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Abstract

We investigate existence and uniqueness of duality solutions for a scalar conservation
law with a nonlocal interaction kernel. Following [3], a notion of duality solution for such
a nonlinear system is proposed, for which we do not have uniqueness. Then we prove that
a natural definition of the flux allows to select a solution for which uniqueness holds.

1 Introduction

At a continuous level, many physical or biological systems are modelled thanks to scalar con-
servation laws. In this note we will focus on a weakly nonlinear system of the kind :

∂tρ+ ∂x(a(u)ρ) = 0, ∂xu = ρ, (1.1)

where a is a given smooth function, a ∈ C0(R). This system is complemented with the initial
data ρ(t = 0) = ρ0. We notice that we can rewrite (1.1) as a single equation since we have
u = H ∗ ρ where H is the Heaviside function and we recover the so-called non local aggregation
equation. This model arises in several applications in physics and biology where a self-consistant
interaction field u governs the evolution of a density of population ρ. Then u is defined as
u = −∂xφ where φ is the interaction potential. For instance, in the modelling of cell movement
by chemotaxis, φ is the concentration of some chemical called chemo-attractant (when a is
non-increasing) or chemo-repellent (when a is non-decreasing) which drives the dynamics of
individuals (bacteria). In gas dynamics, this model can be derived thanks to a high-field limit
from the Vlasov–Poisson–Fokker–Planck system [7], a nonincreasing (resp. nondecreasing) a
corresponds the to the repulsive (resp. attractive) case.

From a mathematical viewpoint, it is well-known that in the attractive case, i.e. when a is
non-increasing, finite time blow-up of regular solutions for such system occurs (see e.g. [1] and
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references therein). Therefore one has to look for solutions ρ which are measure-valued in space,
which generates several difficulties, because the velocity a(u) turns out to be discontinuous, so
that the product in the divergence term is not well defined, and the corresponding flow has to
be defined cautiously. A recent approach consists in using techniques from optimal transport,
see [4]. Another possibility is to define a priori the product. For the Vlasov–Poisson system,
this has been done in [7].

The aim of this note is to interpret (2.2) as a linear conservation equation solved in the
duality sense [2], the product being defined afterwards, following the strategy introduced in [3]
for pressureless gases. Therefore we recall in the next section the notion of duality solutions
and some useful results. In Section 3 we state and prove the main result concerning existence
and uniqueness of duality solutions of system (1.1). Section 4 is devoted to some examples of
applications of this result.

2 Duality solutions for linear equations

The notion of duality solutions was introduced in [2] to give a sense to linear conservation
equations

∂tρ+ ∂x(bρ) = 0, (2.2)

when the coefficient b can be discontinuous but satisfies the so-called one-sided Lipschitz (OSL)
condition

∂xb(t, .) ≤ β(t) for β ∈ L1(0, T ) in the distribution sense. (2.3)

Duality solutions are defined as weak solutions, the test functions being specific Lipschitz solu-
tions to the backward linear transport equation

∂tp+ b(t, x)∂xp = 0, p(T, .) = pT ∈ Lip(R). (2.4)

Definition 2.1 1. We say that a Lipschitz solution p to (2.4) is a reversible solution if
p is locally constant on the set

Ve =
{
(t, x) ∈ [0, T ]× R; ∃ pe ∈ E , pe(t, x) 6= 0

}
.

2. We say that ρ ∈ C([0, T ];Mloc(R) − σ(Mloc, Cc)) is a duality solution to (2.2) if for
any 0 < τ ≤ T , and any reversible solution p to (2.4) with compact support in x, the
function t 7→

∫
R
p(t, x)ρ(t, dx) is constant on [0, τ ].

The most important facts for our purpose concerning duality solutions are gathered in the
following theorem.

Theorem 2.2 (Bouchut, James [2])

1. Given ρ◦ ∈ Mloc(R), under the assumptions (2.3), there exists a unique ρ ∈ C([0,+∞[,Mloc(R)),
duality solution to (2.2), such that ρ(0, .) = ρ◦.
Moreover, if ρ◦ is nonnegative, then ρ(t, ·) is nonnegative for a.e. t ≥ 0. And we have the
mass conservation |ρ(t, ·)|(R) = |ρ◦|(R), for a.e. t ∈]0, T [.
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2. Backward flow and push-forward: the duality solution satisfies

∀ t ∈ [0, T ], ∀φ ∈ Cc(R),

∫

R

φ(x)ρ(t, dx) =

∫

R

φ(X(t, 0, x))ρ0(dx), (2.5)

where the backward flow X is defined as the unique reversible solution to

∂tX + b(t, x)∂xX = 0 in ]0, s[×R, X(s, s, x) = x.

3. There exists a bounded Borel function b̂, called universal representative of b, such that
b̂ = b almost everywhere, and for any duality solution ρ,

∂tρ+ ∂x(̂bρ) = 0 in the distributional sense. (2.6)

Remark 2.3 A similar notion of duality solution for the transport equation is available ∂tu +
b∂xu = 0, and ρ is a duality solution of (2.2) iff u =

∫ x
ρ is a duality solution to transport

equation (see [2]).

We shall need also the following result whose proof can be found in [3] (Theorems 3.1 and
3.2)

Theorem 2.4 Let f ∈ C1(R). Let M be an entropy solution to the conservation equation

∂tM + ∂xf(M) = 0,

with nondecreasing initial datum M0. Then ρ := ∂xM is a duality solution to

∂tρ+ ∂x(bρ) = 0

where we can choose b = f ′(M) a.e. Moreover, for all t ∈]0,+∞[, ∂xb ≤ 1/t and its universal

representative b̂ satisfies ∂xf(M) = b̂∂xM.

3 Duality solutions for weakly nonlinear equations

We introduce the following notion of duality solution for the coupled system (1.1), inspired by
the strategy used in [3] for pressureless gases (see also section 4.2 below).

Definition 3.1 We say that (ρ, u) is a duality solution of (1.1) on ]0, T [ if there exists a bounded
Borel function b with ∂xb ≤ α ∈ L1

loc(0, T ) such that

1. for all 0 < t1 < t2 < T , ∂tρ+ ∂x(bρ) = 0 in the sense of duality on ]t1, t2[,

2. we have ∂xu = ρ in the weak sense,

3. b = a(u) almost everywhere.
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We underline at once the fact that this definition does not lead to uniqueness as it stands.
Indeed, assume that a is a non-increasing C1 function on R and take for initial data ρ0 = δx0

, a
Dirac measure in x0 ∈ R. Looking for a solution as a Dirac mass δx1(t), thanks to Remark 2.3 we
solve the transport equation with coefficient a

(
H(x − x1(t))

)
, where H denotes the Heaviside

function. Then
(
δx1(t), H(x− x1(t))

)
is a duality solution of (1.1) in the sense of Definition 3.1,

provided that x1(0) = x0 and that the admissibility condition a(1) < x′

1(t) < a(0) holds. Thus
we have an infinite family of duality solutions.

Therefore the main result of this note is to explain how a more precise description of the
product bρ in the scalar conservation equation allows to recover uniqueness. It is actually given
in a very naive way by writing a(u)ρ = a(u)∂xu = ∂xA(u), where A is an antiderivative of a.
This choice can be justified in a more rigourous way when the system (1.1) is obtained as the
hydrodynamic limit of a kinetic system, as it is the case both in [6] and [7]. It turns out that the
previous formal computation is correct at the kinetic level, so that the flux Jε :=

∫
ξfε(ξ) dξ,

where fε is the distribution function of particles, actually converges to J = ∂xA(u), which
defines the flux of the conservation equation. The point now is to justify that this can be used
to solve the conservation equation in the duality sense.

Theorem 3.2 Let ρ0 ∈ Mloc(R), ρ
0 ≥ 0. There exists a unique duality solution (ρ, u) to the

non local interaction equation (1.1) in the sense of Definition 3.1, which satisfies b̂ρ = ∂x(A(u))
where A is an antiderivative of a.

Moreover, if a is a non-increasing function (i.e. in the attractive case), there exists a flow
associated to a(u), in other words, there exists a Lipschitz function X such that ρ(t) = X(t)#ρ

0.

Proof. Let us denote by u the entropy solution of equation

∂tu+ ∂xA(u) = 0, (3.7)

with initial data u0 :=
∫ x

ρ0(dx). From Theorem 2.4, ρ := ∂xu is a duality solution of ∂tρ +
∂x(bρ) = 0 where we can choose b = a(u) almost everywhere and it is the unique solution

satisfying b̂ρ = ∂xA(u). Indeed if we have two such nonnegative solutions ρ1 = ∂xu1 and
ρ2 = ∂xu2, then u1 and u2 are monotonous solutions of (3.7). Thus they are entropy solutions
of this scalar equation and u1 = u2.

In the attractive case, the entropy solution u is nondecreasing. Therefore ρ := ∂xu is
nonnegative and ∂xa(u) = a′(u)∂xu ≤ 0 since in the attractive case a is non-increasing. Thus
the velocity field a(u) satisfies the OSL condition (2.3) and from Theorem 2.2 (ii) there exist a
backward flow X such that (2.5) is satisfied.

In the general case, we can apply the classical Oleinik entropy condition and get that ∂xb ≤
1/t. Then the solution is defined on all ]t1, t2[ for 0 < t1 < t2 < T and the flow cannot be
defined up to 0.

4 Examples

4.1 Positive chemotaxis

Equation (1.1) for a non-increasing function a can be obtained from a hydrodynamical limit of
a kinetic model describing positive chemotaxis (see e.g. [5, 6]). Thus from Theorem 3.2, there
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exists a flow X such that ρ = X#ρ
0. Let us first come back to the example in subsection 3.1:

we assume that a is a given non-increasing C1 function and take ρ0 = δx0
. Then we solve the

Riemann problem
∂tu+ ∂xA(u) = 0, u(t = 0, x) = H(x− x0),

where A is a concave function. Then the entropy solution is given by u(t, x) = H(x − x1(t))
where the Rankine-Hugoniot condition implies x′

1(t) = A(1) − A(0). Thus the unique duality
solution in the sense of Theorem 3.2 is given by (ρ, u) = (δx1(t), H(x − x1(t))) where x1(t) =
x0 + (A(1)− A(0))t.

On the other hand, if we look for a solution in the form ρ(t) = δx1(t), then u(t, x) =

H(x − x1(t)). Integrating equation (2.6) we get that b̂ρ = −∂tu = x′

1(t)δx1(t). By deriving

in the distribution sense A(u), we get that the definition of the product in Theorem 3.2 b̂ρ =
∂xA(u) is satisfied if and only if x′

1(t) = A(1) − A(0), thus we recover the Rankine-Hugoniot
condition. Hence the definition of the product allows to select one solution among those found in
subsection 3.1. It gives more generally the dynamic of aggregates, which are modelled by a sum
of Dirac masses ρ0 =

∑
miδxi

. A similar computation gives the velocity x′

i(t) =
(
A(

∑imj) −

A(
∑i−1mj)

)
/mi. Notice that the velocity of each aggregate is defined by a local equation,

despite the fact that the initial equation is non local. In the particular case where A is strictly
concave, aggregates collapse in finite time.

4.2 High field limit of Vlasov–Poisson–Fokker–Planck

In [7], the authors prove that solutions to the Vlasov–Poisson–Fokker–Planck system converge
in the high field limit to solutions of (1.1) where a(u) = u in the repulsive case and a(u) = −u
in the attractive case. To do so, the authors define a weak product ρu, which can be proved
to coincide with the one used here. Applying Theorem 3.2 we can recover the result stated
in Theorem 2 of [7] : there exists a unique global in time solution of (1.1) in the distribution
sense such that the product ρu = ±u2/2. Moreover, in the attractive case, there exists a flow
X such that ρ = X#ρ

0, and the dynamics of aggregates is similar to the one of chemotaxis. In
the general case, the Oleinik entropy condition gives that ρ ≤ 1/t. Finally, we notice that the
result of [7] has been extended in two dimensions by Poupaud in [8] by using defect measures
to define the product of ρ by u. However, there is no uniqueness of solutions.

To conclude, we focus on the connection between pressureless gases and the Vlasov–Poisson–
Fokker–Planck limit which is mentioned in [7]. The pressureless gases system reads

∂tρ+ ∂x(ρv) = 0, ∂t(ρv) + ∂x(ρv
2) = 0. (4.8)

Bouchut and James in [3] introduced the notion of duality solution to (4.8):

Definition 4.1 We say that a couple (ρ, q), ρ, q ∈ C([0, T [;Mloc(R)), ρ ≥ 0, is a duality
solution to (4.8) if there exists b ∈ L∞(]0, T [×R) and α ∈ L1

loc(]0, T [) satisfying ∂xb ≤ α in
]0, T [×R such that

1. For all 0 < t1 < t2 < T , we have in the sense of duality on ]t1, t2[×R

∂tρ+ ∂x(bρ) = 0, ∂tq + ∂x(bq) = 0;

2. b̂ρ = q.
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The existence result for the Cauchy problem with initial data (ρ0, q0) strongly exploits the
relationships between (4.8) and the conservation law ∂tu + ∂xA(u) = 0, where ρ = ∂xu, q =
∂xA(u) and A is determined by ρ and q. Uniqueness follows if A can be defined by the initial
data, which enforces additional conditions on (ρ0, q0).

In the context of Vlasov–Poisson–Fokker–Planck, the function A is given: A(u) = −u2/2
(attractive case) or A(u) = u2/2 (repulsive case). Therefore we propose the following variant to
the results of [3].

Theorem 4.2 Let ρ0 ∈ Mloc(R), ρ
0 ≥ 0 and A ∈ C1(R). Define q0 = ∂xA(u

0), where u0 =∫ x
ρ0. Then there exists a duality solution (ρ0, q0) of the pressureless gases system (4.8) in the

sense of Definition 4.1. Moreover this solution is the unique duality solution which satisfy the
relation b̂ρ = ∂x[A(u)], where u =

∫ x
ρ(dx).

This theorem is proved in the same way as Theorem 3.2. The solution to the high-field limit
of the Vlasov–Poisson–Fokker–Planck system obtained in [7] is therefore the unique duality
solution to (4.8) given by Theorem 4.2 for the corresponding A.
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