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Asymptotic Arbitrage in Large Financial Markets With

Friction

Emmanuel Denis · Lavinia Ostafe

Abstract In the modern version of Arbitrage Pricing Theory suggested by Ka-
banov and Kramkov the fundamental financially meaningful concept is an asymp-
totic arbitrage. The ”real world” large market is represented by a sequence of
”models” and, though each of them is arbitrage free, investors may obtain non-
risky profits in the limit. Mathematically, absence of the asymptotic arbitrage is
expressed as contiguity of envelopes of the sets of equivalent martingale measures
and objective probabilities. The classical theory deals with frictionless markets.
In the present paper we extend it to markets with transaction costs. Assuming
that each model admits consistent price systems, we relate them with families
of probability measures and consider their upper and lower envelopes. The main
result concerns the necessary and sufficient conditions for absence of asymptotic
arbitrage opportunities of the first and second kinds expressed in terms of conti-
guity. We provide also more specific conditions involving Hellinger processes and
give applications to particular models of large financial markets.

Key words Large financial market, asymptotic arbitrage, transaction costs, con-
tiguity, hedging theorem.
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1 Introduction

The idea to describe a financial market by a sequence of market models with
a finite number of securities can be traced back to the paper [7] by Huberman
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who formalized intuitive arguments of Arbitrage Pricing Theory initiated by Ross,
[20]. The famous conclusion of this theory is: under the absence of arbitrage,
appropriately defined, the expected returns on assets are approximately linearly
related to the factor loadings, ”betas”, proportional to the return covariances with
the factors. In economic literature, the APT is considered as a substitute for the
Capital Asset Pricing Model (CAPM) by Lintner and Sharp. The Ross–Huberman
theory is single-period and uses a definition of arbitrage different from that is
now standard. The problem of its generalization to the standard continuous-time
framework of modern mathematical finance during a long time was considered as
a challenging problem of large importance.

This problem was solved in 1994 by Kabanov and Kramkov, [12], who sug-
gested a concept of large financial market described by a sequence of ”standard”
financial market models with finite number of securities whose price processes ad-
mit martingale measures. They introduced new notions of Asymptotic Arbitrage
of the First and Second Kind and, assuming that martingale measures are unique
for each model, established necessary and sufficient conditions for the absence of
asymptotic arbitrage in terms of contiguity of the sequences of objective proba-
bilities and martingale measures. As a particular example of application of their
general approach, Kabanov and Kramkov considered a large Black–Scholes mar-
ket where the stock prices are correlated geometric Brownian motions. For this
case their general criteria give a result of the same type as the Ross–Huberman
condition but involving instantaneous returns and covariances.

Significant progress in the theory was achieved in the paper by Klein and
Schachermayer, [9], where the geometric functional analysis was used to obtain
criteria of absence of asymptotic arbitrage for the case of incomplete market mod-
els when the martingale measures are not unique. The next step in the develop-
ment of the general theory as well as in the understanding of financial framework
was again done by Kabanov and Kramkov, [13]. They added several new criteria
of absence of asymptotic arbitrage in terms of contiguity of sequences of upper
and lower envelopes of martingale measures and objective probabilities. The tech-
nique of the proofs was based on the optional decomposition theorem. The criteria
of Klein and Schachermayer was also obtained by an elegant use of the mini-
max theorem. Kabanov and Kramkov related their criteria with an extension of
the Liptser–Shiryaev theory of contiguity of sequences of probability measures on
filtered spaces in terms of the Hellinger processes. One should emphasize that
Kabanov–Kramkov framework is very general and flexible. It covers discrete and
continuous-time models, models with time horizons tending to infinity, etc. For the
further development of the theory of large financial markets we send the reader to
the articles [5], [17] but also [10] and [11].

In the present paper we extend the framework of large financial markets to
the case of a market with friction. It is well known, in the theory of markets with
proportional transaction costs the concept of martingale measures is not natu-
ral and is replaced by the notion of consistent price systems, i.e. the martingales
evolving in the duals to the solvency cones in physical units, [14]. The consistent
price systems are vector objects. Nevertheless, the criteria of absence of asymp-
totic arbitrage can be formulated in terms of contiguity of objective probabilities
and envelopes of measures naturally arising from consistent price systems. These
are our principal results. We follow the lines of [13] but do not use the optional
decomposition theorem (it has no analogue for models with transaction costs) but
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the hedging theorem. We use the abstract setting of the recent paper by Denis
and Kabanov [3], which allows us to avoid detailed discussion of the structure of
continuous-time models and cover both major approaches to the definition of the
value processes, those of Kabanov and of Campi–Schachermayer [2].

Some examples are given. The first one is a large financial market in a two-
dimensional setting. We also extend the results of [13] to models with transaction
costs: the one-stage APM by Ross, the large Black–Scholes market and a two-asset
model with infinite horizon.

2 The Model: Definitions and Assumptions

2.1 Example

Before introducing our general model, we recall the simplest discrete-time model of
financial market with proportional transaction costs following the book [14]. The
investor portfolio is now vector-valued and its evolution, in units of the numéraire,
is given by the following controlled difference equation:

∆Vt = diag Vt−1∆Rt + ∆Bt, V−1 = v,

where ∆Ri
t = ∆Si

t/Si
t−1, i ≤ d, is the relative price increment of the ith security,

∆Bt is the control, and diag x denotes the diagonal operator generated by the
vector x. The first term in the r.h.s. of the dynamics means that the portfolio is
self-financed. The second one corresponds to transfers decided by the agent; In the
model where one can exchange any asset to any other with losses

∆Bi
t :=

d
X

j=1

∆Lji
t −

d
X

j=1

(1 + λij
t )∆Lij

t

where ∆Lji
t represents the net amount transferred from the position j to the

position i at date t and (λij
t ) are the transaction costs rates. The investor action

∆Bt is a Ft-measurable random variable taking values in a cone −Kt where the
so-called solvency cones (Kt) are defined by the matrices of transaction costs
coefficients Λt = (λij

t ):

Kt := cone {(1 + λij
t )ei − ej , ei, 1 ≤ i, j ≤ d}. (2.1)

In the theory, as in practice, the coefficients λij
t ≥ 0 are adapted random processes.

The above dynamics naturally falls into a scope of linear difference equations with
control constraints to be taken from cones in general random.

One can express the portfolio dynamics also in “physical units”. It is much
simpler. Assuming that S−1 = S0 = (1, ..., 1) and introducing the diagonal operator

φt : (x1, ..., xd) 7→ (x1/S1
t , ..., xd/Sd

t ),

we have:
∆bVt = d∆Bt, bV−1 = v,

where bVt := φtVt, d∆Bt ∈ L0(− bKt,Ft), bKt := φtKt. Note that, in contrast to Kt,
the cones bKt are always random, even in the model with constant transaction
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costs. So, ( bKt) is an adapted cone-valued process. Though in financial models the
cones bKt(ω) are polyhedral, for the control theory this looks too restrictive and
the question about possible extensions to “general” model, with ( bKt) replaced by
an arbitrary adapted cone-valued process (Gt), arises naturally.

As pointed out in the book [14], one can find variants of this model which can
be imbedded into the former by choosing sufficiently large transaction costs coef-
ficients. The procedure leads to a larger set of portfolio value processes but has no
effect on the arbitrage properties. The elements of MT

0 (K∗\{0}) and MT
0 (intK∗),

i.e. the martingales evolving in the positive dual K∗ of K, referred to as consistent

price systems and strictly consistent price systems, play a fundamental role in the
arbitrage theory for models with transaction costs. They generalize the notion of
equivalent martingale measure densities. We send the reader to Chapter 3, [14],
for more details.

2.2 General Model

The framework setting we present in this section is assumed to be satisfied by a
sequence of markets of horizon dates T (for the sake of simplicity, we omit the
index n). We consider the general model of the paper [3] including the Kabanov
and Campi–Schachermayer models with transaction costs.

Let (Ω,F ,F = (Ft)t≤T , P ) be a continuous-time stochastic basis verifying the
usual conditions. We are given a pair of set-valued adapted processes G = (Gt)t≤T

and G∗ = (G∗
t )t≤T whose values are closed cones in Rd which are dual, i.e.

G∗
t (ω) = {y : yx ≥ 0 ∀x ∈ Gt(ω)}.

“Adapted” means that the graphs

n

(ω, x) ∈ Ω × Rd : x ∈ Gt(ω)
o

are Ft × B(Rd)-measurable.

We assume that all the cones Gt are proper, i.e. Gt ∩ (−Gt) = {0} or, equiva-
lently, int G∗

t 6= ∅. In a financial context it means that the efficient friction condition
(EF) is fulfilled. We assume also that Gt dominates Rd

+, i.e. G∗\{0} ⊂ intRd
+.

In a more specific financial setting (see [14]), the cones Gt are the solvency
cones bKt when the portfolio positions are expressed in physical units.

We are given a convex cone YT
0 of optional Rd-valued processes Y = (Yt)t≤T

with Y0 = 0. We may interpret these processes as portfolios expressed in physical
units.

Notations. We denote by L0(Gt,Ft) the set of all Gt-valued Ft-measurable
random variables. A cone G induce a natural order among Rd-valued random
variables. More precisely, for two d-dimensional random variables Y and Y ′, we
write Y ≥G Y ′ if the difference Y − Y ′ belongs to G, that is Y − Y ′ ∈ G a.s.
The notation 1 stands for the vector (1, ..., 1) ∈ Rd

+. Denote by YT
0,b the subset of

YT
0 formed by the processes Y dominated from below in the sense of the partial

orderings generated by (Gt)t≤T , i.e. there is a constant κ such that the process

Y +κ1 evolves in G. We also write YT
0,b(T ) for the set of random variables YT where



Asymptotic Arbitrage 5

Y belongs to YT
0,b. The set YT,∞

0,b (T )
w

is the closure of YT,∞
0,b (T ) := YT

0,b(T ) ∩ L∞

in σ{L∞, L1}. We denote by MT
0 (G∗) the set of all d-dimensional martingales

Z = (Zt)t≤T with trajectories evolving in G∗, i.e. such that Zt ∈ G∗
t a.s. In the lit-

erature, such martingales are commonly called consistent price systems, respectively
strictly consistent price systems if they evolve in the interior of G∗.

Assumptions. Throughout the note we assume the following standing hy-

potheses on the sets YT
0,b(T ):

S1 : EξZT ≤ 0, ∀ ξ ∈ YT
0,b(T ), Z ∈ MT

0 (G∗).

S2 :
[

t≤T

L∞(−Gt,Ft) ⊆ YT
0,b(T ).

The hypotheses S1 and S2 adopted in this note allow us to avoid the unneces-
sary repetitions and do not provide the full description of continuous-time models
with transaction costs. It is important to know only that these conditions are
fulfilled for the known models, see [15], [2], [4].

Recall that in these financial models S1 holds because, if one calculates the
current portfolio value using a price system Z (that is a process from MT

0 (G∗)),
the resulting scalar process is a supermartingale. In a discrete-time model, a
portfolio process (Vt)t≤T is such that Vt ∈ Pt

u=0 L0(−Gu,Fu) for all t ≤ T . If

V ∈ YT
0,b then E(ZT VT )− < ∞. Applying Proposition 3.3.3, [14], we get with

Vt =
Pt

u=0 ∆Vu, ∆Vu ∈ −Gu that

E(ZT VT |Ft) = VtE(ZT |Ft) + E(ZT

T
X

u=t+1

∆Vu|Ft)

E(ZT VT |Ft) = VtZt +
T
X

u=t+1

E(Zu∆Vu|Ft).

Since Zu∆Vu ≤ 0 we deduce that E(ZT VT |Ft) ≤ VtZt. Condition S2 naturally
holds in the financial models with transaction costs. Indeed, if ξt ∈ L∞(−Gt,Ft)
then Vu = ξtIu>t is a portfolio process whose only jump is ∆Vt = ξ ∈ −Gt and we
have ξ = VT .

For a given payoff ξ ∈ L0
b(R

d) (i.e. bounded from below with respect to the
partial ordering induced by GT ), we consider the convex set

Γξ : =
n

x ∈ Rd : ∃YT ∈ YT
0,b(T ) s.t. x + YT ≥GT

ξ
o

(2.2)

and the closed convex set

Dξ :=
n

x ∈ Rd : Z0x ≥ EZT ξ, ∀Z ∈ MT
0 (G∗)

o

. (2.3)

We assume given a dual characterization of Γξ in section 3:

S3 : Γξ = Dξ.

This equality is usually an important result, referred as the “hedging theorem”.
It generally holds under some no-arbitrage conditions (see e.g. [2], [1] and [4]).



6 Emmanuel Denis, Lavinia Ostafe

3 Asymptotic Arbitrage via Consistent Price Systems

We fix a sequence (Ωn,Fn,Fn = (Fn
t )t≤T n , Pn) of continuous-time stochastic ba-

sis verifying the usual conditions with Fn = Fn
T n . The positive numbers Tn are

interpreted as time horizons. We are given a pair of set-valued adapted processes
Gn = (Gn

t )t≤T and Gn∗ = (Gn∗
t )t≤T whose values are closed cones in Rd which

are dual and define the corresponding models of Subsection 2.2. Recall that we
assume that conditions S1 and S2 hold. For the sake of simplicity, we often omit
the index n.

Definition 1 A sequence of portfolios (bV n) realizes an asymptotic arbitrage

opportunity of the first kind if for a subsequence there exists a sequence (xn)
such that:

1.a) bV n
T ∈ xn + YT

0,b(T ),

1.b) bV n
T ∈ GT a.s.,

1.c)xn → 0,

1.d) lim
n→∞

P
“

bV n
T ≥GT

1
”

> 0.

We associate with every Z ∈ MT
0 (G∗\{0}) the equivalent probability measure

dQZ := (1/Z01)ZT dP and we define the convex set

Qn =
n

QZ : Z ∈ MT n

0 (Gn∗\{0})
o

.

Observe we may assume that Z01 = 1 in the definition above. We assume that

Qn is not empty meaning that the No Free Lunch (NFL) condition holds, [3], for
each model. We then define the upper and lower envelopes of the measures of Qn

as follows:
Qn

(A) := sup
Q∈Qn

Q(A), Qn(A) := inf
Q∈Qn

Q(A).

Definition 2 The sequence (Pn) is contiguous with respect to (Qn
) (in symbols:

(Pn) ✁ (Qn
)) when the implication

lim
n→∞

Qn
(An) = 0 ⇒ lim

n→∞
Pn(An) = 0

holds for any sequence An ∈ Fn, n ≥ 1.

Now, we give the first result of this section:

Proposition 3.1 Assume that Assumption S3 holds. Then the following conditions

are equivalent:

(a) there is no asymptotic arbitrage opportunity of the first kind (NAA1);

(b) (Pn) ✁ (Qn
);

(c) there exists a sequence (Rn) ∈ Qn such that (Pn) ✁ (Rn).

Proof.

The equivalence (b) ⇔ (c) directly follows from [13].
• (a) ⇒ (b). Suppose that there exists a sequence (An) ∈ Fn such that

Qn
(An) → 0 and Pn(An) → α > 0. We consider Fn = 1IAn as a contingent
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claim and xn = Qn
(An)1 as an initial endowment. For any Z ∈ MT

0 (G∗\{0}), we
have immediately by construction

Z0xn ≥ EZT Fn.

It follows that Fn ∈ xn + YT
0,b(T ) by virtue of Assumption S3 and realizes an

asymptotic arbitrage opportunity of the first kind.
• (b) ⇒ (a). Suppose that there exists (bV n) realizing an asymptotic arbitrage

opportunity of the first kind. Consider Q ∈ Qn defined by dQ = ZT 1dP . Then,
according to Condition S1 ,

0 ≤ EZT
bV n
T ≤ Z0xn ≤ |xn|

since xn ≤G0
|xn|1. Moreover,

EZT
bV n
T ≥ EZT

bV n
T IbV n

T ≥GT
1
≥ EZT 1IbV n

T ≥GT
1

= Q(bV n
T ≥GT

1).

It follows that

Qn
(bV n

T ≥GT
1) ≤ |xn|

and Qn
(bV n

T ≥GT
1) → 0 which implies P (bV n

T ≥GT
1) → 0 in contradiction with

1.d). �

Let us recall the financial meaning of the following definition. There is an
asymptotic arbitrage of the second kind if the agent selling short his portfolio
achieve almost a non-risk positive profit.

Definition 3 A sequence of portfolios (bV n) realizes an asymptotic arbitrage

opportunity of the second kind if there exists a subsequence satisfying:

3.a) bV n
T ≥GT

−1,

3.b) lim
n→∞

P
“

bV n
T �GT

−ε1
”

= 0, ∀ε ∈]0, 1[,

3.c)There exits a bounded sequence of initial endowments (xn1), with xn ∈ R,
satisfying bV n

T ∈ xn1 + YT
0,b(T ), lim inf

n→∞
xn = x∞ ∈ (−∞, 0).

Remark 3.2 It is an easy exercise to notice that the definition of the asymptotic

arbitrage of the second kind can be written equivalently if one considers in 3.c) a bounded

sequence of initial endowments xn ∈ Rd satisfying bVT ∈ xn + YT
0,b(T ), and such

that lim inf
n→∞

max
i≤d

xn,i ∈ (−∞, 0). Indeed, if xn is an initial endowment of bV n
T , then

yn := maxi≤d xn,i1 is still an initial endowment for bV n
T .

In the same manner, we can equivalently define the asymptotic arbitrage of the first

kind using a sequence of initial endowments of the form (xn1), with xn ∈ R, but for

our purposes it is more convenient to consider the definition with an initial endowment

xn ∈ Rd.

The next condition is only introduced to give an equivalent characterization of the
asymptotic arbitrage of the second kind:

Assumption (B0) If ξ is a F0-measurable Rd-valued random variable such
that Z0ξ ≥ 0 for any Z ∈ MT

0 (G∗), then ξ ∈ G0 a.s.
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Remark 3.3 Assumption (B0) appears as a weaker form of the No Arbitrage Con-

dition of the 2nd Kind introduced by Denis and Kabanov in their recent work, [3], (it

was introduced the first time by Rásonyi for discrete time models, [19]). The so-called

condition (B), [14], is the following:

(B) If ξ is a Ft-measurable Rd-valued random variable such that Ztξ ≥ 0 for any

Z ∈ MT
0 (G∗), then ξ ∈ Gt a.s.

Condition (B) is stronger than (B0) and, as noticed in [14], it is fulfilled for the

models with constant transaction costs admitting an equivalent martingale measure.

Remark 3.4 In the case where we interpret the first component of the price process

as the numéraire, we may give a more economical sense to the last condition. Indeed,

under Assumption (B0), it also means that the agent sells short his portfolio in the

numéraire but achieve almost a non-risk positive profit as proven in the following: We

denote e1 := (1, 0, . . . , 0) ∈ Rd. Let us introduce the following statement:

3.c′)There exists a bounded sequence of initial endowments (xne1), xn ∈ R, satis-

fying bV n
T ∈ xne1 + YT

0,b(T ), lim inf
n→∞

xn = x∞ ∈ (−∞, 0).

Lemma 3.5 Suppose that Assumption (B0) holds. Then, 3.c ⇒ 3.c′. Moreover, if

there exists k > 0 such that

min
Z∈MT

0 (G∗\{0}), Z01=1
(Z0e1) ≥ k,

then 3.c′ ⇒ 3.c.

Proof.

• 3.c ⇒ 3.c′ Let xn ∈ R such that bV n
T ∈ xn1 + YT

0,b(T ) and satisfying 3.c). The
first step is to find a number x̃n ∈ R such that x̃ne1 ≥G0

xn1. This is equivalent
to saying that Z0x̃ne1 ≥ Z0xn1 whatever the price system Z ∈ MT

0 (G∗ \ {0}).
Assuming, without loss of generality, that Z0e1 = 1, the above inequality takes
place iff x̃n ≥ (Z01)xn. Choosing

x̃n = xn max
Z∈MT

0 (G∗\{0}), Z0e1=1
(Z01),

the above requirement is fulfilled. It is not difficult to see that x̃n is finite. Indeed,
suppose Zk

01 → ∞ as k → ∞ with Zk
0 e1 = 1. Then, z∗k := Zk

0 /(Zk
01) ∈ G∗

0 is
a bounded sequence. We may assume by compacity that z∗k → z∗∞ ∈ G∗

0. Since
z∗k1 = 1, we get z∗∞1 = 1. On the other hand, z∗ke1 → 0 hence z∗∞e1 = 0 which
leads to z∗∞ = 0 since G∗

0 ⊆ intRd
+, hence a contradiction.

Using the hypothesis and x̃ne1 ≥G0
xn1, we get that bVT n ∈ x̃ne1 + YT n

0,b (Tn).

Indeed, bVT n ∈ x̃ne1 + (xn1 − x̃ne1) + YT
0,b(T ) where (xn1 − x̃ne1) ∈ L0(−G0,F0).

Now applying 3.c), we obtain that lim inf
n→∞

x̃n ∈ (−∞, 0), i.e. 3.c′) holds.

• 3.c′ ⇒ 3.c Let xn ∈ R such that bV n
T ∈ xne1 + YT

0,b(T ) and satisfying 3.c′) .
Writing

bV n
T ∈ xn1 + (xne1 − xn1) + YT

0,b(T ),

we can reduce to two cases:

1. If xn ∈ R+, then (xne1 − xn1) = (0,−xn, . . . ,−xn) ∈ L0(−G0,F0) ⊆ YT
0,b(T ).

Therefore, bV n
T ∈ xn1 + YT

0,b(T ) and then 3.c) holds.
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2. Consider xn ∈ R−. Following the same procedure like in the first implication,
we can find a finite number

x̃n = xn min
Z∈MT

0 (G∗\{0}), Z01=1
(Z0e1)

such that x̃n1 ≥G0
xne1. It follows that (xne1 − x̃n1) ∈ L0(−G0,F0) ⊆ YT

0,b(T )

and from here we have that bV n
T ∈ x̃n1 + YT

0,b(T ). Now applying 3.c′) and the
additional hypothesis, we get that lim inf

n→∞
x̃n ∈ (−∞, 0), i.e. 3.c) holds. �

To formulate the next result, we give the following definition:

Definition 4 The sequence of sets of probability measures (Qn) is said to be
weakly contiguous with respect to (Pn) and we denote (Qn)✁w(Pn) if for any ε >

0, there are δ > 0 and a sequence of measures Qn ∈ Qn such that for any sequence
An ∈ Fn with the property lim sup

n
Pn(An) < δ we have lim sup

n
Qn(An) < ε.

Proposition 3.6 Assume that Assumption S3 holds. Then the following conditions

are equivalent:

(a) there is no asymptotic arbitrage opportunity of the second kind (NAA2);

(b) (Qn) ✁ (Pn);

(c) (Qn) ✁w (Pn);

(d) lim
K→∞

lim sup
n→∞

inf
Q∈Qn

Q

„

dQ

dPn
≥ K

«

= 0.

Proof.

• Let us prove that (a) ⇒ (b). Suppose that there exists a sequence An ∈ Fn

such that Pn(An) → 0 and Qn(An) → α > 0. We define the contingent claim
Fn = −IAn1 we may interpret as the terminal value of a portfolio since it is
replicable (e.g. by 0). Consider the bounded sequence yn := xn1 := −Qn(An)1
of super-hedging prices for Fn, i.e. yn ∈ ΓF n . Indeed, for any Z ∈ MT

0 (G∗\{0})
with Z01 = 1, Z0yn = −Qn(An) ≥ −QZ(An) = EZT Fn and we conclude with
Assumption S3. Since lim inf

n→∞
xn = x∞ ∈ (−∞, 0), (Fn) is an asymptotic arbitrage

opportunity of second kind.
• Let us prove that (b) ⇒ (a). Suppose that there exists a sequence of portfolios

(bV n) realizing an asymptotic arbitrage opportunity of second kind. Let us consider
(xn) such that bV n

T ∈ xn1 + YT
0,b(T ), and verifying lim inf

n→∞
xn = x∞ ∈ (−∞, 0) by

virtue of 3.c). Under Assumption S3, we have for any Z ∈ MT
0 (G∗\{0}) with

Z01 = 1 ,

xn = Z0xn1 ≥ EZT
bV n
T = EZT

bV n
T I

{bV n
T ≥−ε1}

+ EZT
bV n
T I

{bV n
T �−ε1}

,

xn ≥ −εQZ(bV n
T ≥ −ε1) − QZ(bV n

T � −ε1),

xn ≥ −ε + (ε − 1)QZ(bV n
T � −ε1)

where ε ∈ (0, 1) is arbitrarily chosen. But, by assumption on bV n, 3.b) holds and
then Qn(bV n

T � −ε1) → 0 since (Qn) ✁ (Pn). We choose for each n a consistent

price system Zn such that QZn

(bV n
T � −ε1) ≤ Qn(bV n

T � −ε1) + n−1. From above,
we deduce that lim inf

n→∞
xn ≥ −ε whatever ε ∈ (0, 1) which yields a contradiction.

The rest of the proof (b) ⇔ (c) ⇔ (d) is given in [13]. �
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Definition 5 A sequence of portfolios (bV n) realizes a strong asymptotic arbi-

trage opportunity of the first kind if there exists a subsequence (xn) such that:

5.a) bV n
T ∈ xn + YT

0,b(T ),

5.b) bV n
T ≥GT

0,

5.c)xn → 0,

5.d) lim
n→∞

P
“

bV n
T ≥GT

1
”

= 1.

Definition 6 A sequence of portfolios (bV n) realizes a strong asymptotic arbi-

trage opportunity of the second kind if for a subsequence :

6.a) bV n
T ≥GT

−1,

6.b) lim
n→∞

P
“

bV n
T �GT

−ε1
”

= 0, ∀ε ∈]0, 1[,

6.c)There exits a bounded sequence of initial endowments (xn1), with xn ∈ R,
satisfying bV n

T ∈ xn1 + YT
0,b(T ), lim inf

n→∞
xn = −1.

Lemma 3.7 There exists a strong asymptotic arbitrage of the first kind if and only if

there is a strong asymptotic arbitrage of the second kind.

Proof.

• Take any sequence (bV n) realizing a strong asymptotic arbitrage opportunity
of first kind. We want to construct a sequence realizing a strong asymptotic arbi-
trage of second kind. Define bUn = −1+ bV n. Using 5.b), we obtain that bUn

T ≥GT
−1

which is exactly condition 6.a) of the definition of the asymptotic arbitrage op-
portunity of second type.
We have

P (bUn
T �GT

−ε1) = 1 − P (bUn
T ≥GT

−ε1) ≤ 1 − P (bV n
T ≥GT

1) → 0

as n → ∞ which easily proves condition 6.b).
We only have to prove condition 6.c). Applying 5.a), bV n

T ∈ yn + YT
0,b(T ) where

yn → 0. We also have bV n
T ∈ αn1 + YT

0,b(T ) where αn := maxi≤d yni and xn → 0. It
suffices to consider xn := αn − 1 to conclude.

• Take any sequence (bUn) realizing a strong asymptotic arbitrage opportunity
of second kind. We define a sequence realizing a strong asymptotic arbitrage op-
portunity of second kind choosing bV n = bUn + 1. We only prove condition 5.c). It
suffices to observe that

P
“

bV n
T �GT

1
”

= P
“

bUn
T �GT

0
”

≤ lim inf
ε→0, ε∈Q+

P
“

bUn
T �GT

−ε1
”

where Q+ is the set of all strictly positive rational numbers. Taking any arbitrary

δ > 0, we get that P
“

bV n
T �GT

1
”

≤ δ +P
“

bUn
T �GT

−ε1
”

for some ε = ε(δ). Using

6.b), we obtain limn P
“

bV n
T �GT

1
”

≤ δ and then limn P
“

bV n
T �GT

1
”

= 0 as δ → 0.

�

Definition 7 A sequence (Pn) is (entirely) asymptotically separable from (Qn
),

notation (Pn)△(Qn
), if there exists a subsequence (m) with sets Am ∈ Fm such

that
lim

m→∞
Qm

(Am) = 0 , lim
m→∞

Pm(Am) = 1.
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Proposition 3.8 Assume that S3 holds. Then the following conditions are equivalent:

(a) there is a strong asymptotic arbitrage opportunity of first kind (SAA1);

(b) (Pn)△(Qn
);

(c) (Qn)△(Pn).

Proof.

• (a) ⇒ (b) Assume there exists a sequence of portfolios (bV n) realizing a strong
asymptotic arbitrage opportunity of first kind. This means that there exists a
subsequence (m) such that

lim
m→∞

Pm(bV m
T ≥GT

1) = 1, lim
m→∞

bV m
0 = 0.

Following the arguments of the proof of Proposition 3.1, implication (b) ⇒ (a), we
obtain that lim

m→∞
Qm

(bV m
T ≥GT

1) = 0. We take the sets Am := {bV m
T ≥GT

1} for

the separating sequence.
• (b) ⇒ (a) Assume (Pn)△(Qn

). Then, there exists a sequence (m) with sets
Am ∈ Fm such that

lim
m→∞

Qm
(Am) = 0 , lim

m→∞
Pm(Am) = 1.

Using the same argument like in the proof of Proposition 3.1, (a) ⇒ (b), but with
α = 1, we obtain a sequence of portfolios realizing a strong asymptotic arbitrage
opportunity.

(b) ⇔ (c) is obvious. �

4 Variant for markets including a bond

We propose here another approach especially designed for markets the first com-
ponent of the price process S is a numéraire (the cash) in which the portfolios
are liquidated. The asymptotic arbitrage opportunity concepts are defined simi-
larly as in Section (3) but here we are concerned by the portfolios starting with
an initial endowment expressed in cash and which are liquidated at the horizon
date. Moreover, it is possible to avoid Assumption S3 if we focus on asymptotic
arbitrage in the spirit of the Kreps–Yann arbitrage theory, i.e. by extending the

set of all portfolio processes to its weak closure YT,∞
0,b (T )

w
in L∞. In this case, we

use the dual characterization of Lemma 6.1 which holds only under the conditions
(S1) and (S2).

Definition 8 A sequence of portfolios (bV n) realizes an asymptotic arbitrage of the
first kind if for a subsequence there exists a sequence (xn) ∈ R+ such that:

8.a) bV n
T ∈ xne1 + YT,∞

0,b (T )
w

,

8.b) bV n
T ∈ GT a.s.

8.c)xn → 0,

8.d) lim
n→∞

P
“

bV n
T ≥GT

e1

”

> 0.
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Definition 9 A sequence of portfolios (bV n) realizes an asymptotic arbitrage

opportunity of the second kind if there exists a subsequence satisfying:

9.a) bV n
T ≥GT

−e1,

9.b) lim
n→∞

P
“

bV n
T �GT

−εe1

”

= 0, ∀ε ∈]0, 1[,

9.c)There exits a bounded sequence of initial endowments (xne1), with xn ∈ R,
satisfying bV n

T ∈ xne1 + YT
0,b(T ), lim inf

n→∞
xn = x∞ ∈ (−∞, 0).

In this setting, we define for each Z ∈ MT
0 (G∗\{0}), QZ ∼ P such that

dQZ

dP
=

ZT e1

Z0e1

and we define the convex set:

Qn =
n

QZ , Z ∈ MT
0 (G∗\{0})

o

.

Notice that in the frictionless case, a consistent price system is a process having
the form Zt = ρtSt, ρt ∈ L0(R+,Ft). If the first component S(1) = 1, i.e. the
interest rate of the bond r = 0, then Z0e1 = 1 means that ρ is a density process or
equivalently dQ = ZT e1dP defines an equivalent martingale measure under which
S is a martingale. We may interpret our definition as an extension of that of [13].
Consider the upper and lower envelopes of the measures of Qn as previously. We
then obtain similar results.

Actually, the two approaches turn out to be equivalent under the condition
(B0) we introduced above and the additional hypothesis that the sequence

n 7→ min
Z∈MT

0 (G∗\{0}), Z01=1
(Z0e1)

is bounded from below by a strictly positive constant (independent of n). Indeed,
in this case, we can find α, β > 0 such that βe1 ≥G0

1 ≥G0
αe1. It is then easy

to construct an asymptotic arbitrage opportunity of the first kind (respectively
of the second kind) following the former definition from an asymptotic arbitrage
opportunity of the first kind (respectively of the second kind) according to the
variant approach and vice-versa.

5 Examples

Throughout this section, we consider a continuous-time financial model with trans-
action costs defined as in [4], i.e. in the setting of the Kabanov and Campi–
Schachermayer models.
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5.1 Example in a two-dimensional setting

We consider a sequence of markets whose horizon dates are Tn = 1 for all n ≥ 1.
We assume that the transaction costs coefficients belong to (0, 1]. The dynamics
of the price processes (Sn

t )t≤1 are given under a given probability measure P by

dSn1
t

Sn1
t

= dWt −
1

(1 + n−1 − t)3/2
dt,

Sn2
t = n = Sn1

0 , ∀t ≤ 1.

We denote

ξn :=
e2n1/2

3 + eW+

1

.

Observe that the Novikov condition holds. It follows that

fWt := Wt −
Z t

0

du

(1 + n−1 − u)3/2
, t ≤ 1

fW1 = W1 − 2n1/2 + 2(1 + n−1)−1/2

is a Brownian motion under an equivalent probability measure Pn ∼ P by virtue
of the Girsanov theorem. We deduce that the price process Sn = (Sn1, Sn2) is a
Pn-strictly consistent price system following the terminology of [4], i.e. Sn

τ ∈ intG∗
τ

whatever the stopping time τ ≤ 1 and Sn
τ− ∈ intG∗

τ− if τ ∈ [0, 1] is a predictable
stopping time. It is then straightforward that the sequence of market models we
consider, endowed with Pn, satisfy Condition S3 by virtue of [4]. Each market of
this sequence satisfies the No Arbitrage condition Y1

0,b(1)∩L0(R2
+) = {0}. Indeed,

if bVT ∈ Y1
0,b(1)∩L0(R2

+), then EP nSn
1
bV1 is both negative and positive under (S3),

i.e. Sn
1
bV1 = 0, and therefore bV1 = 0. However, we can construct an asymptotic

arbitrage opportunity as follows. First notice that

Sn1
1 = n exp

n

W1 − 2n1/2 + 2(1 + n−1)−1/2 − 1/2
o

and Sn1
1 → 0 a.s. as n → ∞ under P . We consider the events

Γn :=
n

fW1 ∈ [−1/2, 0]
o

such that Pn(Γn) = P (W1 ∈ [−1/2, 0]) > 0. Define the sequence of terminal wealths
bV n
1 := xn+∆bV n

1 IΓn
as the terminal values of the portfolio processes equal to xn on

[0, 1[ and jumping at date t = 1 by ∆bV n
1 IΓn

∈ −G1. Recall that G1 := bK1 following
[14] i.e. is the set of all vectors (X1(Sn1

1 )−1, X2(Sn2
1 )−1) where X = (X1, X2) ∈ K1

and

K1 := cone
n

−e1 + (1 + λ21
1 )e2; (1 + λ12

1 )e1 − e2

o

.

It is clear that bV n
1 is an element of xn +Y1

0,b(1), hence Condition 1.a) of Definition
1 is satisfied. Let the constant xn satisfy

xn := − 1

Sn2
1

“

α2 − α1(1 + λ21
1 )
”

e2 = − 1

n

“

α2 − α1(1 + λ21
1 )
”

e2
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where α1, α2 ∈ L0([0,∞),F1) are the coefficients defining ∆bV n
1 as an element of

−Gn
1 , i.e. such that

∆bV n
1 :=

„

1

Sn1
1

(α1 − α2(1 + λ12
1 )),

1

Sn2
1

(α2 − α1(1 + λ21
1 ))

«

.

Choose α1 := (α2 + 1)/(1 + λ21
1 ). This implies that

α1 − α2(1 + λ12
1 ) =

1 − α2λ21
1 − α2λ12

1 (1 + λ21
1 )

1 + λ21
1

.

Then

∆bV n
1 =

„

1

Sn1
1

1 − α2λ21
1 − α2λ12

1 (1 + λ21
1 )

1 + λ21
1

,−n−1

«

, xn = n−1e2.

In order for bV n
1 to satisfy condition 1.b), i.e. bV n

1 ≥G1
0, we have to impose that

0 ≤ α2 ≤ (λ21
1 + λ12

1 (1 + λ21
1 ))−1.

More precisely, we choose α2 := (λ21
1 + λ12

1 (1 + λ21
1 ) + eW+

1 )−1 and since the
transaction costs coefficients belong to (0, 1], we have that

1 − α2λ21
1 − α2λ12

1 (1 + λ21
1 ) = α2eW+

1 ≥ eW+

1

3 + eW+

1

≥ C, C := inf
x≥1

x

3 + x
.

If W1 ≤ 0 then Sn1
1 ≤ ce−2n1/2

and the first component (∆bV n
1 )(1) ≥ c̃e2n1/2

,
where c and c̃ are some constants. If W1 ≥ 0, we obtain that

(∆bV n
1 )(1) ≥ c

e2n1/2

3 + eW1
= cξn,

for some constant c. Therefore, in both cases, there exists a constant c such that

∆bV n
1 ≥R2

+
(cξn,−n−1).

We only have to prove that bV n
1 = xn + ∆bV n

1 ≥Gn
1

1 a.s. on the events Γn and this
will give us condition 1.d) of definition 1. To do so, it suffices to find a.s. an element
g1 ∈ Gn

1 such that bV n
1 − g1 ≥R2

+
1. Without loss of generality, it is sufficient to

find g1 ∈ Gn
1 such that Mξne1 − g1 ≥R2

+
1 where M is a constant independent

of n we choose large enough (if needed we renormalize bV n
1 ). For this, we solve

the following problem. Find β1, β2 ≥ 0 such that the following inequality holds
componentwise :

Xn := (Mξn, 0) +

„

1

Sn1
1

(β1 − β2(1 + λ12
1 )),

1

Sn2
1

(β2 − β1(1 + λ21
1 ))

«

≥ (1, 1).

It is sufficient to take β1 := βn
1 =

√
n and β2 := βn

2 = 2n. Since

1

n

“

β2 − β1(1 + λ21
1 )
”

→ 2
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as n → ∞, the second component of Xn is greater than 1 for n large enough. Note
that on the set Γn, e−1n ≤ Sn1

1 ≤ n. Moreover

ξn ≥ e2n1/2

3 + e2n1/2−2(1+n−1)−1/2
≥ c0

provided that n is large enough, c0 being a constant independent of n. It follows
that

Mξn +
1

Sn1
1

“

β1 − β2(1 + λ12
1 )
”

≥ Mc0 +

√
n

n
− 2e1(1 + λ12

1 ).

Choosing the constant M independently of n such that

Mc0 ≥ 1 + 4e1,

we then conclude that the first component is also greater than 1 provided that n

is large enough.

We have built in this example a sequence bV n
1 realizing an asymptotic arbitrage

of the first kind even if each market satisfies a No Arbitrage condition. �

Throughout the sequence, we assume that for each model the exchanges be-
tween assets are executed like in a “real world ” where we go through the numéraire.
To exchange some amount of the ith-asset into the jth-asset, sell the ith-assets,
get the money in cash (i.e. the bond) and buy jth-assets with this cash. We model
this assumption by the following:

RW: (1 + λi,b)(1 + λb,j) = 1 + λi,j for every i, j = 0, 1, . . . , n and i 6= j.

5.2 One–stage APM by Ross

We study the example of [13] under the variant approach and under the RW

condition. Recall that we are given a sequence of independent random variables
(ǫi)i≥0 on a probability space (Ω,F , P ) taking values in a finite interval [−N, N ],
Eǫi = 0, Eǫ2i = 1. At time zero, asset prices are positive numbers Xi

0, i ≥ 0. After
a certain period (at time T = 1), their positive discounted values are given by the
following relations:

X0
1 = X0

0 (1 + µ0 + σ0ǫ0),

Xi
1 = Xi

0(1 + µi + σi(γiǫ0 + γ̄iǫi)), i ≥ 1.

The coefficients are here deterministic, σi > 0, γ̄i > 0 and γ2
i + γ̄2

i = 1, γ0 = 1. The
asset with number zero is interpreted as the market portfolio, γi is the correlation
coefficient between the rate of return for the market portfolio and the rate of
return for the asset with number i. For n ≥ 1, we consider the stochastic basis
Bn := (Ω,Fn, IFn = (Fn

t )t=0,1, Pn) with the (n + 1)-dimensional random process
Sn = (X0

t , . . . , Xn
t )t=0,1 where Fn

0 is the trivial algebra, Fn
1 = Fn = σ(ǫ0, . . . , ǫn),

and Pn = P |Fn. We assume that the transaction costs coefficients of each model
are constant and equal to λi, i ≥ 1; They correspond to the exchanges from the
risky assets number i, i ≥ 1, to the bond (assumed to be constant and equal to
1), as well as from the bond to the risky assets. Moreover, we assume that there is
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no transaction costs regarding the exchanges between the bond and the portfolio
market X0, i.e. λ0 := 0. The sequence M = {(Bn, (1, Sn), 1)} is a large security
market by our definition. We may rewrite the dynamics as in [13]:

X0
1 = X0

0 (1 + σ0(ǫ0 − b0)),

Xi
1 = Xi

0(1 + σiγi(ǫ0 − b0) + σiγ̄i(ǫi − bi)), i ≥ 1

where

b0 := −µ0

σ0
, bi :=

µ0βi − µi

σiγ̄i
, βi := γiσi/σ0, i ≥ 1.

Let Fi be the distribution function of ǫi. Put

si := inf{t : Fi(t) > 0}, si := inf{t : Fi(t) = 1},
di := bi − si, di := si − bi, and d0

i := di ∧ di. As in [13], we suppose that d0
i ≥ 0.

Moreover, let us define:

di := d0
i +

4λi

(1 + λi)σiγ̄i
:= d0

i + fi, i ≥ 1, d0 := d0
0 := d0

0 + f0.

As in [13], we suppose that each model has an equivalent probability measure
so that there exists also a strictly consistent price system. In particular, we have
|bi| < N and without loss of generality we assume that N > 1.

Let us consider the following conditions:

C2: lim supi

q

b2i + 2λi

(1−λi)σiγi
= 0.

P2: lim supi

“

|bi| − 2 λi

(1+λi)σiγ̄i

”

≤ 0 and lim supi
λi

(1+λi)σiγ̄i
∈ (0,∞).

Proposition 5.1 The following statements hold:

(a) infi di = 0 ⇔ SAA1;

(b) infi di > 0 ⇔ NAA1;

(c) C2 or P2 ⇔ NAA2.

Proof. Under Condition RW, we may assume without loss of generality that
the only exchanges occur between the bond and the risky assets, i.e. there is
no exchange between two risky assets. Recall that, in this model, there is no
transaction costs between the bond and the portfolio market. Then, the terminal
value of a portfolio, once liquidated, can be expressed as follows:

V n
1 = xn +

n
X

i=0

φi(X
i
1 − Xi

0) −
n
X

i=1

λi|φi|(Xi
0 + Xi

1)

where (φi)i=0,...,n is the composition of the portfolio at date zero in the risky
assets and xn is the initial endowment expressed in the bond. The first two terms
of V n

1 represent the self-financing part. The last one corresponds respectively to
the transaction costs that has to be paid due to the passage from xn to φ and to
the liquidation of the portfolio at date 1. We use the notations of [13]:

a0 :=
n
X

i=0

φiX
i
0σiγi, ai := φiX

i
0σiγ̄i, i ≥ 1.
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The terminal value of the portfolio can be rewritten as:

V n
1 = xn +

n
X

i=0

ai(ǫi − bi) −
n
X

i=1

|φi|λi(Xi
0 + Xi

1) (5.4)

= xn +
n
X

i=0

ai(ǫi − bi) − 2
n
X

i=1

λi|φi|Xi
0 −

n
X

i=1

λi|φi|(Xi
1 − Xi

0) (5.5)

= xn +
n
X

i=0

αi(ǫi − bi) − 2
n
X

i=1

λi |ai|
σiγ̄i

(5.6)

where

α0 := a0 −
n
X

i=1

λi|ai|
γi

γ̄i

αi := ai − λi|ai|, i ≥ 1.

Note that for i ≥ 1, ai = αi/(1 − λi) if αi ≥ 0 and ai = αi/(1 + λi) if αi ≤ 0 so
that (αi)i=0,...,n are uniquely determined and vice-versa.

• Assume that infi di = 0. Then, there exists a subsequence (ik) such that
d0

i + fi < 2−i. We then construct a strong asymptotic arbitrage opportunity only
using the risky assets corresponding to this subsequence. We follow the proof of
[13]. We set α2n

i := 1Γ̄∩{i≥n+1} − 1Γ∩{i≥n+1}, i ≥ n + 1 ,where Γ := {i : di < di}
and Γ̄ is the complementary of Γ . Note that there is an abuse of notation as in
[13]; The number 2n means that we work with the model in which we consider
the 2n assets whose indices belong to the subsequence (ik). In other words we
only trade the assets having the same indices than the subsequence. As in [13] but
taking x2n := 2−n(1 + k) we deduce that

V 2n
1 ≥

2n
X

i=n+1

((si − ǫi)1Γ + (ǫi − si)1Γ̄ ) + 2−n −
2n
X

i=n+1

`

di1Γ + di1Γ̄

´

+ k2−n − 2
2n
X

i=n+1

λi 1

(1 − λisign(αi))σiγ̄i
.

Observe that

λi 1

(1 − λisign(αi))σiγ̄i
≤ λi 1

(1 − λi)σiγ̄i
≤ λi k

(1 + λi)σiγ̄i
≤ kfi/4 ≤ k2−i/4.

It follows that

V 2n
1 ≥

2n
X

i=n+1

((si − ǫi)1Γ + (ǫi − si)1Γ̄ )

and we conclude like in [13] that V 2n
1 converges a.s. to ∞ as n → ∞, i.e. there is

a strong asymptotic arbitrage opportunity of the first kind.

• Assume that infi di = δ > 0. Then using a similar argument like in [13], we
have the following inequality on a non-null set:
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V n
1 ≤ xn −

n
X

i=0

|αi|
d0

i

2
− 2

n
X

i=1

λi |ai|
σiγ̄i

≤ xn −
n
X

i=0

|αi|
di

2
+

n
X

i=1

|αi|
fi

2
− 2

n
X

i=1

λi |αi|
(1 − λisign(αi))σiγ̄i

≤ xn −
n
X

i=0

|αi|
di

2
+

n
X

i=1

|αi|
fi

2
− 2

n
X

i=1

λi |αi|
(1 + λi)σiγ̄i

≤ xn −
n
X

i=0

|αi|
di

2
+

n
X

i=1

|αi|
2

„

fi − 4λi |αi|
(1 + λi)σiγ̄i

«

≤ xn −
n
X

i=0

|αi|
di

2
≤ xn − δ

2

n
X

i=0

|αi|.

With V n
1 ≥ 0 and xn → 0, it follows that

Pn
i=0 |αi| → 0 as n → ∞. From the

inequality

0 ≤ V n
1 ≤ xn + 2N

n
X

i=0

|αi|,

we deduce that V n
1 → 0 as n → ∞. Hence, there is no strong asymptotic arbitrage

opportunity of the first kind. We then conclude about (a) and also about (b) as a
consequence.

Let us now prove Statement (c).

• Let us first assume that (NAA2) holds and lim supi b̃i > 0 where

b̃i :=

s

b2i +
2λi

(1 + λi)σiγi
.

Let us also suppose that Condition P2 does not hold. Under the conditions above,
we show that it is possible to construct an asymptotic arbitrage opportunity of
the second kind hence a contradiction. We may assume without loss of generality
that ν := infi b̃i > 0. Since N |bi| ≥ b2i we get that

N |bi| + N
2λi

(1 + λi)σiγi
≥ b2i +

2λi

(1 + λi)σiγi
.

From there, we may assume that we also have

|bi| +
2λi

(1 + λi)σiγi
> eν

where eν > 0 is a constant. Let us denote D2
n :=

Pn
i=0 b̃2i and consider a terminal

value portfolio:

V n
1 := xn +

n
X

i=0

αi(ǫi − bi) − 2
n
X

i=1

λi |αi|
(1 − sign (αi)λi)σiγ̄i

.
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The idea is to choose the coefficients αi = αn
i so that V n

1 → 0 a.s. and

xn =
n
X

i=0

αibi + 2
n
X

i=1

λi |αi|
(1 − sign (αi)λi)σiγ̄i

.

It follows that

V n
1 =

n
X

i=0

αiǫi.

Re normalizing the sequence (V n
1 ) if necessary, we deduce that |V n

1 | ≤ 1 and
applying the strong law of large numbers, we shall conclude that V n

1 → 0 a.s. It
remains to construct the coefficients (αi) and to show that lim inf xn < 0. We put

ei := bi − 2
λi

(1 + λi)σiγ̄i
.

•First Case. We suppose there exists c > 0 and a subsequence such that

ei ≥ c b̃i.

We choose αi := − ν2 b̃i
N2D2

n
so that |V n

1 | ≤ 1. Moreover,

xn = − ν2

N2D2
n

n
X

i=0

b̃iei ≤ − cν2

N2

implies that lim inf xn ∈ (−∞, 0). Since Dn ≥ C n where C > 0, we deduce that
V n
1 → 0 by virtue of the strong law of large numbers.

•Second Case. We suppose that ei ≤ 0. Since Condition P2 does not hold, either

lim supi

“

|bi| − 2 λi

(1+λi)σiγ̄i

”

> 0 or lim supi
λi

(1+λi)σiγ̄i
= 0. In the second case, we

then deduce that lim supi bi = 0 hence a contradiction. Then, we may assume there
exists a constant c ∈ (0, 1) such that

 

|bi| − 2
λi

(1 + λi)σiγ̄i

!

≥ c

s

b2i +
2λi

(1 − λi)σiγi
.

Indeed, the second term in the r.h.s. of the inequality above turns out to be
bounded (for a subsequence). From now on, consider the terminal value portfolio:

V n
1 := − ν

NDn

n
X

i=1

sign (bi)

s

b2i − 2λi

(1 − λi)σiγi
ǫi −

ν

NDn
ǫ0.

It satisfies |V n
1 | ≤ 1 and by virtue of the Bienaymé–Tchebychev inequality,

P (|V n
1 | ≥ ε) ≤ ν2

N2Dnε2
→ 0, n → ∞

since Dn ≥ νn. At last, recall that the random variables (ǫi)i≥0 are independent
and identically distributed under the initial probability measure. We deduce that
V n
1 is the terminal value of a portfolio of the form (5.6) if and only if

αi = −sign (bi)
ν

NDn

s

b2i +
2λi

(1 − λi)σiγi
, i ≥ 1, α0 = − ν

NDn
b0.
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We deduce that

xn = − ν

NDn
b20 − ν

NDn

n
X

i=1

s

b2i +
2λi

(1 − λi)σiγi

 

|bi| −
2λi

(1 − λisign (αi))σiγi

!

.

We then deduce that xn ≤ − cν
N and we conclude that (V n

1 ) realizes an asymp-
totic arbitrage opportunity of the second kind.

• Let us suppose that

lim sup
i

s

b2i +
2λi

(1 + λi)σiγi
= 0.

It follows that lim supi |bi| = 0. Following the reasoning of [13], we deduce that
lim supi d0

i ≥ C, where C is a strictly positive constant such that si ≤ −C and
si ≥ C, and δ := infi d0

i > 0. We also deduce that

lim sup
i

2λi

(1 + λi)σiγi
= 0.

We may assume without loss of generality that

sup
i

 

2λi

(1 + λi)σiγi

!

≤ δ

4
.

We deduce the existence of δ̃ > 0 such that

inf
i

 

d0
i

2
+

2λi

(1 + λi)σiγ̄i

!

> δ̃. (5.7)

Let (xn, αn) be a sequence such that the properties (3.a) and (3.c) of a strategy
realizing (AA2) are fulfilled, i.e. xn → −x < 0 and

−V n
1 = −xn −

n
X

i=0

αi(ǫi − bi) + 2
n
X

i=1

λi |ai|
σiγ̄i

≤ 1.

Then, on a non null set, we deduce that

−xn +
n
X

i=0

|αi|
d0

i

2
+ 2

n
X

i=1

λi |αi|
(1 − λisign (αi))σiγ̄i

≤ 1

−xn +
n
X

i=0

|αi|
 

d0
i

2
+

2λi

(1 + λi)σiγ̄i

!

≤ 1

Then, with n large enough and γ := x/2, we have γ + δ̃
Pn

i=0 |αi| ≤ 1 and
Pn

i=0 |αi| ≤ (1 − γ)/δ̃. Observe that we can also choose δ̃ smaller so that the last
inequality holds for all n. Since

lim sup
i

 

|bi| +
2λi

(1 + λi)σiγ̄i

!

= 0,
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we also may assume that

sup
i

 

|bi| −
2λi

(1 − λi)σiγ̄i

!

≤ δ̃γ

2(1 − γ)
. (5.8)

We deduce that, with n large enough,

−V n
1 ≥ γ +

n
X

i=0

αiǫi −
n
X

i=0

|αi|
 

|bi| −
2λi

(1 + λi)σiγ̄i

!

≥ γ

2
+

n
X

i=0

αiǫi.

We conclude that for n large enough,

P (V n
1 ≤ −γ/4) = P (−V n

1 ≥ γ/4) ≥ E(−V n
1 − γ/4)+ ∧ 1

≥ E(−V n
1 − γ/4) ∧ 1

≥ E(−V n
1 − γ/4) ≥ γ/4

hence (NAA2) holds. Under the condition P2, we do the same reasoning since the
inequalities (5.7) and (5.8) remains valid. �

5.3 The large Black–Scholes market

We reconsider the large Black and Scholes market example of Kabanov and Kramkov
[13]. We are given a sequence of markets whose horizon dates are Tn = T for
all n ≥ 1. Let (Ω,F ,F = (Ft)t≤T , P ) be a stochastic basis with a countable
set of independent one-dimensional standard Brownian motions (W i)i≥0. We set
Bn = (W 0, . . . , Wn), and let Gn = (Gn

t ) be a subfiltration of F such that (Bn,Gn)
is a (n + 1)-dimensional standard Wiener process. Contrarily to [13], we consider
here complete markets, i.e. Gn = F is the completed natural filtration of the
Brownian motions (W i)i≥0. The incomplete case remains an open problem. The
behaviour of the stock prices is described as follows:

dX0
t = µ0

t X0
t dt + σ0

t X0
t dW 0

t ,

dXi
t = µi

tX
i
tdt + σi

tX
i
t(γ

i
tdW 0

t + γi
tdW i

t ), i ∈ N

with deterministic (strictly positive) initial points. The coefficients are Gi-predictable
processes,

Z T

0
|µi

s|2ds < ∞,

Z T

0
|σi

s|2ds < ∞

and |γi
t |2 + |γi

t|2 = 1. To avoid degeneracy we shall assume that σi > 0 and γi > 0.
Moreover, we assume that there exists a bond Bt = 1 for all t ≥ 0.

We shall study the absence of asymptotic arbitrage opportunities of first kind
according to the variant definition of Section 4. Observe that in our example
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YT,∞
0,b (T )

w
= YT,∞

0,b (T ) is Fatou–closed (see [4]) since the price process provides
a strictly consistent price system. We want to characterize probability measures
Qn ∈ Qn, i.e. probability measures Q ∼ P such that dQ

dP = ZT e1 with ZT ∈
MT

0 (G∗\{0}, P ) and Z0e1 = 1. To do so, we shall characterize the consistent price

systems. Let us denote by λi,b
t , λb,i

t , for t ≥ 0 and i = 0, . . . , n, the transaction costs
coefficients characterizing the exchange between the risky assets and the bond. We
assume that λi,b

t > 0 and λb,i
t > 0 for all i = 0, . . . , n.

Definition 10 We say that the process Y ∈ Rn+1
+ is a λ-consistent price system

for the prices (Xi)i≤n if there exists Q ∼ P such that Y is a Q-martingale and

Xi
t

1 + λi,b
t

≤ Y i
t ≤ (1 + λb,i

t )Xi
t , i = 0, . . . , n. (5.9)

Lemma 5.2 Assume that Assumption RW holds. Then, there exists a consistent

price system Z ∈ MT
0 (G∗\{0}) if and only if there is a λ-consistent price system for

the prices (Xi)i≤n.

Proof. • “ ⇒ ” Assume that there exists a consistent price system Z ∈ MT
0 (G∗\{0}),

i.e. that Z is a martingale and Zt ∈ G∗
t \{0}, for all t ≤ T . Recall that G∗ are the

(n + 2)-dimensional cones defined by the transaction costs λi,b and λb,i for i ≤ n.
Denoting Z = (Zb, Z0, · · · , Zn), interpret Zb as a numéraire and take Y defined as
follows:

Yt := (
Z0

t

Zb
t

, . . . ,
Zn

t

Zb
t

).

Define Q such that dQ/dP = Zb
T /Zb

0. Since (Zt)t≤T is a martingale, it is clear that
Y is a Q-martingale. In order for Y to be a λ-consistent price system, we only
have to prove (5.9) but these inequalities follow immediately from the fact that
Zt ∈ G∗

t \{0}, for all t ≤ T .

• “ ⇐ ” Assume we have Y a λ-consistent price system, i.e. there exists a
probability measure Q ∼ P such that Y is a Q-martingale and the inequalities
(5.9) hold. Then we define ρ0

t by ρ0
t := E [dQ/dP |Ft] and Zj

t by Zj
t := Y j

t ρ0
t for

every j = 0, . . . , n, Zb
t := ρ0

t . Now it is easily seen that, since Y is a Q-martingale,
Z = (Zb, Z0, . . . , Zn) is a P -martingale. The proof is now completed because the
inequalities (5.9) imply the fact that Z lie in G∗ \ {0} under Assumption RW. �

From there, we deduce that for each model,

Qn
(A) = sup

Q∈Qn
Q(A) = eQn(A) := sup

Q∈ eQn

Q(A)

where

eQn := {Q : dQ = ρT dP, ρ ∈ fMe}

and fMe is the set of all density processes such that there exists a λ-consistent
price system for the prices (Xi)i≤n under the probability measure defined by
dQ = ρT dP .
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Let us now focus on a consistent price system Z ∈ MT
0 (G∗\{0}). By virtue

of Corollary 2 page 189 in [16], this is a continuous martingale. We deduce the
following martingale representation

(Zi
t)0≤i≤n = (Zi

0)0≤i≤n +

Z t

0
HsdBn

s = (Zi
0)0≤i≤n +

Z t

0
diag ((Zi

s)0≤i≤n)KsdBn
s

Zb
t = Zb

0 +

Z t

0
Hb·

s dBn
s = Zb

0 +

Z t

0
Zb

sKb
sdBn

s

where Kb
s := (Zb

s)−1Hb·
s , Ks := diag ((Zi

s)0≤i≤n)−1Hs and H is a matrix-valued

predictable process, Hb· is a vector-valued predictable process. Writing the compo-
nents of the process Z in a Doleans-Dade form, we then deduce that a λ-consistent
price system for the prices (Xi)i≤n has the following form:

dY i
t = Y i

t Λi·
t dBn

t + Y i
t αi

tdt, i ≤ n

where Λ ∈ Rn+1,n+1 and α are respectively matrix and vector-valued predictable
processes. Since ZbY i, i ≥ 0 and Zb are martingales, the integration by parts
formula

Zb
t Y i

t =

Z t

0
Zb

udY i
u +

Z t

0
Y i

udZb
u + 〈Zb, Y i〉t

implies that Hb.
s Λi·

s + Zb
sαi

s = 0 and αi
s = −Hb.

s Λi·
s /(Zb

s). We then deduce that a
λ-consistent price system for the price (Xi)i≤n has finally the following form:

dY i
t = Y i

t Λi·
t (dBn

t − αtdt) , i ≤ n (5.10)

where the vector-valued predictable process α does not depend on i.

Let us introduce

eBn
t := Bn

t −
Z t

0
αudu

and the process Lα satisfying the SDE dLα
t = Lα

t αtdBn
t , L0 = 1. We can easily

observe that L = Zb so that L is a martingale and eBn is a standard brownian
motion under Q by virtue of Girsanov’s theorem.

Reciprocally, consider any process Y whose dynamics has the form (5.10) such
that the associated process Lα satisfying the SDE dLα

t = Lα
t αtdBn

t , L0 = 1, is a
martingale and such that the inequalities (5.9) hold. Applying again Girsanov’s
theorem, we deduce that Y is a λ-consistent price system for the price (Xi)i≤n.
We then have:

Lemma 5.3 The λ-consistent price systems for the price (Xi)i≤n are the processes

Y verifying Inequalities (5.9) and having a dynamics of the form (5.10) where the

associated process Lα is a martingale.

From now on, let us denote for a given λ-consistent price system Y n of the nth
model,

eQ(Y n) := {Q : dQ = ρT dP, ρ ∈ fMe(Y
n)}

and fMe(Y
n) is the set of all density processes such that the λ-consistent price

system Y n is a martingale under the probability measure defined by dQ = ρT dP .
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Notice that fMe is the union of all fMe(Y
n). We then denote by eQ(Y n) the upper

envelope of the probability measures of eQ(Y n).
For our next purpose we remind Proposition 3.1 above in its variant version.

Proposition 5.4 The following conditions are equivalent:

(a) there is no asymptotic arbitrage of the first kind (NAA1),

(b) (Pn) ✁ (Qn
),

(c) there exists a sequence (Rn) ∈ Qn such that (Pn) ✁ (Rn).

We then apply Proposition 8 of [13] to a λ-consistent price system we interpret
as a price process. Precisely, we consider the price process S := Y . The process S

satisfies the SDE

dSi
t = Si

tΛ
i·
t (dBn

t + αtdt) , i ≤ n. (5.11)

and S is a martingale under dQα = Lα
T dP .

Proposition 5.5 Assume that each model is defined by the matrix-valued transaction

costs process (λi,j)i,j∈{b,0,··· ,n} verifying Condition RW. Then, the following condi-

tions are equivalent:

(a) there is no asymptotic arbitrage of the first kind (NAA1),

(b) (Pn) ✁ ( eQn),

(c) there exists a sequence (Y n) of λ-consistent price systems such that

(Pn) ✁ ( eQn(Y n)),

(d) there exists a sequence of predictable processes Λn ∈ Rn,n+1, αn ∈ Rn such

that:

(d1) the process Lαn

is a martingale,

(d2) The process Y n defined by (5.10) verifies Inequalities (5.9),

(d3)
R T
0 supn

Pn
i=0

“

αn i
s

”2
ds < ∞ a.s.

Proof. The statements (a), (b) and (c) are equivalent by virtue of Proposition
3.1. Let us show the implication (c) ⇒ (d). The statements (d1) and (d2) are
obvious. The third one is a direct consequence of Proposition 8 of [13]. The reverse
implication is based on the same proposition and the construction of a λ-consistent
price system from Properties (d1) and (d2). �

Remark 5.6 This result is an extension of Proposition 8 of [13]. Taking λ = 0, a

0-consistent price system is just X so that the process αn of Statement (d) is known

and (d3) can be rewritten as in Proposition 8 of [13].

We conclude this example with the following proposition providing a necessary
condition in terms of the coefficients defining the prices for the large security
market to satisfy the NAA1 condition. We put

b2i := min(e2µiT (1 + λi,b)−2; (eσ2

i T − 1)−1).
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Proposition 5.7 Assume that the transaction costs coefficients are constant in time

and uniformly bounded. Suppose that the coefficients µi, σi, γi, γi are deterministic.

(a) If
P∞

i=1 b2i = ∞, then SAA2 holds.

(b) NAA1 ⇒ P∞
i=1 b2i < ∞.

Proof. We define αi := −|ebi|/D2
n where ebi is such that |ebi|(1+λi,b)−1eµiT = b2i and

αb :=
n
X

i=0

(1 + λi,b)−1|αi|eµiT = 1.

We denote α := (αb, α0, · · · , αn) ∈ Rn+2. We consider the terminal value

VT :=
n
X

i=0

(1 + λi,b)−1|αi|Xi
T − αb.

Consider an arbitrary λ-consistent price system. Recall the inequalities

(1 + λi,b)−1Xi
T ≤ Y i

T ≤ (1 + λb,i)Xi
T , i ≤ n.

Multiplying each side by Lα
T := Zb

T , we deduce that for every consistent price
system Z,

(1 + λi,b)−1Xi
T Zb

T ≤ Zi
T ≤ (1 + λb,i)Xi

T Zb
T , i ≤ n. (5.12)

It follows that EZT (−α) ≥ EZT VT eb where eb ∈ Rn+2 is the vector only the first
component of which is non null and equal to 1. We deduce that VT ∈ −α+YT

0,b(T ).
Observe that

n
X

i=0

α2
i =

1

D4
n

n
X

i=0

eb2i =
1

D4
n

n
X

i=0

b4i (1 + λi,b)2e−2µiT

≤ 1

D4
n

n
X

i=0

b2i ≤ D−2
n → 0.

Let us define

xn := −αb −
n
X

i=0

(1 + λb,i)αi.

Then, xneb ≥G0
−α by definition. It follows we may replace −α by xneb where xn →

−1 as n → ∞ . On the other hand, we have VT ≥ −1, EVT = 0 by construction
and

EV 2
T =

1

D4
n

n
X

i=0

b4i (e
σ2

i T − 1) ≤ D−2
n → 0.

We then deduce that the sequence (VT ) realizes a strong asymptotic arbitrage
opportunity of the second kind. �



26 Emmanuel Denis, Lavinia Ostafe

5.4 Two asset model with infinite horizon

Under the variant approach, we consider the example of [13], i.e. the discrete-time
model with only two assets, one of which is taken as a numéraire and its price
equals 1 over time. The price dynamics of the strictly positive second asset is
given by the following relation

Xi = Xi−1(1 + µi + σiǫi), i ≥ 1

where X0 > 0, (ǫi)i≥1 is a sequence of independent random variables on a probabil-
ity space (Ω,F , P ) and taking values in a finite interval [−N, N ], Eǫi = 0, Eǫ2i = 1.
The coefficients here are deterministic and σi 6= 0 for all i. The support of ǫi is
[si, si] where si < 0 < si and we suppose that µi + σisi > 0 and µi + σisi < 0.

For n ≥ 1, we consider the stochastic basis Bn = (Ω,Fn, IFn = (Fn
i )i≤n, Pn)

with the 2-dimensional random process Sn = (1, Xi)i≤n where Fn
0 = F0 is the

trivial σ-algebra, Fn
i = Fi := σ(ǫ1, . . . , ǫi), and Pn = P |Fn

n . The sequence M =
{(Bn, Sn, n)} is the large security market we consider associated to the determin-
istic transaction costs coefficients (λ0,1

i = 0, λ1,0
i )i≤n for the exchanges between

the bond and the risky asset Xi. In a bid-ask model, that means that Xi is the
ask price at time i and Xi(1 − λ1,0

i ) is the bid-price. As in [13], we suppose that
each model has an equivalent probability measure Q with bi := EQεi so that there
exists also a strictly consistent price system. In particular, we have |bi| < N .

Before presenting our main result, let us observe that we may rewrite the
model under an other probability Pn so that we may assume that µiµi+1 < 0 and
µ1 > 0. Indeed, let us choose αi ∈ (bi, si) if i is odd and αi ∈ (si, bi) otherwise.
As P (ǫi − αi > 0) > 0 and P (ǫi − αi < 0) > 0 for all i, there exists Pn ∼ P with
dPn := Πn

i=1fi(ǫi − αi)dP and EP fi(ǫi − αi) = 1 such that EP fi(ǫi − αi)ǫi = αi

(see [13]). We then deduce that

Xi

Xi−1
= 1 + eσieǫi + eµi

where

eσieǫi := σiǫi + µi − EP n(σiǫi + µi),

eµi := EP n(σiǫi + µi) = σiαi + µi,

EP n
eǫ2i := 1.

Since µi + σisi > 0 and µi + σisi < 0, we can choose |αi| large enough such that
eµi > 0 if i is odd and eµi ≤ 0 otherwise. Observe that the random variables (ǫi)i≤n

are still independent under Pn and so do (eǫi)i≤n. We denote by eµi , eσi and ebi the
coefficients of the model when we write it under Pn.

Let

bi := −µi

σi
, D2

0,n :=
n
X

i=1

b2i , D2
n :=

n
X

i=1

bb2i

where bbi := bi − ∆i and ∆i := 0 if bi = 0 otherwise:

∆i := µ−1
i

“

Λl
i − 1

”

bi, bi > 0,

∆i := µ−1
i (Λr

i − 1) bi, bi < 0
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with

Λr
i := Λi := (1 + λ10

i ), Λl
i := Λi := (1 + λ10

i−1)
−1, λ10

0 := 0.

We also define the analogous coefficients (
b

ebi) we deduce from (ebi) and (eµi) . Then,

Xi = Xi−1(1 + σi(ǫi − bi)), i ≥ 1,

Xi = Xi−1(1 + eσi(eǫi −ebi)), i ≥ 1.

At last, we suppose that bi
bbi ≥ 0 and so −si < bbi < si meaning that the

transaction costs coefficients are small enough.

Lemma 5.8

(a) If D2
∞ < ∞, then (Pn) ✁ (Qn

) (equivalently NAA1 holds);

(b) If D2
∞ = ∞, then (Pn)△(Qn

) (equivalently SAA1 holds).

Proof.

(a) Notice that in the case where D2
0,n < ∞, i.e. when the model without friction

of [13] does not admit any asymptotic arbitrage opportunity, it is straightforward
to conclude using the results of [13] since (Xi) is a strictly consistent price system.
The case D2

0,n = ∞ is the most interesting case; indeed the natural question is
how to increase the transaction costs coefficients in order to eliminate an arbitrage
opportunity of the frictionless model.

Recall that eµ1 > 0. For each n, we construct a λ-consistent price system (Yi)
such that Y0 = X0 and Yi/Yi−1 = (Xi/Xi−1)ki where ki > 0 is defined by the
relation

ki := (1 − eσi
e∆i)

−1

i.e. ki = (Λr
i )

−1 or ki = (Λl
i)

−1. We have Yi/Yi−1 = 1 + eσiki(eǫi −bebi) but also

Yi/Yi−1 = 1 + kiσi(ǫi −bbi). (5.13)

Recall that −si < bbi < si. Then, P (ǫi − bbi > 0) > 0 and P (ǫi − bbi < 0) > 0 for
all i. It follows that there exists Q ∼ P such that Y is a Q-martingale.

Since eb1 < 0, it follows that

Πi
j=1kj = (1 + λ10

1 )−1(1 + λ10
1 )(1 + λ10

2 )−1(1 + λ10
2 ) · · ·

and we get that Πi
j=1 = 1 or Πi

j=1 = (1 + λ10
i )−1. It follows that

(1 + λ10
i )−1Xi ≤ Yi ≤ Xi

and (Yi) is a λ-consistent price system. We then consider the frictionless model of
[13] defined by the prices (Yi) with the coefficients (bbi) in (5.13) . Since D2

∞ < ∞,
Proposition 11 (a) of [13] and Proposition 5 of [13] implies the NAA1 condition
for our large market defined by (Xi).

(b) Let us consider an arbitrary sequence of measures Qn ∈ Qn associated to
consistent price systems (Zn

i )i≤n such that dQn = Z0n
n dPn. Then the real valued

process Y n := Z1n/Z0n is a Qn-martingale verifying the inequality:

1

1 + λ10
i

Xi ≤ Y n
i ≤ Xi.
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It follows that

Y n
i ≤ Xi ≤ (1 + λ10

i )Y n
i

and

1

(1 + λ10
i−1)

Y n
i

Y n
i−1

≤ Xi

Xi−1
≤ (1 + λ10

i )
Y n

i

Y n
i−1

.

We deduce that

1

σi

 

1

(1 + λ10
i−1))

− 1

!

≤ EQn(ǫi − bi|Fi−1) ≤
(1 + λ10

i ) − 1

σi
.

Consider the case where bi < 0. Using the definition σibi := −µi and ∆i := bi −bbi,
we get the inequalities

bi

„

Λr
i − 1 − µi∆i

bi

«

≤ −µiEQn(ǫi −bbi|Fi−1) ≤ bi

„

Λl
i − 1 − µi∆i

bi

«

.

Since ∆i = µ−1
i (Λr

i − 1) bi, we deduce that EQn(ǫi −bbi|Fi−1) ≤ 0 and

bbiEQn(ǫi −bbi|Fi−1) ≥ 0. (5.14)

The case bi > 0 also yields Inequality (5.14). We then deduce that

essinf Qn∈QnEQn(bbi(ǫi −bbi)|Fi−1) ≥ 0. (5.15)

Let us define the Qn-martingale Mn(Qn) by

Mn
k (Qn) :=

k
X

i=1

h

bbi(ǫi −bbi) − EQn(bbi(ǫi −bbi)|Fi−1)
i

.

It verifies

EQn(Mn
n (Qn))2 =

n
X

i=1

EQn

h

bbi(ǫi −bbi) − EQn(bbi(ǫi −bbi)|Fi−1)
i2

≤ C D2
n

where C is a constant. Let us define Mn by

Mn :=
n
X

i=1

h

bbi(ǫi −bbi) − essinf Qn∈QnEQn(bbi(ǫi −bbi)|Fi−1)
i

.

Then define the sets An := {−D
−3/2
n Mn > 1} ∈ Fn. Observe that Mn ≥

Mn
n (Qn) for any Qn ∈ Qn.
By the Tchebychev inequality, we get that

Qn(An) ≤ Qn({−D
−3/2
n Mn(Qn) > 1}) ≤ D−3

n EQn(Mn
n (Qn))2 ≤ 4N2D−1

n → 0, n → ∞.

On the other hand, since Inequality (5.15) holds, the complement A
n

of An

verifies

Pn(A
n
) ≤ Pn

 

n
X

i=1

bbiǫi ≥ (D2
n − D

3/2
n )

!

≤ 4N2D2
n

(D2
n − D

3/2
n )2

→ 0, n → ∞.

Using Proposition 7 [13], we deduce that (Pn)△(Qn
). �
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Corollary 5.9

(a) D2
∞ < ∞ ⇔ NAA1;

(b) D2
∞ = ∞ ⇔ SAA1.

Remark 5.10 Consider a model with µiµi+1 ≤ 0 for all i such that µi > 0 and

µi+1 < 0 implies (1 + µi+1)(1 + µi) = 1 or equivalently EP (Xi+1/Xi−1) = 1.
Assume that

P∞
i=1 b2i = ∞ i.e. there is a strong asymptotic arbitrage opportunity

in the model without transaction costs. Let us define for bi > 0, λ10
i = µi. We then get

the equality (1 + λ10
i )−1 = 1 + µi+1 and bi+1 < 0, i.e. ∆i = bi and bbi = 0 for all i.

We then deduce that there is no more asymptotic arbitrage opportunity.

6 Appendix

For a given ζ ∈ L∞(Rd
+), we define the convex set

Γ ζ :=
n

x ∈ Rd : ζ − x ∈ YT,∞
0,b (T )

wo

and the closed convex set

Dζ := {x ∈ Rd : Z0x ≥ EZT ζ ∀Z ∈ MT
0 (G∗)}.

Let us recall a result from [3] which we use in Section 4:

Lemma 6.1 Under Conditions S1 and S2, Γ ζ = Dζ .

Lemma 6.2 Assume that ( ePn) ✁ (Qn
) where d ePn = h−1 dPn and h > 0 is a density

independant of n of the form h−1 = Πn0

j=1hj(ǫj) with EP nhj(ǫj) = 1. Suppose that

for each n, we have Pn = Πn
j=1fj(ǫj)dP where EP fj(ǫj) = 1 . Then, (Pn) ✁ (Qn

).

Proof. Let us consider Q ∈ Qn and estimate for K > 0

Pn(dPn/dQ ≥ K) = E eP n

“

h1
d eP n/dQ≥Kh−1

”

≤ E eP n

“

h1
d eP n/dQ≥KC−11h≤C

”

+ E eP n

`

h1h≥C

´

≤ ePn(d ePn/dQ ≥ KC−1) + Pn(h ≥ C).

Moreover, by independence, we have for n ≥ n0

Pn(h ≥ C) = EP

“

Πn0

j=1fj(ǫj)1h≥C

”

→ 0

as C → ∞. By virtue of Proposition 5 [13], we then deduce that (Pn) ✁ (Qn
). �
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