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d’Essonne

Abstract. Consider an autoregressive model with measurement error: we observe
Zi = Xi + εi, where Xi is a stationary solution of the autoregressive equation Xi =
fθ0(Xi−1) + ξi. The regression function fθ0 is known up to a finite dimensional param-
eter θ0. The distributions of X0 and ξ1 are unknown whereas the distribution of ε0 is
completely known. We want to estimate the parameter θ0 by using the observations
Z0, . . . , Zn. We propose an estimation procedure based on a modified least square cri-

terion. This procedure provides an asymptotically normal estimator θ̂ of θ0, for a large
class of regression functions and various noise distributions.
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1. Introduction

We consider an autoregressive model with measurement error satisfying
{
Zi = Xi + εi,
Xi = fθ0(Xi−1) + ξi

(1.1)

where one observes Z0, · · · , Zn and the random variables ξi,Xi, εi are unobserved. The regression
function fθ0 is known up to a finite dimensional parameter θ0, belonging to the interior Θ◦ of
a compact set Θ ⊂ R

d. The centered innovations (ξi)i≥1 and the errors (εi)i≥0 are independent
and identically distributed (i.i.d.) random variables with finite variances Var(ξ1) = σ2ξ and

Var(ε0) = σ2ε . We assume that ε0 admits a known density with respect to the Lebesgue measure,
denoted by fε. Furthermore we assume that the random variables X0, (ξi)i≥1 and (εi)i≥0 are
independent. The distribution of ξ1 is unknown and does not necessarily admit a density with
respect to the Lebesgue measure. We assume that (Xi)i≥0 is strictly stationary, which means
that the initial distribution of X0 is an invariant distribution for the transition kernel of the
homogeneous Markov chain (Xi)i≥0.

Our aim is to estimate θ0 for a large class of functions fθ, whatever the known error distri-
bution, and without the knowledge of the ξi’s distribution. The distribution of the innovations
being unknown, this model belongs to the family of semi-parametric models.

1
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Previously known results. Several authors have considered the case where the function fθ is
linear (in both θ and x), see e.g. Andersen and Deistler (1984), Nowak (1985), Chanda (1995,
1996), Staudenmayer and Buonaccorsi (2005), and Costa et al. (2010). We can note that, in
this specific case, the model (1.1) is also an ARMA model (see Section 4.1.1 for further details).
Consequently, all previously known estimation procedures for ARMA models can be applied
here, without assuming that the error distribution is known.

For a general regression function, the model (1.1) is a Hidden Markov Model with possibly
a non compact continuous state space, and with unknown innovation distribution. When the
innovation distribution is known up to a finite dimensional parameter, the model (1.1) is fully
parametric and various results are already stated. Among others, the parameters can be esti-
mated by maximum likelihood, and consistency, asymptotic normality and efficiency have been
proved. For further references on estimation in fully parametric Hidden Markov Models, we
refer for instance to Leroux (1992), Bickel et al. (1998), Jensen and Petersen (1999), Douc and
Matias (2001), Douc et al. (2004), Fuh (2006), Genon-Catalot and Laredo (2006), Na et. al.
(2006), and Douc et al. (2011).

In this paper, we consider the case where the innovation distribution is unknown, and thus the
model is not fully parametric. In this general context, there are few results. To our knowledge,
the only paper which gives a consistent estimator is the paper by Comte and Taupin (2001).
These authors propose an estimation procedure based on a modified least squares minimization.
They give an upper bound for the rate of convergence of their estimator, that depends on the
smoothness of the regression function and on the smoothness of fε. Those results are obtained
by assuming that the distribution PX of X0 admits a density fX with respect to the Lebesgue
measure and that the stationary Markov chain (Xi)i≥0 is absolutely regular (β-mixing). The
main drawback of their approach is that their estimation criterion is not explicit, hence the links
between the convergence rate of their estimator and the smoothness of the regression function
and of the error distribution are not explicit either. Consequently, Comte and Taupin (2001)
are able to prove that their estimator achieves the parametric rate only for very few couples of
regression functions/error distribution. Lastly their dependency conditions are quite restrictive,
and the assumption that X admits a density is not natural in this context.

Our results. In this paper, we propose a new estimation procedure which provides a consistent
estimator with a parametric rate of convergence in a very general context. Our approach is based
on the new contrast function

Sθ0,PX
(θ) = E[(Z1 − fθ(X0))

2 w(X0)],

where w is a weight function to be chosen and E is the expectation Eθ0,PX
. We assume that

w is such that (wfθ)
∗/f∗ε and (wf2θ )

∗/f∗ε are integrable, where ϕ∗ is the Fourier transform of a

function ϕ. We estimate θ0 by θ̂ = argminθ∈Θ Sn(θ), where

(1.2) Sn(θ) =
1

2πn

n∑

k=1

Re

∫
((
Zk − fθ

)2
w
)∗

(t) e−itZk−1

f∗ε (−t)
dt,

where Re(u) is the real part of u. Under general assumptions, we prove that the estimator

defined θ̂ is consistent. Moreover, we give some conditions under which the parametric rate of



ESTIMATION IN AUTOREGRESSIVE MODEL WITH MEASUREMENT ERROR 3

convergence as well as the asymptotic normality can be stated. Those results hold under weak
dependency conditions as introduced in Dedecker and Prieur (2005).

This procedure is clearly simpler than that of Comte and Taupin (2001). The resulting rate
is more explicit and links directly the smoothness of the regression function to that of fε. Our
new estimator is asymptotically Gaussian for a large class of regression functions, which is not
the case in Comte and Taupin (2001).

The asymptotic properties of our estimator are illustrated through a simulation study. It
confirms that our estimator performs well in various contexts, even in cases where the Markov
chain (Xi)i≥0 is not β-mixing (and not even irreducible), when the ratio signal to noise is small
or large, for various sample sizes, and for different types of error distribution. Our estimator
always better performs than the so-called naive estimator (built by replacing the non-observed
X by Z in the usual least squares criterion). Our estimation procedure depends on the choice of
the weight function w. The influence of this weight function is also studied in the simulations.

Finally, we propose a more general estimator when it is not possible to find a weight function
w such that (wfθ)

∗/f∗ε and (wf2θ )
∗/f∗ε are integrable. We establish a consistency result, and

we give an upper bound for the quadratic risk, that relates the smoothness properties of the
regression function to that of fε. These last results are proved under α-mixing conditions.

The paper is organized as follows. In Section 2 we present our estimation procedure. The
theoretical properties of the estimator are stated in Section 3. The simulations are presented in
Section 4. In Section 5 we introduce a more general estimator and we describe its asymptotic
behavior. The proofs are gathered in Appendix.

2. Estimation procedure

In order to define more rigorously the criterion presented in the introduction, we first give
some preliminary notations and assumptions.

2.1. Notations. Let

‖ ϕ ‖1=
∫

|ϕ(x)|dx, ‖ ϕ ‖22=
∫
ϕ2(x)dx, and ‖ ϕ ‖∞= sup

x∈R
|ϕ(x)|.

The convolution product of two square integrable functions p and q is denoted by p ⋆ q(z) =∫
p(z − x)q(x)dx. The Fourier transform ϕ∗ of a function ϕ is defined by

ϕ∗(t) =

∫
eitxϕ(x)dx.

For θ ∈ R
d, let ‖ θ ‖2ℓ2=

∑d
k=1 θ

2
k, and let θ⊤ be the transpose matrix of θ.

For a map (θ, u) 7→ ϕθ(u) from Θ×R to R, the first and second derivatives with respect to θ
are denoted by

ϕ
(1)
θ (·) =

(
ϕ
(1)
θ,j (·)

)
1≤j≤d

, with ϕ
(1)
θ,j(·) =

∂ϕθ(·)
∂θj

for j ∈ {1, · · · , d}

and ϕ
(2)
θ (·) =

(
ϕ
(2)
θ,j,k(·)

)
1≤j,k≤d

, with ϕ
(2)
θ,j,k(·) =

∂2ϕθ(·)
∂θj∂θk

, for j, k ∈ {1, · · · , d}.
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From now, P, E and Var denote respectively the probability Pθ0,PX
, the expected value Eθ0,PX

and the variance Varθ0,PX
, when the underlying and unknown true parameters are θ0 and PX .

2.2. Assumptions. We consider three types of assumptions.

• Smoothness and moment assumptions

On Θ◦, the function θ 7→ fθ admits continuous derivatives with respect to θ up to the(A1)

order 3.

On Θ◦, the quantity w(X0)(Z1 − fθ(X0))
2, and the absolute values of its derivatives(A2)

with respect to θ up to order 2 have a finite expectation.

• Identifiability assumptions

The quantity Sθ0,PX
(θ) = E[(fθ0(X)− fθ(X))2w(X)] admits one unique minimum at(I11)

θ = θ0.

For all θ ∈ Θ◦, the matrix S
(2)
θ0,PX

(θ) =

(
∂2Sθ0,PX

(θ)

∂θi∂θj

)

1≤i,j≤d

exists and the matrix(I12)

S
(2)
θ0,PX

(θ0) = 2E

[
w(X)

(
f
(1)
θ0

(X)
) (

f
(1)
θ0

(X)
)⊤]

is positive definite.

• Assumptions on fε

The density fε belongs to L2(R) and for all x ∈ R, f∗ε (x) 6= 0.(N1)

The assumption (N1) is quite usual when considering estimation in the convolution model.
It ensures the existence of the estimation criterion.

2.3. Definition of the estimator. As already mentioned in the introduction, the starting
point of our estimation procedure is to construct an estimator of the least square contrast

Sθ0,PX
(θ) = E[(Z1 − fθ(X0))

2 w(X0)],(2.3)

based on the observations (Zi) for i = 0, . . . , n.
We consider the following condition: there exists a weight function w such that for all θ ∈ Θ,

The functions (wfθ) and (wf2θ ) belong to L1(R), and the functions w∗/f∗ε , (fθw)
∗/f∗ε ,(C1)

(f2θw)
∗/f∗ε belong to L1(R).

Remark 2.1. The first part of Condition (C1) is not restrictive. The second part can be
heuristically expressed as “one can find a weight function w such that wfθ is smooth enough
compared to fε”. For a large number of regression functions, such a weight function can be
easily exhibited. Some practical choices are discussed in the simulation study (Section 4).

If (C1) holds, the expectations E(w(X)), E(w(X)fθ(X)) and E(w(X)f2θ (X)) can be easily
estimated. Let us present the ideas of the estimation procedure. Let ϕ be such that ϕ and
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ϕ∗/f∗ε belong to L1(R). For such a function, due to the independence between ε0 and X0 we
have

E[ϕ(X0)] = E

(
1

2π

∫
ϕ∗(t)e−itX0dt

)
= E

(
1

2π

∫
ϕ∗(t)e−itZ0

f∗ε (−t)
dt

)
.

Hence, based on the observations Z0, · · · , Zn, E[ϕ(X0)] is estimated by

1

2π
Re

∫
ϕ∗(t)n−1

∑n
j=1 e

−itZj

f∗ε (−t)
dt.

We then propose to estimate Sθ0,PX
(θ) by the quantity Sn(θ) defined by

(2.4) Sn(θ) =
1

2πn

n∑

k=1

Re

∫
((
Zk − fθ

)2
w
)∗

(t) e−itZk−1

f∗ε (−t)
dt,

which satisfies

E(Sn(θ)) = E[(Z1 − fθ(X0))
2w(X0)].

This criteria is minimum when θ = θ0 under the identifiability assumption (I11). Using this
empirical criterion we propose to estimate θ0 by

θ̂ = argmin
θ∈Θ

Sn(θ).(2.5)

3. Asymptotic properties

In this section, we give some conditions under which our estimator is consistent and asymp-
totically normal.

3.1. Consistency of the estimator. The first result to mention is the consistency of our
estimator. It holds under the following additional condition.

The functions sup
θ∈Θ

∣∣∣
(
f
(1)
θ,i w

)∗
/f∗ε

∣∣∣ and sup
θ∈Θ

∣∣∣
(
fθf

(1)
θ,i w

)∗
/f∗ε

∣∣∣ belong to L1(R) for any(C2)

i ∈ {1, . . . , d}.

This condition is similar to (C1) for the first derivatives of fθ. Thus it is not more restrictive
than (C1).

Theorem 3.1. Consider Model (1.1) under the assumptions (A1)-(A2), (I11), (I12), (N1),

and the conditions (C1)-(C2). Then θ̂ defined by (2.5) converges in probability to θ0.
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3.2.
√
n-consistency and asymptotic normality. To state the asymptotic normality of our

estimator, we need to introduce some additional conditions.

the functions sup
θ∈Θ

∣∣∣
(
f
(2)
θ,i,jw

)∗
/f∗ε

∣∣∣ and sup
θ∈Θ

∣∣∣∣
(

∂2

∂θi∂θj
(f2θw)

)∗

/f∗ε

∣∣∣∣ belong to L1(R) for(C3)

any i, j ∈ {1, . . . , d};

the functions sup
θ∈Θ

∣∣∣∣
(
∂3(fθw)

∂θi∂θj∂θk

)∗

/f∗ε

∣∣∣∣ and sup
θ∈Θ

∣∣∣∣
(

∂3

∂θi∂θj∂θk
(f2θw)

)∗

/f∗ε

∣∣∣∣ belong to(C4)

L1(R), for i, j, k ∈ {1, · · · , d}.

The integrals

∫
|t(fθ0w)∗(t)|dt and

∫
|t(fθ0f (1)θ0,k

w)∗(t)|dt are finite, for k ∈ {1, · · · , d}.(C5)

The asymptotic properties of θ̂, defined by (2.5), are stated under two different dependency
conditions, which are presented below.

Definition 3.1. Let (Ω,A,P) be a probability space. Let Y be a random variable with values in
a Banach space (B, ‖ · ‖B). Denote by Λκ(B) the set of κ-Lipschitz functions, i.e. the functions
f from (B, ‖ · ‖B) to R such that |f(x)− f(y)| ≤ κ ‖ x− y ‖B. Let M be a σ-algebra of A. Let
PY |M be a conditional distribution of Y given M, PY the distribution of Y , and B(B) the Borel
σ-algebra on (B, ‖ · ‖B). The dependence coefficients α and τ are defined by

α(M, σ(Y )) =
1

2
sup

A∈B(B)
E(|PY |M(A)− PY (A)|) ,

and if E(‖Y ‖B) <∞, τ(M, Y ) = E

(
sup

f∈Λ1(B)
|PY |M(f)− PY (f)|

)
.

Let X = (Xi)i≥0 be a strictly stationary Markov chain of real-valued random variables. On
R
2, we put the norm ‖x‖R2 = (|x1|+ |x2|)/2. For any integer k ≥ 0, the coefficients αX(k) and

τX,2(k) of the chain are defined by

αX(k) = α(σ(X0), σ(Xk))

and if E(|X0|) <∞, τX,2(k) = sup {τ(σ(X0), (Xi1 ,Xi2)), k ≤ i1 ≤ i2} .

Coefficient α(M, σ(Y )) is the usual strong mixing coefficient introduced by Rosenblatt (1956).
Coefficient τ(M, Y ) has been introduced by Dedecker and Prieur (2005). In Section A.2, we
recall some conditions on ξ0 and fθ0 under which the Markov chain (Xi)i≥0 is α-mixing or
τ -dependent and illustrate those conditions through some examples.

First we state the asymptotic normality of θ̂ when the Markov chain (Xi) of Model (1.1) is
α-mixing.

Theorem 3.2. Consider Model (1.1) under assumptions (A1), (A2), (I11), (I12), (N1), and
conditions (C1)-(C4). Let Q|X1| be the inverse cadlag of the tail function t → P(|X1| > t).
Assume that

(3.6)
∑

k≥1

∫ αX(k)

0
Q2

|X1|
(u)du <∞ .
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Then θ̂ defined by (2.5) is a
√
n-consistent estimator of θ0 which satisfies

√
n(θ̂ − θ0)

L−→
n→∞

N (0,Σ1),

where the covariance matrix Σ1 is defined in equation (B.5).

Next, we give the corresponding result when the Markov chain (Xi) is τ -dependent.

Theorem 3.3. Consider Model (1.1) under assumptions (A1), (A2), (I11), (I12), (N1), and
conditions (C1)-(C5). Let G(t) = t−1

E(X2
11X2

1>t), and let G−1 be the inverse cadlag of G.

Assume that

(3.7)
∑

k>0

G−1(τX,2(k))τX,2(k) <∞ .

Then θ̂ defined by (2.5) is a
√
n-consistent estimator of θ0 which satisfies

√
n(θ̂ − θ0)

L−→
n→∞

N (0,Σ1),

where the covariance matrix Σ1 is defined in equation (B.5).

Remark 3.1. Let us give some conditions under which (3.6) or (3.7) are verified. Assume that
E(|X0|p) < ∞ for some p > 2. Then (3.6) is true provided that

∑
k>0 k

2/(p−2)αX(k) < ∞, and

(3.7) is true provided that
∑

k>0(τX,2(k))
(p−2)/p <∞.

Note that those results do not require the Markov chain to be absolutely regular as it is
the case in Comte and Taupin (2001). Consequently they apply to autoregressive models with
weaker dependency conditions. Beside the dependency conditions, our estimation procedure
allows to achieve the parametric rate for a larger class of regression functions than in Comte
and Taupin (2001).

The conditions under which Theorems 3.2 and 3.3 hold are similar, except Condition (C5)
which appears only in Theorem 3.3. This condition is just technical and not restrictive at all.

The choice of the weight function w is crucial. Various weight functions can handle with
Conditions C1-C5. The numerical properties of the resulting estimators will differ from one
choice to another. This point is discussed on simulated data in the next section.

4. Simulation study

We investigate the properties of our estimator for different regression functions on simulated
data. For each choice of regression function, we consider two error distributions: the Laplace
distribution and the Gaussian distribution. When ε1 has the Laplace distribution, its density
and Fourier transform are

(4.8) fε(x) =
1

σε
√
2
exp

(
−

√
2

σε
|x|
)
, and f∗ε (x) =

1

1 + σ2εx
2/2

.

Hence, ε1 is centered with variance σ2ε .

When ε1 is Gaussian, its density and Fourier transform are

(4.9) fε(x) =
1

σε
√
2π

exp
(
− x2

2σ2ε

)
, and f∗ε (x) = exp(−σ2εx2/2).
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Hence, ε1 is centered with variance σ2ε .

For each of these error distributions, we consider the case of a linear regression function and
of a Cauchy regression function. We start with the linear case.

4.1. Linear regression function. We consider the model (1.1) with fθ(x) = ax+b, where |a| <
1 and θ = (a, b)T . In these simulations, we have chosen to illustrate the numerical properties
of our estimator under the weakest of the dependency conditions, that is τ -dependency. As it
is recalled in Appendix A.2, when fθ0 is linear with |a| < 1, if ξ0 has a density bounded from
below in a neighborhood of the origin, then the Markov chain (Xi)i≥0 is α-mixing. When ξ0
does not have a density, then the chain may not be α-mixing (and not even irreducible), but it
is always τ -dependent.

Here, we consider the case where the innovation distribution is discrete, in such a way that
the stationary Markov Chain is τ -dependent but not α-mixing. We also consider two distinct
values of θ0. For the first value, the stationary distribution of Xi is absolutely continuous with
respect to the Lebesgue measure. For the second value, the stationary distribution is singular
with respect to the Lebesgue measure. In both cases Theorem 3.3 applies, and the estimator θ̂
is asymptotically normal.

• Case A (absolutely continuous stationary distribution). We focus on the case where the true
parameter is θ0 = (1/2, 1/4)T , X0 is uniformly distributed over [0, 1], and (ξi)i≥1 is a sequence
of i.i.d. random variables, independent of X0 and such that P(ξ1 = −1/4) = P(ξ1 = 1/4) = 1/2.
Then the Markov chain defined for i > 0 by

(4.10) Xi =
1

4
+

1

2
Xi−1 + ξi

is strictly stationary, the stationary distribution being the uniform distribution over [0, 1], and
consequently σ2X0

= 1/12. This chain is non-irreducible, and the dependency coefficients are

such that αX(k) = 1/4 (see for instance Bradley (1986), p. 180) and τX,2(k) = O(2−k). Thus
the Markov chain is not α-mixing, but it is τ -dependent. For the simulation, we start with X0

uniformly distributed over [0, 1], so the simulated chain is stationary.

• Case B (singular stationary distribution). We consider the case where the true parameter is
θ0 = (1/3, 1/3)T , X0 is uniformly distributed over the Cantor set, and (ξi)i≥1 is a sequence of
i.i.d. random variables, independent of X0 and such that P(ξ1 = −1/3) = P(ξ1 = 1/3) = 1/2.
Then the Markov chain defined for i > 0 by

(4.11) Xi =
1

3
+

1

3
Xi−1 + ξi

is strictly stationary, the stationary distribution being the uniform distribution over the Cantor
set, and consequently σ2X = 1/8. This chain is non-irreducible, and the dependency coefficients

satisfy αX(k) = 1/4 and τX,2(k) = O(3−k). Thus the Markov chain is not α-mixing, but is
τ -dependent. For the simulation, we start with X0 uniformly distributed over [0, 1], and we
consider that the chain is close to the stationary chain after 1000 iterations. We then set
Xi = Xi+1000.

In these two cases, we can find a weight function w satisfying the conditions (C1)-(C5). We
first give the detailed expression of the estimator for two choices of weight functions w. Then we
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recall the classic estimator when X is directly observed, the ARMA estimator, and the so-called
naive estimator.

4.1.1. Expression of the estimator. We consider the two following weight functions w

w(x) = N(x) = exp{−x2/(4σ2ε )} and w(x) = SC(x) =
1

2π

(2 ∗ sin(x)
x

)4
.(4.12)

These choices of weight ensure that Conditions (C1)-(C5) hold and that the two estimators,

denoted by θ̂N and θ̂SC respectively, converge to θ0 with the parametric rate of convergence.
There are two main differences between these two weight functions. First, N depends on the
variance error σ2ε . Hence the estimator should be adaptive to the noise level. On the contrary,
it may be sensitive to very small error variance as it appears in the simulations (see Figure 1).
Second, SC has strong smoothness properties since its Fourier transform is compactly supported.

The two associated estimators are based on the calculation of Sn(θ), which can be written as

Sn(θ) =
1

n

n∑

k=1

[(Z2
k + b2 − 2Zkb)I0(Zk−1) + a2I2(Zk−1)− 2a(Zk − b)I1(Zk−1)],

with

(4.13) Ij(Z) =
1

2π
Re

∫
(pjw)

∗(u)
e−iuZ

f∗ε (−u)
du,

where pj(x) = xj for j = 0, 1, 2, w being either w = N or w = SC. With the above notations,

θ̂ = (â, b̂)T satisfies

â =

∑n
k=1 ZkI1(Zk−1)

∑n
k=1 I0(Zk−1)−

∑n
k=1 ZkI0(Zk−1)

∑n
k=1 I1(Zk−1)∑n

k=1 I2(Zk−1)
∑n

k=1 I0(Zk−1)−
(∑n

k=1 I1(Zk−1)
)2 ,(4.14)

b̂ =

∑n
k=1 ZkI0(Zk−1)∑n
k=1 I0(Zk−1)

− â

∑n
k=1 I1(Zk−1)∑n
k=1 I0(Zk−1)

.(4.15)

We now compute Ij(Z) for j = 0, 1, 2 and the two weight functions. In the following we
respectively denote Ij,N(Z) and Ij,SC(Z) the previous integrals when the weight function is
either w = N or w = SC.

We start with w = N and give the details of the calculations for the two error distributions
(Laplace and Gaussian), which are explicit. Then, with the weight function w = SC, we present
the calculations, which are not explicit whatever the error distribution fε.

• When w = N , Fourier calculations provide that

N∗(t) =
√
2π
√

2σ2ε exp(−σ2ε t2)
(Np1)

∗(t) =
√
2π
√

2σ2ε exp(−σ2ε t2)
(
− 2σ2ε t/i

)
,

(Np2)
∗(t) = −

√
2π
√

2σ2ε exp(−σ2ε t2)
(
− 2σ2ε + 4σ4ε t

2
)
.
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It follows that

I0,N (Z) =
1

2π
Re

∫ √
2π
√

2σ2ε exp(−σ2ε t2)
e−itZ

f∗ε (−t)
dt,

I1,N (Z) =
1

2π
Re

∫ √
2π
√

2σ2ε exp(−σ2ε t2)
(
− 2σ2ε t/i

) e−itZ

f∗ε (−t)
dt,

I2,N (Z) =
1

2π
Re

∫ √
2π
√

2σ2ε exp(−σ2ε t2)
(
2σ2ε − 4σ4ε t

2
) e−itZ

f∗ε (−t)
dt.

If fε is the Laplace distribution (4.8), replacing f∗ε by its expression we get

I0,N (Z) = e−Z2/(4σ2
ε ) − σ2ε

2

∂2

∂Z2
N(Z) =

[
5/4− Z2/(8σ2ε )

]
e−Z2/(4σ2

ε ),

I1,N (Z) =
[
7Z/4 − Z3/(8σ2ε )

]
e−Z2/(4σ2

ε ), I2,N (Z) =
[
−σ2ε + 9Z2/4− Z4/(8σ2ε )

]
e−Z2/(4σ2

ε ).

If fε is the Gaussian distribution (4.9), replacing f∗ε by its expression we obtain

I0,N (Z) =
√
2e−Z2/(2σ2

ε ), I1,N (Z) = 2
√
2Ze−Z2/(2σ2

ε ) and I2,N (Z) =
√
2(4Z2−2σ2ε)e

−Z2/(2σ2
ε ).

Hence we deduce the expression of âN and b̂N by applying (4.14) and (4.15).

•When w = SC, Fourier calculations provide that

SC∗(t) = 1I[−4,−2](t)(t
3/6 + 2t2 + 8t+ 32/3) + 1I[−2,0](t)(−t3/2− 2t2 + 16/3)

+1I[2,4](t)(−t3/6 + 2t2 − 8t+ 32/3) + 1I[0,2](t)(t
3/2− 2t2 + 16/3)

(SCp1)
∗(t) =

∂

∂t
SC∗(t)/i and (SCp2)

∗(t) =
∂2

∂t2
SC∗(t)/(i2).

The integrals Ij,SC(Z), defined for j = 0, 1, 2 by

Ij,SC(Z) =
1

2π
Re

∫
(SCpj)

∗(t)
e−itZ

f∗ε (−t)
dt,(4.16)

have no explicit form, whatever the error distribution fε. It has to be numerically computed,
using the IFFT Matlab function. More precisely, we consider a finite Fourier series approxima-
tion of (SCpj)

∗(t)/f∗ε (t) whose Fourier transfom is calculated using IFFT Matlab function. The
result is taken as an approximation of Ij,SC(Z). Finally we deduce the expression of âSC and

b̂SC by applying (4.14) and (4.15).

4.1.2. Comparison with classical estimators. We compare the two estimators θ̂N and θ̂SC with
three classical estimators, the usual least square estimator when there is no observation noise,
the ARMA estimator, and the so-called naive estimator.

• Estimator without noise. In the case where εi = 0, that is (X0, . . . ,Xn) is observed without
error, the parameters can be easily estimated by the usual least square estimators

âX =
n
∑n

i=1XiXi−1 −
∑n

i=1Xi
∑n

i=1Xi−1

n
∑n

i=1X
2
i−1 − (

∑n
i=1Xi−1)2

and b̂X =
1

n

( n∑

i=1

Xi

)
− âX

1

n

( n∑

i=1

Xi−1

)
.
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• ARMA estimator. When the regression function is linear, the model may be written as

Zi − aZi−1 − b = ξi + εi − aεi−1 .

The auto-covariance function γY of the stationary sequence Yi = ξi + εi − aεi−1 is given by

γY (0) = (1 + a2)σ2ε + σ2ξ , γY (1) = −aσ2ε , and γY (k) = 0 for k > 1.

It follows that Yi is an MA(1) process, which may be written as

Yi = ηi − βηi−1,

where ηi is the innovation, and |β| < 1 (note that |β| 6= 1 because γY (0) − 2|γY (1)| > 0).
Moreover, one can give the explicit expression of β and σ2η in terms of a, σ2ξ and σ2ε . It follows

that, if |a| < 1, (Zi)i≥0 is the causal invertible ARMA(1,1) process

Zi − aZi−1 = b+ ηi − βηi−1.(4.17)

Note that a 6= β except if a = 0. Hence, if |a| < 1 and a 6= 0, one can estimate the parameters
(a, b, β) by maximizing the so-called Gaussian likelihood. These estimators are consistent and
asymptotically Gaussian. Moreover they are efficient when both the innovations and the errors
ε are Gaussian (see Hannan (1973) or Brockwell and Davis (1991)). Note that this well-known
approach does not require the knowledge of the error distribution, but of course it works only in
the particular case where the regression function fθ is linear. For the computation of the ARMA
estimator we use the function arma from the R tseries package (see Trapletti and Hornik (2011)).

The resulting estimators are denoted by âarma and b̂arma.

• Naive estimator. The naive estimator is constructed by replacing the unobserved Xi by the

observation Zi in the expression of âX and b̂X :

ânaive =
n
∑n

i=1 ZiZi−1 −
∑n

i=1 Zi
∑n

i=1 Zi−1

n
∑n

i=1 Z
2
i−1 − (

∑n
i=1 Zi−1)2

and b̂naive =
1

n

( n∑

i=1

Zi

)
− ânaive

1

n

( n∑

i=1

Zi−1

)
.

Classical results show that θ̂naive is an asymptotically biased estimator of θ0, which is confirmed
by the simulation study.

4.1.3. Simulation results. For each error distribution, we simulate 100 samples with size n,
n = 500, 5000 and 10000. We consider different values of σε such that the ratio signal to noise
s2n = σ2ε/Var(X) is 0.5, 1.5 or 3. The comparison of the five estimators is based on the bias,

the Mean Squared Error (MSE), and the box plots. If θ̂(k) denotes the value of the estimation
for the k-th sample, the MSE is evaluated by the empirical mean over the 100 samples:

MSE(θ̂) =
1

100

100∑

k=1

(θ̂(k)− θ0)2.

Results are presented in Figures 1-2 and Tables 1-4.

The first thing to notice is that, not surprisingly, θ̂naive presents a bias, whatever the values of

n, s2n and the error distribution. The estimator θ̂X has the good expected properties (unbiased
and small MSE), but it is based on the observation of the Xi’s. The previously known estimator
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Figure 1. Results for linear Case B and Gaussian error, with n = 5000 and
σ2ε/Var(X) = 0.5. Box plots of the five estimators âarma, âN , âSC , âX and ânaive,
from left to right, based on 100 replications. True value is 1/3 (horizontal line).

Figure 2. Results for linear Case B and Gaussian error, with n = 5000 and
σ2ε/Var(X) = 6. Box plots of the five estimators âarma, âN , âSC , âX and ânaive,
from left to right, based on 100 replications. True value is 1/3 (horizontal line).
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ratio Estimator

n s2n θ̂arma(MSE) θ̂N (MSE) θ̂SC(MSE) θ̂X(MSE) θ̂naive(MSE)

1000 0.5 a 0.487 (0.008) 0.459 (0.020) 0.489 (0.002) 0.493 (0.001) 0.328 (0.030)
b 0.257 (0.002) 0.262 (0.002) 0.255 (0.001) 0.253 (0.001) 0.336 (0.008)

1.5 a 0.494 (0.015) 0.488 (0.013) 0.492 (0.006) 0.501 (0.001) 0.198 (0.092)
b 0.251 (0.004) 0.253 (0.002) 0.253 (0.002) 0.249 (0.001) 0.399 (0.023)

3 a 0.461 (0.044) 0.502 (0.029) 0.503 (0.026) 0.493 (0.001) 0.121 (0.145)
b 0.270 (0.012) 0.249 (0.001) 0.249 (0.001) 0.253 (0.001) 0.440 (0.037)

5000 0.5 a 0.497 (0.001) 0.499 (0.004) 0.499 (0.001) 0.499 (0.001) 0.332 (0.028)
b 0.252 (0.001) 0.251 (0.001) 0.251 (0.001) 0.251 (0.001) 0.334 (0.007)

1.5 a 0.498 (0.003) 0.508 (0.003) 0.503 (0.002) 0.499 (0.001) 0.199 (0.091)
b 0.250 (0.001) 0.247 (0.001) 0.248 (0.001) 0.250 (0.001) 0.399 (0.022)

3 a 0.487 (0.008) 0.492 (0.004) 0.495 (0.004) 0.500 (0.001) 0.123 (0.143)
b 0.256 (0.002) 0.253 (0.001) 0.252 (0.001) 0.250 (0.001) 0.437 (0.035)

10000 0.5 a 0.496 (0.001) 0.501 (0.002) 0.500 (0.001) 0.499 (0.001) 0.334 (0.028)
b 0.252 (0.001) 0.250 (0.001) 0.250 (0.001) 0.250 (0.001) 0.333 (0.007)

1.5 a 0.504 (0.002) 0.500 (0.001) 0.501 (0.001) 0.500 (0.001) 0.200 (0.090)
b 0.248 (0.001) 0.250 (0.001) 0.250 (0.001) 0.250 (0.001) 0.401 (0.023)

3 a 0.493 (0.003) 0.499 (0.001) 0.499 (0.002) 0.498 (0.001) 0.124 (0.142)
b 0.254 (0.001) 0.250 (0.001) 0.250 (0.001) 0.251 (0.001) 0.438 (0.036)

Table 1. Estimation results for Linear Case A, Laplace error. Mean estimated

values of the five estimators θ̂arma, θ̂N , θ̂SC , θ̂X and θ̂naive are presented for
various values of n (1000, 5000 or 10000) and s2n (0.5, 1.5, 3). True values are
a0 = 1/2, b0 = 1/4. MSEs are given in brackets.

θ̂arma has good asymptotic properties. However its bias is often larger than the biases of θ̂N and

θ̂SC , except when s2n = 0.5 and ε is Gaussian.

We now consider the two estimators θ̂N and θ̂SC . Recall that their construction requires

the choice of w. Note first that, whatever the weight function w, the two estimators θ̂N and

θ̂SC present good convergence properties. Their biases and MSEs decrease when n increases.
When compared one to another, we can see that their numerical behaviors are not the same.

Namely for not too large s2n, θ̂SC has a MSE smaller than θ̂N (see Figure 1 and Tables 1-4,

when s2n ≤ 3). With large s2n, the estimator θ̂N seems to have better properties (see Figure
2 when s2n = 6). This is expected since N depends on σ2ε and is thus more sensitive to small
values of σ2ε . The error distribution seems to have a slight infuence on the MSEs of the two
estimators. The MSEs are often smaller when fε is the Laplace density. This may be related
with the theoretical properties in density deconvolution. In that context it is well known that

the rate of convergence is slower when fε is the Gaussian density. The two estimators θ̂N and

θ̂SC have comparable numerical behaviors in the two linear autoregressive models. Let us recall
that in both cases, the simulated chain X are non-mixing but are τ -dependent. In Case A, the
stationary distribution of X is continuous whereas it is not the case in Case B. This explains
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ratio Estimator

n s2n θ̂arma(MSE) θ̂N (MSE) θ̂SC(MSE) θ̂X(MSE) θ̂naive(MSE)

1000 0.5 a 0.483 (0.006) 0.539 (0.039) 0.496 (0.002) 0.495 (0.001) 0.331 (0.030)
b 0.259 (0.002) 0.243 (0.003) 0.253 (0.001) 0.253 (0.001) 0.336 (0.008)

1.5 a 0.497 (0.021) 0.516 (0.027) 0.507 (0.009) 0.499 (0.001) 0.200 (0.091)
b 0.251 (0.005) 0.243 (0.005) 0.246 (0.002) 0.249 (0.001) 0.399 (0.023)

3 a 0.456 (0.031) 0.521 (0.082) 0.481 (0.030) 0.501 (0.001) 0.120 (0.145)
b 0.272 (0.008) 0.244 (0.016) 0.260 (0.007) 0.250 (0.001) 0.441 (0.037)

5000 0.5 a 0.497 (0.001) 0.492 (0.006) 0.499 (0.001) 0.498 (0.001) 0.333 (0.028)
b 0.251 (0.001) 0.252 (0.001) 0.250 (0.001) 0.250 (0.001) 0.333 (0.007)

1.5 a 0.490 (0.002) 0.510 (0.006) 0.502 (0.001) 0.499 (0.001) 0.120 (0.090)
b 0.254 (0.001) 0.245 (0.001) 0.248 (0.001) 0.250 (0.001) 0.399 (0.022)

3 a 0.471 (0.010) 0.512 (0.008) 0.503 (0.005) 0.498 (0.001) 0.124 (0.141)
b 0.263 (0.002) 0.245 (0.002) 0.249 (0.001) 0.251 (0.001) 0.437 (0.035)

10000 0.5 a 0.504 (0.006) 0.500 (0.003) 0.498 (0.001) 0.499 (0.001) 0.331 (0.028)
b 0.249 (0.001) 0.250 (0.001) 0.251 (0.001) 0.251 (0.001) 0.335 (0.007)

1.5 a 0.495 (0.002) 0.501 (0.002) 0.499 (0.001) 0.501 (0.001) 0.200 (0.090)
b 0.253 (0.001) 0.250 (0.001) 0.251 (0.001) 0.250 (0.001) 0.401 (0.023)

3 a 0.492 (0.004) 0.498 (0.004) 0.500 (0.003) 0.500 (0.001) 0.126 (0.140)
b 0.254 (0.001) 0.251 (0.001) 0.251 (0.001) 0.250 (0.001) 0.437 (0.009)

Table 2. Estimation results for Linear Case A, Gaussian error. Mean estimated

values of the five estimators θ̂arma, θ̂N , θ̂SC , θ̂X and θ̂naive are presented for
various values of n (1000, 5000 or 10000) and s2n (0.5, 1.5, 3). True values are
a0 = 1/2, b0 = 1/4. MSEs are given in brackets.

the relative bad properties of θ̂arma in Case B. Indeed, due to its construction, this estimator
is expected to have good properties when the stationary distribution of the Markov Chain is
close to the Gaussian distribution. On the contrary our estimators have similar behavior in both
cases.

4.2. Cauchy regression model. We consider the model (1.1) with fθ(x) = θ/(1+x2) = θf(x).
The true parameter is θ0 = 1.5. For the law of ξ0 we take ξ0 ∼ N (0, 0.01). In this case, an
empirical study shows that σ2X is about 0.1. Moreover αX(k) = O(κk) for some κ ∈]0, 1[ and
the Markov chain is α-mixing (see Appendix A.2). For w suitably chosen, Theorem 3.2 applies

and states that θ̂ is asymptotically normal. For the simulation, we start with X0 uniformly
distributed over [0, 1], and we consider that the chain is close to the stationary chain after 1000
iterations. We then set Xi = Xi+1000.

To our knowledge, the estimator θ̂ is the first consistent estimator in the literature for this
regression function. We first detail the estimator for two choices of the weight function w. Then
we recall the classic estimator when X is directly observed and the so-called naive estimator.
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ratio Estimator

n s2n θ̂arma(MSE) θ̂N (MSE) θ̂SC(MSE) θ̂X(MSE) θ̂naive(MSE)

1000 0.5 a 0.288 (0.021) 0.341 (0.013) 0.330 (0.002) 0.326 (0.001) 0.217 (0.015)
b 0.354 (0.005) 0.331 (0.001) 0.333 (0.001) 0.335 (0.001) 0.389 (0.004)

1.5 a 0.298 (0.050) 0.332 (0.009) 0.335 (0.007) 0.330 (0.001) 0.136 (0.040)
b 0.349 (0.012) 0.331 (0.002) 0.329 (0.002) 0.335 (0.001) 0.429 (0.010)

3 a 0.240 (0.127) 0.343 (0.017) 0.343 (0.018) 0.330 (0.001) 0.084 (0.063)
b 0.385 (0.033) 0.333 (0.003) 0.333 (0.003) 0.338 (0.001) 0.465 (0.018)

5000 0.5 a 0.333 (0.004) 0.335 (0.003) 0.335 (0.001) 0.333 (0.001) 0.223 (0.012)
b 0.333 (0.001) 0.332 (0.001) 0.332 (0.001) 0.334 (0.001) 0.388 (0.003)

1.5 a 0.331 (0.011) 0.328 (0.002) 0.334 (0.001) 0.334 (0.001) 0.433 (0.041)
b 0.334 (0.003) 0.334 (0.001) 0.329 (0.001) 0.332 (0.001) 0.132 (0.010)

3 a 0.290 (0.030) 0.329 (0.003) 0.329 (0.004) 0.333 (0.001) 0.083 (0.063)
b 0.355 (0.008) 0.335 (0.008) 0.335 (0.008) 0.334 (0.001) 0.459 (0.016)

10000 0.5 a 0.337 (0.002) 0.335 (0.002) 0.334 (0.001) 0.334 (0.001) 0.222 (0.012)
b 0.331 (0.001) 0.332 (0.001) 0.332 (0.001) 0.332 (0.001) 0.388 (0.003)

1.5 a 0.322 (0.006) 0.336 (0.001) 0.336 (0.001) 0.334 (0.001) 0.134 (0.040)
b 0.339 (0.002) 0.332 (0.001) 0.332 (0.001) 0.333 (0.001) 0.433 (0.010)

3 a 0.329 (0.010) 0.336 (0.002) 0.336 (0.002) 0.334 (0.001) 0.083 (0.063)
b 0.335 (0.002) 0.332 (0.001) 0.332 (0.001) 0.332 (0.001) 0.457 (0.015)

Table 3. Estimation results for Linear Case B, Laplace error. Mean estimated

values of the five estimators θ̂arma, θ̂N , θ̂SC , θ̂X and θ̂naive are presented for
various values of n (1000, 5000 or 10000) and s2n (0.5, 1.5, 3). True values are
a0 = 1/3, b0 = 1/3. MSEs are given in brackets.

4.2.1. Expression of the estimator. We consider the two following weight functions:

Nc(x) = (1 + x2)2 exp{−x2/(4σ2ε )} and SCc(x) = (1 + x2)2
1

2π

(2 ∗ sin(x)
x

)4
,(4.18)

with σ2ε the variance of ε. This choice of w ensures that Conditions (C1)-(C5) hold and our
method allows to achieve the parametric rate of convergence. As in the linear case, these two
weight functions differ by their dependence on σ2ε and their smoothness properties. The two
associated estimators are based on the calculation of Sn(θ), which can be written as

Sn(θ) =
1

n

n∑

k=1

[Z2
kIw(Zk−1) + θ2Iwf2(Zk−1)− 2θZkIwf (Zk−1)],

where

Iw(Z) =
1

2π
Re

∫
(w)∗(u)

e−iuZ

f∗ε (−u)
du, Iwf (Z) =

1

2π
Re

∫
(wf)∗(u)

e−iuZ

f∗ε (−u)
du

and Iwf2(Z) =
1

2π
Re

∫
(wf2)∗(u)

e−iuZ

f∗ε (−u)
du.
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ratio Estimator

n s2n θ̂arma(MSE) θ̂N (MSE) θ̂SC(MSE) θ̂X(MSE) θ̂naive(MSE)

1000 0.5 a 0.327 (0.016) 0.349 (0.035) 0.330 (0.003) 0.326 (0.001) 0.218 (0.014)
b 0.338 (0.004) 0.332 (0.002) 0.336 (0.001) 0.337 (0.001) 0.392 (0.004)

1.5 a 0.290 (0.061) 0.355 (0.021) 0.345 (0.008) 0.332 (0.001) 0.133 (0.041)
b 0.353 (0.015) 0.324 (0.004) 0.328 (0.002) 0.333 (0.001) 0.432 (0.010)

3 a 0.234 (0.153) 0.329 (0.049) 0.329 (0.051) 0.326 (0.001) 0.077 (0.067)
b 0.383 (0.040) 0.337 (0.010) 0.337 (0.010) 0.337 (0.001) 0.461 (0.017)

5000 0.5 a 0.329 (0.004) 0.341 (0.005) 0.333 (0.001) 0.332 (0.001) 0.220 (0.013)
b 0.335 (0.001) 0.332 (0.001) 0.334 (0.001) 0.334 (0.001) 0.399 (0.003)

1.5 a 0.329 (0.009) 0.331 (0.003) 0.332 (0.002) 0.333 (0.001) 0.132 (0.041)
b 0.335 (0.002) 0.334 (0.001) 0.333 (0.001) 0.333 (0.001) 0.433 (0.010)

3 a 0.315 (0.022) 0.348 (0.008) 0.348 (0.008) 0.334 (0.001) 0.084 (0.062)
b 0.343 (0.006) 0.327 (0.002) 0.328 (0.002) 0.332 (0.001) 0.459 (0.016)

10000 0.5 a 0.330 (0.002) 0.333 (0.003) 0.333 (0.001) 0.332 (0.001) 0.221 (0.013)
b 0.335 (0.001) 0.333 (0.001) 0.333 (0.001) 0.334 (0.001) 0.389 (0.003)

1.5 a 0.328 (0.006) 0.336 (0.002) 0.334 (0.001) 0.333 (0.001) 0.132 (0.041)
b 0.336 (0.002) 0.333 (0.001) 0.334 (0.001) 0.334 (0.001) 0.435 (0.010)

3 a 0.312 (0.014) 0.334 (0.004) 0.334 (0.004) 0.333 (0.001) 0.083 (0.063)
b 0.344 (0.003) 0.333 (0.001) 0.333 (0.001) 0.333 (0.001) 0.458 (0.016)

Table 4. Estimation results for Linear Case B, Gaussian error. Mean estimated

values of the five estimators θ̂arma, θ̂N , θ̂SC , θ̂X and θ̂naive are presented for
various values of n (1000, 5000 or 10000) and s2n (0.5, 1.5, 3). True values are
a0 = 1/3, b0 = 1/3. MSEs are given in brackets.

The estimator can be expressed as

θ̂ =

∑n
k=1 ZkIwf (Zk−1)∑n
k=1 Iwf2(Zk−1)

.(4.19)

In the following we denote by Iwf,Nc
(Z), Iwf2,Nc

(Z), Iwf,SCc
(Z) and Iwf2,SCc

(Z) respectively,
the previous integrals when the weight function is either w = Nc or w = SCc. In the same way

we denote by θ̂Nc and θ̂SCc the corresponding estimators of θ0.

• When w = Nc, Fourier calculations provide that

(Ncf)
∗(t) =

√
2π
√

2σ2ε exp(−σ2ε t2)
(
1 + 2σ2ε(1− 2σ2ε t

2)
)

and (Ncf
2)∗(t) =

√
2π
√

2σ2ε exp(−σ2ε t2).

Now, we can calculate the integrals Iwf,Nc
(Z) and Iwf2,Nc

(Z).
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If fε is the Laplace distribution (4.8), replacing f∗ε by its expression we obtain

Iwf,Nc
(Z) = exp(−Z2/(4σ2ε ))

[
Z4 − 18Z2σ2ε + Z2 + 8σ4ε − 10σ2ε

]
/(8σ2ε ),

and Iwf2,Nc
(Z) = exp(−Z2/(4σ2ε ))

[
1 +

1

4

(
1− Z2

2σ2ε

)]
.

If fε is the Gaussian distribution (4.9), replacing f∗ε by its expression we obtain

Iwf,Nc
(Z) =

√
2e−Z2/(2σ2

ε )(1− 2σ2ε + 4Z2), and Iwf2,Nc
(Z) =

√
2e−Z2/(2σ2

ε ).

• When w = SCc, easy calculations show that

Iwf,SCc
(Z) = I0,SC(Z) + I2,SC(Z) and Iwf2,SCc

(Z) = I0,SC(Z),

where I0,SC(Z) and I2,SC(Z) are defined by (4.16). As explained before, the integrals I0,SC(Z)
and I2,SC(Z) have no explicit form, whatever the error distributions, and are numerically ap-
proximated via the IFFT function.

4.2.2. Comparison with classical estimators. We compare our estimators with two classical es-
timators, the usual least square estimator without observation noise, and the naive estimator.
• Estimator without noise. When εi = 0, that is (X0, . . . ,Xn) is observed without errors, the
parameter can be easily estimated by the usual least square estimator

θ̂X =

∑n
i=1Xif(Xi−1)∑n
i=1 f

2(Xi−1)
.

• Naive estimator. The idea for the construction of the naive estimator is to replace the unob-

served Xi by the observation Zi in the expression of θ̂X to get

θ̂naive =

∑n
i=1 Zif(Zi−1)∑n
i=1 f

2(Zi−1)
.

Classical results show that θ̂naive is an asymptotically biased estimator of θ0, which is confirmed
by the simulation study.

4.2.3. Simulations results. For each error distribution, we simulate 100 samples with size n,
n = 500, 5000 and 10000. We consider different values of σε such that the ratio signal to noise
s2n = σ2ε/Var(X) is 0.5, 1.5 or 3.

The comparison of the four estimators is based on the bias, the Mean Squared Error (MSE),
and the box plots. The results are presented in Figure 3 and Tables 5-6.

The first thing to notice is that, not surprisingly, θ̂naive presents a bias, whatever the values
of n, s2n and the errors distribution. Moreover it converges to (false) values which are different
according to s2n (see Tables (5)-(6)).

The estimator θ̂X has the good expected properties (unbiased and small MSE), but it is based
on the observation of the Xi’s.

We now compare our two estimators illustrating the influence of w, s2n and fε. Globally,

whatever the weight function w, the two estimators θ̂ present good convergence properties. Their

biases and MSEs decrease when n increases. The MSEs of θ̂SCc increase when s2n increases.

This is not the case for the MSE of θ̂Nc . This is probably due to the fact that the weight
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ratio Estimator

n s2n θ̂Nc
(MSE) θ̂SCc

(MSE) θ̂X(MSE) θ̂naive(MSE)

1000 0.5 1.5095 (0.0042) 1.5024 (0.0006) 1.5004 (0.0000) 1.4333 (0.0050)
1.5 1.5006 (0.0021) 1.5005 (0.0013) 1.5002 (0.0000) 1.3657 (0.0190)
3 1.5017 (0.0024) 1.5005 (0.0024) 1.5002 (0.0000) 1.3267 (0.0314)

5000 0.5 1.5045 (0.0008) 1.5005 (0.0001) 1.5003 (0.0000) 1.4320 (0.0047)
1.5 1.5003 (0.0004) 1.4994 (0.0003) 1.4997 (0.0000) 1.3647 (0.0185)
3 1.4989 (0.0005) 1.4992 (0.0005) 1.5000 (0.0000) 1.3223 (0.0318)

10000 0.5 1.5033 (0.0004) 1.5002 (0.0001) 1.5000 (0.0000) 1.4315 (0.0047)
1.5 1.5000 (0.0002) 1.5000 (0.0001) 1.4998 (0.0000) 1.3650 (0.0183)
3 1.4972 (0.0002) 1.4970 (0.0002) 1.4998 (0.0000) 1.3222 (0.0317)

Table 5. Estimation results for Cauchy, Laplace error. Mean estimated values

of the four estimators θ̂Nc, θ̂SCc , θ̂X and θ̂naive are presented for various values
of n (1000, 5000 or 10000) and s2n (0.5, 1.5, 3). True value is θ0 = 1.5. MSE are
given in brackets.

ratio Estimator

n s2n θ̂Nc
(MSE) θ̂SCc

(MSE) θ̂X(MSE) θ̂naive(MSE)

1000 0.5 1.4979 (0.0027) 1.4998 (0.0006) 1.5000 (0.0000) 1.4230 (0.0064)
1.5 1.4995 (0.0029) 1.5001 (0.0015) 1.5005 (0.0000) 1.3336 (0.0287)
3 1.5080 (0.0049) 1.5058 (0.0042) 1.4997 (0.0000) 1.2832 (0.0487)

5000 0.5 1.5033 (0.0006) 1.5011 (0.0001) 1.4999 (0.0000) 1.4250 (0.0057)

1.5 1.5011 (0.0004) 1.5001 (0.0003) 1.4999 (0.0000) 1.3351 (0.0274)
3 1.4998 (0.0009) 1.4996 (0.0008) 1.5002 (0.0000) 1.2767 (0.0501)

10000 0.5 1.5017 (0.0003) 1.4997 (0.0000) 1.4996 (0.0000) 1.4236 (0.0059)
1.5 1.5025 (0.0003) 1.5027 (0.0002) 1.5001 (0.0000) 1.3375 (0.0265)
3 1.5016 (0.0004) 1.5021 (0.0004) 1.5002 (0.0000) 1.2778 (0.0495)

Table 6. Estimation results for Cauchy, Gaussian error. Mean estimated values

of the four estimators θ̂Nc, θ̂SCc , θ̂X and θ̂naive are presented for various values
of n (1000, 5000 or 10000) and s2n (0.5, 1.5, 3). True value is θ0 = 1.5. MSE are
given in brackets.

function chosen for the construction of θ̂Nc depends on σ
2
ε . This estimator is thus more adaptive

to changes in s2n.

5. A more general estimator

For a large number of regression functions, a weight function w such as the one involved
in the definition of the estimator θ̂ can be easily exhibited. Nevertheless for some specific
regression functions, it seems not straightforward to find a weight function such that (wfθ)

∗/f∗ε
and (wf2θ )

∗/f∗ε are integrable. We refer to Butucea and Taupin (2008) for a more complete
discussion on this subject. Therefore, we propose a generalization of this estimator to relax
these conditions.
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Figure 3. Results for Cauchy and Gaussian error, with n = 5000 and

σ2ε/Var(X) = 1.5. Box plots of the four estimators θ̂Nc , θ̂SCc , θ̂X and θ̂naive,
from left to right, based on 100 replications. True value is 1.5 (horizontal line).

5.1. Definition of the general estimator. The key idea for this construction is the following.
We introduce a density deconvolution kernel Kn,Cn defined via its Fourier transform K∗

n,Cn
by

K∗
n,Cn

(t) =
K∗(t/Cn)

f∗ε (−t)
:=

K∗
Cn

(t)

f∗ε (−t)
,(5.20)

where K∗ is the Fourier transform of a kernel K and Cn is a sequence which tends to infinity
with n. The kernel K belongs to L

2(R). Its Fourier transform K∗ is compactly supported and
satisfies |1−K∗(t)| ≤ 1I|t|≥1. Then, for any integrable function Φ, one has limn→∞ n−1

∑n
i=1 Φ ⋆

Kn,Cn(Zi) = E(Φ(X)). Hence we estimate E(Φ(X)) by n−1
∑n

i=1Φ ⋆ Kn,Cn(Zi) instead of
n−1

∑n
i=1Φ(Xi) which is not available. We then propose to estimate Sθ0,PX

(θ) by

(5.21) Sn(θ) =
1

n

n∑

i=1

Re
[(
(Zi − fθ)

2w
)
⋆ Kn,Cn(Zi−1)

]

=
1

n

n∑

i=1

Re

∫
(Zi − fθ(x))

2 w(x)Kn,Cn(Zi−1 − x)dx.

Using this more general empirical criterion we propose to estimate θ0 by

θ̂ = argmin
θ∈Θ

Sn(θ).(5.22)

Note that the general construction relies to a truncation of integrals in (2.4). Also note
that this general construction still works under Conditions (C1)-(C5). It suffices to chose
K∗(t/Cn) = 1I|t|≤Cn

with Cn = +∞.
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5.2. Asymptotic properties under general assumptions. This section presents the as-

ymptotic properties of θ̂ defined by (5.22) under milder conditions than conditions (C1)-(C5),
when one cannot exhibit a weight function w ensuring that these conditions hold. In this context
the estimator is still consistent, but with a rate which is not necessarily the parametric rate.
For the sake of simplicity we only consider the case of α-mixing Markov chains.

We assume that

On Θ0, the quantity w2(X0)(Z1 − fθ(X0))
4 and the absolute values of its derivatives(A3)

with respect to θ up to order 2 have a finite expectation.

The quantity sup
n

sup
j∈{1,··· ,d}

E

(
sup
θ∈Θ◦

∣∣∣ ∂
∂θj

Sn(θ)
∣∣∣
)
is finite.(A4)

sup
θ∈Θ

|wfθ|, |w| and sup
θ∈Θ

|wf2θ | belong to L1(R).(A5)

We say that a function ψ ∈ L1(R) satisfies (5.23) if for a sequence Cn we have

min
q=1,2

‖ ψ∗(K∗
Cn

− 1) ‖2q +n−1 min
q=1,2

∥∥∥∥
ψ∗K∗

Cn

f∗ε

∥∥∥∥
2

q

= o(1).(5.23)

Theorem 5.1. Under the assumptions (I11), (I12), (N1), (A1) (A3) - (A5), let θ̂ be defined
by (5.22) with Cn such that (5.23) holds for w, wfθ and wf2θ and their first derivatives with
respect to θ. Assume that the sequence (Xk) is α-mixing that is

αX(k) −→
n→∞

0, as k −→
n→∞

∞.

Then E(‖θ̂ − θ0‖2ℓ2) = o(1), as n→ ∞ and θ̂ is a consistent estimator of θ0.

We now give upper bounds for the rates of convergence under two different types of assump-
tions:

X0 admits a density fX with respect to the Lebesgue measure and there exist two(A6)

constants C1(f
2
θ0) and C2(fθ0) such that ‖ fθ0fX ‖22≤ C1(fθ0), and

‖ f2θ0fX ‖22≤ C2(f
2
θ0).

sup
z∈R

E[f2θ0(X0)fε(z −X0)] and sup
z∈R

E[fε(z −X0)] are finite.(A7)

These two assumptions are mostly required for technical reasons. The following theorem still
holds when X0 does not admit a density, under a slightly different moment assumption.

Theorem 5.2. Suppose that the assumptions of Theorem 5.1 hold. Assume moreover that the
sequence (Xk)k≥0 is α-mixing with

∑
k≥1

√
αX(k) < ∞, and that, for all θ ∈ Θ, the functions

w, fθw and f2θw and their derivatives up to order 3 with respect to θ satisfy (5.23).
1) Assume that the sequence X0 admits a density with respect to the Lebesgue measure and

that Assumption (A6) holds. Then θ̂− θ0 = Op(ϕ
2
n) with ϕn = ‖(ϕn,j)‖ℓ2 , ϕ2

n,j = B2
n,j +Vn,j/n,

j = 1 . . . , d, where

Bn,j = min
{
B

[1]
n,j, B

[2]
n,j

}
and Vn,j=min

{
V

[1]
n,j, V

[2]
n,j

}
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and for q = 1, 2

B
[q]
n,j =

∥∥∥(wf (1)θ,j )
∗(K∗

Cn
− 1)

∥∥∥
2

q
+
∥∥∥(wfθ0f (1)θ0,j

)∗(K∗
Cn

− 1)
∥∥∥
2

q
,

and

V
[q]
n,j =

∥∥∥∥(wf
(1)
θ0,j

)∗
K∗

Cn

f∗ε

∥∥∥∥
2

q

+

∥∥∥∥(wfθ0f
(1)
θ0,j

)∗
K∗

Cn

f∗ε

∥∥∥∥
2

q

.

2) Assume that (A7) holds. Then θ̂−θ0 = Op(ϕ
2
n) with ϕn = ‖(ϕn,j)‖ℓ2 , ϕ2

n,j = B2
n,j+Vn,j/n,

j = 1 . . . , d, where Bn,j = B
[1]
n,j and Vn,j = min

{
V

[1]
n,j, V

[2]
n,j

}
.

This theorem states an upper bound for the quadratic risk under very general conditions. It
holds under mild conditions on w, fθ and fε. We refer to Table 1 in Butucea and Taupin (2008)
for more details on the resulting rates.

Appendix A. Properties of the dependence coefficients and examples

A.1. Covariance inequalities and coupling. The following results are the key arguments to

prove the asymptotic normality of θ̂. We keep the same notations as in Definition 3.1.
We first recall a covariance inequality due to Rio (1993). For any positive random variable Z,

let QZ be the inverse cadlag of the tail function t→ P(Z > t). Let X and Y be two real valued
random variables such that Cov(X,Y ) is well defined. The following inequality holds

(A.24) |Cov(Y,X)| ≤ 4

∫ α(σ(Y ),σ(X))

0
Q|X|(u)Q|Y |(u)du .

Next, we recall the coupling properties of τ (see Dedecker and Prieur (2005)): enlarging Ω if
necessary, there exists X∗ distributed as X and independent of M such that

(A.25) τ(M,X) = E(‖X −X∗‖B) .

A.2. Dependence properties of autoregressive models. We recall here the mixing prop-
erties of the autoregressive models

Xi = fθ0(Xi−1) + ξi,

that have been described in particular in the papers by Mokkadem (1985) and Ango-Nzé (1998).
For instance, assume that

• the law of ξ0 has a density fξ such that fξ > c > 0 on a neighborhood of zero, and

there exists S ≥ 1 such that E(|ξ0|S) <∞.
• fθ0 is continuous and there exist R ≥ 1 and ρ ∈]0, 1[ such that: for any |x| ≥ R,
|fθ0(x)| ≤ ρ|x|.

Then there exists a unique invariant probability measure, and the stationary Markov chain
(Xi)i≥0 satisfies αX(k) = O(κk) for any κ ∈]ρ, 1[ and is α-mixing.
Now if the second point is weakened to

• fθ0 is continuous and there exist R ≥ 1 and δ ∈]0, 1[ such that: for any |x| ≥ R,
|fθ0(x)| ≤ |x|(1− |x|−δ).
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Then there exists a unique invariant probability measure, and the stationary Markov chain
(Xi)i≥0 satisfies αX(k) = O(k1−S/δ) and is α-mixing.

Now, if we do not assume that ξ0 has a density, then the chain may not be α-mixing (and not
even irreducible). However, under appropriate assumptions on fθ0 , it is still possible to obtain
upper bounds for the coefficient τ . For instance assume that

• there exists S ≥ 1 such that E(|ξ0|S) <∞.
• |fθ0(x)− fθ0(y)| ≤ ρ|x− y| for some ρ ∈]0, 1[.

Then there exists a unique invariant probability measure, and the stationary Markov chain
(Xi)i≥0 satisfies τX,2(k) = O(ρk) and is τ -dependent. Now if the second point is weakened to

• there exist δ in [0, 1[ and C in ]0, 1] such that |f ′(t)| ≤ 1 − C(1 + |t|)−δ almost
everywhere.

Then there exists a unique invariant probability measure, and for S > 1 + δ the stationary
Markov chain (Xi)i≥0 satisfies τX,2(n) = O(n(δ+1−S)/δ) and is τ -dependent.

Appendix B. proofs of Theorems

B.1. Proof of Theorem 3.1. The main point of the proof consists in showing the two following
points

i) for any θ in Θ, Sn(θ)
L
1

−→
n→∞

Sθ0,PX
(θ), with Sθ0,PX

(θ) admitting a unique minimum in

θ = θ0.
ii) For ω2(n, ρ) defined as ω2(n, ρ) = sup {|Sn(θ)− Sn(θ

′)| : ‖θ − θ′‖ℓ2 ≤ ρ} , there exists a
sequence ρk tending to 0, such that

E(ω2(n, ρk)) = O(ρk).(B.1)

Let us start with the proof of i) by writing that

Sn(θ) =
1

n

n∑

k=1

Ψ(Zk, Zk−1), with Ψ(Z1, Z0) =
1

2π
Re

∫
((
Z1 − fθ

)2
w
)∗

(t)e−itZ0

f∗ε (−t)
dt,

that is seen as a function of a strictly stationary and ergodic sequence of random variables. By
the ergodic theorem and Assumption (A2) we conclude that for any θ ∈ Θ,

Sn(θ)
L
1

−→
n→∞

E(ψ(Z1, Z0)) = Sθ0,PX
(θ).

It remains now to check that there exists a sequence ρk tending to 0, such that (B.1) holds.
This follows by the assumption (C2) and by writing that

(B.2) sup
‖θ−θ′‖

ℓ2≤ρ
|Sn(θ)− Sn(θ

′)| ≤ sup
‖θ−θ′‖

ℓ2≤ρ
‖ θ − θ′ ‖ℓ2 sup

θ∈Θ0

‖ S(1)
n (θ) ‖ℓ2 .

�



ESTIMATION IN AUTOREGRESSIVE MODEL WITH MEASUREMENT ERROR 23

B.2. Proof of Theorem 3.2. By using a Taylor expansion based on the smoothness properties

of θ 7→ wfθ and the consistency of θ̂, we obtain

0 = S(1)
n (θ̂) = S(1)

n (θ0) + S(2)
n (θ0)(θ̂ − θ0) +Rn(θ̂ − θ0),

with Rn defined by

(B.3) Rn =

∫ 1

0
[S(2)

n (θ0 + s(θ̂ − θ0))− S(2)
n (θ0)]ds.

This implies that

(B.4) θ̂ − θ0 = −[S(2)
n (θ0) +Rn]

−1S(1)
n (θ0).

Consequently, we have to check the three following points.

i)
√
nS

(1)
n (θ0)

L−→
n→∞

N (0,Σ0,1);

ii) S
(2)
n (θ0)

IP−→
n→∞

S
(2)
θ0,PX

(θ0);

iii) Rn defined in (B.3) satisfies Rn
IP−→

n→∞
0.

Note that the covariance matrix Σ0,1 in i) satisfies Σ0,1 = Σ/4π2, with Σ defined by the
equation (B.6) below. Consequently, according to ii) and iii), the covariance matrix Σ1 satisfies

(B.5) Σ1 =
1

4π2
(S

(2)
θ0,PX

(θ0))−1Σ(S
(2)
θ0,PX

(θ0))−1, with Σ defined by (B.6).

Proof of i)

Under Assumption (C2),

(√
nS(1)

n (θ0)
)
i
=

1

2π
√
n

n∑

k=1

Re

∫ (
∂

∂θi
((Zk − fθ)

2)w
∣∣∣
θ=θ0

)∗

(t)
e−itZk−1

f∗ε (−t)
dt.

We have thus to prove that

1

2π
√
n

n∑

k=1

Re

∫ (
− 2(Zk − fθ0)f

(1)
θ0
w
)∗
(t)
e−itZk−1

f∗ε (−t)
dt

L−→
n→∞

N (0,Σ0,1).

We first use that E(Sn(θ)) = Sθ0,PX
(θ) and thus E(S

(1)
n (θ0)) = S

(1)
θ0,PX

(θ0) = 0. Next we write

√
nS(1)

n (θ0) =
√
nS(1)

n (θ0)− E[
√
nS(1)

n (θ0)] =
1

2π
√
n

n∑

k=1

Tk

with Tk = −2Wk,1 + 2Wk,2, and

Wk,1 = ZkRe

∫ (
f
(1)
θ0
w
)∗
(t)
e−itZk−1

f∗ε (−t)
dt− E

[
ZkRe

∫ (
f
(1)
θ0
w
)∗
(t)
e−itZk−1

f∗ε (−t)
dt

]

Wk,2 = Re

∫ (
fθ0f

(1)
θ0
w
)∗
(t)
e−itZk−1

f∗ε (−t)
dt− E

[
Re

∫ (
fθ0f

(1)
θ0
w
)∗
(t)
e−itZk−1

f∗ε (−t)
dt

]
.
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Let M1 = σ(X0,X1, ε0, ε1). According to Dedecker and Rio (2000), n−1/2
∑n

k=1 Tk converges
to a centered Gaussian vector with covariance matrix

Σ = Cov(T1, T1) + 2
∑

k>1

Cov(T1, Tk) ,(B.6)

as soon as for any (p, q) in {1, · · · , d} × {1, · · · , d}
∞∑

k=3

E|(T1)pE((Tk)q|M1)| <∞.(B.7)

For any (p, q) in {1, · · · , d} × {1, · · · , d} and any i, j ∈ {1, 2}, we shall give an upper bound for

E |(W1,i)pE((Wk,j)q|M1)| .
We first notice that the sequence (εk, εk−1) is independent of M1 ∨σ(Xk,Xk−1). It follows that
for i, j ∈ {1, 2},

E |(W1,i)pE((Wk,j)q|M1)| = E

∣∣∣(W1,i)pE((W̃k,j)q|M1)
∣∣∣ ,

with

(W̃k,1)q = Xk

∫ (
f
(1)
θ0,q

w
)∗
(t)e−itXk−1dt− E

[
Xk

∫ (
f
(1)
θ0,q

w
)∗
(t)e−itXk−1dt

]

(W̃k,2)q =

∫ (
fθ0f

(1)
θ0,q

w
)∗
(t)e−itXk−1dt− E

[∫ (
fθ0f

(1)
θ0,q

w
)∗
(t)e−itXk−1dt

]
.

Next, since P(Xk−1,Xk)|σ(ε0,ε1,X0,X1) = P(Xk−1,Xk)|σ(X1), we infer that

E |(W1,i)pE((Wk,j)q|M1)| = E

∣∣∣(W1,i)pE((W̃k,j)q|X1)
∣∣∣ .

Next we use that under Condition (C2),

|(W1,1)p| ≤ |Z1|
∫ ∣∣∣∣
(
f
(1)
θ0,p

w
)∗
(t)

e−itZ0

f∗ε (−t)

∣∣∣∣ dt+ E

{
|Z1|

∫ ∣∣∣∣
(
f
(1)
θ0,p

w
)∗
(t)

e−itZ0

f∗ε (−t)

∣∣∣∣ dt
}

≤ |Z1|
∫ ∣∣∣∣
(
f
(1)
θ0,p

w
)∗
(t)

1

f∗ε (−t)

∣∣∣∣ dt+ E

{
|Z1|

∫ ∣∣∣∣
(
f
(1)
θ0,p

w
)∗
(t)

1

f∗ε (−t)

∣∣∣∣ dt
}

≤ C1(|Z1|+ E(|Z1|)).
In the same way we get that |(W1,2)p| ≤ C2.

Now, since ε1 is independent of X1, for j ∈ {1, 2}
E

∣∣∣(W1,1)pE((W̃k,j)q|X1)
∣∣∣ ≤ C1E

[
(|Z1|+ E(|Z1|))

∣∣∣E((W̃k,j)q|X1)
∣∣∣
]

≤ CE

[
(|X1|+ E(|X1|))

∣∣∣E((W̃k,j)q|X1)
∣∣∣
]
.(B.8)

In the same way

(B.9) E

∣∣∣(W1,2)pE((W̃k,j)q|X1)
∣∣∣ ≤ CE

∣∣∣E((W̃k,j)q|X1)
∣∣∣ .

Note that

E

[
(|X1|+ E(|X1|))

∣∣∣E((W̃k,1)q|X1)
∣∣∣
]
= Cov((|X1|+ E(|X1|))sign(E((W̃k,1)q|X1)), (W̃k,1)q).
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Now, we use the covariance inequality (A.24). Note first that

(|X1|+ E(|X1|))sign(E((W̃k,1)q|X1)) ≤ |X1|+ E(|X1|)
and

|(W̃1,1)q| ≤ D(|X1|+ E(|X1|)) .
Since (Xi)i≥0 is a strictly stationary Markov chain, it is well known that

(B.10) α(σ(X1), σ(Xk−1,Xk)) = α(σ(X1), σ(Xk−1)) = αX(k − 2) .

Hence, applying (A.24),

E

∣∣∣(W1,1)pE((W̃k,1)q|X1)
∣∣∣ ≤ C

∫ αX(k−2)

0
Q2

|X1|
(u)du .

We conclude that

∑

k≥3

E |(W1,1)pE((Wk,1)q|M1)| ≤ C
∑

k≥3

∫ αX(k−2)

0
Q2

|X1|
(u)du.

Finally, using similar arguments for the three quantities
∑

k≥3 E |(W1,2)pE((Wk,1)q|M1)|,∑
k≥3 E |(W1,1)pE((Wk,2)q|M1)| and

∑
k≥3 E |(W1,2)pE((Wk,2)q|M1)| we conclude that

√
nS(1)

n (θ0)
L−→

n→∞
N (0,Σ/(4π2))

as soon as
∑

k≥1

∫ αX(k)

0
Q2

|X1|
(u)du <∞.

�

Proof of ii)

Under Condition (C3), for j, k = 1, · · · , d,
(
S(2)
n (θ)

)
j,k

=
1

2πn

n∑

ℓ=1

Re

∫ (
−2Zℓ

∂2

∂θj∂θk
(fθw) +

∂2

∂θj∂θk
(f2θw)

)∗

(t)
e−itZℓ−1

f∗ε (−t)
dt(B.11)

and by applying the ergodic theorem we get that

S(2)
n (θ0)

IP−→
n→∞

S
(2)
θ0,PX

(θ0).

�

Proof of iii)

Starting from (B.3) and (B.11), the point iii) follows from the assumption (C4) on the properties
of the derivatives at order 3 of wfθ and wf2θ . �
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B.3. Proof of Theorem 3.3. We follow the proof of Theorem 3.2 and keep the same notations.
We have to check that the condition (B.7) holds. We start from the inequalities (B.8) and (B.9).
For clarity, let us write

(W̃k,1)q = (W̃k,1)q(Xk,Xk−1) .

Let ψM be the truncating function defined by ψM (x) = (x ∧M) ∨ (−M). Applying (A.25), let
(X∗

k ,X
∗
k−1) be the random variable distributed as (Xk,Xk−1) and independent of X1 such that

1

2
(‖Xk −X∗

k‖1 + ‖Xk−1 −X∗
k−1‖1) = τ(σ(X1), (Xk−1,Xk)) ≤ τX,2(k − 2) .

Define the constants K1 and K2 by

K1 =

∫ ∣∣∣
(
f
(1)
θ0,q

w
)∗
(t)
∣∣∣ dt <∞ , K2 =

∫
|t|
∣∣∣
(
f
(1)
θ0,q

w
)∗
(t)
∣∣∣ dt <∞ .

Clearly

|X1E((W̃k,1)q(Xk,Xk−1)|X1)| ≤M |E((W̃k,1)q(Xk,Xk−1)|X1)|+K2|X1|1|X1|>M(|Xk|+E(|Xk|)) .
Now, since (X∗

k ,X
∗
k−1) is independent of X1, one has that

|E((W̃k,1)q(Xk,Xk−1)|X1)| = |E((W̃k,1)q(Xk,Xk−1)− (W̃k,1)q(X
∗
k ,X

∗
k−1)|X1)| .

By definition of (W̃k,1)q(Xk,Xk−1), there exists a constant C such that

|(W̃k,1)q(Xk,Xk−1)−(W̃k,1)q(X
∗
k ,X

∗
k−1)−((W̃k,1)q(ψM (Xk),Xk−1)−(W̃k,1)q(ψM (X∗

k ),X
∗
k−1))|

≤ C(|Xk|1|Xk|>M + |X∗
k |1|X∗

k
|>M ).

Hence

|E((W̃k,1)q(Xk,Xk−1)|X1)| ≤ |E((W̃k,1)q(ψM (Xk),Xk−1)− (W̃k,1)q(ψM (X∗
k ),X

∗
k−1)|X1)|

+ C(|Xk|1|Xk|>M + |X∗
k |1|X∗

k
|>M ) .

Since ψM is 1-Lipschitz and bounded byM , and since x→ exp(itx) is |t|-Lipschitz and bounded
by 1, under Condition (C5), one has

|(W̃k,1)q(ψM (Xk),Xk−1)− (W̃k,1)q(ψM (X∗
k ),X

∗
k−1)| ≤MK2|Xk−1 −X∗

k−1|+K1|Xk −X∗
k | .

It follows that

|X1E((W̃k,1)q(Xk,Xk−1)|X1)| ≤ K2|X1|1|X1|>M (|Xk|+ E(|Xk|))
+ M2K2|Xk−1 −X∗

k−1|+MK1|Xk −X∗
k |)

+ CM(|Xk|1|Xk|>M + |X∗
k |1|X∗

k
|>M ) .

Using that

|X1|1|X1|>M |Xk| ≤
3

2
X2

11|X1|>M +
1

2
X2

k1|Xk|>M ,

we infer from (B.8) with j = 1 that there exists a positive constant K such that

E

[∣∣∣(W1,1)pE((W̃k,1)q|X1)
∣∣∣
]
≤ K(L(M2) +M(M + 1)τX,2(k − 2)) ,
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where L(t) = E(X2
01X2

0>t). Let then G(t) = t−1L(t), and let G−1 be the inverse cadlag of G.

Choose then M2 = G−1(τX,2(k − 2)). We obtain that

E

[∣∣∣(W1,1)pE((W̃k,1)q|X1)
∣∣∣
]
≤ 2K(2G−1(τX,2(k−2))τX,2(k−2)+

√
G−1(τX,2(k − 2))τX,2(k−2)) .

It follows that

∑

k≥3

E

[∣∣∣(W1,1)pE((W̃k,1)q|X1)
∣∣∣
]
<∞ as soon as

∑

k>0

G−1(τX,2(k))τX,2(k) <∞ .

Easier control holds for the other terms in (B.8) and (B.9). Consequently (B.7) holds as soon
as (3.7) holds, and the proof is complete.

B.4. Proof of Theorem 5.1. The proof of the consistency under the assumptions of Theorem
5.1 is quite different from the proof of the consistency under Conditions (C1)-(C2) in Theorem
3.1. This comes from the fact that Sn(θ) is now a triangular array of the form

Sn(θ) =
1

n

n∑

k=1

Ψn(Zk, Zk−1) with Ψn(Z1, Z0) =
1

2π
Re

∫
((
Z1 − fθ

)2
w
)∗

(t)e−itZ0K∗
Cn

(t)

f∗ε (−t)
dt.

In this context we show that
i) For all θ in Θ, E[(Sn(θ)− Sθ0,PX

(θ))2] = o(1) as n→ ∞.
ii) The control (B.1) holds.
Note first that ii) follows from the upper bound (B.2) and Assumption (A4).
For the proof of i) we check that for all θ ∈ Θ,

(B.12) E[Sn(θ)]− Sθ0,PX
(θ) = o(1) and Var(Sn(θ)) = o(1), as n→ ∞.

Proof of the first part of (B.12). Since Z0 = X0+ ε0, with ε0 independent of (Z1,X0), it follows
that

E[Sn(θ)] = E
[
Re
(
(Z1 − fθ)

2 w
)
⋆ Kn,Cn(Z0)

]
= E

[(
(Z1 − fθ)

2 w
)
⋆ KCn(X0)

]
,

hence

E[Sn(θ)]− Sθ0,PX
(θ) =

1

2π

∫∫
(f2θ0(x) + σ2ξ + σ2ε)e

−iuxw∗(u)(K∗
Cn

− 1)(u)duPX (dx)

− 1

π

∫∫
fθ0(x)e

−iux(fθw)
∗(u)(K∗

Cn
− 1)(u)duPX (dx)

+
1

2π

∫∫
e−iux(f2θw)

∗(u)(K∗
Cn

− 1)(u)PX (dx)du.

Now, arguing as in Butucea and Taupin (2008) we get that |E[Sn(θ)]− Sθ0,PX
(θ)|2 = o(1).
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Proof of the second part of (B.12). Using that the Zi’s are strictly stationary we get that

Var[Sn(θ)] = Var

[
n−1

n∑

k=1

Re
[
((Zk − fθ)

2 w) ⋆ Kn,Cn(Zk−1)
]]

≤ 1

n
Var (A1,0) +

2

n

n∑

i=2

| Cov
(
A1,0, Ai,i−1

)
|

≤ 3

n
Var (A1,0) +

2

n

n∑

k=3

| Cov
(
A1,0, Ak,k−1

)
|

with

Ak,k−1 = Re
[(
(Zk − fθ)

2 w) ⋆ Kn,Cn(Zk−1)
]
.

Arguing as in Butucea and Taupin (2008) we obtain that limn→∞ n−1 Var (A1,0) = 0. It remains
to study

1

n

n∑

k=3

| Cov
(
A1,0, Ak,k−1

)
|.

Lemma B.1. Let Ψ such that E(|Ψ(Z)|) <∞ and let Φ be an integrable function. Let

Bk,k−1 = R [eΨ(Zk)Φ ⋆ Kn,Cn(Zk−1)] .

Then for k ≥ 3

Cov(Bk,k−1, B1,0) = Cov[Ψ(Zk)Φ ⋆ KCn(Xk−1),Ψ(Z1)Φ ⋆ KCn(X0)]

=
1

(2π)2

∫∫
Φ∗(t)Φ∗(s)Cov

(
Ψ(Zk)e

−itXk−1 ,Ψ(Z1)e
−isX0

)
K∗

Cn
(t)K∗

Cn
(s)dtds.

Proof of Lemma B.1: By stationarity we write

Cov
(
Bk,k−1, B1,0

)
= E(Bk,k−1B1,0)− E(Bk,k−1)E(B1,0) = E(Bk,k−1B1,0)−

(
E(B1,0)

)2
.

Now, we use that the sequences (Xk)k∈Z and (εk)k∈Z are independent. This implies that (Z1,X0)
is independent of ε0 and thus

E(B1,0) =
1

2π
Re

∫
Φ∗(t)E[Ψ(Z1)e

−itZ0 ]
K∗

Cn
(t)

f∗ε (−t)
dt =

1

2π

∫
Φ∗(t)E[Ψ(Z1)e

−itX0 ]K∗
Cn

(t)dt.

In the same way, for k ≥ 3,

E(Bk,k−1B1,0)

=
1

(2π)2
E

∫∫
Φ∗(s)Φ∗(t)Ψ(Zk)Ψ(Z1)Re

(
e−itZk−1

K∗
Cn

(t)

f∗ε (−t)
)
Re
(
e−isZ0

K∗
Cn

(s)

f∗ε (−s)
)
dtds

=
1

(2π)2

∫∫
Φ∗(s)Φ∗(t)E(Ψ(Zk)e

−itXk−1Ψ(Z1)e
−isX0)K∗

Cn
(t)K∗

Cn
(s)dtds ,

and the lemma is proved. 2
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It follows from Lemma B.1 that for k ≥ 3,

Cov
(
Ak,k−1, A1,0

)
= Cov

[(
(Zk − fθ)

2 w
)
⋆ KCn(Xk−1),

(
(Z1 − fθ)

2 w
)
⋆ KCn(X0)

]
=

9∑

i=1

Ci,

with

C1 =
1

(2π)2

∫∫
Cov(e−itXk−1 , e−isX0)(wf2θ )

∗(t)(wf2θ )
∗(s)K∗

Cn
(s)K∗

Cn
(t)dtds,

C2 =
1

π2

∫∫
Cov(Xke

−itXk−1 ,X1e
−isX0)(wfθ)

∗(t)(wfθ)
∗(s)K∗

Cn
(t)K∗

Cn
(s)dtds,

C3 =
1

(2π)2

∫∫
Cov[(X2

k + ε2k)e
−itXk−1 , (X2

1 + ε21)e
−isX0 ]w∗(t)w∗(s)K∗

Cn
(t)K∗

Cn
(s)dtds,

C4 =
−1

2π2

∫∫
Cov(Xke

−itXk−1 , e−isX0)(wfθ)
∗(t)(wf2θ )

∗(s)K∗
Cn

(s)K∗
Cn

(t)dtds,

C5 =
−1

2π2

∫∫
Cov(e−itXk−1 ,X1e

−isX0)(wfθ)
∗(s)(wf2θ )

∗(t)K∗
Cn

(s)K∗
Cn

(t)dtds,

C6 =
1

(2π)2

∫∫
Cov[(X2

k + ε2k)e
−itXk−1 , e−isX0 ]w∗(t)(wf2θ )

∗(s)K∗
Cn

(s)K∗
Cn

(t)dtds,

C7 =
1

(2π)2

∫∫
Cov[e−itXk−1 , (X2

1 + ε21)e
−isX0 ]w∗(s)(wf2θ )

∗(t)K∗
Cn

(s)K∗
Cn

(t)dtds,

C8 =
−1

2π2

∫∫
Cov[(X2

k + ε2k)e
−itXk−1 ,X1e

−isX0 ]w∗(t)(wfθ)
∗(s)K∗

Cn
(s)K∗

Cn
(t)dtds,

C9 =
−1

2π2

∫∫
Cov[Xke

−itXk−1 , (X2
1 + ε21)e

−isX0 ]w∗(s)(wfθ)
∗(t)K∗

Cn
(s)K∗

Cn
(t)dtds

Easy computations give

Cov[(X2
k + ε2k)e

−itXk−1 , (X2
1 + ε21)e

−isX0 ] =

Cov(X2
ke

−itXk−1 ,X2
1 e

−isX0) + σ2εCov(X
2
ke

−itXk−1 , e−isX0)

+ σ2εCov(e
−itXk−1 ,X2

1e
−isX0) + σ4εCov(e

−itXk−1 , e−isX0) ,

Cov[(X2
k + ε2k)e

−itXk−1 , e−isX0 ] = Cov(X2
ke

−itXk−1 , e−isX0) + σ2εCov(e
−itXk−1 , e−isX0) ,

Cov[(X2
k + ε2k)e

−itXk−1 ,X1e
−isX0 ] = Cov(X2

ke
−itXk−1 ,X1e

−isX0) + σ2εCov(e
−itXk−1 ,X1e

−isX0) .

which induces the decomposition Cov
(
Ak,k−1, A1,0

)
=
∑9

i=1Ei, with

E1 =
1

(2π)2

∫∫
Cov(e−itXk−1 , e−isX0)K∗

Cn
(t)K∗

Cn
(s)

× [(wf2θ )
∗(t)(wf2θ )

∗(s) + σ4εw
∗(t)w∗(s) + σ2εw

∗(t)(wfθ)
∗(s) + σ2εw

∗(s)(wfθ)
∗(t))]dtds,
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E2 = C2 =
1

π2

∫∫
Cov(Xke

−itXk−1 ,X1e
isX0)(wfθ)

∗(t)(wfθ)
∗(s)K∗

Cn
(t)K∗

Cn
(s)dtds,

E3 =
1

(2π)2

∫∫
Cov(X2

ke
−itXk−1 ,X2

1 e
−isX0)w∗(t)w∗(s)K∗

Cn
(t)K∗

Cn
(s)dtds,

E4 =
−1

2π2

∫∫
Cov(Xke

−itXk−1 , e−isX0)K∗
Cn

(s)K∗
Cn

(t)(wfθ)
∗(t)((wf2θ )

∗(s) + σ2εw
∗(s))dtds,

E5 =
−1

2π2

∫∫
Cov(e−itXk−1 ,X1e

−isX0)K∗
Cn

(s)K∗
Cn

(t)(wfθ)
∗(s)((wf2θ )

∗(t) + σ2εw
∗(t))dtds,

E6 =
1

(2π)2

∫∫
Cov(X2

ke
−itXk−1 , e−isX0)K∗

Cn
(t)K∗

Cn
(s)w∗(t)(σ2εw

∗(s) + (wf2θ )
∗(s))dtds,

E7 =
1

(2π)2

∫∫
Cov(e−itXk−1 ,X2

1e
isX0)K∗

Cn
(t)K∗

Cn
(s)w∗(s)(σ2εw

∗(t) + (wf2θ )
∗(t))dtds,

E8 =
−1

2π2

∫∫
Cov(X2

ke
−itXk−1 ,X1e

−isX0)w∗(t)(wfθ)
∗(s)K∗

Cn
(s)K∗

Cn
(t)dtds,

E9 =
−1

2π2

∫∫
Cov(Xke

−itXk−1 ,X2
1e

−isX0)w∗(s)(wfθ)
∗(t)K∗

Cn
(s)K∗

Cn
(t)dtds .

Using (A.24) and (B.10), we have the upper bounds

|Cov(e−itXk−1 , e−isX0)| ≤ CαX(k − 1)

|Cov(Xke
−itXk−1 ,X1e

−isX0)| ≤ C

∫ αX(k−2)

0
Q2

|X|(u)du

|Cov(X2
ke

−itXk−1 ,X2
1e

−isX0)| ≤ C

∫ αX(k−2)

0
Q4

|X|(t)dt

|Cov(X2
ke

−itXk−1 , e−isX0)| ≤ C

∫ αX(k−1)

0
Q2

|X|(t)dt

|Cov(e−itXk−1 ,X2
1e

−isX0)| ≤ C

∫ αX(k−2)

0
Q2

|X|(t)dt

|Cov(X2
ke

−itXk−1 ,X1e
−isX0)| ≤ C

∫ αX(k−2)

0
Q3

|X|(t)dt

|Cov(Xke
−itXk−1 ,X2

1e
−isX0)| ≤ C

∫ αX(k−2)

0
Q3

|X|(t)dt .

Since E(X4
1 ) <∞ and limk→∞ αX(k) = 0, we infer that limk→∞ | Cov

(
Ak,k−1, A1,0

)
| = 0. Now,

by Cesaro’s mean convergence theorem

lim
n→∞

1

n

n∑

k=3

| Cov
(
A1,0, Ak,k−1

)
| = 0 .

This completes the proof of the consistency.

B.5. Proof of Theorem 5.2.
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Proof of 1) in Theorem 5.2. Starting from the decomposition (B.4) we shall check the three
following points.

i) E

[
(S

(1)
n (θ0)− S

(1)
θ0,PX

(θ0))(S
(1)
n (θ0)− S

(1)
θ0,PX

(θ0))⊤
]
= O[ϕnϕ

⊤
n ]

ii) S
(2)
n (θ0)

IP−→
n→∞

S
(2)
θ0,PX

(θ0);

iii) Rn defined in (B.3) satisfies Rn
IP−→

n→∞
0.

The rate of convergence of θ̂ is thus given by the order of

E

[
(S(1)

n (θ0)− S
(1)
θ0,PX

(θ0))(S(1)
n (θ0)− S

(1)
θ0,PX

(θ0))⊤
]
.

Proof of i)

We first write
(
S(1)
n (θ)

)
i

=
1

n

n∑

k=1

∂

∂θi
Re
[
((Zk − fθ)

2w) ⋆ Kn,Cn(Zk−1)− E[(Zk − fθ(Xk−1))
2w(Xk−1)]

]

=
1

n

n∑

k=1

(
∂

∂θi
Re(Zk − fθ)

2w ⋆ Kn,Cn(Zk−1)− E

[
∂

∂θi
(Zk − fθ(Xk−1))

2w(Xk−1)

])
.

Study of the bias. As in Butucea and Taupin (2008), we get that
∣∣∣∣E
[(
S(1)
n (θ0)

)
j

]∣∣∣∣ ≤ C1(fθ0 , w, fε)min
[
B

[1]
n,jB

[2]
n,j

]
,

for B
[q]
n,j, q = 1, 2, defined in Theorem 5.2.

Study of the variance. For the variance term, note first that

Var
((
S(1)
n (θ0)

)
j

)
≤ 3

n
Var(D1,0) +

2

n

n∑

k=3

|Cov(D1,0,Dk,k−1)|,

with

Dk,k−1 = Re
((

− 2Zkf
(1)
θ0,j

+ 2fθf
(1)
θ0,j

)
w
)
⋆ Kn,Cn(Zk−1).

The first part in Var
[
(S

(1)
n (θ0))j

]
is controlled as in Butucea and Taupin (2008) by

1

n
Var(D1,0) ≤

C(σ2ξ , fθ0 , f
(1)
θ0,j

, w, fε)

n
min{V [1]

n,j(θ
0), V

[2]
n,j(θ

0)}(B.13)

with V
[q]
n,j, q = 1, 2 defined in Theorem 5.2. We now control the term

1

n

n∑

k=3

|Cov(D1,0,Dk,k−1)|.

Applying again Lemma B.1, we obtain that

Cov(D1,0,Dk,k−1) = F1 + F2 + F3 + F4
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with

F1 =
1

π2
Re

∫∫
Cov(Xke

−itXk−1 ,X1e
−isX0)

(
f
(1)
θ0,j

w
)∗
(t)
(
f
(1)
θ0,j

w
)∗
(s)K∗

Cn
(t)K∗

Cn
(s)dtds

F2 =
1

π2
Re

∫∫
Cov(e−itXk−1 , e−isX0)

(
fθ0f

(1)
θ0,j

w
)∗
(t)
(
fθ0f

(1)
θ0,j

w
)∗
(s)K∗

Cn
(t)K∗

Cn
(s)dtds

F3 =
−1

π2
Re

∫∫
Cov(Xke

−itXk−1 , e−isX0)
(
f
(1)
θ0,j

w
)∗
(t)
(
fθ0f

(1)
θ0,j

w
)∗
(s)K∗

Cn
(t)K∗

Cn
(s)dtds

F4 =
−1

π2
Re

∫∫
Cov(e−itXk−1 ,X1e

−isX0)
(
f
(1)
θ0,j

w
)∗
(t)
(
f
(1)
θ0,j

w
)∗
(s)K∗

Cn
(t)K∗

Cn
(s)dtds.

Using (A.24) and (B.10) we have the upper bounds

|Cov(e−itXk−1 , eisX0)| ≤ CαX(k − 1)

|Cov(Xke
−itXk−1 ,X1e

isX0)| ≤ C

∫ αX(k−2)

0
Q2

|X|(u)du

|Cov(Xke
itXk−1 , eisX0)| ≤ C

∫ αX(k−1)

0
Q|X|(u)du

|Cov(eitXk−1 ,X1e
isX0)| ≤ C

∫ αX(k−2)

0
Q|X|(u)du.

Since E(X4
1 ) < ∞, we infer that Q|X|(u) ≤ Cu−1/4, and consequently all the covariance terms

are O(
√
αX(k)). Finally, if

∑
k>0

√
αX(k) <∞, then

1

n

n∑

k=3

|Cov(D1,0,Dk,k−1)| ≤
C

n
.

This, together with (B.13), implies that

Var
[(
S(1)
n (θ0)

)
j

]
≤ C

n
min{V [1]

n,j(θ
0), V

[2]
n,j(θ

0)} .

Proof of ii)

The proof of ii) starts from the expression of the second derivative of the estimation criterion

(B.14)
(
S(2)
n (θ)

)
j,k

=
1

2πn

n∑

ℓ=1

Re

∫ (
−2Zℓ

∂2

∂θj∂θk
(fθw) +

∂2

∂θj∂θk
(f2θw)

)∗

(t)
K∗

Cn
(t)e−itZℓ−1

f∗ε (−t)
dt.

Following the same lines as for the consistency we prove that

S(2)
n (θ0)

IP−→
n→∞

S
(2)
θ0,PX

(θ0).

�

Proof of iii)
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The proof of iii) follows from (B.14), from the smoothness properties of wfθ and from Assump-
tion (A4).

2

Proof of 2) in Theorem 5.2. The proof of 2) in theorem 5.2 is quite similar to the proof of 1).

The main differences appear in the control of the bias and variance of S
(1)
n (θ0). More precisely,

we start from

S(1)
n (θ) =

1

n

n∑

k=1

Re

(
∂

∂θ
(Zk − fθ)

2w

)
⋆ Kn,Cn(Zk−1)− E

[
∂

∂θ
(Zk − fθ(Xk−1))

2w(Xk−1)

]
.

Study of the bias Since PZ,X(z, z) = PX(x)fε(z−x) we obtain that E[S
(1)
n (θ0)]−S(1)

θ0,PX
(θ0)

is equal to

− 2E
[
fθ0(X0)(f

(1)
θ0
w) ⋆ KCn(X0)− fθ0(X0)f

(1)
θ0

(X0)w(X0)
]

+ 2E
[
(f

(1)
θ0
fθ0w) ⋆ KCn(X0)− (f

(1)
θ0
fθ0w)(X0)

]
,

that is E[S
(1)
n (θ0)]− S

(1)
θ0,PX

(θ0) is equal to

− 2Re

∫∫
fθ0(x)e

−iux(f
(1)
θ0
w)∗(u)(K∗

Cn
(u)− 1)PX (dx) du

+ 2Re

∫∫
e−iux(fθ0f

(1)
θ0
w)∗(u)(K∗

Cn
(u)− 1)PX (dx) du.

It follows that for j = 1, · · · , d,
∣∣∣E[(S(1)

n (θ0))j ]− (S
(1)
θ0,PX

(θ0))j

∣∣∣

≤ E|fθ0(X0)|
∫

|(f (1)
θ0,j

w)∗(u)(K∗
Cn

(u)− 1)|du+

∫
|(fθ0f (1)θ0,j

w)∗(u)(K∗
Cn

(u)− 1)|du.

Study of the variance For the study of the variance we combine the proof in Butucea and
Taupin (2008) and the proof of 1) of Theorem 5.2. For these reasons we only give a sketch of
the proof, with details only for specific parts. As for the proof of 1) we start from

Var
[
(S(1)

n (θ0))j
]
=

1

n
Var

[
Re

(
∂[−2Zkfθw + f2θw]

∂θj
|θ=θ0

)
⋆ Kn,Cn(Zk−1)

]

+
2

n2

∑

1≤j<k≤n

Cov(Dk,k−1,Dj,j−1),

with Dk,k−1 defined in (B.5). The control of (2/n2)
∑

1≤j<k≤nCov(Dk,k−1,Dj,j−1) is done as in

the proof of 1). We now control the first part of Var
(
(S

(1)
n (θ0))j

)
.

Var
[
(S(1)

n (θ0))j
]
≤ C

n
ReE

[(
∂[−2Zifθw + f2θw]

∂θj
|θ=θ0

)
⋆ Kn,Cn(Zi)

]2
.



34 JÉRÔME DEDECKER(1), ADELINE SAMSON(1), MARIE-LUCE TAUPIN(2)

In other words,

Var
[
(S(1)

n (θ0))j
]

≤ C

n
ReE

[(
Zif

(1)
θ0
w + fθ0f

(1)
θ0
w
)
⋆ Kn,Cn(Zi)

]2

=
C

n
ReE

[(
(f2θ0(X0) + σ2ξ )f

(1)
θ0
w + fθ0f

(1)
θ0
w
)
⋆ Kn,Cn(Z0)

]2
.

Now, write that

ReE
[(

(f2θ0(X0) + σ2ξ )f
(1)
θ0
w + fθ0f

(1)
θ0
w
)
⋆ Kn,Cn(Z0)

]2
= II1 + II2,

with

II1 = Re

∫∫
fε(z − x)(f2θ0(x) + σ2ξ )

(∫
(f

(1)
θ0
w)(u)Kn,Cn(z − u)du

)2

PX(dx)dz

II2 = Re

∫∫
fε(z − x)

(∫
(fθ0f

(1)
θ0
w)(u)Kn,Cn(z − u)du

)2

PX(dx)dz.

We apply Hölder Inequality and obtain that

|II1| ≤ sup
z∈R

E[(f2θ0(X0) + σ2ξ )fε(z −X0)] ‖ (f
(1)
θ0
w) ⋆ Kn,Cn ‖22,

and that |II1| is also less than

E[(f2θ0(X0) + σ2ξ )] ‖ (f
(1)
θ0
w) ⋆ Kn,Cn ‖2∞

In the same way we have

|II2| ≤ sup
z∈R

E[fε(z −X0)] ‖ (fθ0f
(1)
θ0
w) ⋆ Kn,Cn ‖22, and II2 ≤‖ (fθ0f

(1)
θ0
w) ⋆ Kn,Cn ‖2∞ .

Consequently we have

Var
[
(S(1)

n (θ0))j
]
≤
C(σ2ξ , fθ0 , fε)

n

[
‖ (f

(1)
θ0
w) ⋆ Kn,Cn ‖22 + ‖ (fθ0f

(1)
θ0
w) ⋆ Kn,Cn ‖22

]
(B.15)

and

Var
[
(S(1)

n (θ0))j
]
≤ C1(fθ0)

n

[
‖ (f

(1)
θ0
w) ⋆ Kn,Cn ‖22 + ‖ (fθ0f

(1)
θ0
w) ⋆ Kn,Cn ‖21

]
.(B.16)

By combining (B.15) and (B.16), we get that

Var
[
(S(1)

n (θ0))j
]
≤
C((fθ0 , σ

2
ξ , fε)

n
min{V [1]

n,j(θ
0), V

[2]
n,j(θ

0)}

with V
[q]
n,j, q = 1, 2 defined in Theorem 5.2.
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