
banov and Kramkov the fundamental financially meaningful concept is an asymp-
totic arbitrage. The ”real world” large market is represented by a sequence of
”models” and, though each of them is arbitrage free, investors may obtain non-
risky profits in the limit. Mathematically, absence of the asymptotic arbitrage is
expressed as contiguity of envelopes of the sets of equivalent martingale measures
and objective probabilities. The classical theory deals with frictionless markets.
In the present paper we extend it to markets with transaction costs. Assuming
that each model admits consistent price systems, we relate them with families
of probability measures and consider their upper and lower envelopes. The main
result concerns the necessary and sufficient conditions for absence of asymptotic
arbitrage opportunities of the first and second kinds expressed in terms of conti-
guity. We provide also more specific conditions involving Hellinger processes and
give applications to particular models of large financial markets.
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1 Introduction

The idea to describe a financial market by a sequence of market models with
a finite number of securities can be traced back to the paper [7] by Huberman
who formalized intuitive arguments of Arbitrage Pricing Theory initiated by Ross,
[20]. The famous conclusion of this theory is: under the absence of arbitrage,
appropriately defined, the expected returns on assets are approximately linearly
related to the factor loadings, ”betas”, proportional to the return covariances with
the factors. In economic literature, the APT is considered as a substitute for the
Capital Asset Pricing Model (CAPM) by Lintner and Sharp. The Ross–Huberman
theory is single-period and uses a definition of arbitrage different from the one that
is now standard. Its generalization to the standard continuous-time framework of
modern mathematical finance was considered for a long time as a challenging
problem of large importance.

This problem was solved in 1994 by Kabanov and Kramkov, [12], who sug-
gested a concept of large financial market described by a sequence of ”standard”
financial market models with finite number of securities whose price processes ad-
mit martingale measures. They introduced new notions of Asymptotic Arbitrage
of the First and Second Kind and, assuming that martingale measures are unique
for each model, they established necessary and sufficient conditions for the absence
of asymptotic arbitrage in terms of contiguity of the sequences of objective prob-
abilities and martingale measures. As a particular example of application of their
general approach, Kabanov and Kramkov considered a large Black–Scholes market
where the stock prices are given by correlated geometric Brownian motions. For
this case their general criteria give a result of the same type as the Ross–Huberman
condition but involving instantaneous returns and covariances.

Significant progress in the theory was achieved in the paper by Klein and
Schachermayer, [9], where the geometric functional analysis was used to obtain
criteria of absence of asymptotic arbitrage for the case of incomplete market mod-
els when the martingale measures are not unique. The next step in the develop-
ment of the general theory as well as in the understanding of financial framework
was again done by Kabanov and Kramkov, [13]. They added several new criteria
of absence of asymptotic arbitrage in terms of contiguity of sequences of upper
and lower envelopes of martingale measures and objective probabilities. The tech-
nique of the proofs was based on the optional decomposition theorem. The criteria
of Klein and Schachermayer was also obtained by an elegant use of the mini-
max theorem. Kabanov and Kramkov related their criteria with an extension of
the Liptser–Shiryaev theory of contiguity of sequences of probability measures on
filtered spaces in terms of the Hellinger processes. One should emphasize that
Kabanov–Kramkov framework is very general and flexible. It covers discrete and
continuous-time models, models with time horizons tending to infinity, etc. For the
further development of the theory of large financial markets we send the reader to
the articles [5], [17] but also [10] and [11].

In the present paper we extend the framework of large financial markets to the
case of a market with friction. It is well known, in the theory of markets with pro-
portional transaction costs the concept of martingale measures is not natural and
is replaced by the notion of consistent price systems, i.e. the martingales evolving
in the duals to the solvency cones expressed in physical units, [14]. The consistent
price systems are vector objects. Nevertheless, the criteria of absence of asymp-
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totic arbitrage can be formulated in terms of contiguity of objective probabilities
and envelopes of measures naturally arising from consistent price systems. These
are our principal results. We follow the lines of [13] but do not use the optional
decomposition theorem (it has no analogue for models with transaction costs) but
the hedging theorem. We use the abstract setting of the recent paper by Denis
and Kabanov [3], which allows us to avoid detailed discussions on the structure of
continuous-time models and cover both major approaches to the definition of the
value processes, those of Kabanov and of Campi–Schachermayer [2].

Some examples are given. The first one is a large financial market in a two-
dimensional setting. We also extend the results of [13] to models with transaction
costs: the one-stage APM by Ross, the large Black–Scholes market, and a two-asset
model with infinite horizon.

2 The Model: Definitions and Assumptions

2.1 Example

Before introducing our general model, we recall the simplest discrete-time model of
financial market with proportional transaction costs following the book [14]. The
investor portfolio is now vector-valued and its evolution, in units of the numéraire,
is given by the following controlled difference equation:

∆Vt = diag Vt−1∆Rt +∆Bt, V−1 = v,

where ∆Rit = ∆Sit/S
i
t−1, i ≤ d, is the relative price increment of the ith security,

∆Bt is the control, and diag x denotes the diagonal operator generated by the
vector x. The first term in the rhs of the dynamics means that the portfolio,
before an action of the agent, evolves according to the price movings. The second
one corresponds to transfers decided by the agent. In the model where one can
exchange any asset to any other with losses,

∆Bit :=
d∑
j=1

∆Ljit −
d∑
j=1

(1 + λijt )∆Lijt

where ∆Ljit represents the net amount transferred from the position j to the
position i at date t and λij are the transaction costs rates. The investor action
∆Bt is a Ft-measurable random variable taking values in a cone −Kt where the
so-called solvency cone Kt is defined by the matrice of transaction costs coefficients
Λt = (λijt ):

Kt := cone {(1 + λijt )ei − ej , ei, 1 ≤ i, j ≤ d}. (2.1)

In the theory, as in practice, the coefficients λijt ≥ 0 are adapted random processes.
The above dynamics naturally falls into a scope of linear difference equations with
control constraints to be taken from cones which are, in general, random.

One can express the portfolio dynamics also in “physical units”. It is much
simpler. Assuming that S−1 = S0 = (1, ..., 1) and introducing the diagonal operator

φt : (x1, ..., xd) 7→ (x1/S1
t , ..., x

d/Sdt ),



4 Emmanuel Denis, Lavinia Ostafe

we have:
∆V̂t = ∆̂Bt, V̂−1 = v,

where V̂t := φtVt, ∆̂Bt ∈ L0(−K̂t,Ft), K̂t := φtKt. Note that, in contrast to Kt,
the cones K̂t are always random, even in the model with constant transaction
costs. So, (K̂t) is an adapted cone-valued process. Though in financial models the
cones K̂t(ω) are polyhedral, for the control theory this looks too restrictive and
the question about possible extensions to “general” models, with (K̂t) replaced by
an arbitrary adapted cone-valued process (Gt), arises naturally.

As pointed out in the book [14], one can find variants of this model which can
be imbedded into the former by choosing sufficiently large transaction costs coef-
ficients. The procedure leads to a larger set of portfolio value processes but has no
effect on the arbitrage properties. The elements ofMT

0 (K∗\{0}) andMT
0 (intK∗),

i.e. the martingales evolving in the positive dual K∗ of K, referred to as consistent

price systems and strictly consistent price systems, play a fundamental role in the
arbitrage theory for models with transaction costs. We send the reader to Chapter
3, [14], for more details.

2.2 General Model

The framework setting we present in this section is assumed to be satisfied by a
sequence of markets of horizon dates T (for the sake of simplicity, we omit the
index n). We consider the general model of the paper [3] including the Kabanov
and Campi–Schachermayer models with transaction costs.

Let (Ω,F ,F = (Ft)t≤T , P ) be a continuous-time stochastic basis verifying the
usual conditions. We are given a pair of set-valued adapted processes G = (Gt)t≤T
and its positive dual G∗ = (G∗t )t≤T whose values are closed cones in Rd, i.e.

G∗t (ω) = {y : yx ≥ 0 ∀x ∈ Gt(ω)}.

“Adapted” means that the graphs{
(ω, x) ∈ Ω ×Rd : x ∈ Gt(ω)

}
are Ft × B(Rd)-measurable.

We assume that all the cones Gt are proper, i.e. Gt ∩ (−Gt) = {0} or, equiva-
lently, intG∗t 6= ∅. In a financial context it means that the efficient friction condition
(EF) is fulfilled. We assume also that Gt dominates Rd

+, i.e. G∗\{0} ⊂ int Rd
+.

In a more specific financial setting (see [14]), the cones Gt are the solvency
cones K̂t when the portfolio positions are expressed in physical units.

We are given a convex cone YT0 of optional Rd-valued processes Y = (Yt)t≤T
with Y0 = 0. We may interpret these processes as portfolios expressed in physical
units.

Notations. We denote by L0(Gt,Ft) the set of all Gt-valued Ft-measurable
random variables. A cone G induces a natural order among Rd-valued random
variables. More precisely, for two d-dimensional random variables Y and Y ′, we
write Y ≥G Y ′ if Y − Y ′ ∈ G. The notation 1 stands for the vector (1, ..., 1) ∈ Rd

+.
Denote by YT0,b the subset of YT0 formed by the processes Y dominated from below
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in the sense of the partial orders generated by (Gt)t≤T , i.e. there is a constant κ

such that the process Y + κ1 evolves in G. We also write YT0,b(T ) for the set of

random variables YT where Y belongs to YT0,b. The set YT,∞0,b (T )
w

is the closure

of YT,∞0,b (T ) := YT0,b(T ) ∩ L∞ in σ{L∞, L1}. We denote by MT
0 (G∗) the set of all

d-dimensional martingales Z = (Zt)t≤T with trajectories evolving in G∗, i.e. such
that Zt ∈ G∗t a.s. In the literature, such martingales are commonly called consistent

price systems and strictly consistent price systems if they evolve in the interior of
G∗.

Assumptions. Throughout the note we assume the following standing hy-

potheses on the sets YT0,b(T ):

S1 : EξZT ≤ 0, ∀ ξ ∈ YT0,b(T ), Z ∈MT
0 (G∗).

S2 :
⋃
t≤T

L∞(−Gt,Ft) ⊆ YT0,b(T ).

The hypotheses S1 and S2 adopted in this note allow us to avoid the unneces-
sary repetitions and do not provide the full description of continuous-time models
with transaction costs. It is important to know only that these conditions are
fulfilled for the known models, see [15], [2], [4].

Recall that in these financial models S1 holds because, if one calculates the
current portfolio value using a price system Z (that is a process fromMT

0 (G∗)), the
resulting scalar process is a supermartingale. In a discrete-time model, a portfolio
process (Vt)t≤T is such that Vt ∈

∑t
u=0 L

0(−Gu,Fu) for all t ≤ T . If V ∈ YT0,b
then E(ZTVT )− <∞. The process Vt =

∑t
u=0∆Vu vérifies ∆Vu ∈ −Gu. Applying

Proposition 3.3.2, [14], we get that

E(ZTVT |Ft) = VtE(ZT |Ft) + E(ZT

T∑
u=t+1

∆Vu|Ft),

= VtZt +
T∑

u=t+1

E(Zu∆Vu|Ft).

Since Zu∆Vu ≤ 0, we deduce that E(ZTVT |Ft) ≤ VtZt. Condition S2 naturally
holds in the financial models with transaction costs. Indeed, if ξt ∈ L∞(−Gt,Ft)
then Vu = ξtIu>t is a portfolio process whose only jump is ∆Vt = ξt ∈ −Gt and
we have ξt = VT .

For a given payoff ξ ∈ L0
b(R

d) (i.e. bounded from below with respect to the
partial ordering induced by GT ), we consider the convex set

Γξ : =
{
x ∈ Rd : ∃YT ∈ YT0,b(T ) s.t. x+ YT ≥GT

ξ
}

(2.2)

and the closed convex set

Dξ :=
{
x ∈ Rd : Z0x ≥ EZT ξ, ∀Z ∈MT

0 (G∗)
}
. (2.3)

We assume given a dual characterization of Γξ in section 3:

S3 : Γξ = Dξ.
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This property is usually an important result, referred to as the “hedging theo-
rem”. It generally holds under some no-arbitrage conditions (see, e.g., [2], [1] and
[4]).

3 Asymptotic Arbitrage via Consistent Price Systems

We fix a sequence (Ωn,Fn,Fn = (Fnt )t≤T , P
n) of continuous-time stochastic basis

verifying the usual conditions with Fn = FnT . The positive number T is interpreted
as a time horizon and may depend on n. We are given a pair of set-valued adapted
processes Gn = (Gnt )t≤T and Gn∗ = (Gn∗t )t≤T whose values are closed cones in Rd

which are dual and define the corresponding models of Subsection 2.2. Recall that
we assume that conditions S1 and S2 hold. For the sake of simplicity, we often
omit the index n.

Definition 1 A sequence of portfolios (V̂ n) realizes an asymptotic arbitrage op-

portunity of the first kind if there exists a sequence (xn) such that the following
holds for a subsequence:

1.a) V̂ nT ∈ x
n + YT0,b(T ),

1.b) V̂ nT ∈ GT ,

1.c)xn → 0,

1.d) lim
n
P
(
V̂ nT ≥GT

1
)
> 0.

We associate with every Z ∈ MT
0 (G∗\{0}) the equivalent probability measure

dQZ := (1/Z01)ZT1dP and we define the convex set

Qn =
{
QZ : Z ∈MT

0 (G∗\{0}), Z01 = 1
}
.

We assume that Qn is not empty meaning that the No Free Lunch (NFL)
condition holds, [3], for each model.

We then define the upper and lower envelopes of the measures of Qn as follows:

Qn(A) := sup
Q∈Qn

Q(A), Qn(A) := inf
Q∈Qn

Q(A).

Definition 2 The sequence (Pn) is contiguous with respect to (Qn) (in symbols:
(Pn) � (Qn)) when the implication

lim
n
Qn(An) = 0⇒ lim

n
Pn(An) = 0

holds for any sequence An ∈ Fn, n ≥ 1.

Now, we give the first result of this section:

Proposition 3.1 Assume that Assumption S3 holds. Then the following conditions

are equivalent:

(a) there is no asymptotic arbitrage opportunity of the first kind (NAA1);

(b) (Pn) � (Qn).
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Proof.

• (a) ⇒ (b). Suppose that there exists a sequence An ∈ Fn such that Qn(An)
tends to 0 and P (An) → α > 0. We consider Fn = IAn1 as a contingent claim
and xn = Qn(An)1 as an initial endowment. For any Z ∈ MT

0 (G∗\{0}), we have
immediately by definition

Z0x
n ≥ EZTFn.

By virtue of Assumption S3, we deduce that Fn ∈ xn+YT0,b(T ) so that the sequence
(Fn) realizes an asymptotic arbitrage opportunity of the first kind.
• (b)⇒ (a). Suppose that there exists a sequence (V̂ n) realizing an asymptotic

arbitrage opportunity of the first kind. Consider Q ∈ Qn defined by dQ = ZT1dP .
Then, according to Condition S1,

0 ≤ EZT V̂ nT ≤ Z0x
n ≤ |xn|

since xn ≤G0
|xn|1. Moreover,

EZT V̂
n
T ≥ EZT V̂

n
T IV̂ n

T ≥GT
1
≥ EZT1I

V̂ n
T ≥GT

1
= Q(V̂ nT ≥GT

1).

It follows that
Qn(V̂ nT ≥GT

1) ≤ |xn|

and Qn(V̂ nT ≥GT
1) → 0 which implies P (V̂ nT ≥GT

1) → 0 in contradiction with
1.d). �

Remark 3.2 As shown in [13], the condition (b) is equivalent to the following:

(c) there exists a sequence (Rn) ∈ Qn such that (Pn) � (Rn).

Let us recall the financial meaning of the following definition. There is an
asymptotic arbitrage of the second kind if the agent, selling short his portfolio,
achieves almost a non risky positive profit.

Definition 3 A sequence of portfolios (V̂ n) realizes an asymptotic arbitrage

opportunity of the second kind if there exists a subsequence satisfying:

3.a) V̂ nT ≥GT
−1,

3.b) lim
n
P
(
V̂ nT �GT

−ε1
)

= 0, ∀ε ∈]0, 1[,

3.c) there exists a bounded sequence of initial endowments (xn1), with xn ∈ R,
satisfying V̂ nT ∈ x

n1 + YT0,b(T ) and x∞ := lim inf
n

xn < 0.

Remark 3.3 It is an easy exercise to notice that the definition of the asymptotic
arbitrage of the second kind can be written equivalently if one considers in 3.c)
a bounded sequence of initial endowments xn ∈ Rd satisfying V̂T ∈ xn + YT0,b(T ),

and such that lim inf
n

max
i≤d

xn,i < 0. Indeed, if xn is an initial endowment of V̂ nT ,

then yn := (maxi≤d x
n,i)1 is still an initial endowment for V̂ nT .

In the same manner, we can equivalently define the asymptotic arbitrage of the
first kind using a sequence of initial endowments of the form (xn1), with xn ∈ R,
but for our purposes it is more convenient to consider the definition with an initial
endowment xn ∈ Rd.
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The next condition is only introduced to give an equivalent characterization of the
asymptotic arbitrage of the second kind:

Assumption (B0) If ξ is a F0-measurable Rd-valued random variable such
that Z0ξ ≥ 0 for any Z ∈MT

0 (G∗), then ξ ∈ G0 (a.s.).

Remark 3.4 Assumption (B0) appears as a weaker form of the No Arbitrage
Condition of the second kind introduced by Denis and Kabanov in their recent
work, [3], (it was introduced the first time by Rásonyi for discrete time models,
[19]). The so-called condition (B), [14], is the following:

(B) If ξ is a Ft-measurable Rd-valued random variable such that Ztξ ≥ 0 for
any Z ∈MT

0 (G∗), then ξ ∈ Gt (a.s.).

Condition (B) is stronger than (B0) and, as noticed in [14], it is fulfilled for
the models with constant transaction costs admitting an equivalent martingale
measure.

Remark 3.5 In the case where we interpret the first component of the price pro-
cess as the numéraire, we may give a more economical sense to the last condition.
Indeed, under Assumption (B0), it also means that the agent sells short his port-
folio in the numéraire but achieves almost a non risky positive profit as proven in
the following. We denote e1 := (1, 0, . . . , 0) ∈ Rd. Let us introduce the following
statement:

3.c′) There exists a bounded sequence of initial endowments (xne1), xn ∈ R,
satisfying V̂ nT ∈ x

ne1 + YT0,b(T ) and x∞ := lim inf
n

xn < 0.

Lemma 3.6 Suppose that Assumption (B0) holds. Then, 3.c) ⇒ 3.c′). Moreover, if

there exists k > 0 such that

min
Z∈MT

0 (G∗\{0}), Z01=1
Z0e1 ≥ k,

then 3.c′)⇒ 3.c).

Proof.

• 3.c)⇒ 3.c′) Let xn ∈ R be such that V̂ nT ∈ x
n1 + YT0,b(T ) and satisfying 3.c).

The first step is to find a number x̃n ∈ R such that x̃ne1 ≥G0
xn1. This is equivalent

to say that Z0x̃
ne1 ≥ Z0x

n1 whatever Z ∈MT
0 (G∗ \ {0}). Assuming, without loss

of generality, that Z0e1 = 1, the above inequality holds iff x̃n ≥ (Z01)xn. Choosing

x̃n = xn max
Z∈MT

0 (G∗\{0}), Z0e1=1
Z01,

the above requirement is fulfilled. It is not difficult to see that x̃n is finite. Indeed,
suppose Zk0 1 → ∞ as k → ∞ with Zk0 e1 = 1. Then, z∗k := Zk0 /(Z

k
0 1) ∈ G∗0 is

a bounded sequence. We may assume by compacity that z∗k → z∗∞ ∈ G∗0. Since
z∗k1 = 1, we get z∗∞1 = 1. On the other hand, z∗ke1 → 0 hence z∗∞e1 = 0 which
leads to z∗∞ = 0 since G∗0 ⊆ int Rd

+, hence a contradiction.

Using the hypothesis and x̃ne1 ≥G0
xn1, we get that V̂T ∈ x̃ne1 + YT0,b(T ).

Indeed, V̂T ∈ x̃ne1 + (xn1 − x̃ne1) + YT0,b(T ) where (xn1 − x̃ne1) ∈ L0(−G0,F0).

Now applying 3.c), we obtain that lim inf
n

x̃n <, i.e. 3.c′) holds.
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• 3.c′)⇒ 3.c) Let xn ∈ R be such that V̂ nT ∈ x
ne1 +YT0,b(T ) and let 3.c′) holds.

Writing

V̂ nT ∈ x
n1 + (xne1 − xn1) + YT0,b(T ),

there are two cases:

1. If xn ∈ R+, then (xne1 − xn1) = (0,−xn, . . . ,−xn) ∈ L0(−G0,F0) ⊆ YT0,b(T ).

Therefore, V̂ nT ∈ x
n1 + YT0,b(T ) hence 3.c) holds.

2. Consider xn ∈ R−. Following the same procedure as in the first implication,
we can find a finite number

x̃n = xn min
Z∈MT

0 (G∗\{0}), Z01=1
Z0e1

such that x̃n1 ≥G0
xne1. It follows that (xne1 − x̃n1) ∈ L0(−G0,F0) ⊆ YT0,b(T )

and from here we have that V̂ nT ∈ x̃
n1 + YT0,b(T ). Now, knowing 3.c′) and the

additional hypothesis, we get that lim inf
n

x̃n < 0, i.e. 3.c) holds. �

To formulate the next result, we give the following definition:

Definition 4 The sequence of sets of probability measures (Qn) is said to be
weakly contiguous with respect to (Pn) and we denote (Qn)�w (Pn) if whatever
ε > 0, there is δ > 0 and a sequence of measures Qn ∈ Qn such that for any sequence
An ∈ Fn with the property lim sup

n
Pn(An) < δ, we have lim sup

n
Qn(An) < ε.

Proposition 3.7 Assume that Assumption S3 holds. Then the following conditions

are equivalent:

(a) there is no asymptotic arbitrage opportunity of the second kind (NAA2);

(b) (Qn) � (Pn).

Proof.

• (a) ⇒ (b). Suppose that there exists a sequence An ∈ Fn such that Pn(An)
tends to 0 and Qn(An) → α > 0. We define the contingent claim Fn = −IAn1

we may interpret as the terminal value of a portfolio since it is replicable (e.g.
by 0). Consider the bounded sequence yn := xn1 := −Qn(An)1 of super-hedging
prices for Fn, i.e. yn ∈ ΓFn . Indeed, for any Z ∈ MT

0 (G∗\{0}) with Z01 = 1,
Z0y

n = −Qn(An) ≥ −QZ(An) = EZTF
n and we conclude using Assumption

S3. Since lim inf
n

xn = x∞ < 0, the sequence (Fn) is an asymptotic arbitrage

opportunity of the second kind.
• (b)⇒ (a). Suppose that there exists a sequence of portfolios (V̂ n) realizing an

asymptotic arbitrage opportunity of the second kind. Let us consider a sequence
(xn) such that V̂ nT ∈ x

n1 + YT0,b(T ) with x∞ := lim inf
n

xn < 0. Under Assumption

S3, for any Z ∈MT
0 (G∗\{0}) with Z01 = 1, we have that

xn = Z0x
n1 ≥ EZT V̂

n
T = EZT V̂

n
T I{V̂ n

T ≥−ε1}
+ EZT V̂

n
T I{V̂ n

T �−ε1},

xn ≥ −εQZ(V̂ nT ≥ −ε1)−QZ(V̂ nT � −ε1),

≥ −ε+ (ε− 1)QZ(V̂ nT � −ε1)
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where ε ∈ (0, 1) is arbitrarily chosen. Since the property 3.b) holds, (Qn) � (Pn)

implies that Qn(V̂ nT � −ε1) → 0. We choose, for each n, Zn ∈ MT
0 (G∗\{0})

such that QZ
n

(V̂ nT � −ε1) ≤ Qn(V̂ nT � −ε1) + n−1. From above, we deduce that
lim inf

n
xn ≥ −ε whatever ε ∈ (0, 1) which yields a contradiction. �

Remark 3.8 As shown in [13], (b)⇔ (c)⇔ (d) where:

(c) (Qn) �w (Pn);

(d) lim
K→∞

lim sup
n

inf
Q∈Qn

Q

(
dQ

dPn
≥ K

)
= 0.

Definition 5 A sequence of portfolios (V̂ n) realizes a strong asymptotic arbi-

trage opportunity of the first kind if there exists a sequence (xn) such that the
following holds for a subsequence:

5.a) V̂ nT ∈ x
n + YT0,b(T ),

5.b) V̂ nT ≥GT
0,

5.c)xn → 0,

5.d) lim
n
P
(
V̂ nT ≥GT

1
)

= 1.

Definition 6 A sequence of portfolios (V̂ n) realizes a strong asymptotic arbi-

trage opportunity of the second kind if for a subsequence :

6.a) V̂ nT ≥GT
−1,

6.b) lim
n
P
(
V̂ nT �GT

−ε1
)

= 0, ∀ε ∈]0, 1[,

6.c) there exists a bounded sequence of initial endowments (xn1), with xn ∈ R,
satisfying V̂ nT ∈ x

n1 + YT0,b(T ) and lim inf
n

xn = −1.

Lemma 3.9 There exists a strong asymptotic arbitrage of the first kind if and only if

there is a strong asymptotic arbitrage of the second kind.

Proof.

• Take any sequence (V̂ n) realizing a strong asymptotic arbitrage opportunity
of the first kind. We want to construct a sequence realizing a strong asymptotic
arbitrage of the second kind. Define the sequence Ûn = −1 + V̂ n. Using 5.b), we
obtain that ÛnT ≥GT

−1, which is exactly the condition 6.a) of the definition of
the asymptotic arbitrage opportunity of the second kind.
We have

P (ÛnT �GT
−ε1) = 1− P (ÛnT ≥GT

−ε1) ≤ 1− P (V̂ nT ≥GT
1)→ 0, n→∞

which shows the condition 6.b).
We only have to prove the condition 6.c). The condition 5.a) holds so that

V̂ nT ∈ yn + YT0,b(T ) where yn → 0. We deduce that V̂ nT ∈ αn1 + YT0,b(T ) where

αn := maxi≤d y
ni and αn → 0. It suffices to consider xn := αn − 1 to conclude.

• Take any sequence (Ûn) realizing a strong asymptotic arbitrage opportunity
of the second kind. We define a sequence realizing a strong asymptotic arbitrage
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opportunity of the first kind choosing the sequence V̂ n = Ûn + 1. We only prove
condition 5.c). It suffices to observe that

P
(
V̂ nT �GT

1
)

= P
(
ÛnT �GT

0
)
≤ lim inf
ε→0, ε∈Q+

P
(
ÛnT �GT

−ε1
)

where Q+ is the set of all strictly positive rational numbers. Taking any arbitrary

δ > 0, we get that P
(
V̂ nT �GT

1
)
≤ δ+P

(
ÛnT �GT

−ε1
)

for some ε = ε(δ). Using

6.b), we obtain lim
n
P
(
V̂ nT �GT

1
)
≤ δ and then lim

n
P
(
V̂ nT �GT

1
)

= 0 as δ → 0.

�

Definition 7 A sequence (Pn) is (entirely) asymptotically separable from (Qn),
notation (Pn)4(Qn), if there exists a subsequence (m) with sets Am ∈ Fm such
that

lim
m
Qm(Am) = 0 , lim

m
Pm(Am) = 1.

Proposition 3.10 Assume that S3 holds. Then the following conditions are equiva-

lent:

(a) there is a strong asymptotic arbitrage opportunity of the first kind (SAA1);

(b) (Pn)4(Qn);

(c) (Qn)4(Pn).

Proof.

• (a)⇒ (b) Assume there exists a sequence of portfolios (V̂ n) realizing a strong
asymptotic arbitrage opportunity of the first kind. This means that there exists a
subsequence (m) such that

lim
m
Pm(V̂mT ≥GT

1) = 1, lim
m
V̂m0 = 0.

Following the arguments of the proof of Proposition 3.1, the implication (b)⇒ (a),
we obtain that lim

m
Qm(V̂mT ≥GT

1) = 0. We take the sets Am := {V̂mT ≥GT
1} for

the separating sequence.
• (b) ⇒ (a) Assume (Pn)4(Qn). Then, there exists a sequence (m) with sets

Am ∈ Fm such that

lim
m
Qm(Am) = 0 , lim

m
Pm(Am) = 1.

Using the arguments in the proof of Proposition 3.1, the implication (a) ⇒ (b),
but with α = 1, we obtain a sequence of portfolios realizing a strong asymptotic
arbitrage opportunity. �

4 Variant for markets with a numéraire

We consider markets whose first component of the price process S is a numéraire
(the cash B) in which the portfolios are liquidated. The asymptotic arbitrage op-
portunity concepts are defined similarly as in Section 3 but here we are concerned
by the portfolios starting with an initial endowment expressed in cash and which
are liquidated at the horizon date. Moreover, it is possible to avoid Assumption S3
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if we focus on asymptotic arbitrage in the spirit of the Kreps–Yann arbitrage the-

ory, i.e. by extending the set of all portfolio processes to its weak closure YT,∞0,b (T )
w

in L∞. In this case, we use the dual characterization of Lemma 6.1 which holds
only under the conditions (S1) and (S2).

Definition 8 A sequence of portfolios (V̂ n) realizes an asymptotic arbitrage of the
first kind if for a subsequence there exists a sequence (xn) ∈ R+ such that:

8.a) V̂ nT ∈ x
ne1 + YT,∞0,b (T )

w
,

8.b) V̂ nT ∈ GT a.s.

8.c)xn → 0,

8.d) lim
n
P
(
V̂ nT ≥GT

e1

)
> 0.

Definition 9 A sequence of portfolios (V̂ n) realizes an asymptotic arbitrage

opportunity of the second kind if there exists a subsequence satisfying:

9.a) V̂ nT ≥GT
−e1,

9.b) lim
n
P
(
V̂ nT �GT

−εe1
)

= 0, ∀ε ∈]0, 1[,

9.c) There exits a bounded sequence of initial endowments (xne1), with xn ∈ R,
satisfying V̂ nT ∈ x

ne1 + YT0,b(T ) and x∞ := lim inf
n

xn < 0.

In this setting, we define for each Z ∈MT
0 (G∗\{0}), QZ ∼ P such that

dQZ

dP
=
ZT e1
Z0e1

and we define the convex set:

Qn =
{
QZ , Z ∈MT

0 (G∗\{0}), Z0e1 = 1
}
.

Notice that in the frictionless case, a consistent price system is a process having
the form Zt = ρtSt, ρt ∈ L0(R+,Ft). If the first component S(1) = 1, i.e. the
interest rate of the bond r = 0, then Z0e1 = 1 means that ρ is a density process or
equivalently dQ = ZT e1dP defines an equivalent martingale measure under which
S is a martingale. We may interpret our definition as an extension of that of [13].
Consider the upper and lower envelopes of the measures of Qn as previously. We
then obtain similar results.

Actually, the two approaches turn out to be equivalent under the condition
(B0) we introduced above and the additional hypothesis that the sequence (de-
pending on n via the cone and the horizon date)

n 7→ min
Z∈MT

0 (G∗\{0}), Z01=1
Z0e1

is bounded from below by a strictly positive constant (independent of n). Indeed,
in this case, we can find α, β > 0 such that βe1 ≥G0

1 ≥G0
αe1. It is then easy

to construct an asymptotic arbitrage opportunity of the first kind (respectively
of the second kind) following the former definition from an asymptotic arbitrage
opportunity of the first kind (respectively of the second kind) according to the
variant approach and vice-versa.
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5 Examples

Throughout this section, we consider a continuous-time financial model with trans-
action costs defined as in [4], i.e. in the setting of the Kabanov and Campi–
Schachermayer models.

5.1 Example of an asymptotic arbitrage of the first kind in a

two-dimensional setting

We consider a sequence of markets whose horizon dates are Tn = 1 for all n ≥ 1.
We assume that the transaction costs coefficients belong to (0, 1]. The dynamics
of the price processes (Snt )t≤1 are given under a given probability measure P by

dSn1
t

Sn1
t

= dWt −
1

(1 + n−1 − t)3/2
dt,

Sn2
t = n = Sn1

0 , ∀t ≤ 1.

We denote ξn := e2n
1/2

(3 + eW
+
1 )−1 and

W̃t := Wt −
∫ t

0

du

(1 + n−1 − u)3/2
, t ≤ 1.

so that W̃1 = W1 − 2n1/2 + 2(1 + n−1)−1/2. Observe that the Novikov condition

holds. It follows that W̃ is a Brownian motion under an equivalent probability
measure Pn ∼ P by virtue of the Girsanov theorem. We deduce that the price
process Sn = (Sn1, Sn2) is a Pn-strictly consistent price system following the
terminology of [4], i.e. Snτ ∈ intG∗τ whatever the stopping time τ ≤ 1 and Snτ− ∈
intG∗τ− if τ ∈ [0, 1] is a predictable stopping time. It is then straightforward that
the sequence of market models we consider, endowed with Pn, satisfy Condition S3

by virtue of [4]. Each market of this sequence satisfies the No Arbitrage condition
Y1

0,b(1) ∩ L0(R2
+) = {0}. Indeed, if V̂1 ∈ Y1

0,b(1) ∩ L0(R2
+), then EPnSn1 V̂1 is both

negative and positive under (S3), i.e. Sn1 V̂1 = 0, and therefore V̂1 = 0. However,
we can construct an asymptotic arbitrage opportunity as follows. First notice that

Sn1
1 = n exp

{
W1 − 2n1/2 + 2(1 + n−1)−1/2 − 1/2

}
and Sn1

1 → 0 a.s. as n→∞ under P . We consider the events

Γn :=
{
W̃1 ∈ [−1/2, 0]

}
such that Pn(Γn) = P (W1 ∈ [−1/2, 0]) > 0. Let us define the sequence of terminal
wealths V̂ n1 := xn + ∆V̂ n1 IΓn

as the terminal values of the portfolio processes

equal to xn on [0, 1[ and jumping at date t = 1 by ∆V̂ n1 IΓn
∈ −G1. Recall that

G1 := K̂1 following [14], i.e. is the set of all vectors (X1(Sn1
1 )−1, X2(Sn2

1 )−1),
where X = (X1, X2) ∈ K1 and

K1 := cone
{
−e1 + (1 + λ21

1 )e2; (1 + λ12
1 )e1 − e2

}
.
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It is clear that V̂ n1 is an element of xn+Y1
0,b(1), hence Condition 1.a) of Definition

1 is satisfied. Let the constant xn be defined as

xn := − 1

Sn2
1

(
α2 − α1(1 + λ21

1 )
)
e2 = − 1

n

(
α2 − α1(1 + λ21

1 )
)
e2

where α1, α2 ∈ L0([0,∞),F1) are the coefficients defining ∆V̂ n1 as an element of
−Gn1 , i.e. such that

∆V̂ n1 :=

(
1

Sn1
1

(α1 − α2(1 + λ12
1 )),

1

Sn2
1

(α2 − α1(1 + λ21
1 ))

)
.

Let us choose α1 := (α2 + 1)/(1 + λ21
1 ). This implies that

α1 − α2(1 + λ12
1 ) =

1− α2λ
21
1 − α2λ

12
1 (1 + λ21

1 )

1 + λ21
1

.

Then

∆V̂ n1 =

(
1

Sn1
1

1− α2λ
21
1 − α2λ

12
1 (1 + λ21

1 )

1 + λ21
1

,−n−1

)
, xn = n−1e2.

In order for V̂ n1 to satisfy condition 1.b), i.e. V̂ n1 ≥G1
0, we have to impose that

0 ≤ α2 ≤ (λ21
1 + λ12

1 (1 + λ21
1 ))−1.

More precisely, we choose α2 := (λ21
1 +λ12

1 (1+λ21
1 )+eW

+
1 )−1. Since the transaction

costs coefficients belong to (0, 1], we have that

1− α2λ
21
1 − α2λ

12
1 (1 + λ21

1 ) = α2e
W+

1 ≥ eW
+
1

3 + eW
+
1

≥ C, C := inf
x≥1

x

3 + x
.

If W1 ≤ 0 then Sn1
1 ≤ ce−2n1/2

and the first component (∆V̂ n1 )(1) ≥ c̃e2n
1/2

,
where c and c̃ are some constants. If W1 ≥ 0, we obtain that

(∆V̂ n1 )(1) ≥ c e2n
1/2

3 + eW1
= cξn,

for some constant c. Therefore, in both cases, there exists a constant c such that

∆V̂ n1 ≥R2
+

(cξn,−n−1).

We only have to prove that V̂ n1 = xn + ∆V̂ n1 ≥Gn
1

1 a.s. on the events Γn and
this will give us condition 1.d) of Definition 1. To do so, it suffices to find a.s. an
element g1 ∈ Gn1 such that V̂ n1 −g1 ≥R2

+
1. Without loss of generality, it is sufficient

to find g1 ∈ Gn1 such that Mξne1 − g1 ≥R2
+

1 where M is a constant independent

of n we choose large enough (if needed we renormalize V̂ n1 ). For this, we solve
the following problem. Find β1, β2 ≥ 0 such that the following inequality holds
componentwise :

Xn := (Mξn, 0) +

(
1

Sn1
1

(β1 − β2(1 + λ12
1 )),

1

Sn2
1

(β2 − β1(1 + λ21
1 ))

)
≥ (1, 1).
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It is sufficient to take β1 := βn1 =
√
n and β2 := βn2 = 2n. Since

1

n

(
β2 − β1(1 + λ21

1 )
)
→ 2, n→∞,

the second component of Xn is greater than 1 for n large enough. Note that on
the set Γn, we have e−1n ≤ Sn1

1 ≤ n. Moreover

ξn ≥ e2n
1/2

3 + e2n
1/2−2(1+n−1)−1/2

≥ c0

provided that n is large enough, c0 being a constant independent of n. It follows
that

Mξn +
1

Sn1
1

(
β1 − β2(1 + λ12

1 )
)
≥Mc0 +

√
n

n
− 2e1(1 + λ12

1 ).

Choosing the constant M independently of n such that

Mc0 ≥ 1 + 4e1,

we then conclude that the first component is also greater than 1 provided that n
is large enough.

We have built in this example a sequence (V̂ n) which realizes an asymptotic
arbitrage opportunity of the first kind even if each market satisfies a No Arbitrage
condition. �

Throughout the sequence, we assume that for each model the exchanges be-
tween assets are executed like in a “real world ” where we go through the numéraire.
To exchange some amount of the ith-asset into the jth-asset, sell the ith-assets,
get the money in cash (i.e. the bond) and buy jth-assets with this cash. We model
this assumption by the following:

RW: (1 + λi,b)(1 + λb,j) = 1 + λi,j for every i, j = 0, 1, . . . , n and i 6= j.

5.2 One-stage APM by Ross

We study the example of [13] under the variant approach and under the RW

condition. Recall that we are given a sequence of independent random variables
(εi)i≥0 on a probability space (Ω,F , P ) taking values in a finite interval [−N,N ].
We suppose that Eεi = 0, Eε2i = 1. At time zero, asset prices are positive numbers
Xi

0, i ≥ 0. After a certain period (at time T = 1), their positive discounted values
are given by the following relations:

X0
1 = X0

0 (1 + µ0 + σ0ε0),

Xi
1 = Xi

0(1 + µi + σi(γiε0 + γ̄iεi)), i ≥ 1.

The coefficients are here deterministic, σi > 0, γ̄i > 0 and γ2
i + γ̄2

i = 1, γ0 = 1. The
asset with number zero is interpreted as the market portfolio, γi is the correlation
coefficient between the rate of return for the market portfolio and the rate of
return for the asset with number i. For n ≥ 1, we consider the stochastic basis
Bn := (Ω,Fn, IFn = (Fnt )t=0,1, P

n) with the (n + 1)-dimensional random process
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Sn = (X0
t , . . . , X

n
t )t=0,1 where Fn0 is the trivial algebra, Fn1 = Fn = σ(ε0, . . . , εn),

and Pn = P |Fn. We assume that the transaction costs coefficients of each model
are constant and equal to λi, i ≥ 1. They correspond to the exchanges from the
risky assets number i, i ≥ 1, to the bond (assumed to be constant and equal to 1),
as well as from the bond to the risky assets. Moreover, we assume that there are
no transaction costs regarding the exchanges between the bond and the portfolio
market X0, i.e. λ0 := 0. We suppose that there exists a constant k such that

1

1− λi
≤ k

1 + λi
. (5.4)

This assumption is not too restrictive from a practical point of view. For instance,
if λi ≤ 0.5 for all i, then k = 3. More generally, the assumption means that there
exits λ∗ ∈ (0, 1) such that λi < λ∗, ∀i. The sequence M = {(Bn, (1, Sn), 1)} is a
large security market by our definition. We may rewrite the dynamics as in [13]:

X0
1 = X0

0 (1 + σ0(ε0 − b0)),

Xi
1 = Xi

0(1 + σiγi(ε0 − b0) + σiγ̄i(εi − bi)), i ≥ 1

where

b0 := −µ0

σ0
, bi :=

µ0βi − µi
σiγ̄i

, βi := γiσi/σ0, i ≥ 1.

Let Fi be the distribution function of εi. Put

si := inf{t : Fi(t) > 0}, si := inf{t : Fi(t) = 1},

di := bi − si, di := si − bi, and d0
i := di ∧ di. As in [13], we suppose that d0

i ≥ 0.
Moreover, let us define:

di := d0
i +

4λi

(1 + λi)σiγ̄i
:= d0

i + fi, i ≥ 1, d0 := d0
0 := d0

0 + f0.

As in [13], we suppose that each model has an equivalent probability measure
so that there exists also a strictly consistent price system. In particular, we have
|bi| < N and, without loss of generality, we assume that N > 1.

Let us consider the following conditions:

C2: lim supi

√
b2i + 2λi

(1−λi)σiγi
= 0.

P2: lim supi

(
|bi| − 2 λi

(1−λi)σiγ̄i

)
≤ 0 and lim supi

λi

(1−λi)σiγ̄i
∈ (0,∞).

Proposition 5.1 The following statements hold:

(a) infi di = 0 ⇔ SAA1;

(b) infi di > 0 ⇔ NAA1;

(c) C2 or P2 ⇔ NAA2.
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Proof. Under Condition RW, we may assume without loss of generality that
the only exchanges occur between the bond and the risky assets, i.e. there is
no exchange between two risky assets. Recall that, in this model, there are no
transaction costs between the bond and the portfolio market. Then, the terminal
value of a portfolio, once liquidated, can be expressed as follows:

V n1 = xn +
n∑
i=0

φi(X
i
1 −Xi

0)−
n∑
i=1

λi|φi|(Xi
0 +Xi

1)

where (φi)i=0,...,n is the composition of the portfolio at date zero in the risky assets
and xn is the initial endowment expressed in the bond. The first two terms of V n1
represent respectively the initial endowment and the variations of the portfolio due
to the price movements. The last one corresponds respectively to the transaction
costs that have to be paid due to the passage from xn to φ and to the liquidation
of the portfolio at date 1. We use the notations of [13]:

a0 :=
n∑
i=0

φiX
i
0σiγi, ai := φiX

i
0σiγ̄i, i ≥ 1.

The terminal value of the portfolio can be rewritten as:

V n1 = xn +
n∑
i=0

ai(εi − bi)−
n∑
i=1

|φi|λi(Xi
0 +Xi

1) (5.5)

= xn +
n∑
i=0

ai(εi − bi)− 2
n∑
i=1

λi|φi|Xi
0 −

n∑
i=1

λi|φi|(Xi
1 −Xi

0) (5.6)

= xn +
n∑
i=0

αi(εi − bi)− 2
n∑
i=1

λi
|ai|
σiγ̄i

(5.7)

where

α0 := a0 −
n∑
i=1

λi|ai|
γi
γ̄i
, αi := ai − λi|ai|, i ≥ 1.

Note that, for i ≥ 1, ai = αi/(1− λi) if αi ≥ 0 and ai = αi/(1 + λi) if αi ≤ 0 so
that (αi)i=0,...,n are uniquely determined and vice-versa.
• Assume that infi di = 0. Then, there exists a subsequence (ik) such that

d0
i + fi < 2−i. We then construct a strong asymptotic arbitrage opportunity only

using the risky assets corresponding to this subsequence. We follow the proof of
[13]. We set α2n

i := 1Γ̄∩{i≥n+1} − 1Γ∩{i≥n+1}, i ≥ n+ 1 ,where Γ := {i : di < di}
and Γ̄ is the complementary of Γ . Note that there is an abuse of notation as in
[13]. The number 2n means that we work with the model in which we consider
the 2n assets whose indices belong to the subsequence (ik). In other words we
only trade the assets having the same indices than the subsequence. As in [13] but
taking x2n := 2−n(1 + k) we deduce that

V 2n
1 ≥

2n∑
i=n+1

((si − εi)1Γ + (εi − si)1Γ̄ ) + 2−n −
2n∑

i=n+1

(
di1Γ + di1Γ̄

)
+ k2−n − 2

2n∑
i=n+1

λi
1

(1− λisign(αi))σiγ̄i
.
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Observe that

λi
1

(1− λisign(αi))σiγ̄i
≤ λi 1

(1− λi)σiγ̄i
≤ λi k

(1 + λi)σiγ̄i
≤ kfi/4 ≤ k2−i/4.

It follows that

V 2n
1 ≥

2n∑
i=n+1

((si − εi)1Γ + (εi − si)1Γ̄ )

and we conclude like in [13] that V 2n
1 converges a.s. to ∞ as n → ∞, i.e. there is

a strong asymptotic arbitrage opportunity of the first kind.

• Assume that infi di = δ > 0. Then using a similar argument like in [13], we
have the following inequalities on a non-null set:

V n1 ≤ xn −
n∑
i=0

|αi|
d0
i

2
− 2

n∑
i=1

λi
|ai|
σiγ̄i

≤ xn −
n∑
i=0

|αi|
di
2

+
n∑
i=1

|αi|
fi
2
− 2

n∑
i=1

λi
|αi|

(1− λisign(αi))σiγ̄i

≤ xn −
n∑
i=0

|αi|
di
2

+
n∑
i=1

|αi|
fi
2
− 2

n∑
i=1

λi
|αi|

(1 + λi)σiγ̄i

≤ xn −
n∑
i=0

|αi|
di
2

+
n∑
i=1

|αi|
2

(
fi − 4λi

|αi|
(1 + λi)σiγ̄i

)

≤ xn −
n∑
i=0

|αi|
di
2
≤ xn − δ

2

n∑
i=0

|αi|.

With V n1 ≥ 0 and xn → 0, it follows that
n∑
i=0

|αi| → 0 as n → ∞. From the

inequality

0 ≤ V n1 ≤ xn + 2N
n∑
i=0

|αi|,

we deduce that V n1 → 0 as n→∞. Hence, there is no strong asymptotic arbitrage
opportunity of the first kind. We then conclude about (a) and also about (b) as a
consequence.

Let us now prove Statement (c).

• Let us first assume that (NAA2) holds and lim supi b̃i > 0 where

b̃i :=

√
b2i +

2λi

(1− λi)σiγi
.

Let us also suppose that Condition P2 does not hold. Under the conditions above,
we show that it is possible to construct an asymptotic arbitrage opportunity of
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the second kind hence a contradiction. We may assume without loss of generality
that ν := infi b̃i > 0. Since N |bi| ≥ b2i we get that

N |bi|+N
2λi

(1− λi)σiγi
≥ b2i +

2λi

(1− λi)σiγi
.

From there, we may assume that we also have

|bi|+
2λi

(1− λi)σiγi
> ν̃

where ν̃ > 0 is a constant. Let us denote D2
n :=

∑n
i=0 b̃

2
i and consider a terminal

portfolio value:

V n1 := xn +
n∑
i=0

αi(εi − bi)− 2
n∑
i=1

λi
|αi|

(1− sign (αi)λi)σiγ̄i
.

The idea is to choose the coefficients αi = αni so that V n1 → 0 a.s. and

xn =
n∑
i=0

αibi + 2
n∑
i=1

λi
|αi|

(1− sign (αi)λi)σiγ̄i
.

It follows that

V n1 =
n∑
i=0

αiεi.

Renormalizing the sequence (V n1 ) if necessary, we deduce that |V n1 | ≤ 1 and apply-
ing the strong law of large numbers, we shall conclude that V n1 → 0 a.s. It remains
to construct the coefficients (αi) and to show that lim inf xn < 0. We put

ei := bi − 2
λi

(1 + λi)σiγ̄i
.

•First Case. We suppose there exists c > 0 and a subsequence such that

ei ≥ c b̃i.

We choose αi := − ν2 b̃i
N2D2

n
so that |V n1 | ≤ 1. Moreover,

xn = − ν2

N2D2
n

n∑
i=0

b̃iei ≤ −
cν2

N2

implies that lim inf xn ∈ (−∞, 0). Since Dn ≥ C n where C > 0, we deduce that
V n1 → 0 by virtue of the strong law of large numbers.

•Second Case. We suppose that ei ≤ 0. Since Condition P2 does not hold, either

lim supi

(
|bi| − 2 λi

(1−λi)σiγ̄i

)
> 0 or lim supi

λi

(1−λi)σiγ̄i
= 0. In the second case, we

then deduce that lim supi bi = 0 if the condition of the first case is not satisfied
hence a contradiction. Then, we may assume there exists a constant c ∈ (0, 1) such
that (

|bi| − 2
λi

(1− λi)σiγ̄i

)
≥ c

√
b2i +

2λi

(1− λi)σiγi
.
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Indeed, the second term in the rhs of the inequality above turns out to be bounded
(for a subsequence). From now on, consider the terminal value portfolio:

V n1 := − ν

NDn

n∑
i=1

sign (bi)

√
b2i +

2λi

(1− λi)σiγi
εi −

ν

NDn
ε0.

It satisfies |V n1 | ≤ 1 and by virtue of the Bienaymé–Tchebychev inequality,

P (|V n1 | ≥ ε) ≤
ν2

N2Dnε2
→ 0, n→∞

since Dn ≥ νn. At last, recall that the random variables (εi)i≥0 are independent
and identically distributed under the initial probability measure. We deduce that
V n1 is the terminal value of a portfolio of the form (5.7) if and only if

αi = −sign (bi)
ν

NDn

√
b2i +

2λi

(1− λi)σiγi
, i ≥ 1, α0 = − ν

NDn
b0.

We deduce that

xn = − ν

NDn
b20 −

ν

NDn

n∑
i=1

√
b2i +

2λi

(1− λi)σiγi

(
|bi| −

2λi

(1− λisign (αi))σiγi

)
.

We then deduce that xn ≤ − cνN and we conclude that (V n1 ) realizes an asymp-
totic arbitrage opportunity of the second kind.

• Let us suppose that

lim sup
i

√
b2i +

2λi

(1− λi)σiγi
= 0.

It follows that lim supi |bi| = 0. Following the reasoning of [13], we deduce that
lim supi d

0
i ≥ C, where C is a strictly positive constant such that si ≤ −C and

si ≥ C, and δ := infi d
0
i > 0. We also deduce that

lim sup
i

2λi

(1 + λi)σiγi
= 0.

We may assume without loss of generality that

sup
i

(
2λi

(1 + λi)σiγi

)
≤ δ

4
.

We deduce the existence of δ̃ > 0 such that

inf
i

(
d0
i

2
+

2λi

(1 + λi)σiγ̄i

)
> δ̃. (5.8)

Let (xn, αn) be a sequence such that the properties (3.a) and (3.c) of a strategy
realizing (AA2) are fulfilled, i.e. xn → −x < 0 and

−V n1 = −xn −
n∑
i=0

αi(εi − bi) + 2
n∑
i=1

λi
|ai|
σiγ̄i

≤ 1.
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Then, on a non-null set, we deduce that

−xn +
n∑
i=0

|αi|
d0
i

2
+ 2

n∑
i=1

λi
|αi|

(1− λisign (αi))σiγ̄i
≤ 1

−xn +
n∑
i=0

|αi|
(
d0
i

2
+

2λi

(1 + λi)σiγ̄i

)
≤ 1

Then, with n large enough and γ := x/2, we have γ + δ̃
∑n
i=0 |αi| ≤ 1 and∑n

i=0 |αi| ≤ (1 − γ)/δ̃. Observe that we can also choose δ̃ smaller so that the last
inequality holds for all n. Since

lim sup
i

(
|bi|+

2λi

(1 + λi)σiγ̄i

)
= 0,

we also may assume that

sup
i

(
|bi| −

2λi

(1 + λi)σiγ̄i

)
≤ δ̃γ

2(1− γ)
. (5.9)

We deduce that, with n large enough,

−V n1 ≥ γ +
n∑
i=0

αiεi −
n∑
i=0

|αi|
(
|bi| −

2λi

(1 + λi)σiγ̄i

)

≥ γ

2
+

n∑
i=0

αiεi.

We conclude that for n large enough,

P (V n1 ≤ −γ/4) = P (−V n1 ≥ γ/4) ≥ E(−V n1 − γ/4)+ ∧ 1

≥ E(−V n1 − γ/4) ∧ 1

≥ E(−V n1 − γ/4) ≥ γ/4

hence (NAA2) holds. Under the condition P2, we do the same reasoning since the
inequalities (5.8) and (5.9) remains valid. �

5.3 The large Black–Scholes market

We consider the large Black and Scholes market example of Kabanov and Kramkov
[13]. We are given a sequence of markets whose horizon dates are Tn = T for all
n ≥ 1. Let (Ω,F ,F = (Ft)t≤T , P ) be a stochastic basis with a countable set
of independent one-dimensional standard Brownian motions (W i)i≥0. We define
Bn = (W 0, . . . ,Wn), and let Gn = (Gnt ) be a subfiltration of F such that (Bn,Gn)
is a (n+ 1)-dimensional standard Wiener process. Contrarily to [13], we consider
here complete markets, i.e. Gn = F is the completed natural filtration of the
Brownian motions (W i)i≥0. The incomplete case remains an open problem. The
behaviour of the stock prices is described as follows:

dX0
t = µ0

tX
0
t dt+ σ0

tX
0
t dW

0
t ,
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dXi
t = µitX

i
tdt+ σitX

i
t(γ

i
tdW

0
t + γitdW

i
t ), i ∈ N

with deterministic (strictly positive) initial points. The coefficients are Gi-predictable
processes verifying

∫ T

0

|µis|2ds <∞,
∫ T

0

|σis|2ds <∞

and |γit |2 + |γit|2 = 1. To avoid degeneracy we shall assume that σi > 0 and γi > 0.
Moreover, we assume that there exists a bond Bt = 1 for all t ≥ 0.

We shall study the absence of asymptotic arbitrage opportunities of the first
kind according to the variant definition of Section 4. Observe that in our ex-

ample YT,∞0,b (T )
w

= YT,∞0,b (T ) is Fatou–closed, [4], since the price process pro-
vides a strictly consistent price system. We want to characterize probability mea-
sures Qn ∈ Qn, i.e. probability measures Q ∼ P such that dQ

dP = ZT e1 where

ZT ∈MT
0 (G∗\{0}, P ) and Z0e1 = 1. To do so, we shall characterize the consistent

price systems. Let us denote by λi,bt , λb,it , for t ≥ 0, and i = 0, . . . , n, the trans-
action costs coefficients characterizing the exchange between the risky assets and
the bond. We assume that λi,bt > 0 and λb,it > 0 for all i = 0, . . . , n.

Definition 10 We say that the process Y ∈ Rn+1
+ is a λ-consistent price system

for the prices (Xi)i≤n if there exists Q ∼ P such that Y is a Q-martingale and

Xi
t

1 + λi,bt
≤ Y it ≤ (1 + λb,it )Xi

t , i = 0, . . . , n. (5.10)

Lemma 5.2 Assume that Assumption RW holds. Then, there exists a consistent

price system Z ∈ MT
0 (G∗\{0}) if and only if there is a λ-consistent price system for

the prices (Xi)i≤n.

Proof. • “⇒ ” Assume that there exists a consistent price system Z ∈MT
0 (G∗\{0}),

i.e. Z is a martingale and Zt ∈ G∗t \{0}, for all t ≤ T . Recall that G∗ is the (n+ 2)-
dimensional cone defined by the transaction costs λi,b and λb,i for i ≤ n. Denoting
Z = (Zb, Z0, · · · , Zn), interpret Zb as a numéraire and take Y defined as follows:

Yt := (
Z0
t

Zbt
, . . . ,

Znt
Zbt

).

Define Q such that dQ/dP = ZbT /Z
b
0. Since (Zt)t≤T is a martingale, it is clear that

Y is a Q-martingale. In order for Y to be a λ-consistent price system, we only
have to prove (5.10) but these inequalities follow immediately from the fact that
Zt ∈ G∗t \{0}, for all t ≤ T .
• “⇐ ” Assume that Y is a λ-consistent price system, i.e. there exists a prob-

ability measure Q ∼ P such that Y is a Q-martingale and the inequalities (5.10)
hold. Then we define ρ0

t by ρ0
t := E [dQ/dP |Ft] and Zjt by Zjt := Y jt ρ

0
t for ev-

ery j = 0, . . . , n, Zbt := ρ0
t . Now it is easily seen that, since Y is a Q-martingale,

Z = (Zb, Z0, . . . , Zn) is a P -martingale. The proof is now completed because the
inequalities (5.10) imply the fact that Z lies in G∗ \{0} under Assumption RW. �
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From there, we deduce that for each model,

Qn(A) = sup
Q∈Qn

Q(A) = Q̃n(A) := sup
Q∈Q̃n

Q(A)

where
Q̃n := {Q : dQ = ρT dP, ρ ∈ M̃e}

and M̃e is the set of all density processes such that there exists a λ-consistent
price system for the prices (Xi)i≤n under the probability measure defined by
dQ = ρT dP .

Let us now focus on a consistent price system Z ∈ MT
0 (G∗\{0}). By virtue

of Corollary 2 page 189 in [16], this is a continuous martingale. We deduce the
following martingale representation

(Zit)0≤i≤n = (Zi0)0≤i≤n +

∫ t

0

HsdB
n
s = (Zi0)0≤i≤n +

∫ t

0

diag ((Zis)0≤i≤n)KsdB
n
s

Zbt = Zb0 +

∫ t

0

Hb·
s dB

n
s = Zb0 +

∫ t

0

ZbsK
b
sdB

n
s

where Kb
s := (Zbs)

−1Hb·
s , Ks := diag ((Zis)0≤i≤n)−1Hs and H is a matrix-valued

predictable process, Hb· is a vector-valued predictable process. Writing the compo-
nents of the process Z in a Doleans-Dade form, we then deduce that a λ-consistent
price system for the prices (Xi)i≤n has the following form:

dY it = Y it Λ
i·
t dB

n
t + Y it α

i
tdt, i ≤ n

where Λ ∈ Rn+1,n+1 and α are respectively matrix and vector-valued predictable
processes. Since ZbY i, i ≥ 0 and Zb are martingales, the integration by parts
formula

Zbt Y
i
t =

∫ t

0

ZbudY
i
u +

∫ t

0

Y iudZ
b
u + 〈Zb, Y i〉t

implies that Hb.
s Λ

i·
s + Zbsα

i
s = 0 and αis = −Hb.

s Λ
i·
s /(Z

b
s). We then deduce that a

λ-consistent price system for the price (Xi)i≤n has finally the following form:

dY it = Y it Λ
i·
t (dBnt − αtdt) , i ≤ n (5.11)

where the vector-valued predictable process α does not depend on i.

Let us introduce

B̃nt := Bnt −
∫ t

0

αudu

and the process Lα satisfying the SDE dLαt = Lαt αtdB
n
t , L0 = 1. We can easily

observe that L = Zb so that L is a martingale and B̃n is a standard brownian
motion under Q by virtue of Girsanov’s theorem.

Reciprocally, consider any process Y whose dynamics has the form (5.11) such
that the associated process Lα satisfying the SDE dLαt = Lαt αtdB

n
t , L0 = 1, is a

martingale and such that the inequalities (5.10) hold. Applying again Girsanov’s
theorem, we deduce that Y is a λ-consistent price system for the price (Xi)i≤n.
We then have:
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Lemma 5.3 The λ-consistent price systems for the price (Xi)i≤n are the processes

Y verifying Inequalities (5.10) and having a dynamics of the form (5.11) where the

associated process Lα is a martingale.

From now on, let us denote for a given λ-consistent price system Y n of the
n-th model,

Q̃(Y n) := {Q : dQ = ρT dP, ρ ∈ M̃e(Y
n)}

and M̃e(Y
n) is the set of all density processes such that the λ-consistent price

system Y n is a martingale under the probability measure defined by dQ = ρT dP .

Notice that M̃e is the union of all M̃e(Y
n). We then denote by Q̃(Y n) the upper

envelope of the probability measures of Q̃(Y n).
For our next purpose we remind Proposition 3.1 above in its variant version.

Proposition 5.4 The following conditions are equivalent:

(a) there is no asymptotic arbitrage of the first kind (NAA1),

(b) (Pn) � (Qn),

(c) there exists a sequence (Rn) ∈ Qn such that (Pn) � (Rn).

We then apply Proposition 8 of [13] to a λ-consistent price system we interpret
as a price process. Precisely, we consider the price process S := Y . The process S
satisfies the SDE

dSit = SitΛ
i·
t (dBnt + αtdt) , i ≤ n. (5.12)

and S is a martingale under dQα = LαT dP .

Proposition 5.5 Assume that each model is defined by the matrix-valued transaction

costs process (λi,j)i,j∈{b,0,··· ,n} verifying Condition RW. Then, the following condi-

tions are equivalent:

(a) there is no asymptotic arbitrage of the first kind (NAA1),

(b) (Pn) � (Q̃n),

(c) there exists a sequence (Y n) of λ-consistent price systems such that

(Pn) � (Q̃n(Y n)),

(d) there exists a sequence of predictable processes Λn ∈ Rn,n+1, αn ∈ Rn such

that:

(d1) the process Lα
n

is a martingale,

(d2) The process Y n defined by (5.11) verifies Inequalities (5.10),

(d3)
∫ T
0

supn
∑n
i=0

(
αn,is

)2

ds <∞ a.s.

Proof. The statements (a), (b) and (c) are equivalent by virtue of Proposition
3.1. Let us show the implication (c) ⇒ (d). The statements (d1) and (d2) are
obvious. The third one is a direct consequence of Proposition 8 of [13]. The reverse
implication is based on the same proposition and the construction of a λ-consistent
price system from Properties (d1) and (d2). �
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Remark 5.6 This result is an extension of Proposition 8 of [13]. Taking λ = 0,
a 0-consistent price system is just X so that the process αn of Statement (d) is
known and (d3) can be rewritten as in Proposition 8 of [13].

We conclude this example with the following proposition which gives a neces-
sary condition, in terms of the coefficients defining the prices for the large security
market, to satisfy the NAA1 condition. We put

b2i := min(e2µiT (1 + λi,b)−2, (eσ
2
iT − 1)−1).

Proposition 5.7 Assume that the transaction costs coefficients are constant in time

and uniformly bounded. Suppose that the coefficients µi, σi, γi, γi are deterministic.

(a) If

∞∑
i=1

b2i =∞, then SAA2 holds.

(b) NAA1 ⇒
∞∑
i=1

b2i <∞.

Proof. We define αi := −|̃bi|/D2
n, i ≥ 0, where D2

n :=
n∑
i=0

b2i and b̃i is defined by the

equality |̃bi|(1 + λi,b)−1eµiT = b2i . Corresponding to the bond, we define

αb := 1 =
n∑
i=0

(1 + λi,b)−1|αi|eµiT .

We denote α := (αb, α0, · · · , αn) ∈ Rn+2. We consider the terminal liquidated
portfolio value

WT :=
n∑
i=0

(1 + λi,b)−1|αi|Xi
T − αb.

Consider an arbitrary λ-consistent price system. Recall the inequalities

(1 + λi,b)−1Xi
T ≤ Y

i
T ≤ (1 + λb,i)Xi

T , i ≤ n.

Multiplying each side by LαT := ZbT , we deduce that for every consistent price
system Z,

(1 + λi,b)−1Xi
TZ

b
T ≤ Z

i
T ≤ (1 + λb,i)Xi

TZ
b
T , i ≤ n. (5.13)

It follows that EZT (−α) ≥ EZTWT eb where eb ∈ Rn+2 is the vector only the
first component of which is different from zero and equal to 1. Then, let us define
VT := WT eb ∈ −α+ YT0,b(T ). Observe that

n∑
i=0

α2
i =

1

D4
n

n∑
i=0

b̃2i =
1

D4
n

n∑
i=0

b4i (1 + λi,b)2e−2µiT

≤ 1

D4
n

n∑
i=0

b2i ≤ D
−2
n → 0.
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Let us put

xn := −αb −
n∑
i=0

(1 + λb,i)αi.

Then, xneb ≥G0
−α by definition. It follows that we may replace −α by xneb where

xn → −1 as n→∞ . On the other hand, we have WT ≥ −1, EWT = 0 by definition
and

EW 2
T =

1

D4
n

n∑
i=0

b4i (e
σ2
iT − 1) ≤ D−2

n → 0.

We then deduce that the sequence (VT ) realizes a strong asymptotic arbitrage
opportunity of the second kind. �

5.4 Two asset model with infinite horizon

Under the variant approach, we consider the example of [13], i.e. the discrete-time
model with only two assets, one of which is taken as a numéraire and its price
equals 1 over time. The price dynamics of the strictly positive second asset is
given by the following relation

Xi = Xi−1(1 + µi + σiεi), i ≥ 1

where X0 > 0, (εi)i≥1 is a sequence of independent random variables on a probabil-
ity space (Ω,F , P ) and taking values in a finite interval [−N,N ], Eεi = 0, Eε2i = 1.
The coefficients here are deterministic and σi 6= 0 for all i. The support of εi is
[si, si] where si < 0 < si and we suppose that µi + σisi > 0 and µi + σisi < 0.

For n ≥ 1, we consider the stochastic basis Bn = (Ω,Fn, IFn = (Fni )i≤n, P
n)

with the 2-dimensional random process Sn = (1, Xi)i≤n where Fn0 = F0 is the triv-
ial σ-algebra, Fni = Fi := σ(ε1, . . . , εi), and Pn = P |Fnn . We consider the sequence
M = {(Bn, Sn, n)} of large security markets associated to the deterministic trans-
action costs coefficients (λ0,1

i = 0, λ1,0
i )i≤n for the exchanges between the bond

and the risky assets Xi. In a bid-ask model, that means that Xi is the ask price
at time i and Xi(1− λ1,0

i ) is the bid-price. As in [13], we suppose that each model
has an equivalent probability measure Q with bi := EQεi so that there exists also
a strictly consistent price system. In particular, we have |bi| < N .

Before presenting our main result, let us observe that we may rewrite the
model under an other probability Pn so that we may assume that µiµi+1 < 0 and
µ1 > 0. Indeed, let us choose αi ∈ (bi, si) if i is odd and αi ∈ (si, bi) otherwise.
As P (εi − αi > 0) > 0 and P (εi − αi < 0) > 0 for all i, there exists Pn ∼ P with
dPn := Πn

i=1fi(εi − αi)dP and EP fi(εi − αi) = 1 such that EP fi(εi − αi)εi = αi
(see [13]). We then deduce that

Xi
Xi−1

= 1 + σ̃iε̃i + µ̃i

where

σ̃iε̃i := σiεi + µi − EPn(σiεi + µi),

µ̃i := EPn(σiεi + µi) = σiαi + µi,

EPn ε̃2i := 1.
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Since µi + σisi > 0 and µi + σisi < 0, we can choose |αi| large enough such that
µ̃i > 0 if i is odd and µ̃i ≤ 0 otherwise. Observe that the random variables (εi)i≤n
are still independent under Pn and so do (ε̃i)i≤n. We denote by µ̃i , σ̃i and b̃i the
coefficients of the model when we write it under Pn.

Let

bi := −µi
σi
, D2

0,n :=
n∑
i=1

b2i , D2
n :=

n∑
i=1

b̂2i

where b̂i := bi −∆i and ∆i := 0 if bi = 0, otherwise:

∆i := µ−1
i

(
Λli − 1

)
bi, bi > 0,

∆i := µ−1
i (Λri − 1) bi, bi < 0

with

Λri := Λi := (1 + λ10
i ), Λli := Λi := (1 + λ10

i−1)−1, λ10
0 := 0.

We also define the analogous coefficients (̂̃bi) we deduce from (̃bi) and (µ̃i) . Then,

Xi = Xi−1(1 + σi(εi − bi)), i ≥ 1,

Xi = Xi−1(1 + σ̃i(ε̃i − b̃i)), i ≥ 1.

At last, we suppose that bib̂i ≥ 0 and so −si < b̂i < si meaning that the
transaction costs coefficients are small enough.

Lemma 5.8

(a) If D2
∞ <∞, then (Pn) � (Qn) (equivalently NAA1 holds);

(b) If D2
∞ =∞, then (Pn)4(Qn) (equivalently SAA1 holds).

Proof.

(a) Notice that in the case where D2
0,n <∞, i.e. when the model without friction

of [13] does not admit any asymptotic arbitrage opportunity, it is straightforward
to conclude using the results of [13] since (Xi) is a strictly consistent price system.
The case D2

0,n = ∞ is the most interesting case; indeed the natural question is
how to increase the transaction costs coefficients in order to eliminate an arbitrage
opportunity of the frictionless model.

Recall that µ̃1 > 0. For each n, we construct a λ-consistent price system (Yi)
such that Y0 = X0 and Yi/Yi−1 = (Xi/Xi−1)ki where ki > 0 is defined by the
relation

ki := (1− σ̃i∆̃i)−1

i.e. ki = (Λri )
−1 or ki = (Λli)

−1. We have Yi/Yi−1 = 1 + σ̃iki(ε̃i −
̂̃
bi) but also

Yi/Yi−1 = 1 + kiσi(εi − b̂i). (5.14)

Recall that −si < b̂i < si. Then, P (εi − b̂i > 0) > 0 and P (εi − b̂i < 0) > 0 for
all i. It follows that there exists Q ∼ P such that Y is a Q-martingale.
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Since b̃1 < 0, it follows that

Πi
j=1kj = (1 + λ10

1 )−1(1 + λ10
1 )(1 + λ10

2 )−1(1 + λ10
2 ) · · ·

and we get that Πi
j=1 = 1 or Πi

j=1 = (1 + λ10
i )−1. It follows that

(1 + λ10
i )−1Xi ≤ Yi ≤ Xi

and (Yi) is a λ-consistent price system. We then consider the frictionless model of
[13] defined by the prices (Yi) with the coefficients (̂bi) in (5.14) . Since D2

∞ <∞,
Proposition 11 (a) of [13] and Proposition 5 of [13] implies the NAA1 condition
for our large market defined by (Xi).

(b) Let us consider an arbitrary sequence of measures Qn ∈ Qn associated to
consistent price systems (Zni )i≤n such that dQn = Z0n

n dPn. Then the real valued
process Y n := Z1n/Z0n is a Qn-martingale verifying the inequality:

1

1 + λ10
i

Xi ≤ Y ni ≤ Xi.

It follows that

Y ni ≤ Xi ≤ (1 + λ10
i )Y ni

and

1

(1 + λ10
i−1)

Y ni
Y ni−1

≤ Xi
Xi−1

≤ (1 + λ10
i )

Y ni
Y ni−1

.

We deduce that

1

σi

(
1

(1 + λ10
i−1))

− 1

)
≤ EQn(εi − bi|Fi−1) ≤ (1 + λ10

i )− 1

σi
.

Consider the case where bi < 0. Using the definition σibi := −µi and ∆i := bi − b̂i,
we get the inequalities

bi

(
Λri − 1− µi∆i

bi

)
≤ −µiEQn(εi − b̂i|Fi−1) ≤ bi

(
Λli − 1− µi∆i

bi

)
.

Since ∆i = µ−1
i (Λri − 1) bi, we deduce that EQn(εi − b̂i|Fi−1) ≤ 0 and

b̂iEQn(εi − b̂i|Fi−1) ≥ 0. (5.15)

The case bi > 0 also yields Inequality (5.15). We then deduce that

essinf Qn∈QnEQn (̂bi(εi − b̂i)|Fi−1) ≥ 0. (5.16)

Let us define the Qn-martingale Mn(Qn) by

Mn
k (Qn) :=

k∑
i=1

[
b̂i(εi − b̂i)− EQn (̂bi(εi − b̂i)|Fi−1)

]
.
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It verifies

EQn(Mn
n (Qn))2 =

n∑
i=1

EQn

[
b̂i(εi − b̂i)− EQn (̂bi(εi − b̂i)|Fi−1)

]2
≤ C D2

n

where C is a constant. Let us define Mn by

Mn :=
n∑
i=1

[
b̂i(εi − b̂i)− essinf Qn∈QnEQn (̂bi(εi − b̂i)|Fi−1)

]
.

Then, let us define the sets An := {−D−3/2
n Mn > 1} ∈ Fn. Observe that

Mn ≥Mn
n (Qn) for any Qn ∈ Qn. By the Tchebychev inequality, we get that

Qn(An) ≤ Qn({−D−3/2
n Mn(Qn) > 1}) ≤ D−3

n EQn(Mn
n (Qn))2 ≤ 4N2D−1

n → 0, n→∞.

On the other hand, since Inequality (5.16) holds, the complement A
n

of An

verifies

Pn(A
n

) ≤ Pn
(

n∑
i=1

b̂iεi ≥ (D2
n −D

3/2
n )

)
≤ 4N2D2

n

(D2
n −D

3/2
n )2

→ 0, n→∞.

Using Proposition 7 [13], we deduce that (Pn)4(Qn). �

Corollary 5.9

(a) D2
∞ <∞ ⇔ NAA1;

(b) D2
∞ =∞ ⇔ SAA1.

Remark 5.10 Consider a model where µiµi+1 ≤ 0 for all i and such that µi > 0
and µi+1 < 0 implies that (1+µi+1)(1+µi) = 1, i.e. EP (Xi+1/Xi−1) = 1. Assume
that

∑∞
i=1 b

2
i = ∞, i.e. there is a strong asymptotic arbitrage opportunity in the

model without transaction costs. Let us define for bi > 0, λ10
i = µi. We then get

the equality (1 + λ10
i )−1 = 1 + µi+1 and bi+1 < 0, i.e. ∆i = bi and b̂i = 0 for all i.

We then deduce that there is no more asymptotic arbitrage opportunity.

6 Appendix

For a given ζ ∈ L∞(Rd+), we define the convex set

Γ ζ :=
{
x ∈ Rd : ζ − x ∈ YT,∞0,b (T )

w}
and the closed convex set

Dζ := {x ∈ Rd : Z0x ≥ EZT ζ ∀Z ∈MT
0 (G∗)}.

Let us recall a result from [3] which we use in Section 4:

Lemma 6.1 Under Conditions S1 and S2, Γ ζ = Dζ .
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17. Mbele Bidima Martin L. D., Rásonyi M. On long–term arbitrage opportunities in Marko-
vian models of financial markets. Submitted may 15, 2010, Journal Annals of Operations
Research.
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