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ASYMPTOTIC ARBITRAGE IN LARGE FINANCIAL
MARKETS WITH FRICTION

By Emmanuel LEPINETTE∗,†, Lavinia OSTAFE∗

Paris-Dauphine University and University of Vienna

In the modern version of Arbitrage Pricing Theory suggested by
Kabanov and Kramkov the fundamental financially meaningful con-
cept is an asymptotic arbitrage. The ”real world” large market is
represented by a sequence of ”models” and, though each of them is
arbitrage free, investors may obtain non-risky profits in the limit.
Mathematically, absence of the asymptotic arbitrage is expressed as
contiguity of envelopes of the sets of equivalent martingale measures
and objective probabilities. The classical theory deals with frictionless
markets. In the present paper we extend it to markets with transac-
tion costs. Assuming that each model admits consistent price systems,
we relate them with families of probability measures and consider
their upper and lower envelopes. The main result concerns the nec-
essary and sufficient conditions for absence of asymptotic arbitrage
opportunities of the first and second kinds expressed in terms of con-
tiguity. We provide also more specific conditions involving Hellinger
processes and give applications to particular models of large financial
markets.

Acknowledgements The authors are grateful to the anonymous referee
for the valuable comments and suggestions which improved the presentation.

1. Introduction. The idea to describe a financial market by a sequence
of market models with a finite number of securities can be traced back to
the paper [7] by Huberman who formalized intuitive arguments of Arbitrage
Pricing Theory initiated by Ross, [18]. The famous conclusion of this the-
ory is: under the absence of arbitrage, appropriately defined, the expected
returns on assets are approximately linearly related to the factor loadings,
”betas”, proportional to the return covariances with the factors. In economic
literature, the APT is considered as a substitute for the Capital Asset Pric-
ing Model (CAPM) by Lintner and Sharp. The Ross–Huberman theory is
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2 EMMANUEL LEPINETTE ET AL.

single-period and uses a definition of arbitrage different from the one that
is now standard. Its generalization to the standard continuous-time frame-
work of modern mathematical finance was considered for a long time as a
challenging problem of large importance.

This problem was solved in 1994 by Kabanov and Kramkov, [11], who
suggested a concept of large financial market described by a sequence of
”standard” financial market models with finite number of securities whose
price processes admit martingale measures. They introduced new notions of
Asymptotic Arbitrage of the First and Second Kind and, assuming that mar-
tingale measures are unique for each model, they established necessary and
sufficient conditions for the absence of asymptotic arbitrage in terms of con-
tiguity of the sequences of objective probabilities and martingale measures.
As a particular example of application of their general approach, Kabanov
and Kramkov considered a large Black–Scholes market where the stock prices
are given by correlated geometric Brownian motions. For this case their gen-
eral criteria give a result of the same type as the Ross–Huberman condition
but involving instantaneous returns and covariances.

Significant progress in the theory was achieved in the paper by Klein
and Schachermayer, [8], where the geometric functional analysis was used
to obtain criteria of absence of asymptotic arbitrage for the case of incom-
plete market models when the martingale measures are not unique. The
next step in the development of the general theory as well as in the under-
standing of financial framework was again done by Kabanov and Kramkov,
[12]. They added several new criteria of absence of asymptotic arbitrage in
terms of contiguity of sequences of upper and lower envelopes of martin-
gale measures and objective probabilities. The technique of the proofs was
based on the optional decomposition theorem. The criteria of Klein and
Schachermayer was also obtained by an elegant use of the minimax theo-
rem. Kabanov and Kramkov related their criteria with an extension of the
Liptser–Shiryaev theory of contiguity of sequences of probability measures
on filtered spaces in terms of the Hellinger processes. One should emphasize
that Kabanov–Kramkov framework is very general and flexible. It covers
discrete and continuous-time models, models with time horizons tending to
infinity, etc. For the further development of the theory of large financial
markets we send the reader to the articles [5], [15] but also [9] and [10].

In the present paper we extend the framework of large financial markets to
the case of a market with friction. It is well known, in the theory of markets
with proportional transaction costs the concept of martingale measures is
not natural and is replaced by the notion of consistent price systems, i.e. the
martingales evolving in the duals to the solvency cones expressed in physical
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ASYMPTOTIC ARBITRAGE 3

units, [13]. The consistent price systems are vector objects. Nevertheless,
the criteria of absence of asymptotic arbitrage can be formulated in terms
of contiguity of objective probabilities and envelopes of measures naturally
arising from consistent price systems. These are our principal results. We
follow the lines of [12] but do not use the optional decomposition theorem (it
has no analogue for models with transaction costs) but the hedging theorem.
We use the abstract setting of the recent paper by Denis and Kabanov [3],
which allows us to avoid detailed discussions on the structure of continuous-
time models and cover both major approaches to the definition of the value
processes, those of Kabanov and of Campi–Schachermayer [2].

Some examples are given. We extend the results of [12] to models with
transaction costs: the one-stage APM by Ross, the large Black–Scholes mar-
ket, and a two-asset model with infinite horizon.

2. The Model: Definitions and Assumptions.

2.1. General Model. The framework setting we present in this section is
assumed to be satisfied by a sequence of markets of horizon dates T (for the
sake of simplicity, we omit the index n). We consider the general model of
the paper [3] including the Kabanov and Campi–Schachermayer models with
transaction costs. This is a continuous-time generalization of the discrete-
time financial model with transaction costs defined in Chapter 3, [13].

Let (Ω,F ,F = (Ft)t≤T , P ) be a continuous-time stochastic basis verifying
the usual conditions. We are given a pair of set-valued adapted processes
G = (Gt)t≤T and its positive dual G∗ = (G∗t )t≤T whose values are closed
cones in Rd, i.e.

G∗t (ω) = {y : yx ≥ 0 ∀x ∈ Gt(ω)}.

“Adapted” means that the graphs{
(ω, x) ∈ Ω×Rd : x ∈ Gt(ω)

}
are Ft × B(Rd)-measurable.

We assume that all the cones Gt are proper, i.e. Gt ∩ (−Gt) = {0} or,
equivalently, intG∗t 6= ∅. In a financial context it means that the efficient
friction condition (EF) is fulfilled. We assume also that Gt dominates Rd

+,
i.e. G∗\{0} ⊂ int Rd

+. In a more specific financial setting (see [13]), the
cones Gt are the solvency cones when the portfolio positions are expressed
in physical units.
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4 EMMANUEL LEPINETTE ET AL.

We are given a convex cone YT0 of optional Rd-valued processes (Yt)t≤T
with Y0 = 0. We may interpret these processes as portfolios expressed in
physical units.

Notations. We denote by L0(Gt,Ft) the set of allGt-valued Ft-measurable
random variables. A cone G induces a natural order among Rd-valued ran-
dom variables. More precisely, for two d-dimensional random variables Y
and Y ′, we write Y ≥G Y ′ if Y − Y ′ ∈ G. The notation 1 stands for the
vector (1, ..., 1) ∈ Rd

+. Denote by YT0,b the subset of YT0 formed by the pro-
cesses Y dominated from below in the sense of the partial orders generated
by (Gt)t≤T , i.e. there is a constant κ such that the process Y + κ1 evolves
in G. We also write YT0,b(T ) for the set of random variables YT where Y

belongs to YT0,b. We denote by MT
0 (G∗) the set of all d-dimensional martin-

gales Z = (Zt)t≤T with trajectories evolving in G∗, i.e. such that Zt ∈ G∗t
a.s. In the literature, such martingales are commonly called consistent price
systems and strictly consistent price systems if they evolve in the interior of
G∗.

Assumptions. Throughout the note we assume the following standing
hypotheses on the sets YT0,b(T ):

S1 : EξZT ≤ 0, ∀ ξ ∈ YT0,b(T ), Z ∈MT
0 (G∗).

S2 :
⋃
t≤T

L∞(−Gt,Ft) ⊆ YT0,b(T ).

The hypotheses S1 and S2 adopted in this note allow us to avoid the
unnecessary repetitions and do not provide the full description of continuous-
time models with transaction costs. It is important to know only that these
conditions are fulfilled for the known models, see [14], [2], [4].

Recall that in these financial models S1 holds because, if one calculates
the current portfolio value using a price system Z (that is a process from
MT

0 (G∗)), the resulting scalar process is a supermartingale. In a discrete-
time model, a portfolio process (Vt)t≤T is such that Vt ∈

∑t
u=0 L

0(−Gu,Fu)
for all t ≤ T . If V ∈ YT0,b then E(ZTVT )− <∞. The process Vt =

∑t
u=0 ∆Vu

verifies ∆Vu ∈ −Gu. Applying Proposition 3.3.2, [13], we get that

E(ZTVT |Ft) = VtE(ZT |Ft) + E(ZT

T∑
u=t+1

∆Vu|Ft),

= VtZt +

T∑
u=t+1

E(Zu∆Vu|Ft).

Since Zu∆Vu ≤ 0, we deduce that E(ZTVT |Ft) ≤ VtZt. Condition S2
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ASYMPTOTIC ARBITRAGE 5

naturally holds in the financial models with transaction costs. Indeed, if
ξt ∈ L∞(−Gt,Ft) then Vu = ξtIu>t is a portfolio process whose only jump
is ∆Vt = ξt ∈ −Gt and we have ξt = VT .

For a given payoff ξ ∈ L0
b(R

d) (i.e. bounded from below with respect to
the partial ordering induced by GT ), we consider the convex set

Γξ : =
{
x ∈ Rd : ∃YT ∈ YT0,b(T ) s.t. x+ YT ≥GT

ξ
}

(2.1)

and the closed convex set

Dξ :=
{
x ∈ Rd : Z0x ≥ EZT ξ, ∀Z ∈MT

0 (G∗)
}
.(2.2)

We assume given a dual characterization of Γξ in section 3:

S3 : Γξ = Dξ.

This property is usually an important result, referred to as the “hedging
theorem”. It generally holds under some no-arbitrage conditions (see, e.g.,
[2], [1] and [4]).

3. Asymptotic Arbitrage via Consistent Price Systems. We fix
a sequence Bn := (Ωn,Fn,Fn = (Fnt )t≤T , P

n) of continuous-time stochastic
basis verifying the usual conditions with Fn = FnT . The positive number T
is interpreted as a time horizon and may depend on n. We are given a pair
of set-valued adapted processes Gn = (Gnt )t≤T and Gn∗ = (Gn∗t )t≤T whose
values are closed cones in Rd which are dual and define the corresponding
models of Subsection 2.1. Recall that we assume that conditions S1 and S2
hold. For the sake of simplicity, we often omit the index n.

Definition 3.1. A sequence of portfolios (V̂ n) realizes an asymptotic
arbitrage opportunity of the first kind if there exists a sequence (xn)
such that the following holds for a subsequence:

3.1.a) V̂ n
T ∈ xn + YT0,b(T ),

3.1.b) V̂ n
T ∈ GT ,

3.1.c)xn → 0,

3.1.d) lim
n
P
(
V̂ n
T ≥GT

1
)
> 0.
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6 EMMANUEL LEPINETTE ET AL.

Definition 3.2. A sequence of portfolios (V̂ n) realizes an asymptotic
arbitrage opportunity of the second kind if there exists a subsequence
satisfying:

3.2.a) V̂ n
T ≥GT

−1,

3.2.b) lim
n
P
(
V̂ n
T �GT

−ε1
)

= 0, ∀ε ∈]0, 1[,

3.2.c) there exists a bounded sequence of initial endowments (xn1), with
xn ∈ R, satisfying V̂ n

T ∈ xn1 + YT0,b(T ) and x∞ := lim inf
n

xn < 0.

Remark 3.3. It is an easy exercise to notice that the definition of the
asymptotic arbitrage of the second kind can be written equivalently if one
considers in 3.2.c) a bounded sequence of initial endowments xn ∈ Rd sat-
isfying V̂ n

T ∈ xn + YT0,b(T ), and such that lim inf
n

max
i≤d

xn,i < 0. Indeed, if xn

is an initial endowment of V̂ n
T , then yn := (maxi≤d x

n,i)1 is still an initial

endowment for V̂ n
T .

In the same manner, we can equivalently define the asymptotic arbitrage
of the first kind using a sequence of initial endowments of the form (xn1),
with xn ∈ R, but for our purposes it is more convenient to consider the
definition with an initial endowment xn ∈ Rd.

Definition 3.4. A large security market M = {(Bn, Gn, Tn)} has no
asymptotic arbitrage opportunities of the first kind (respectively, of the sec-
ond kind) if for any subsequence (m) there are no trading strategies realizing
an asymptotic arbitrage of the first kind (respectively, of the second kind) for
(Bm, Gm, Tm).

The goal of this section is to characterize the absence of asymptotic ar-
bitrage opportunities of the first/second kind in terms of contiguity of a
set of equivalent probability measures as defined below. To do so, we as-
sociate with every Z ∈ MT

0 (G∗\{0}) the equivalent probability measure
dQZ := (1/Z01)ZT1dP and we define the convex set

Qn =
{
QZ : Z ∈MT

0 (G∗\{0}), Z01 = 1
}
.

We assume that Qn is not empty meaning that the No Free Lunch
(NFL) condition holds, [3], for each model.

We then define the upper and lower envelopes of the measures of Qn as
follows:

Qn(A) := sup
Q∈Qn

Q(A), Qn(A) := inf
Q∈Qn

Q(A).
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ASYMPTOTIC ARBITRAGE 7

Definition 3.5. A sequence of set–valued functions (Pn) is contiguous
with respect to the sequence of set–valued functions (Qn) (in symbols: (Pn)�
(Qn)) when the implication

lim
n
Qn(An) = 0⇒ lim

n
Pn(An) = 0

holds for any sequence An ∈ Fn, n ≥ 1.

Now, we give the first results of this section:

Proposition 3.6. Assume that the Assumptions S1-S2-S3 hold. Then
the following conditions are equivalent:

(a) there is no asymptotic arbitrage opportunity of the first kind (NAA1);

(b) (Pn) � (Qn).

Proof.
• (a) ⇒ (b). Suppose that there exists a sequence An ∈ Fn such that

Qn(An) tends to 0 and P (An) → α > 0. We consider Fn = IAn1 as a
contingent claim and xn = Qn(An)1 as an initial endowment. For every
Z ∈MT

0 (G∗\{0}), we have immediately by definition

Z0x
n ≥ EZTFn.

By virtue of Assumption S3, we deduce that Fn ∈ xn +YT0,b(T ) so that the
sequence (Fn) realizes an asymptotic arbitrage opportunity of the first kind.
• (b)⇒ (a). Suppose that there exists a sequence (V̂ n) realizing an asymp-

totic arbitrage opportunity of the first kind. Consider Q ∈ Qn defined by
dQ = ZT1dP . Then, according to Condition S1,

0 ≤ EZT V̂ n
T ≤ Z0x

n ≤ |xn|

since xn ≤G0 |xn|1. Moreover,

EZT V̂
n
T ≥ EZT V̂ n

T IV̂ n
T ≥GT

1
≥ EZT1I

V̂ n
T ≥GT

1
= Q(V̂ n

T ≥GT
1).

It follows that
Qn(V̂ n

T ≥GT
1) ≤ |xn|

and Qn(V̂ n
T ≥GT

1) → 0 which implies P (V̂ n
T ≥GT

1) → 0 in contradiction
with 3.1.d). �
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8 EMMANUEL LEPINETTE ET AL.

Remark 3.7. As shown in [12], the condition (b) is equivalent to the
following: (c) there exists a sequence (Rn) ∈ Qn such that (Pn) � (Rn).

Proposition 3.8. Assume that the Assumptions S1-S2-S3 holds. Then
the following conditions are equivalent:

(a) there is no asymptotic arbitrage opportunity of the second kind (NAA2);

(b) (Qn) � (Pn).

Proof.
• (a) ⇒ (b). Suppose that there exists a sequence An ∈ Fn such that

Pn(An) tends to 0 and Qn(An) → α > 0. We define the contingent claim
Fn = −IAn1 we may interpret as the terminal value of a portfolio since it
is replicable (e.g. by 0). Consider the bounded sequence of super-hedging
prices for Fn, yn := xn1 := −Qn(An)1 , i.e. yn ∈ ΓFn . Indeed, for any
Z ∈ MT

0 (G∗\{0}) with Z01 = 1, Z0y
n = −Qn(An) ≥ −QZ(An) = EZTF

n

and we conclude using the Assumption S3. Since lim inf
n

xn = x∞ < 0, the

sequence (Fn) is an asymptotic arbitrage opportunity of the second kind.
• (b)⇒ (a). Suppose that there exists a sequence of portfolios (V̂ n) realiz-

ing an asymptotic arbitrage opportunity of the second kind. Let us consider
a sequence (xn) such that V̂ n

T ∈ xn1 + YT0,b(T ) with x∞ := lim inf
n

xn < 0.

Under Assumption S3, for any Z ∈ MT
0 (G∗\{0}) with Z01 = 1, we have

that

xn = Z0x
n1 ≥ EZT V̂

n
T = EZT V̂

n
T I{V̂ n

T ≥−ε1}
+ EZT V̂

n
T I{V̂ n

T �−ε1},

xn ≥ −εQZ(V̂ n
T ≥ −ε1)−QZ(V̂ n

T � −ε1),

≥ −ε+ (ε− 1)QZ(V̂ n
T � −ε1)

where ε ∈ (0, 1) is arbitrarily chosen. Since the property 3.2.b) holds, the
property (Qn)� (Pn) implies that Qn(V̂ n

T � −ε1)→ 0. We choose, for each

n, Zn ∈ MT
0 (G∗\{0}) such that QZ

n
(V̂ n
T � −ε1) ≤ Qn(V̂ n

T � −ε1) + n−1.
From above, we deduce that lim inf

n
xn ≥ −ε whatever ε ∈ (0, 1) which yields

a contradiction. �

Definition 3.9. A sequence of portfolios (V̂ n) realizes a strong asymp-
totic arbitrage opportunity of the first kind if there exists a sequence
(xn) such that the following holds for a subsequence:

3.9.a) V̂ n
T ∈ xn + YT0,b(T ),
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ASYMPTOTIC ARBITRAGE 9

3.9.b) V̂ n
T ≥GT

0,

3.9.c)xn → 0,

3.9.d) lim
n
P
(
V̂ n
T ≥GT

1
)

= 1.

Definition 3.10. A sequence of portfolios (V̂ n) realizes a strong asymp-
totic arbitrage opportunity of the second kind if for a subsequence :

3.10.a) V̂ n
T ≥GT

−1,

3.10.b) lim
n
P
(
V̂ n
T �GT

−ε1
)

= 0, ∀ε ∈]0, 1[,

3.10.c) there exists a bounded sequence of initial endowments (xn1), with
xn ∈ R, satisfying V̂ n

T ∈ xn1 + YT0,b(T ) and lim inf
n

xn = −1.

Definition 3.11. A sequence of set-valued functions (Pn) is (entirely)
asymptotically separable from the sequence of set-valued functions (Qn),
notation (Pn)4(Qn), if there exists a subsequence (m) with sets Am ∈ Fm
such that

lim
m
Qm(Am) = 0 , lim

m
Pm(Am) = 1.

Proposition 3.12. Assume that S1-S2-S3 hold. Then the following
conditions are equivalent:

(a) there is a strong asymptotic arbitrage opportunity of the first kind
(SAA1);

(b) there is a strong asymptotic arbitrage opportunity of the second kind
(SAA2);

(c) (Pn)4(Qn);

(d) (Qn)4(Pn).

Proof.
• (a)⇒ (c) Assume there exists a sequence of portfolios (V̂ n) realizing a

strong asymptotic arbitrage opportunity of the first kind. This means that
there exists a subsequence (m) such that

lim
m
Pm(V̂ m

T ≥GT
1) = 1, lim

m
V̂ m

0 = 0.
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10 EMMANUEL LEPINETTE ET AL.

Following the arguments of the proof of Proposition 3.6, the implication
(b) ⇒ (a), we obtain that lim

m
Qm(V̂ m

T ≥GT
1) = 0. We then take the sets

Am := {V̂ m
T ≥GT

1} for the separating sequence.
• (c)⇒ (a) Assume (Pn)4(Qn). Then, there exists a sequence (m) with

sets Am ∈ Fm such that

lim
m
Qm(Am) = 0 , lim

m
Pm(Am) = 1.

Using the arguments in the proof of Proposition 3.6, the implication (a)⇒
(b), but with α = 1, we obtain a sequence of portfolios realizing a strong
asymptotic arbitrage opportunity.
• (a) ⇒ (b) Take any sequence (V̂ n) realizing a strong asymptotic arbi-

trage opportunity of the first kind. We want to construct a sequence real-
izing a strong asymptotic arbitrage of the second kind. Define the sequence
Ûn = −1+V̂ n. Using 3.9.b), we obtain that ÛnT ≥GT

−1, which is exactly the
condition 3.10.a) of the definition of the asymptotic arbitrage opportunity
of the second kind. We have

P (ÛnT �GT
−ε1) = 1− P (ÛnT ≥GT

−ε1) ≤ 1− P (V̂ n
T ≥GT

1)→ 0, n→∞

which shows the condition 3.10.b). We only have to prove the condition
3.10.c). The condition 3.9.a) holds so that V̂ n

T ∈ yn +YT0,b(T ) where yn → 0.

We deduce that V̂ n
T ∈ αn1 + YT0,b(T ) where αn := maxi≤d y

ni and αn → 0.
It suffices to consider xn := αn − 1 to conclude.
• (b) ⇒ (a) Take any sequence (Ûn) realizing a strong asymptotic ar-

bitrage opportunity of the second kind. We define a sequence realizing a
strong asymptotic arbitrage opportunity of the first kind choosing the se-
quence V̂ n = Ûn + 1. We only prove condition 3.9.c). It suffices to observe
that

P
(
V̂ n
T �GT

1
)

= P
(
ÛnT �GT

0
)
≤ lim inf

ε→0, ε∈Q+
P
(
ÛnT �GT

−ε1
)

where Q+ is the set of all strictly positive rational numbers. Taking any

arbitrary δ > 0, we get that P
(
V̂ n
T �GT

1
)
≤ δ + P

(
ÛnT �GT

−ε1
)

for

some ε = ε(δ). Using 3.10.b), we obtain lim
n
P
(
V̂ n
T �GT

1
)
≤ δ and then

lim
n
P
(
V̂ n
T �GT

1
)

= 0 as δ → 0. �

4. Variant for markets with a numéraire. We consider markets
whose first component of the price process S is a numéraire (the cash B) in
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ASYMPTOTIC ARBITRAGE 11

which the portfolios are liquidated. The asymptotic arbitrage opportunity
concepts are defined similarly as in Section 3 but here we are concerned
by the portfolios starting with an initial endowment expressed in cash and
which are liquidated at the horizon date.

Definition 4.1. A sequence of portfolios (V̂ n) realizes an asymptotic
arbitrage of the first kind if there exists a sequence (xn) ∈ R+ such that for
a subsequence:

4.1.a) V̂ n
T ∈ xne1 + YT0,b(T ),

4.1.b) V̂ n
T ∈ GT a.s.

4.1.c)xn → 0,

4.1.d) lim
n
P
(
V̂ n
T ≥GT

e1

)
> 0.

Definition 4.2. A sequence of portfolios (V̂ n) realizes an asymptotic
arbitrage opportunity of the second kind if there exists a subsequence
satisfying:

4.2.a) V̂ n
T ≥GT

−e1,

4.2.b) lim
n
P
(
V̂ n
T �GT

−εe1

)
= 0, ∀ε ∈]0, 1[,

4.2.c) There exits a bounded sequence of initial endowments (xne1), with
xn ∈ R, satisfying V̂ n

T ∈ xne1 + YT0,b(T ) and x∞ := lim inf
n

xn < 0.

In this setting, we define for each Z ∈MT
0 (G∗\{0}), QZ ∼ P such that

dQZ

dP
=
ZT e1

Z0e1

and we define the convex set:

Qn =
{
QZ , Z ∈MT

0 (G∗\{0}), Z0e1 = 1
}
.

Notice that in the frictionless case, a consistent price system is a process
having the form Zt = ρtSt, ρt ∈ L0(R+,Ft). If S(1) = 1, i.e. the interest
rate of the bond r = 0, then Z0e1 = 1 means that ρ is a density process or
equivalently dQ = ZT e1dP defines an equivalent martingale measure under
which S is a martingale. We may interpret our definition as an extension of
that of [12]. Consider the upper and lower envelopes of the measures of Qn
as previously. We then obtain similar results under Conditions S1-S2-S3.
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12 EMMANUEL LEPINETTE ET AL.

Actually, the two approaches turn out to be equivalent under Condition
(B) (3.6.3, [13] and [3]), and the additional hypothesis that the sequence
(depending on n through the cone and the horizon date)

n 7→ min
Z∈MT

0 (G∗\{0}), Z01=1
Z0e1

is bounded from below by a strictly positive constant (independent of n).
Indeed, in this case, we can find α, β > 0 such that βe1 ≥G0 1 ≥G0 αe1. It
is then easy to construct an asymptotic arbitrage opportunity of the first
kind (respectively of the second kind) following the former definition from
an asymptotic arbitrage opportunity of the first kind (respectively of the
second kind) according to the variant approach and vice-versa.

5. Examples. Throughout this section, we consider a continuous-time
financial model with transaction costs defined as in [4], i.e. in the setting of
the Kabanov and Campi–Schachermayer models. We assume that for each
model the exchanges between assets are executed like in a “real world ”
where we go through the numéraire. To exchange some amount of the ith-
asset into the jth-asset, sell the ith-assets, get the money in cash (i.e. the
bond) and buy jth-assets with this cash. This model is referred to as a model
of stock market where the orders are either “buy a stock” or “sell a stock”
(See Section 3.1.2, Examples 2 and 5, [13]). We model this assumption by
the following:

RW: (1 + λi,b)(1 + λb,j) = 1 + λi,j for every i, j = 0, 1, . . . , n and i 6= j.

5.1. One-stage APM by Ross. We study the example of [12] under
the variant approach and under the RW condition. Recall that we are
given a sequence of independent random variables (εi)i≥0 on a probability
space (Ω,F , P ) taking values in a finite interval [−N,N ]. We suppose that
Eεi = 0, Eε2i = 1. At time zero, asset prices are positive numbers Xi

0, i ≥ 0.
After a certain period (at time T = 1), their positive discounted values are
given by the following relations:

X0
1 = X0

0 (1 + µ0 + σ0ε0),

Xi
1 = Xi

0(1 + µi + σi(γiε0 + γ̄iεi)), i ≥ 1.

The coefficients are here deterministic, σi > 0, γ̄i > 0 and γ2
i + γ̄2

i = 1,
γ0 = 1. The asset with number zero is interpreted as the market portfolio,
γi is the correlation coefficient between the rate of return for the market
portfolio and the rate of return for the asset with number i. For n ≥ 1, we
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ASYMPTOTIC ARBITRAGE 13

consider the stochastic basis Bn := (Ω,Fn, IFn = (Fnt )t=0,1, P
n) with the

(n + 1)-dimensional random process Sn = (X0
t , . . . , X

n
t )t=0,1 where Fn0 is

the trivial algebra, Fn1 = Fn = σ(ε0, . . . , εn), and Pn = P |Fn. We assume
that the transaction costs coefficients of each model are constant and equal
to λi, i ≥ 1. They correspond to the exchanges from the risky assets number
i, i ≥ 1, to the bond (assumed to be constant and equal to 1), as well
as from the bond to the risky assets. Moreover, we assume that there are
no transaction costs regarding the exchanges between the bond and the
portfolio market X0, i.e. λ0 := 0. We suppose that there exists a constant k
such that

1

1− λi
≤ k

1 + λi
.(5.1)

This assumption is not too restrictive from a practical point of view. For
instance, if λi ≤ 0.5 for all i, then k = 3. More generally, the assumption
means that there exits λ∗ ∈ (0, 1) such that λi < λ∗, ∀i. The sequence
M = {(Bn, (1, Sn), 1)} is a large security market by our definition. We may
rewrite the dynamics as in [12]:

X0
1 = X0

0 (1 + σ0(ε0 − b0)),

Xi
1 = Xi

0(1 + σiγi(ε0 − b0) + σiγ̄i(εi − bi)), i ≥ 1

where

b0 := −µ0

σ0
, bi :=

µ0βi − µi
σiγ̄i

, βi := γiσi/σ0, i ≥ 1.

Let Fi be the distribution function of εi. Put

si := inf{t : Fi(t) > 0}, si := inf{t : Fi(t) = 1},

di := bi − si, di := si − bi, and d0
i := di ∧ di. As in [12], we suppose that

d0
i ≥ 0. Moreover, let us define:

di := d0
i +

4λi

(1 + λi)σiγ̄i
:= d0

i + fi, i ≥ 1, d0 := d0
0 := d0

0 + f0.

As in [12], we suppose that each model has an equivalent probability measure
so that there exists also a strictly consistent price system. In particular, we
have |bi| < N and, without loss of generality, we assume that N > 1.

Let us consider the following conditions:

C2: lim supi

√
b2i + 2λi

(1−λi)σiγi
= 0.

P2: lim supi

(
|bi| − 2 λi

(1−λi)σiγ̄i

)
≤ 0 and lim supi

λi

(1−λi)σiγ̄i ∈ (0,∞).
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14 EMMANUEL LEPINETTE ET AL.

Proposition 5.1. The following statements hold:

(a) infi di = 0 ⇔ SAA1;

(b) infi di > 0 ⇔ NAA1;

(c) C2 or P2 ⇔ NAA2.

Proof. Under Condition RW, we may assume without loss of generality
that the only exchanges occur between the bond and the risky assets, i.e.
there is no exchange between two risky assets. Recall that, in this model,
there are no transaction costs between the bond and the portfolio market.
Then, the terminal value of a portfolio, once liquidated, can be expressed as
follows:

V n
1 = xn +

n∑
i=0

φi(X
i
1 −Xi

0)−
n∑
i=1

λi|φi|(Xi
0 +Xi

1)

where (φi)i=0,...,n is the composition of the portfolio at date zero in the risky
assets and xn is the initial endowment expressed in the bond. The first two
terms of V n

1 represent respectively the initial endowment and the variations
of the portfolio due to the price movements. The last one corresponds re-
spectively to the transaction costs that have to be paid due to the passage
from xn to φ and to the liquidation of the portfolio at date 1. We use the
notations of [12]:

a0 :=
n∑
i=0

φiX
i
0σiγi, ai := φiX

i
0σiγ̄i, i ≥ 1.

The terminal value of the portfolio can be rewritten as:

V n
1 = xn +

n∑
i=0

ai(εi − bi)−
n∑
i=1

|φi|λi(Xi
0 +Xi

1)(5.2)

= xn +
n∑
i=0

ai(εi − bi)− 2
n∑
i=1

λi|φi|Xi
0 −

n∑
i=1

λi|φi|(Xi
1 −Xi

0)(5.3)

= xn +

n∑
i=0

αi(εi − bi)− 2

n∑
i=1

λi
|ai|
σiγ̄i

(5.4)

where

α0 := a0 −
n∑
i=1

λi|ai|
γi
γ̄i
, αi := ai − λi|ai|, i ≥ 1.
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ASYMPTOTIC ARBITRAGE 15

Note that, for i ≥ 1, ai = αi/(1 − λi) if αi ≥ 0 and ai = αi/(1 + λi) if
αi ≤ 0 so that (αi)i=0,...,n are uniquely determined and vice-versa.
• Assume that infi di = 0. Then, there exists a subsequence (ik) such that

d0
i + fi < 2−i. We then construct a strong asymptotic arbitrage opportunity

only using the risky assets corresponding to this subsequence. We follow
the proof of [12]. We set α2n

i := 1Γ̄∩{i≥n+1} − 1Γ∩{i≥n+1}, i ≥ n + 1, where

Γ := {i : di < di} and Γ̄ is the complementary of Γ. Note that there is
an abuse of notation as in [12]. The number 2n means that we work with
the model in which we consider the 2n assets whose indices belong to the
subsequence (ik). In other words we only trade the assets having the same
indices than the subsequence. As in [12], but taking x2n := 2−n(1 + k), we
deduce that

V 2n
1 ≥

2n∑
i=n+1

((si − εi)1Γ + (εi − si)1Γ̄) + 2−n −
2n∑

i=n+1

(
di1Γ + di1Γ̄

)
+ k2−n − 2

2n∑
i=n+1

λi
1

(1− λisign(αi))σiγ̄i
.

Observe that

λi
1

(1− λisign(αi))σiγ̄i
≤ λi 1

(1− λi)σiγ̄i
≤ λi k

(1 + λi)σiγ̄i
≤ kfi/4 ≤ k2−i/4.

It follows that

V 2n
1 ≥

2n∑
i=n+1

((si − εi)1Γ + (εi − si)1Γ̄)

and we conclude like in [12] that V 2n
1 converges a.s. to ∞ as n → ∞, i.e.

there is a strong asymptotic arbitrage opportunity of the first kind.

• Assume that infi di = δ > 0. Then, using a similar argument like in [12],
we have the following inequalities on a non-null set:
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16 EMMANUEL LEPINETTE ET AL.

V n
1 ≤ xn −

n∑
i=0

|αi|
d0
i

2
− 2

n∑
i=1

λi
|ai|
σiγ̄i

≤ xn −
n∑
i=0

|αi|
di
2

+

n∑
i=1

|αi|
fi
2
− 2

n∑
i=1

λi
|αi|

(1− λisign(αi))σiγ̄i

≤ xn −
n∑
i=0

|αi|
di
2

+

n∑
i=1

|αi|
fi
2
− 2

n∑
i=1

λi
|αi|

(1 + λi)σiγ̄i

≤ xn −
n∑
i=0

|αi|
di
2

+

n∑
i=1

|αi|
2

(
fi − 4λi

|αi|
(1 + λi)σiγ̄i

)

≤ xn −
n∑
i=0

|αi|
di
2
≤ xn − δ

2

n∑
i=0

|αi|.

With V n
1 ≥ 0 and xn → 0, it follows that

n∑
i=0

|αi| → 0 as n→∞. From the

inequality

0 ≤ V n
1 ≤ xn + 2N

n∑
i=0

|αi|,

we deduce that V n
1 → 0 as n → ∞. Hence, there is no strong asymptotic

arbitrage opportunity of the first kind. We then conclude about (a) and also
about (b) as a consequence.

Let us now prove Statement (c).
• Let us first assume that (NAA2) holds and lim supi b̃i > 0 where

b̃i :=

√
b2i +

2λi

(1− λi)σiγi
.

Let us also suppose that Condition P2 does not hold. Under the conditions
above, we show that it is possible to construct an asymptotic arbitrage op-
portunity of the second kind hence a contradiction. We may assume without
loss of generality that ν := infi b̃i > 0. Since N |bi| ≥ b2i we get that

N |bi|+N
2λi

(1− λi)σiγi
≥ b2i +

2λi

(1− λi)σiγi
.

From there, we may assume that we also have

|bi|+
2λi

(1− λi)σiγi
> ν̃
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ASYMPTOTIC ARBITRAGE 17

where ν̃ > 0 is a constant. Let us denote D2
n :=

∑n
i=0 b̃

2
i and consider a

terminal portfolio value:

V n
1 := xn +

n∑
i=0

αi(εi − bi)− 2
n∑
i=1

λi
|αi|

(1− sign (αi)λi)σiγ̄i
.

The idea is to choose the coefficients αi = αni so that V n
1 → 0 a.s. and

xn =
n∑
i=0

αibi + 2
n∑
i=1

λi
|αi|

(1− sign (αi)λi)σiγ̄i
.

It follows that

V n
1 =

n∑
i=0

αiεi.

Renormalizing the sequence (V n
1 ) if necessary, we deduce that |V n

1 | ≤ 1 and
applying the strong law of large numbers, we shall conclude that V n

1 → 0 a.s.
It remains to construct the coefficients (αi) and to show that lim inf xn < 0.
We put

ei := bi − 2
λi

(1 + λi)σiγ̄i
.

•First Case. We suppose there exists c > 0 and a subsequence such that

ei ≥ c b̃i.

We choose αi := − ν2 b̃i
N2D2

n

so that |V n
1 | ≤ 1. Moreover, the inequality

xn = − ν2

N2D2
n

n∑
i=0

b̃iei ≤ −
cν2

N2

implies that lim inf xn ∈ (−∞, 0). Since Dn ≥ C n where C > 0, we deduce
that V n

1 → 0 by virtue of the strong law of large numbers.

•Second Case. We suppose that ei ≤ 0. Since Condition P2 does not hold,

either (i) : lim supi

(
|bi| − 2 λi

(1−λi)σiγ̄i

)
> 0 or (ii) : lim supi

λi

(1−λi)σiγ̄i = 0.

In the second case (ii), we then deduce that lim supi bi = 0 if the condition
(i) is not satisfied hence a contradiction. Then, we may assume that there
exists a constant c ∈ (0, 1) such that(

|bi| − 2
λi

(1− λi)σiγ̄i

)
≥ c

√
b2i +

2λi

(1− λi)σiγi
.
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Indeed, the second term in the rhs of the inequality above turns out to be
bounded (for a subsequence) by virtue of (i). From now on, consider the
portfolio terminal value:

V n
1 := − ν

NDn

n∑
i=1

sign (bi)

√
b2i +

2λi

(1− λi)σiγi
εi −

ν

NDn
ε0.

It satisfies |V n
1 | ≤ 1 and by virtue of the Bienaymé–Tchebychev inequality,

P (|V n
1 | ≥ ε) ≤

ν2

N2Dnε2
→ 0, n→∞

since Dn ≥ νn. At last, recall that the random variables (εi)i≥0 are indepen-
dent and identically distributed under the initial probability measure. We
deduce that V n

1 is the terminal value of a portfolio of the form (5.4) if and
only if

αi = −sign (bi)
ν

NDn

√
b2i +

2λi

(1− λi)σiγi
, i ≥ 1, α0 = − ν

NDn
b0.

We deduce that

xn = − ν

NDn
b20 −

ν

NDn

n∑
i=1

√
b2i +

2λi

(1− λi)σiγi

(
|bi| −

2λi

(1− λisign (αi))σiγi

)
.

We then deduce that xn ≤ − cν
N and we conclude that (V n

1 ) realizes an
asymptotic arbitrage opportunity of the second kind.

• Let us suppose that

lim sup
i

√
b2i +

2λi

(1− λi)σiγi
= 0.

It follows that lim supi |bi| = 0. Following the reasoning of [12], we deduce
that lim supi d

0
i ≥ C, where C is a strictly positive such that si ≤ −C and

si ≥ C, and δ := infi d
0
i > 0. We also deduce that

lim sup
i

2λi

(1 + λi)σiγi
= 0.

We may assume without loss of generality that

sup
i

(
2λi

(1 + λi)σiγi

)
≤ δ

4
.
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We deduce the existence of δ̃ > 0 such that

inf
i

(
d0
i

2
+

2λi

(1 + λi)σiγ̄i

)
> δ̃.(5.5)

Let (xn, αn) be a sequence such that the properties (3.a) and (3.c) of a
strategy realizing (AA2) are fulfilled, i.e. xn → −x < 0 and

−V n
1 = −xn −

n∑
i=0

αi(εi − bi) + 2
n∑
i=1

λi
|ai|
σiγ̄i

≤ 1.

Then, on a non-null set, we deduce that

−xn +

n∑
i=0

|αi|
d0
i

2
+ 2

n∑
i=1

λi
|αi|

(1− λisign (αi))σiγ̄i
≤ 1

−xn +

n∑
i=0

|αi|
(
d0
i

2
+

2λi

(1 + λi)σiγ̄i

)
≤ 1

Then, with n large enough and γ := x/2, we have γ+ δ̃
∑n

i=0 |αi| ≤ 1 and∑n
i=0 |αi| ≤ (1−γ)/δ̃. Observe that we can also choose δ̃ smaller so that the

last inequality holds for all n. Since

lim sup
i

(
|bi|+

2λi

(1 + λi)σiγ̄i

)
= 0,

we also may assume that

sup
i

(
|bi| −

2λi

(1 + λi)σiγ̄i

)
≤ δ̃γ

2(1− γ)
.(5.6)

We deduce that, with n large enough,

−V n
1 ≥ γ +

n∑
i=0

αiεi −
n∑
i=0

|αi|
(
|bi| −

2λi

(1 + λi)σiγ̄i

)

≥ γ

2
+

n∑
i=0

αiεi.

We conclude that for n large enough,

P (V n
1 ≤ −γ/4) = P (−V n

1 ≥ γ/4) ≥ E(−V n
1 − γ/4)+ ∧ 1

≥ E(−V n
1 − γ/4) ∧ 1

≥ E(−V n
1 − γ/4) ≥ γ/4

hence (NAA2) holds. Under the condition P2, we do the same reasoning
since the inequalities (5.5) and (5.6) remains valid. �
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5.2. The large Black–Scholes market. We consider the large Black
and Scholes market example of Kabanov and Kramkov [12]. We are given
a sequence of markets whose horizon dates are Tn = T for all n ≥ 1. Let
(Ω,F ,F = (Ft)t≤T , P ) be a stochastic basis with a countable set of inde-
pendent one-dimensional standard Brownian motions (W i)i≥0. We define
Bn = (W 0, . . . ,Wn), and let Gn = (Gnt ) be a subfiltration of F such that
(Bn,Gn) is a (n+ 1)-dimensional standard Wiener process. The behaviour
of the stock prices is described as follows:

dX0
t = µ0

tX
0
t dt+ σ0

tX
0
t dW

0
t ,

dXi
t = µitX

i
tdt+ σitX

i
t(γ

i
tdW

0
t + γitdW

i
t ), i ∈ N

with deterministic (strictly positive) initial points. The coefficients are Gi-
predictable processes verifying

∫ T

0
|µis|2ds <∞,

∫ T

0
|σis|2ds <∞

and |γit |2 + |γit|2 = 1. To avoid degeneracy we shall assume that σi > 0 and
γi > 0. Moreover, we assume that there exists a bond Bt = 1 for all t ≥ 0.

We shall study the absence of asymptotic arbitrage opportunities of the
first kind according to the variant definition of Section 4. Observe that in
our example YT,∞0,b (T ) is Fatou-closed, [4], since the price process provides
a strictly consistent price system. We want to characterize the probability
measures Qn ∈ Qn, i.e. the probability measures Q ∼ P such that dQ

dP =
ZT e1 where ZT ∈MT

0 (G∗\{0}, P ) and Z0e1 = 1. To do so, we first describe

the consistent price systems. Let us denote by λi,bt , λ
b,i
t , for t ≥ 0, and

i = 0, . . . , n, the transaction costs coefficients characterizing the exchange
between the risky assets and the bond. We assume that λi,bt > 0 and λb,it > 0
for all i = 0, . . . , n.

Definition 5.2. We say that the process Y ∈ Rn+1
+ is a λ-consistent

price system for the prices (Xi)i≤n if there exists Q ∼ P such that Y is a
Q-martingale and

Xi
t

1 + λi,bt
≤ Y i

t ≤ (1 + λb,it )Xi
t , i = 0, . . . , n.(5.7)

Lemma 5.3. Assume that Assumption RW holds. Then, there exists
a consistent price system Z ∈ MT

0 (G∗\{0}) if and only if there is a λ-
consistent price system for the prices (Xi)i≤n.
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Proof. • “ ⇒ ” Assume that there exists a consistent price system Z in
MT

0 (G∗\{0}), i.e. Z is a martingale and Zt ∈ G∗t \{0}, for all t ≤ T . Recall
that G∗ is the (n+ 2)-dimensional cone defined by the transaction costs λi,b

and λb,i for i ≤ n. Denoting Z = (Zb, Z0, · · · , Zn), we interpret Zb as a
numéraire and take Y defined as follows:

Yt := (
Z0
t

Zbt
, . . . ,

Znt
Zbt

).

Define Q such that dQ/dP = ZbT /Z
b
0. Since (Zt)t≤T is a martingale, it is clear

that Y is a Q-martingale. In order for Y to be a λ-consistent price system,
we only have to prove (5.7) but these inequalities follow immediately from
the fact that Zt ∈ G∗t \{0}, for all t ≤ T (see the definition of G∗ in [13]).
• “ ⇐ ” Assume that Y is a λ-consistent price system, i.e. there exists

a probability measure Q ∼ P such that Y is a Q-martingale and the in-
equalities (5.7) hold. Then we define ρ0

t by ρ0
t := E [dQ/dP |Ft] and Zjt by

Zjt := Y j
t ρ

0
t for every j = 0, . . . , n, Zbt := ρ0

t . Now, it is easily seen that, since
Y is a Q-martingale, Z = (Zb, Z0, . . . , Zn) is a P -martingale. The proof is
now completed because the inequalities (5.7) imply the fact that Z lies in
G∗ \ {0} under Assumption RW. �

From there, we deduce that for each model,

Qn(A) = sup
Q∈Qn

Q(A) = Q̃n(A) := sup
Q∈Q̃n

Q(A)

where
Q̃n := {Q : dQ = ρTdP, ρ ∈ M̃e}

and M̃e is the set of all density processes such that there exists a λ-consistent
price system for the prices (Xi)i≤n under the probability measure defined
by dQ = ρTdP . From now on, let us denote for a given λ-consistent price
system Y n of the n-th model,

Q̃(Y n) := {Q : dQ = ρTdP, ρ ∈ M̃e(Y
n)}

and M̃e(Y
n) is the set of all density processes such that the λ-consistent

price system Y n is a martingale under the probability measure defined by
dQ = ρTdP . Notice that M̃e is the union of all M̃e(Y

n). We then denote by

Q̃(Y n) the upper envelope of the probability measures of Q̃(Y n). For our
next purpose we remind Proposition 3.6 above in its variant version.

imsart-aap ver. 2011/05/20 file: MafeLepinetteOstafe_02.04.tex date: April 3, 2012



22 EMMANUEL LEPINETTE ET AL.

Proposition 5.4. Assume that each model is defined by the matrix-
valued transaction costs process (λi,j)i,j∈{b,0,··· ,n} verifying Condition RW.
Then, the following conditions are equivalent:

(a) there is no asymptotic arbitrage of the first kind (NAA1),

(b) (Pn) � (Q̃n),

(c) there exists a sequence (Y n) of λ-consistent price systems such that

(Pn) � (Q̃n(Y n)),

The main result of this example is the following.

Proposition 5.5. Assume that the transaction costs coefficients are
constant in time and strictly positive. Suppose that the coefficients µi, σi, γi, γi
are deterministic. Then, there is no asymptotic arbitrage of the first kind
(NAA1).

Proof. It suffices to check Property (c) of Proposition 5.4. To do so, we
construct, for each n and for each i = 0, · · · , n, an εni -consistent price system

where εni satisfies (1+λi,bt )−1 ≤ 1−εni < 1+εni ≤ (1+λb,it ). Precisely, applying
Lemma 6.2 we obtain for each i ≥ 0 a process Y i verifying the inequalities

Xi
t(1− εni ) ≤ Y i

t ≤ (1 + εni )Xi
t , i ≥ 0

and satisfying the sde dY i
t = Ki

tY
i
t dt + σiY i

t dξ
i
t, i ∈ N, ξit := γiW 0

t + γiW i
t

is a standard brownian motion (for i = 0, we set γi = 1) and 0 ≤ Ki ≤ Ci,n.
We first suitably choose the constants Ci = Ci,n > 0 independently of n
and small enough for i ≥ 1. Then, we fix C0,n (depending on n) sufficiently
small so that (

K0
t

σ0

)2

+

n∑
i=1

(
Ki
t − βiK0

t

σiγi

)2

≤
n∑
i=0

xi, ∀n

where (xi) is an arbitrary but fixed summable sequence. Then, the following
condition holds:∫ T

0
sup
n

[(
K0
t

σ0

)2

+

n∑
i=1

(
Ki
t − βiK0

t

σiγi

)2
]
dt <∞

where βi := γiσi/σ0. Applying Proposition 8 of [12] to the correspond-
ing sequence of λ-consistent price systems, we deduce that Property (c) of
Proposition 5.4 holds. �
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5.3. Two asset model with infinite horizon. Under the variant ap-
proach, we consider the example of [12], i.e. the discrete-time model with
only two assets, one of which is taken as a numéraire and its price equals 1
over time. The price dynamics of the strictly positive second asset is given
by the following relation

Xi = Xi−1(1 + µi + σiεi), i ≥ 1

where X0 > 0, (εi)i≥1 is a sequence of independent random variables on a
probability space (Ω,F , P ) and taking values in a finite interval [−N,N ]
with Eεi = 0, Eε2i = 1. The coefficients here are deterministic and σi 6= 0
for all i. The support of εi is [si, si] where si < 0 < si and we suppose that
µi + σisi > 0 and µi + σisi < 0.

For n ≥ 1, we consider the stochastic basis Bn = (Ω,Fn, IFn = (Fni )i≤n, P
n)

with the 2-dimensional random process Sn = (1, Xi)i≤n where Fn0 = F0 is
the trivial σ-algebra, Fni = Fi := σ(ε1, . . . , εi), and Pn = P |Fnn . We con-
sider the sequence M = {(Bn, Sn, n)} of large security markets associated
to the deterministic transaction costs coefficients (λ0,1

i = 0, λ1,0
i )i≤n for the

exchanges between the bond and the risky assets Xi. In a bid-ask model,
that means that Xi is the ask price at time i and Xi(1 − λ1,0

i ) is the bid-
price. As in [12], we suppose that each model has an equivalent probability
measure Q with bi := EQεi so that there exists also a strictly consistent
price system. In particular, we have |bi| < N .

Before presenting our main result, let us observe that we may rewrite the
model under an other probability Pn so that we may assume that µiµi+1 < 0
and µ1 > 0. Indeed, let us choose αi ∈ (bi, si) if i is odd and αi ∈ (si, bi)
otherwise. As P (εi − αi > 0) > 0 and P (εi − αi < 0) > 0 for all i, there
exists Pn ∼ P , with dPn := Πn

i=1fi(εi − αi)dP and EP fi(εi − αi) = 1, such
that EP fi(εi − αi)εi = αi (see [12]). We then deduce that

Xi

Xi−1
= 1 + σ̃iε̃i + µ̃i

where σ̃iε̃i := σiεi+µi−EPn(σiεi+µi), µ̃i := EPn(σiεi+µi) = σiαi+µi and
EPn ε̃2i := 1. Since µi + σisi > 0 and µi + σisi < 0, we can choose |αi| large
enough such that µ̃i > 0 if i is odd and µ̃i ≤ 0 otherwise. Observe that the
random variables (εi)i≤n are still independent under Pn and so do (ε̃i)i≤n.

We denote by µ̃i , σ̃i and b̃i the coefficients of the model when we write it
under Pn. Let

bi := −µi
σi
, D2

0,n :=

n∑
i=1

b2i , D2
n :=

n∑
i=1

b̂2i
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where b̂i := bi −∆i and ∆i := 0 if bi = 0, otherwise:

∆i := µ−1
i

(
Λli − 1

)
bi, if bi > 0, ∆i := µ−1

i (Λri − 1) bi, if bi < 0

with Λri := Λi := (1 + λ10
i ), Λli := Λi := (1 + λ10

i−1)−1, λ10
0 := 0.

We also define the analogous coefficients (̂̃bi) we deduce from (̃bi) and (µ̃i).
Then,

Xi = Xi−1(1 + σi(εi − bi)), i ≥ 1,

= Xi−1(1 + σ̃i(ε̃i − b̃i)), i ≥ 1.

At last, we suppose that bib̂i ≥ 0 and so −si < b̂i < si meaning that the
transaction costs coefficients are small enough.

Proposition 5.6.

(a) D2
∞ <∞ ⇔ NAA1;

(b) D2
∞ =∞ ⇔ SAA1.

Proof. It suffices to show the following implications:

(a) If D2
∞ <∞, then (Pn) � (Qn) (equivalently NAA1 holds);

(b) If D2
∞ =∞, then (Pn)4(Qn) (equivalently SAA1 holds).

• (a) Notice that in the case where D2
0,n <∞, i.e. when the model without

friction of [12] does not admit any asymptotic arbitrage opportunity, it is
straightforward to conclude using the results of [12] since (Xi) is a strictly
consistent price system. The case D2

0,n =∞ is the most interesting case; in-
deed the natural question is how to increase the transaction costs coefficients
in order to eliminate an arbitrage opportunity of the frictionless model.

Recall that µ̃1 > 0. For each n, we construct a λ-consistent price system
(Yi) such that Y0 = X0 and Yi/Yi−1 = (Xi/Xi−1)ki where ki > 0 is defined
by the relation

ki := (1− σ̃i∆̃i)
−1

i.e. ki = (Λri )
−1 or ki = (Λli)

−1. We have Yi/Yi−1 = 1 + σ̃iki(ε̃i−
̂̃
bi) but also

Yi/Yi−1 = 1 + kiσi(εi − b̂i).(5.8)

Recall that −si < b̂i < si. Then, P (εi− b̂i > 0) > 0 and P (εi− b̂i < 0) > 0
for all i. It follows that there exists Q ∼ P such that Y is a Q-martingale.
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Since b̃1 < 0, it follows that

Πi
j=1kj = (1 + λ10

1 )−1(1 + λ10
1 )(1 + λ10

2 )−1(1 + λ10
2 ) · · ·

and we get that Πi
j=1 = 1 or Πi

j=1 = (1 + λ10
i )−1. It follows that

(1 + λ10
i )−1Xi ≤ Yi ≤ Xi

and (Yi) is a λ-consistent price system. We then consider the frictionless
model of [12] defined by the prices (Yi) with the coefficients (̂bi) in (5.8) .
Since D2

∞ <∞, Proposition 11 (a) of [12] and Proposition 5 of [12] implies
the NAA1 condition for our large market defined by (Xi).

• (b) Let us consider an arbitrary sequence of measures Qn ∈ Qn associated
to the consistent price systems (Zni )i≤n such that dQn = Z0n

n dPn. Then
the real valued process Y n := Z1n/Z0n is a Qn-martingale verifying the
inequality:

1

1 + λ10
i

Xi ≤ Y n
i ≤ Xi.

It follows that Y n
i ≤ Xi ≤ (1 + λ10

i )Y n
i and

1

(1 + λ10
i−1)

Y n
i

Y n
i−1

≤ Xi

Xi−1
≤ (1 + λ10

i )
Y n
i

Y n
i−1

.

We deduce that

1

σi

(
1

(1 + λ10
i−1))

− 1

)
≤ EQn(εi − bi|Fi−1) ≤ (1 + λ10

i )− 1

σi
.

Consider the case where bi < 0. Since σibi := −µi and ∆i := bi − b̂i, we get
the inequalities

bi

(
Λri − 1− µi∆i

bi

)
≤ −µiEQn(εi − b̂i|Fi−1) ≤ bi

(
Λli − 1− µi∆i

bi

)
.

From ∆i = µ−1
i (Λri − 1) bi, we deduce that EQn(εi − b̂i|Fi−1) ≤ 0 and

b̂iEQn(εi − b̂i|Fi−1) ≥ 0.(5.9)

The case bi > 0 also yields Inequality (5.9). We then deduce that

essinf Qn∈QnEQn (̂bi(εi − b̂i)|Fi−1) ≥ 0.(5.10)
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Let us define the Qn-martingale Mn(Qn) by

Mn
k (Qn) :=

k∑
i=1

[
b̂i(εi − b̂i)− EQn (̂bi(εi − b̂i)|Fi−1)

]
.

It satisfies

EQn(Mn
n (Qn))2 =

n∑
i=1

EQn

[
b̂i(εi − b̂i)− EQn (̂bi(εi − b̂i)|Fi−1)

]2
≤ C D2

n

where C is a constant. Let us define Mn by

Mn :=
n∑
i=1

[
b̂i(εi − b̂i)− essinf Qn∈QnEQn (̂bi(εi − b̂i)|Fi−1)

]
.

Then, let us introduce the sets An := {−D−3/2
n Mn > 1} ∈ Fn. Observe

that Mn ≥ Mn
n (Qn) for any Qn ∈ Qn. By the Tchebychev inequality, as

n→∞, we get that

Qn(An) ≤ Qn({−D−3/2
n Mn(Qn) > 1}) ≤ D−3

n EQn(Mn
n (Qn))2 ≤ 4N2D−1

n → 0.

On the other hand, since Inequality (5.10) holds, the complement A
n

of
An verifies

Pn(A
n
) ≤ Pn

(
n∑
i=1

b̂iεi ≥ (D2
n −D3/2

n )

)
≤ 4N2D2

n

(D2
n −D

3/2
n )2

→ 0.

Using Proposition 7 [12], we deduce that (Pn)4(Qn). �

Remark 5.7. Consider a model where µiµi+1 ≤ 0 for all i and such
that µi > 0 and µi+1 < 0 implies that (1 + µi+1)(1 + µi) = 1, i.e. we
have EP (Xi+1/Xi−1) = 1. Assume that

∑∞
i=1 b

2
i = ∞, i.e. there is a strong

asymptotic arbitrage opportunity in the model without transaction costs.
Let us define for bi > 0, λ10

i = µi. Then the equality (1 + λ10
i )−1 = 1 + µi+1

holds and bi+1 < 0, i.e. ∆i = bi and b̂i = 0 for all i. We then deduce that
there is no more asymptotic arbitrage opportunity.

6. Appendix.
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6.1. Strictly consistent price systems in the Black–Scholes model.

Let (Ω,F ,F = (Ft)t≤T , P ) be a stochastic basis where (Ft) is the natural
filtration of a standard brownian motion W . Consider the solution S of the
sde: dSt/St = σdWt + µdt.

Definition 6.1. An ε-consistent price system (CPS) is a process S̃ ad-
mitting an equivalent martingale measure such that

(1− ε)St ≤ S̃t ≤ (1 + ε)St.

By virtue of the martingale representation, a CPS is an Ito process. Con-
sider a strictly consistent price system S̃ (SCPS), i.e. a consistent price
system s.t. (1− ε)St < S̃t < (1 + ε)St. By a measurable selection argument,
there is αt ∈ L0((0, 1),Ft) such that S̃t = αt(1− ε)St + (1−αt)(1 + ε)St, i.e.

S̃t = (1 + ε− 2αt ε)St.(6.1)

We also have

αt =
1

2ε

[
1 + ε− S̃t

St

]
so that α is also an Ito process. Let us write

dS̃t/S̃t = HtdWt +Ktdt, dαt/αt = δtdWt + γtdt

Applying the integration by parts formula, we deduce from (6.1) that:

Ht = σ − 2εαtδt
1 + ε− 2αtε

, Kt = µ− 2εαt (δtσ(St) + γt)

1 + ε− 2αtε
.

Let us now write αt := e−Xt where Xt > 0 satifies the sde:

dXt/Xt = AtdWt +Btdt.

We then deduce that

Ht = σ − 2εαt ln(αt)At
1 + ε− 2αtε

,

Kt = µ−
2εαt

(
Bt ln(αt) + 1

2 ln2(αt)A
2
t +At ln(αt)σ(St)

)
1 + ε− 2αtε

.

From there, characterizing the set of all SCPS is equivalent to find the set
of all processes (A,B) so that there is a change of measure for S̃, defined
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via H and K in terms of A and B, under which it is a martingale. Observe
that if S̃ is an ε′-CPS where ε′ < ε, then S̃ is also an ε-CPS.

Consider the case A = 0 and Bt = B = cste. We get that Ht = σ. Since
Xt = X0e

Bt, we deduce that

Kt = µ+
2εX0e

−X0eBt
BeBt

1 + ε− 2e−X0eBtε
, t ≤ T

Recall that we may replace ε by ε′ < ε if necessary for finding a SCPS.
With B < 0, we get that

Kt = µ− 2εX0e
−X0eBt |B|eBt

1 + ε− 2e−X0eBtε
, t ≤ T.

Lemma 6.2. Assume that the transaction cost coefficient is ε0 > 0. Then,
for any C > 0, there exists ε ∈ (0, ε0) and an ε-CPS defined by A = 0 and
Bt = B < 0, t ≤ T , such that Ht = σ and

0 < Kt ≤ C, t ≤ T.

Proof. It suffices to solve the system: 0 < g(t) ≤ C, t ≤ T
where

g(t) := µ− 2εX0e
−X0e−Dt

De−Dt

1 + ε− 2e−X0e−Dtε
, D := |B|.

Let us study

h(y) := µ− 2εX0e
−X0yDy

1 + ε− 2e−X0yε
, y ∈ [e−DT , 1].

The first derivative is

h′(y) = − 2Dεe−X0yf(y)

(1 + ε− 2e−X0yε)2

where f(y) := 1−X0y + ε− εX0y − 2εe−X0y. We get that

f ′(y) = −X0(1 + ε− 2εe−X0y)

which is negative under the condition ε < 1 since X0 > 0. It follows that
f(y) ≤ f(e−DT ) where

f(e−DT ) = (1 + ε)(1−X0e
−DT )− 2εe−X0e−DT ≤ 0
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provided that X0 ≥ eDT or

1 + ε

2ε
≤ e−X0e−DT

1−X0e−DT
, X0 ≤ eDT .(6.2)

We deduce that h is no-decreasing under the conditions above. It remains
to solve the following system:

2εX0e
−X0D

1 + ε− 2e−X0ε
≥ µ− C,(6.3)

2εX0e
−X0e−DT

De−DT

1 + ε− 2e−X0e−DT ε
< µ.(6.4)

To solve (6.3), observe that X0 ≤ eDT implies that

2εX0e
−X0D

1 + ε− 2e−X0ε
≥ 2εX0e

−eDT
D

1 + ε

and the rhs of the inequality above is greater than µ− C if and only if

X0 ≥
(µ− C)(1 + ε)

2εD
eDT .

We then set X0 = (1− αε)eDT , αε ∈ (0, 1), and we choose D such that the
following equality holds:

(µ− C)(1 + ε)

2εD
= 1− αε.

Making αε converged to 0, for a given ε > 0, we get that (6.2) holds since
X0e

−DT = 1− αε → 1. Then, (6.4) holds as soon as

2ε(X0e
−DT )D < µ(1− ε).

Since X0e
−DT → 1, it suffices to have D < µ(1 − ε)/(2ε) where we recall

that D = (µ− C)(1 + ε)(1− αε)−1/(2ε). To do so, it is enough that

1− αε >
(µ− C)(1 + ε)

µ(1− ε)

which is possible, as ε → 0, since the rhs of the inequality above converges
to (µ− C)µ−1 < 1. We then conclude. �
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Séminaire de Probabilités XXXVII, Lecture Notes in Math., 1832, Springer, Berlin–
Heidelberg–New York, 2003, 394–398.
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