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ABSTRACT. Consider an autoregressive model with measurement error: we observe
Z; = X; + €;, where X; is a stationary solution of the autoregressive equation X; =
foo(Xi—1) + &. The regression function fgo is known up to a finite dimensional param-
eter §9. The distributions of Xy and &, are unknown whereas the distribution of ¢y is
completely known. We want to estimate the parameter #° by using the observations
2o, .., Zn. We propose an estimation procedure based on a modified least square cri-
terion. This procedure provides an asymptotically normal estimator 0 of 60, for a large
class of regression functions and various noise distributions.
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1. INTRODUCTION

We consider an autoregressive model with measurement error satisfying

Z; =X +e,
Xi = foo(Xiz1) +&

where one observes Zy, - - - , Z,, and the random variables £;, X;, €; are unobserved. The regression
function fyo is known up to a finite dimensional parameter §°, belonging to the interior ©° of
a compact set © C R?. The centered innovations (&)i>1 and the errors (g;);>0 are independent
and identically distributed (i.i.d.) random variables with finite variances Var({;) = a? and

(1.1)

Var(gg) = 2. We assume that £y admits a known density with respect to the Lebesgue measure,
denoted by f.. Furthermore we assume that the random variables Xy, (&;);>1 and (g);>0 are
independent. The distribution of &1 is unknown and does not necessarily admit a density with
respect to the Lebesgue measure. We assume that (X;);>¢ is strictly stationary, which means
that the initial distribution of X is an invariant distribution for the transition kernel of the
homogeneous Markov chain (X});>o.

Our aim is to estimate 69 for a large class of functions fg, whatever the known error distri-
bution, and without the knowledge of the &;’s distribution. The distribution of the innovations
being unknown, this model belongs to the family of semi-parametric models.
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Previously known results. Several authors have considered the case where the function fy is
linear (in both @ and x), see e.g. Andersen and Deistler (1984), Nowak (1985), Chanda (1995,
1996), Staudenmayer and Buonaccorsi (2005), and Costa et al. (2010). We can note that, in
this specific case, the model (1.1) is also an ARMA model (see Section 4.1.1 for further details).
Consequently, all previously known estimation procedures for ARMA models can be applied
here, without assuming that the error distribution is known.

For a general regression function, the model (1.1) is a Hidden Markov Model with possibly
a non compact continuous state space, and with unknown innovation distribution. When the
innovation distribution is known up to a finite dimensional parameter, the model (1.1) is fully
parametric and various results are already stated. Among others, the parameters can be esti-
mated by maximum likelihood, and consistency, asymptotic normality and efficiency have been
proved. For further references on estimation in fully parametric Hidden Markov Models, we
refer for instance to Leroux (1992), Bickel et al. (1998), Jensen and Petersen (1999), Douc and
Matias (2001), Douc et al. (2004), Fuh (2006), Genon-Catalot and Laredo (2006), Na et. al.
(2006), and Douc et al. (2011).

In this paper, we consider the case where the innovation distribution is unknown, and thus the
model is not fully parametric. In this general context, there are few results. To our knowledge,
the only paper which gives a consistent estimator is the paper by Comte and Taupin (2001).
These authors propose an estimation procedure based on a modified least squares minimization.
They give an upper bound for the rate of convergence of their estimator, that depends on the
smoothness of the regression function and on the smoothness of f.. Those results are obtained
by assuming that the distribution Px of Xy admits a density fx with respect to the Lebesgue
measure and that the stationary Markov chain (X;);>o is absolutely regular (8-mixing). The
main drawback of their approach is that their estimation criterion is not explicit, hence the links
between the convergence rate of their estimator and the smoothness of the regression function
and of the error distribution are not explicit either. Consequently, Comte and Taupin (2001)
are able to prove that their estimator achieves the parametric rate only for very few couples of
regression functions/error distribution. Lastly their dependency conditions are quite restrictive,
and the assumption that X admits a density is not natural in this context.

Our results. In this paper, we propose a new estimation procedure which provides a consistent
estimator with a parametric rate of convergence in a very general context. Our approach is based
on the new contrast function

Soo.py (0) = E[(Z1 = fo(X0))? w(Xo)],
where w is a weight function to be chosen and E is the expectation Eg p, . We assume that
w is such that (wfy)*/fF and (wf?)*/fF are integrable, where * is the Fourier transform of a
function ¢. We estimate 6° by 6 = arg minge@ Sn(0), where

(Zx — fo) w)* (t) e~ k-1

(12) Snl " 2mn Z / fx(—=t) di,

where Re(u) is the real part of u. Under general assumptions, we prove that the estimator

defined 6 is consistent. Moreover, we give some conditions under which the parametric rate of
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convergence as well as the asymptotic normality can be stated. Those results hold under weak
dependency conditions as introduced in Dedecker and Prieur (2005).

This procedure is clearly simpler than that of Comte and Taupin (2001). The resulting rate
is more explicit and links directly the smoothness of the regression function to that of f.. Our
new estimator is asymptotically Gaussian for a large class of regression functions, which is not
the case in Comte and Taupin (2001).

The asymptotic properties of our estimator are illustrated through a simulation study. It
confirms that our estimator performs well in various contexts, even in cases where the Markov
chain (X;);>0 is not S-mixing (and not even irreducible), when the ratio signal to noise is small
or large, for various sample sizes, and for different types of error distribution. Our estimator
always better performs than the so-called naive estimator (built by replacing the non-observed
X by Z in the usual least squares criterion). Our estimation procedure depends on the choice of
the weight function w. The influence of this weight function is also studied in the simulations.

Finally, we propose a more general estimator when it is not possible to find a weight function
w such that (wfp)*/f* and (wf?)*/f: are integrable. We establish a consistency result, and
we give an upper bound for the quadratic risk, that relates the smoothness properties of the
regression function to that of f.. These last results are proved under a-mixing conditions.

The paper is organized as follows. In Section 2 we present our estimation procedure. The
theoretical properties of the estimator are stated in Section 3. The simulations are presented in
Section 4. In Section 5 we introduce a more general estimator and we describe its asymptotic
behavior. The proofs are gathered in Appendix.

2. ESTIMATION PROCEDURE

In order to define more rigorously the criterion presented in the introduction, we first give
some preliminary notations and assumptions.

2.1. Notations. Let
| @IIlZ/I@(ﬂJ)Idw, | @II%Z/@DQ(w)d% and || w\loo=su§ls0(fﬂ)|-
re

The convolution product of two square integrable functions p and ¢ is denoted by p % ¢(z) =
[ p(z — z)q(x)dz. The Fourier transform ¢* of a function ¢ is defined by

o) = [ e plw)da.

For 6 € RY, let || 6 12,= Zi:l 02, and let 6 be the transpose matrix of 6.
For a map (0, u) — ¢g(u) from © x R to R, the first and second derivatives with respect to ¢
are denoted by

. Ovp (- ‘
oM = (%2()) e wmh@g]),(.):g%j)forje{lj...,d}

2 2 . *vp(- .
and <pé )() = (wé}k()) ' , with ‘P@,j,k(') = (%?j&(%)’ for j,k € {1,--- ,d}.
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From now, P, E and Var denote respectively the probability Pgo p, , the expected value Ego p,
and the variance Vargo p, , when the underlying and unknown true parameters are 6% and Pyx.

2.2. Assumptions. We consider three types of assumptions.

e Smoothness and moment assumptions

(A1) On ©°, the function 6 — fy admits continuous derivatives with respect to 6 up to the
order 3.

(A2) On ©° the quantity w(Xy)(Z; — fo(Xo))?, and the absolute values of its derivatives
with respect to 6 up to order 2 have a finite expectation.

e Identifiability assumptions

(I1y) The quantity Sgo p, (6) = E[(fpo(X) — fo(X))?w(X)] admits one unique minimum at
6 =46

0
(I13) For all 8 € ©°, the matrix S(Sﬁ?PX 0) = <W9J()> o exists and the matrix
_27.]_

.
Séﬁ?PX(eo) =2E [w(X) (fé?(X)) (fé?(X)) ] is positive definite.
e Assumptions on f,

(N7) The density f. belongs to Lo(R) and for all z € R, fX(x) # 0.

The assumption (N7) is quite usual when considering estimation in the convolution model.
It ensures the existence of the estimation criterion.

2.3. Definition of the estimator. As already mentioned in the introduction, the starting
point of our estimation procedure is to construct an estimator of the least square contrast

(2.3) Spo py (0) = E[(Z1 — fo(X0))? w(Xo)],

based on the observations (Z;) for i =0,...,n.
We consider the following condition: there exists a weight function w such that for all 8 € ©,

(C1) The functions (wfy) and (wfF) belong to Li(R), and the functions w*/f*, (fow)* /£,
(féw)*/fF belong to Ly (R).

Remark 2.1. The first part of Condition (Cy) is not restrictive. The second part can be

heuristically expressed as “one can find a weight function w such that wfy is smooth enough

compared to f.”. For a large number of regression functions, such a weight function can be
easily exhibited. Some practical choices are discussed in the simulation study (Section 4).

If (C1) holds, the expectations E(w(X)), E(w(X)fe(X)) and E(w(X)f2(X)) can be easily
estimated. Let us present the ideas of the estimation procedure. Let ¢ be such that ¢ and
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©*/ ¥ belong to Li(R). For such a function, due to the independence between gy and Xy we

have
E[p(X,)] = E (% / w*(t)eitXOdt> _E (% / %dt) .

Hence, based on the observations Zy, - - , Z,, E[p(Xp)] is estimated by

dt.

* tn_l nf e—ith
LRG/SD () *ijl
27 fs (_t)

We then propose to estimate Sgo p, (¢) by the quantity S,(¢) defined by

(@ o)) @ e
(2.4) Sp(0) = ﬁ ZRG/ ( ' ’ f*()—t) dt,
k=1 €

which satisfies
E(Sn(0)) = E[(Z1 — fs(Xo0))*w(Xo)].

This criteria is minimum when 6 = 6° under the identifiability assumption (I11). Using this
empirical criterion we propose to estimate §° by

2. = i :
(2.5) 0 = arg min Sn(0)

3. ASYMPTOTIC PROPERTIES

In this section, we give some conditions under which our estimator is consistent and asymp-
totically normal.

3.1. Consistency of the estimator. The first result to mention is the consistency of our
estimator. It holds under the following additional condition.

(C2)  The functions sup ‘ (fg(lz)w)*/j:;k belong to L1 (R) for any
) '

and sup ‘ (fgfe(’ll)w) */f;k
6cO

ie{l,...,d}.

This condition is similar to (Cy) for the first derivatives of fy. Thus it is not more restrictive
than (Cy).

Theorem 3.1. Consider Model (1.1) under the assumptions (A1)-(A2), (I11), (I1z2), (N1),
and the conditions (Cy1)-(Cz). Then 0 defined by (2.5) converges in probability to 6°.
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3.2. /n-consistency and asymptotic normality. To state the asymptotic normality of our
estimator, we need to introduce some additional conditions.

0? *
(89‘89 (fgw)> /2| belong to L;(R) for
10U

and sup
0O

(C3) the functions sup <07w > /fE
0O

any i,j € {1,...,d};

- P*(fow) >*
C the functions su — *
(Ca) P (aeiaejaek RE

LI(R)a for i,jak € {1, ’d}

# LN\
<m(‘f6w)> /fg belong to

and sup
0O

(Cs) The integrals /]t(fgow)*(t)]dt and /\t(fgoféé)kw)*(t)]dt are finite, for k € {1,--- ,d}.

The asymptotic properties of (/9\, defined by (2.5), are stated under two different dependency
conditions, which are presented below.

Definition 3.1. Let (2, A,P) be a probability space. Let' Y be a random variable with values in
a Banach space (B, || - ||B). Denote by Ax(B) the set of k-Lipschitz functions, i.e. the functions
f from (B,] - |B) to R such that |f(x) — f(y)| < k ||z —y ||B. Let M be a o-algebra of A. Let
Py|am be a conditional distribution of Y given M, Py the distribution of Y, and B(B) the Borel
o-algebra on (B, || - ||g). The dependence coefficients o and T are defined by

a(Mo(Y)) = %Azg?ﬂ) E(Pyae(4) = Py (A)])
and i B([Yl]2) <0, 7(MY) = B[ sup [Pyimlf)=Pr(£)]).

Let X = (X;)i>0 be a strictly stationary Markov chain of real-valued random variables. On
R?, we put the norm ||z||g2 = (Jx1] + |z2|)/2. For any integer k > 0, the coefficients ax (k) and
7x,2(k) of the chain are defined by

ax(k) = a(o(Xo),o(X))
and if E(|Xo]) < 00, 7x2(k) = sup{7(c(Xo),(Xi,, Xi,)),k < i1 <ia}.

Coefficient a(M, o(Y)) is the usual strong mixing coefficient introduced by Rosenblatt (1956).
Coefficient 7(M,Y") has been introduced by Dedecker and Prieur (2005). In Section A.2, we
recall some conditions on &y and fyp under which the Markov chain (X;);>o is a-mixing or
7-dependent and illustrate those conditions through some examples.

First we state the asymptotic normality of  when the Markov chain (X;) of Model (1.1) is
a-mixing.

Theorem 3.2. Consider Model (1.1) under assumptions (A1), (Az2), (I11), (I13), (N1), and
conditions (Cy1)-(Ca). Let Qx| be the inverse cadlag of the tail function t — P(|X1| > t).
Assume that

(3.6) Z/ QPx,|(w)du < oo.

k>1
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Then 8 defined by (2.5) is a \/n-consistent estimator of 0° which satisfies
Vi -6 £ N(0,%),

n—o0

where the covariance matriz ¥ is defined in equation (B.5).
Next, we give the corresponding result when the Markov chain (X;) is 7-dependent.

Theorem 3.3. Consider Model (1.1) under assumptions (A1), (Az2), I11), (I12), (N1), and
conditions (C1)-(Cs). Let G(t) = t_lE(XIQIXlz>t), and let G=' be the inverse cadlag of G.
Assume that

(3.7) > G (rxa(k))mx2(k) < 00
k>0

Then 8 defined by (2.5) is a \/n-consistent estimator of 0° which satisfies
V(-6 = N(0,%),

n—oo

where the covariance matriz ¥ is defined in equation (B.5).

Remark 3.1. Let us give some conditions under which (3.6) or (3.7) are verified. Assume that
E(|Xo|P) < oo for some p > 2. Then (3.6) is true provided that > ;.o k* P2 ax (k) < oo, and
(3.7) is true provided that >, o(mx,2(k))P~2/P < cc.

Note that those results do not require the Markov chain to be absolutely regular as it is
the case in Comte and Taupin (2001). Consequently they apply to autoregressive models with
weaker dependency conditions. Beside the dependency conditions, our estimation procedure
allows to achieve the parametric rate for a larger class of regression functions than in Comte
and Taupin (2001).

The conditions under which Theorems 3.2 and 3.3 hold are similar, except Condition (Cs)
which appears only in Theorem 3.3. This condition is just technical and not restrictive at all.

The choice of the weight function w is crucial. Various weight functions can handle with
Conditions C1-Cs. The numerical properties of the resulting estimators will differ from one
choice to another. This point is discussed on simulated data in the next section.

4. SIMULATION STUDY

We investigate the properties of our estimator for different regression functions on simulated
data. For each choice of regression function, we consider two error distributions: the Laplace
distribution and the Gaussian distribution. When & has the Laplace distribution, its density
and Fourier transform are

(4.8) felx) =

1 V2 1
-z dfiz)=——".
0’8\/§exp< Ug ’1")7 al fE (1’) 1+0,€21_2/2

Hence, £ is centered with variance o2.

When ¢ is Gaussian, its density and Fourier transform are

4.9 _ 1 xz d * _ 2_ 2 9
(4.9) fe(x) = JE@GXP<_@)’ and fZ(z) = exp(—o:z"/2).
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Hence, 1 is centered with variance ag.
For each of these error distributions, we consider the case of a linear regression function and

of a Cauchy regression function. We start with the linear case.

4.1. Linear regression function. We consider the model (1.1) with fp(z) = ax+b, where |a| <
1 and 0 = (a, b)T. In these simulations, we have chosen to illustrate the numerical properties
of our estimator under the weakest of the dependency conditions, that is 7-dependency. As it
is recalled in Appendix A.2, when fyo is linear with |a| < 1, if {; has a density bounded from
below in a neighborhood of the origin, then the Markov chain (X;);>¢ is a-mixing. When &g
does not have a density, then the chain may not be a-mixing (and not even irreducible), but it
is always 7-dependent.

Here, we consider the case where the innovation distribution is discrete, in such a way that
the stationary Markov Chain is 7-dependent but not a-mixing. We also consider two distinct
values of 6. For the first value, the stationary distribution of X is absolutely continuous with
respect to the Lebesgue measure. For the second value, the stationary distribution is singular
with respect to the Lebesgue measure. In both cases Theorem 3.3 applies, and the estimator 6
is asymptotically normal.

e Case A (absolutely continuous stationary distribution). We focus on the case where the true
parameter is 60 = (1/2,1/4)T, Xy is uniformly distributed over [0, 1], and (£;);>1 is a sequence
of i.i.d. random variables, independent of X and such that P(§; = —1/4) =P(§ = 1/4) = 1/2.
Then the Markov chain defined for 7 > 0 by

1 1
(4.10) X; = 1 + §Xi—1 +¢&

is strictly stationary, the stationary distribution being the uniform distribution over [0, 1], and
consequently ag(o = 1/12. This chain is non-irreducible, and the dependency coefficients are
such that ax (k) = 1/4 (see for instance Bradley (1986), p. 180) and 7x 2(k) = O(27%). Thus
the Markov chain is not a-mixing, but it is 7-dependent. For the simulation, we start with X
uniformly distributed over [0, 1], so the simulated chain is stationary.

e Case B (singular stationary distribution). We consider the case where the true parameter is
0° = (1/3,1/3)T, X is uniformly distributed over the Cantor set, and (&;);>1 is a sequence of
iid. random variables, independent of Xy and such that P(§; = —1/3) = P(§; = 1/3) = 1/2.
Then the Markov chain defined for ¢ > 0 by
1 1

(4.11) X; = 3 + gXifl +¢&;

is strictly stationary, the stationary distribution being the uniform distribution over the Cantor
set, and consequently agf = 1/8. This chain is non-irreducible, and the dependency coefficients
satisfy ax (k) = 1/4 and 7x2(k) = O(37%). Thus the Markov chain is not a-mixing, but is
7-dependent. For the simulation, we start with Xy uniformly distributed over [0, 1], and we

consider that the chain is close to the stationary chain after 1000 iterations. We then set
Xi = Xit1000-

In these two cases, we can find a weight function w satisfying the conditions (Cq)-(Cs). We
first give the detailed expression of the estimator for two choices of weight functions w. Then we
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recall the classic estimator when X is directly observed, the ARMA estimator, and the so-called
naive estimator.

4.1.1. Expression of the estimator. We consider the two following weight functions w

(412)  w(z) = N(2) = exp{—a?/(402)} and w(z) = SC(z) = ;ﬁ (2*%“(””))4
These choices of weight ensure that Conditions (C1)-(Cs) hold and that the two estimators,
denoted by /G\N and /9\5(; respectively, converge to % with the parametric rate of convergence.
There are two main differences between these two weight functions. First, N depends on the
variance error o2. Hence the estimator should be adaptive to the noise level. On the contrary,
it may be sensitive to very small error variance as it appears in the simulations (see Figure 1).
Second, SC' has strong smoothness properties since its Fourier transform is compactly supported.
The two associated estimators are based on the calculation of S,,(#), which can be written as

n

1
Sn(0) = — > (27 + 6 = 226b) Io(Zk—1) + 0 To(Zk—1) — 20(Zg — D) T2 (Zp—1)),
k=1
with
efiuZ

(4.13) 1(2) = 5Re [0y () frms

where p]( x) = a7 for j = 0,1,2, w being either w = N or w = SC. With the above notations,
6 = (@,b)7 satisfies

> b1 Z(Z-1) D 10(Zi—1) — D opey Zilo(Zk—1) D ey i (Zi—1)
Shor Bo(Zk1) oy Io(Zk1) = (S 1i(Zk1))

(415) B = Sk Zelo(Z1) o3k D(Zkn)

> k=1 Lo(Zk-1) > ket L0(Zk-1)

We now compute [;(Z) for j = 0,1,2 and the two weight functions. In the following we
respectively denote I; v(Z) and Ijsc(Z) the previous integrals when the weight function is
either w = N or w = S5C.

We start with w = N and give the details of the calculations for the two error distributions
(Laplace and Gaussian), which are explicit. Then, with the weight function w = SC, we present
the calculations, which are not explicit whatever the error distribution f..

(4.14) @

)

e When w = N, Fourier calculations provide that

N*(t) = V2202 exp(—c?t?)
(Np)*(t) = \/_\/ﬁexp —o2t? (—QUSt/i),
(Npo)*(t) = —v2m\/202exp(—c?t?) )(— 202 + 40?252).
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It follows that

Iyn(Z) = iJR@/\/%\/@exp(—agﬁ)f*(iiz)dt,
€
Lin(Z) = —Re/\/_\/gexp —o2t?) (—20 t/i) (@tZ)
hLy(Z) = —Re/\/_\/ﬁexp —02t%) (202 — 4o tQ)fi (Z Z)dt
If f. is the Laplace distribution (4.8), replacing f by its expression we get
() = 210 % DN ) = [sa - 22 (o)) 0D

2 072

Ln(Z) = [12/4— 2/(802)] e 7 /W) [, y(Z) = [~02 + 922 /4 — Z*/(802)] e~ 77/ 1472),
If f. is the Gaussian distribution (4.9), replacing f* by its expression we obtain
Ion(Z) =V2e 219 I j(Z) = 2v/22e 77/ and I §(2Z) = V2(422 —202)e 77/ 22),
Hence we deduce the expression of dy and by by applying (4.14) and (4.15).
eWhen w = SC, Fourier calculations provide that
SC*(t) = Ty _o(t)(t3/6 4+ 2t* + 8t + 32/3) + L[_ g (t)(—t%/2 — 2t* + 16/3)
1,47 (£) (=% /6 + 2t — 8t + 32/3) + Tpg o (¢) (7 /2 — 2> 4 16/3)

(SOp)' () = 2 SC*(0)/i and (SCpa)* (1) = 0 5C* (1)),
The integrals I sc(Z), defined for j =0,1,2 by
1 e*itZ
4.1 I Z)=—R () ——=dt
(416) 150(2) = 5-Re [(SCo) (O Fsat

have no explicit form, whatever the error distribution f.. It has to be numerically computed,
using the IFFT Matlab function. More precisely, we consider a finite Fourier series approxima-
tion of (SCp;)*(t)/ f(t) whose Fourier transfom is calculated using IFF'T Matlab function. The
result is taken as an approximation of I; sc(Z). Finally we deduce the expression of agc and

ZSC by applying (4.14) and (4.15).

4.1.2. Comparison with classical estimators. We compare the two estimators é\N and 55(; with
three classical estimators, the usual least square estimator when there is no observation noise,
the ARMA estimator, and the so-called naive estimator.

e Estimator without noise. In the case where ¢; = 0, that is (Xp,...,X,,) is observed without
error, the parameters can be easily estimated by the usual least square estimators

~ n Z?—l XiXio1 — Z?—l X Z?—l Xi1 ~
ax = = = = and bx = ( X) —ax— < X 1)
ny i X2 — (i Xi1)? Z Z =
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o ARMA estimator. When the regression function is linear, the model may be written as
Zi—aZi1—b=§ +eg —ag_1.
The auto-covariance function vy of the stationary sequence Y; = &; + €; — ag;_1 is given by
Y (0) = (1 +a®)o? + ag, vy (1) = —ac?, and yy (k) =0 for k > 1.
It follows that Y; is an MA(1) process, which may be written as
Y =ni — Bni-1,

) = 2l (D] > 0).
and o2. Tt follows

where 7; is the innovation, and |3| < 1 (note that || # 1 because vy (
Moreover, one can give the explicit expression of 8 and 0727 in terms of a,o
that, if |a| < 1, (Z;)i>0 is the causal invertible ARMA(1,1) process

(4.17) Zi—aZi—1 =b+mn; — fni-1.

Note that a # (3 except if a = 0. Hence, if |a| < 1 and a # 0, one can estimate the parameters
(a,b, B) by maximizing the so-called Gaussian likelihood. These estimators are consistent and
asymptotically Gaussian. Moreover they are efficient when both the innovations and the errors
¢ are Gaussian (see Hannan (1973) or Brockwell and Davis (1991)). Note that this well-known
approach does not require the knowledge of the error distribution, but of course it works only in
the particular case where the regression function fy is linear. For the computation of the ARMA
estimator we use the function arma from the R tseries package (see Trapletti and Hornik (2011)).

mN O

The resulting estimators are denoted by Gurmae and bgrme-

e Naive estimator. The naive estimator is constructed by replacing the unobserved X; by the
observation Z; in the expression of ax and bx:

. ny i ZiZion =y i1 Ziy i Zica = 1/ . 1/¢
- 3 Brane = (32 2) ~tnane 2 (3701,
Anajve nz;;l ZZZ_l — (Z?:1 Zi,1)2 an naive n Zzl 7 anazven Zzl i—1

Classical results show that é\mwe is an asymptotically biased estimator of #°, which is confirmed
by the simulation study.

4.1.3. Simulation results. For each error distribution, we simulate 100 samples with size n,
n = 500, 5000 and 10000. We consider different values of o, such that the ratio signal to noise
s2n = o2 /Var(X) is 0.5,1.5 or 3. The comparison of the five estimators is based on the bias,

the Mean Squared Error (MSE), and the box plots. If (k) denotes the value of the estimation
for the k-th sample, the MSE is evaluated by the empirical mean over the 100 samples:

R | lo -
MSE(®) = -5 > (6(k) - 6°).
k=1
Results are presented in Figures 1-2 and Tables 1-4.
The first thing to notice is that, not surprisingly, @\nawe presents a bias, whatever the values of
n, s2n and the error distribution. The estimator ) x has the good expected properties (unbiased
and small MSE), but it is based on the observation of the X;’s. The previously known estimator
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FIGURE 1. Results for linear Case B and Gaussian error, with n = 5000 and
o2 /Var(X) = 0.5. Box plots of the five estimators dgrma, AN, dsc, ax and Anaive,
from left to right, based on 100 replications. True value is 1/3 (horizontal line).
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FIGURE 2. Results for linear Case B and Gaussian error, with n = 5000 and
02 /Var(X) = 6. Box plots of the five estimators Ggrma, AN, dsc, dx and Gnaive,
from left to right, based on 100 replications. True value is 1/3 (horizontal line).
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ratio Estimator
n s2n Oarma(MSE) ON(MSE) O0sc(MSE) O0x (MSE) Onaive(MSE)
1000 0.5 a  0.487 (0.008) 0.459 (0.020) 0.489 (0.002) 0.493 (0.001)  0.328 (0.030)

b 0.257 (0.002) 0.262 (0.002) 0.255 (0.001) 0.253 (0.001)  0.336 (0.008)

1.5 a  0.494 (0.015) 0.488 (0.013) 0.492 (0.006) 0.501 (0.001)  0.198 (0.092)

b 0.251 (0.004) 0.253 (0.002) 0.253 (0.002) 0.249 (0.001)  0.399 (0.023)

3 a  0.461 (0.044) 0.502 (0.029) 0.503 (0.026) 0.493 (0.001)  0.121 (0.145)

b 0.270 (0.012) 0.249 (0.001) 0.249 (0.001) 0.253 (0.001)  0.440 (0.037)

5000 0.5 a 0.497 (0.001) 0.499 (0.004) 0.499 (0.001) 0.499 (0.001)  0.332 (0.028)
b 0.252 (0.001) 0.251 (0.001) 0.251 (0.001) 0.251 (0.001)  0.334 (0.007)

1.5 a 0.498 (0.003) 0.508 (0.003) 0.503 (0.002) 0.499 (0.001)  0.199 (0.091)

b 0.250 (0.001) 0.247 (0.001) 0.248 (0.001) 0.250 (0.001)  0.399 (0.022)

3 a  0.487 (0.008) 0.492 (0.004) 0.495 (0.004) 0.500 (0.001)  0.123 (0.143)

b 0.256 (0.002) 0.253 (0.001) 0.252 (0.001) 0.250 (0.001)  0.437 (0.035)

10000 05 a 0.496 (0.001) 0.501 (0.002) 0.500 (0.001) 0.499 (0.001)  0.334 (0.028)
b 0.252 (0.001) 0.250 (0.001) 0.250 (0.001) 0.250 (0.001)  0.333 (0.007)

15 a 0.504 (0.002) 0.500 (0.001) 0.501 (0.001) 0.500 (0.001)  0.200 (0.090)

b 0.248 (0.001) 0.250 (0.001) 0.250 (0.001) 0.250 (0.001)  0.401 (0.023)

3 a  0.493 (0.003) 0.499 (0.001) 0.499 (0.002) 0.498 (0.001)  0.124 (0.142)

b 0.254 (0.001) 0.250 (0.001) 0.250 (0.001) 0.251 (0.001)  0.438 (0.036)

TABLE 1. Estimation results for Linear Case A Laplace error. Mean estimated

values of the five estimators Harma, GN, HSC, HX and Hnawe are presented for
various values of n (1000, 5000 or 10000) and s2n (0.5, 1.5, 3). True values are
0=1/2, " = 1/4. MSEs are given in brackets.

é\arma has good asymptotic properties. However its bias is often larger than the biases of 0 n and
550, except when s2n = 0.5 and ¢ is Gaussian.

We now consider the two estimators é\N and é\gc. Recall that their construction requires
the choice of w. Note first that, whatever the weight function w, the two estimators é\N and
55(; present good convergence properties. Their biases and MSEs decrease when n increases.
When compared one to another, we can see that their numerical behaviors are not the same.
Namely for not too large s2n, (/9\3(; has a MSE smaller than (/9\]\/ (see Figure 1 and Tables 1-4,
when s2n < 3). With large s2n, the estimator é\N seems to have better properties (see Figure
2 when s2n = 6). This is expected since N depends on ¢ and is thus more sensitive to small
values of 02. The error distribution seems to have a slight infuence on the MSEs of the two
estimators. The MSEs are often smaller when f. is the Laplace density. This may be related
with the theoretical properties in density deconvolution. In that context it is well known that
the rate of convergence is slower when f. is the Gaussian density. The two estimators 5N and
550 have comparable numerical behaviors in the two linear autoregressive models. Let us recall
that in both cases, the simulated chain X are non-mixing but are 7-dependent. In Case A, the
stationary distribution of X is continuous whereas it is not the case in Case B. This explains
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ratio Estimator
n s2n Oarma(MSE) ON(MSE) O0sc(MSE) O0x (MSE) Onaive(MSE)
1000 0.5 a  0.483 (0.006) 0.539 (0.039) 0.496 (0.002) 0.495 (0.001)  0.331 (0.030)
b 0.259 (0.002) 0.243 (0.003) 0.253 (0.001) 0.253 (0.001)  0.336 (0.008)
1.5 a  0.497 (0.021) 0.516 (0.027) 0.507 (0.009) 0.499 (0.001)  0.200 (0.091)
b 0.251 (0.005) 0.243 (0.005) 0.246 (0.002) 0.249 (0.001)  0.399 (0.023)
3 a  0.456 (0.031) 0.521 (0.082) 0.481 (0.030) 0.501 (0.001)  0.120 (0.145)
b 0.272 (0.008) 0.244 (0.016) 0.260 (0.007) 0.250 (0.001)  0.441 (0.037)
5000 0.5 a  0.497 (0.001) 0.492 (0.006) 0.499 (0.001) 0.498 (0.001)  0.333 (0.028)
b 0.251 (0.001) 0.252 (0.001) 0.250 (0.001) 0.250 (0.001)  0.333 (0.007)
1.5 a  0.490 (0.002) 0.510 (0.006) 0.502 (0.001) 0.499 (0.001)  0.120 (0.090)
b 0.254 (0.001) 0.245 (0.001) 0.248 (0.001) 0.250 (0.001)  0.399 (0.022)
3 a  0.471 (0.010) 0.512 (0.008) 0.503 (0.005) 0.498 (0.001)  0.124 (0.141)
b 0.263 (0.002) 0.245 (0.002) 0.249 (0.001) 0.251 (0.001)  0.437 (0.035)
10000 0.5 a  0.504 (0.006) 0.500 (0.003) 0.498 (0.001) 0.499 (0.001)  0.331 (0.028)
b 0.249 (0.001) 0.250 (0.001) 0.251 (0.001) 0.251 (0.001)  0.335 (0.007)
1.5 a  0.495 (0.002) 0.501 (0.002) 0.499 (0.001) 0.501 (0.001)  0.200 (0.090)
b 0.253 (0.001) 0.250 (0.001) 0.251 (0.001) 0.250 (0.001)  0.401 (0.023)
3 a  0.492 (0.004) 0.498 (0.004) 0.500 (0.003) 0.500 (0.001)  0.126 (0.140)
b 0.254 (0.001) 0.251 (0.001) 0.251 (0.001) 0.250 (0.001)  0.437 (0.009)

TABLE 2. Estimation results for Linear Case A, Gaussian error. Mean estimated
values of the five estimators é\arma, é\N, é\gc, §X and é\nawe are presented for
various values of n (1000, 5000 or 10000) and s2n (0.5, 1.5, 3). True values are
a® =1/2, b° = 1/4. MSEs are given in brackets.

the relative bad properties of é\arma in Case B. Indeed, due to its construction, this estimator
is expected to have good properties when the stationary distribution of the Markov Chain is
close to the Gaussian distribution. On the contrary our estimators have similar behavior in both
cases.

4.2. Cauchy regression model. We consider the model (1.1) with fs(z) = 0/(1+22) = 0f(x).
The true parameter is #° = 1.5. For the law of & we take & ~ N(0,0.01). In this case, an
empirical study shows that ¢% is about 0.1. Moreover ax (k) = O(k¥) for some x €]0,1[ and
the Markov chain is a-mixing (see Appendix A.2). For w suitably chosen, Theorem 3.2 applies
and states that 0 is asymptotically normal. For the simulation, we start with Xy uniformly
distributed over [0, 1], and we consider that the chain is close to the stationary chain after 1000
iterations. We then set X; = X;11000-

To our knowledge, the estimator § is the first consistent estimator in the literature for this
regression function. We first detail the estimator for two choices of the weight function w. Then
we recall the classic estimator when X is directly observed and the so-called naive estimator.
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ratio Estimator
n s2n Oarma(MSE) ON(MSE) O0sc(MSE) O0x (MSE) Onaive(MSE)
1000 0.5 a  0.288 (0.021) 0.341 (0.013) 0.330 (0.002) 0.326 (0.001)  0.217 (0.015)
b 0.354 (0.005) 0.331 (0.001) 0.333 (0.001) 0.335 (0.001)  0.389 (0.004)
1.5 a  0.298 (0.050) 0.332 (0.009) 0.335 (0.007) 0.330 (0.001)  0.136 (0.040)
b 0.349 (0.012) 0.331 (0.002) 0.329 (0.002) 0.335 (0.001)  0.429 (0.010)
3 a  0.240 (0.127) 0.343 (0.017) 0.343 (0.018) 0.330 (0.001)  0.084 (0.063)
b 0.385 (0.033) 0.333 (0.003) 0.333 (0.003) 0.338 (0.001)  0.465 (0.018)
5000 0.5 a  0.333 (0.004) 0.335 (0.003) 0.335 (0.001) 0.333 (0.001) 0.223 (0.012)
b 0.333 (0.001) 0.332 (0.001) 0.332 (0.001) 0.334 (0.001)  0.388 (0.003)
1.5 a 0.331 (0.011) 0.328 (0.002) 0.334 (0.001) 0.334 (0.001)  0.433 (0.041)
b 0.334 (0.003) 0.334 (0.001) 0.329 (0.001) 0.332 (0.001) 0.132 (0.010)
3 a  0.290 (0.030) 0.329 (0.003) 0.329 (0.004) 0.333 (0.001)  0.083 (0.063)
b 0.355 (0.008) 0.335 (0.008) 0.335 (0.008) 0.334 (0.001) 0.459 (0.016)
10000 0.5 a  0.337 (0.002) 0.335 (0.002) 0.334 (0.001) 0.334 (0.001) 0.222 (0.012)
b 0.331 (0.001) 0.332 (0.001) 0.332 (0.001) 0.332 (0.001)  0.388 (0.003)
1.5 a  0.322 (0.006) 0.336 (0.001) 0.336 (0.001) 0.334 (0.001)  0.134 (0.040)
b 0.339 (0.002) 0.332 (0.001) 0.332 (0.001) 0.333 (0.001) 0.433 (0.010)
3 a 0.329 (0.010) 0.336 (0.002) 0.336 (0.002) 0.334 (0.001) 0.083 (0.063)
b 0.335 (0.002) 0.332 (0.001) 0.332 (0.001) 0.332 (0.001)  0.457 (0.015)

TABLE 3. Estimation results for Linear Case B, Laplace error. Mean estimated

values of the five estimators Harma, GN, HSC, HX and Hnawe are presented for
various values of n (1000, 5000 or 10000) and s2n (0.5, 1.5, 3). True values are
0=1/3,° = 1/3. MSEs are given in brackets.

4.2.1. Expression of the estimator. We consider the two following weight functions:

(4.18) N.(x)=(1+ x2)2 exp{—xz/(llag)} and SC.(x) =

1+

)

2

9 2i(2 *sin(m))4’

X

15

with o2 the variance of e. This choice of w ensures that Conditions (Cy)-(Cs) hold and our
method allows to achieve the parametric rate of convergence. As in the linear case, these two

weight functions differ by their dependence on o2 and their smoothness properties.

associated estimators are based on the calculation of Sy, (#), which can be written as

n

1
Sn(0) =~ > 271 (Zk—r) + 0712 (Zi—1) — 2023, L (Z1—1)],

where

k=1

21

efiuZ
iRe /(w)* (u) mdu,

o [y

wa

fz(=u)

du.

2

f2(

efiuZ
meziw/mﬁm%i@m

The two



16 JEROME DEDECKER™, ADELINE SAMSON®™, MARIE-LUCE TAUPIN(?

ratio Estimator
n s2n Oarma(MSE) ON(MSE) O0sc(MSE) O0x (MSE) Onaive(MSE)
1000 0.5 a  0.327 (0.016) 0.349 (0.035) 0.330 (0.003) 0.326 (0.001)  0.218 (0.014)

b 0.338 (0.004)

15 a  0.290 (0.061)

0.332 (0.002)

0.355 (0.021)
0.324 (0.004)

0.329 (0.049)
0.337 (0.010)

0.336 (0.001)

0.345 (0.008)
0.328 (0.002)

0.329 (0.051
0.337 (0.010

0.337 (0.001)

0.332 (0.001)
0.333 (0.001)

0.326 (0.001)
0.337 (0.001)

0.392 (0.004)

0.133 (0.041)
0.432 (0.010)

0.077 (0.067)
0.461 (0.017)

0.341 (0.005)
0.332 (0.001)

0.331 (0.003)
0.334 (0.001)

0.348 (0.008)
0.327 (0.002)

(0.051)
(0.010)
0.333 (0.001)
0.334 (0.001)

0.332 (0.002)
0.333 (0.001)

0.348 (0.008
0.328 (0.002

0.332 (0.001)
0.334 (0.001)

0.333 (0.001)
0.333 (0.001)

0.334 (0.001)
0.332 (0.001)

0.220 (0.013)
0.399 (0.003)

0.132 (0.041)
0.433 (0.010)

0.084 (0.062)
0.459 (0.016)

b 0.353 (0.015)

3 a  0.234 (0.153)

b 0.383 (0.040)

5000 0.5 a  0.329 (0.004)
b 0.335 (0.001)

15 a  0.329 (0.009)

b 0.335 (0.002)

3 a  0.315 (0.022)

b 0.343 (0.006)

10000 05 a  0.330 (0.002)
b 0.335 (0.001)

15 a  0.328 (0.006)

b 0.336 (0.002)

3 a  0.312 (0.014)

b 0.344 (0.003)

0.333 (0.003)
0.333 (0.001)

0.336 (0.002)
0.333 (0.001)

0.334 (0.004)
0.333 (0.001)

(0.008)
(0.002)
0.333 (0.001)
0.333 (0.001)

0.334 (0.001)
0.334 (0.001)

0.334 (0.004)
0.333 (0.001)

0.332 (0.001)
0.334 (0.001)

0.333 (0.001)
0.334 (0.001)

0.333 (0.001)
0.333 (0.001)

0.221 (0.013)
0.389 (0.003)

0.132 (0.041)
0.435 (0.010)

0.083 (0.063)
0.458 (0.016)

TABLE 4. Estimation results for Linear Case B, Gaussian error. Mean estimated

values of the five estimators é\arma, On, Osc, Ox and 0,4 are presented for
various values of n (1000, 5000 or 10000) and s2n (0.5, 1.5, 3). True values are
0=1/3,° =1/3. MSEs are given in brackets.

The estimator can be expressed as

i 2kt Zilwg(Zi-1)

(4.19) S Lop2(Zy—1)

In the following we denote by It n,(Z), Ly N (Z), Lwpsc.(Z) and L, g0, (Z) respectively,
the previous integrals when the weight function is either w = N, or w = SC,.. In the same way
we denote by 0 N, and 93(; the corresponding estimators of 6°.

e When w = N,, Fourier calculations provide that

(Nef)*(t) = V2my/202exp(—0o
and (N.f2)*(t) = V21202 exp(—

2t%) (1 + 202(1 — 202t%))
O'th).

Now, we can calculate the integrals I,z n,(Z) and I, 2 n,(Z).
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If f. is the Laplace distribution (4.8), replacing fZ by its expression we obtain
LugN.(Z) = exp(—Z%/(402)) [Z2* — 182202 + Z* + 802 — 1002] /(802),
1 Z?
and wa27Nc(Z) = exp(—Z2/(40§))[1+1(1— @)]
15

If f. is the Gaussian distribution (4.9), replacing fX by its expression we obtain
Lusn,(Z) = \/56—22/(202)(1 — 202 +42%), and Lupen.(Z) = 22?202,
e When w = SC,, easy calculations show that

Lvysc.(Z) = Iosc(Z) + Iz sc(Z) and 1,2 g, (Z) = lo,sc(Z),

where Iy sc(Z) and Iz gc(Z) are defined by (4.16). As explained before, the integrals Iy sc(2)
and I sc(Z) have no explicit form, whatever the error distributions, and are numerically ap-
proximated via the IFFT function.

4.2.2. Comparison with classical estimators. We compare our estimators with two classical es-
timators, the usual least square estimator without observation noise, and the naive estimator.
e Estimator without noise. When ¢; = 0, that is (Xo,..., X)) is observed without errors, the
parameter can be easily estimated by the usual least square estimator

by = iz Xif(Xic1)
> i A(Xiz1)

e Naive estimator. The idea for the construction of the naive estimator is to replace the unob-

served X; by the observation Z; in the expression of 0 x to get
i 2 Zif(Zic)
nawe ZZLZI fz(ZZ_l)

Classical results show that é\mwe is an asymptotically biased estimator of #°, which is confirmed
by the simulation study.

4.2.3. Simulations results. For each error distribution, we simulate 100 samples with size n,
n = 500, 5000 and 10000. We consider different values of o. such that the ratio signal to noise
$2n = o2 /Var(X) is 0.5,1.5 or 3.

The comparison of the four estimators is based on the bias, the Mean Squared Error (MSE),
and the box plots. The results are presented in Figure 3 and Tables 5-6.

The first thing to notice is that, not surprisingly, é\mwe presents a bias, whatever the values
of n, s2n and the errors distribution. Moreover it converges to (false) values which are different
according to s2n (see Tables (5)-(6)).

The estimator 6. x has the good expected properties (unbiased and small MSE), but it is based
on the observation of the X;’s.

We now compare our two estimators illustrating the influence of w, s2n and f.. Globally,
whatever the weight function w, the two estimators 5present good convergence properties. Their
biases and MSEs decrease when n increases. The MSEs of §SCC increase when s2n increases.

This is not the case for the MSE of é\Nc- This is probably due to the fact that the weight
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ratio Estimator
n s2n On, (MSE) Osc, (MSE) Ox (MSE) Onaive(MSE)
1000 0.5  1.5095 (0.0042) 1.5024 (0.0006) 1.5004 (0.0000) 1.4333 (0.0050)
1.5 1.5006 (0.0021) 1.5005 (0.0013) 1.5002 (0.0000) 1.3657 (0.0190)
3 1.5017 (0.0024) 1.5005 (0.0024) 1.5002 (0.0000) 1.3267 (0.0314)
5000 0.5  1.5045 (0.0008) 1.5005 (0.0001) 1.5003 (0.0000) 1.4320 (0.0047)
1.5 1.5003 (0.0004) 1.4994 (0.0003) 1.4997 (0.0000) 1.3647 (0.0185)
3 1.4989 (0.0005) 1.4992 (0.0005) 1.5000 (0.0000) 1.3223 (0.0318)
10000 0.5  1.5033 (0.0004) 1.5002 (0.0001) 1.5000 (0.0000) 1.4315 (0.0047)
1.5 1.5000 (0.0002) 1.5000 (0.0001) 1.4998 (0.0000) 1.3650 (0.0183)
3 1.4972 (0.0002) 1.4970 (0.0002) 1.4998 (0.0000) 1.3222 (0.0317)

TABLE 5. Estimation results for Cauchy, Laplace error. Mean estimated values

of the four estimators HN , HSC , HX and Hnawe are presented for various values
of n (1000, 5000 or 10000) and s2n (0.5, 1.5, 3). True value is #° = 1.5. MSE are

given in brackets.

ratio Estimator
n s2n On, (MSE) Osc, (MSE) Ox (MSE) Onaive(MSE)
1000 0.5  1.4979 (0.0027) 1.4998 (0.0006) 1.5000 (0.0000) 1.4230 (0.0064)
1.5 1.4995 (0.0029) 1.5001 (0.0015) 1.5005 (0.0000) 1.3336 (0.0287)
3 1.5080 (0.0049) 1.5058 (0.0042) 1.4997 (0.0000) 1.2832 (0.0487)
5000 0.5  1.5033 (0.0006) 1.5011 (0.0001) 1.4999 (0.0000) 1.4250 (0.0057)
1.5 1.5011 (0.0004) 1.5001 (0.0003) 1.4999 (0.0000) 1.3351 (0.0274)
3 1.4998 (0.0009) 1.4996 (0.0008) 1.5002 (0.0000) 1.2767 (0.0501)
10000 0.5  1.5017 (0.0003) 1.4997 (0.0000) 1.4996 (0.0000) 1.4236 (0.0059)
1.5 1.5025 (0.0003) 1.5027 (0.0002) 1.5001 (0.0000) 1.3375 (0.0265)
3 1.5016 (0.0004) 1.5021 (0.0004) 1.5002 (0.0000) 1.2778 (0.0495)

TABLE 6. Estimation results for Cauchy, Gaussian error. Mean estimated values
of the four estimators ch, é\gcc, é\x and é\nawe are presented for various values
of n (1000, 5000 or 10000) and s2n (0.5, 1.5, 3). True value is §° = 1.5. MSE are
given in brackets.

function chosen for the construction of 6, ~, depends on 2. This estimator is thus more adaptive
to changes in s2n.

5. A MORE GENERAL ESTIMATOR

For a large number of regression functions, a weight function w such as the one involved
in the definition of the estimator 6 can be easily exhibited. Nevertheless for some specific
regression functions, it seems not straightforward to find a weight function such that (wfy)*/f
and (wf})*/f* are integrable. We refer to Butucea and Taupin (2008) for a more complete
discussion on this subject. Therefore, we propose a generalization of this estimator to relax
these conditions.
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FIGURE 3. Results for Cauchy and Gaussian error, with n = 5000 and
o2/Var(X) = 1.5. Box plots of the four estimators Oy, 0sc., Ox and Onaive,
from left to right, based on 100 replications. True value is 1.5 (horizontal line).

5.1. Definition of the general estimator. The key idea for this construction is the following.
We introduce a density deconvolution kernel K, ¢, defined via its Fourier transform K;Cn by

* K*
(5.20) K, (t) = Kf(zf)n) = f(i"_(;)

where K* is the Fourier transform of a kernel K and C,, is a sequence which tends to infinity
with n. The kernel K belongs to L?(R). Its Fourier transform K* is compactly supported and
satisfies [1 — K*(t)| < 1> Then, for any integrable function ®, one has lim,, .. ntY N dx
Knc,(Z;) = E(®(X)). Hence we estimate E(®(X)) by n=t>" | & x K,, ¢, (Z;) instead of
n~' 3", ®(X;) which is not available. We then propose to estimate Sgo p, (6) by

(5.21) Sn(6) = % S Re [((Z — fo)*w) * Kncy(Zi1)]
=1

1 n
== ZR@/(Zi — fox)}w(z) Ky, (Zio1 — x)da.
i=1
Using this more general empirical criterion we propose to estimate 6° by
5.22 = in S, (6).
(5.22) arg min S,(9)

Note that the general construction relies to a truncation of integrals in (2.4). Also note
that this general construction still works under Conditions (C1)-(Cs). It suffices to chose
K*(t/C’n) = ]I\tISCn with C,, = +oo0.
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5.2. Asymptotic properties under general assumptions. This section presents the as-
ymptotic properties of f defined by (5.22) under milder conditions than conditions (Cy)-(Cs),
when one cannot exhibit a weight function w ensuring that these conditions hold. In this context
the estimator is still consistent, but with a rate which is not necessarily the parametric rate.
For the sake of simplicity we only consider the case of a-mixing Markov chains.

We assume that

(Az) On 0 the quantity w?(Xo)(Z1 — f3(Xo))* and the absolute values of its derivatives

with respect to # up to order 2 have a finite expectation.

%Sn(ﬂ) D is finite.

(A4) The quantity sup sup IE( sup
n je{l,--,d} 0cO°

(As) sup|wfy|, |w| and sup |wfZ| belong to Ly (R).
6€© 0€©

We say that a function ¢ € LL;(R) satisfies (5.23) if for a sequence C,, we have
T;Z)*KE' 2
~| =o(1).
fe W

q
Theorem 5.1. Under the assumptions (I11), (Ilz), (N1), (A1) (As) - (As), let 8 be defined
by (5.22) with Cy, such that (5.23) holds for w, wfy and wfi and their first derivatives with
respect to 0. Assume that the sequence (Xy) is a-mizing that is

(5.23) min || ¥* (K¢, —1) |2 +n~" min
q=1,2 n =1

) )

ax (k) — 0, as k =2 0

Then E(Hé\— 0°)|1%) = o(1), as n — oo and 0 is a consistent estimator of 6°.

We now give upper bounds for the rates of convergence under two different types of assump-
tions:
(Ag) Xy admits a density fx with respect to the Lebesgue measure and there exist two

constants C1(f3) and Ca(fg) such that || fao fx [|3< C1(fgo), and

| foofx 13< Ca(f)-

(A7)  supE[f3(Xo)f-(z — Xo)] and supE[f.(z — Xo)] are finite.
z€R z€R

These two assumptions are mostly required for technical reasons. The following theorem still
holds when X does not admit a density, under a slightly different moment assumption.

Theorem 5.2. Suppose that the assumptions of Theorem 5.1 hold. Assume moreover that the
sequence (Xi)k>0 s a-mizing with Y, v/ ax (k) < oo, and that, for all 6 € ©, the functions
w, fow and fgzw and their derivatives u_p to order 8 with respect to 0 satisfy (5.23).

1) Assume that the sequence Xo admits a density with respect to the Lebesgue measure and
that Assumption (Ag) holds. Then 6— 60 = Op(©2) with on = ||(¢n.;)llezs gpfl,j = BZJ +Voi/n,
j=1...,d, where

B, ; = min {B[l] Br[i}]} and V,w:min{V[l]. V[z]}

n,j? n,j’ 'n,j
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and for g =1,2

9 2
Bl = sy e, -+ foesmsisy e, -0,
) ’ q J q
and
A 0 W E& | - K&, |
vid - H(wfeoj)*—*" +H(wfeof90j)* ol IS
g § fa q , fa q

2) Assume that (Axz) holds. Then 6—0° = O, (¢2) with on = ||(¢n.;)le2s gofw» = be’j%—Vn’j/n,
j=1...,d, where B, ; = B,[Tl}] and Vi ; = min{Vm V[z]} .

n7j7 n7.]

This theorem states an upper bound for the quadratic risk under very general conditions. It
holds under mild conditions on w, fy and f.. We refer to Table 1 in Butucea and Taupin (2008)
for more details on the resulting rates.

APPENDIX A. PROPERTIES OF THE DEPENDENCE COEFFICIENTS AND EXAMPLES

A.1. Covariance inequalities and coupling. The following results are the key arguments to
prove the asymptotic normality of 8. We keep the same notations as in Definition 3.1.

We first recall a covariance inequality due to Rio (1993). For any positive random variable Z,
let Q7 be the inverse cadlag of the tail function ¢ — P(Z > t). Let X and Y be two real valued
random variables such that Cov(X,Y") is well defined. The following inequality holds

(o(Y),0(X))
(A.24) ’COV(Y,X)’ < 4/0 Q‘X|(u)Q‘y|(u)du

Next, we recall the coupling properties of 7 (see Dedecker and Prieur (2005)): enlarging € if
necessary, there exists X* distributed as X and independent of M such that

(A.25) TM,X) =E(|X — X"||B) -

A.2. Dependence properties of autoregressive models. We recall here the mixing prop-
erties of the autoregressive models

Xi = foo(Xi—1) + &,
that have been described in particular in the papers by Mokkadem (1985) and Ango-Nzé (1998).
For instance, assume that
e the law of {y has a density f¢ such that f; > ¢ > 0 on a neighborhood of zero, and

there exists S > 1 such that E(|]%) < co.
e fqo is continuous and there exist R > 1 and p €]0,1[ such that: for any |z| > R,
[foo ()| < plz].
Then there exists a unique invariant probability measure, and the stationary Markov chain
(X;)i>0 satisfies ax (k) = O(k*) for any x €]p, 1] and is a-mixing.
Now if the second point is weakened to
o fgo is continuous and there exist R > 1 and § €]0,1[ such that: for any |z| > R,
| foo ()] < J[(1 = |2]7°).
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Then there exists a unique invariant probability measure, and the stationary Markov chain
(X;)i>o satisfies ax (k) = O(k'=9/9) and is a-mixing.

Now, if we do not assume that £y has a density, then the chain may not be a-mixing (and not
even irreducible). However, under appropriate assumptions on fgo, it is still possible to obtain
upper bounds for the coefficient 7. For instance assume that

e there exists S > 1 such that E(|&]%) < occ.

o (@) — ()] < plz — | for some p €0, 1]
Then there exists a unique invariant probability measure, and the stationary Markov chain
(X;)i>0 satisfies 7x 2(k) = O(p*) and is 7-dependent. Now if the second point is weakened to

e there exist § in [0,1] and C in ]0,1] such that |f'(t)] < 1 — C(1 + |t|)~° almost
everywhere.

Then there exists a unique invariant probability measure, and for S > 1 + § the stationary
Markov chain (X;)i>o satisfies 7x 2(n) = O(nl®+1=9/9) and is 7-dependent.

APPENDIX B. PROOFS OF THEOREMS

B.1. Proof of Theorem 3.1. The main point of the proof consists in showing the two following
points
1
i) for any 6 in O, S,(0) L Spo_py (0), with Sgo p. (0) admitting a unique minimum in
n—00 ’ ’

6 =6°.

ii) For wa(n,p) defined as wo(n,p) = sup{|Sn(0) — Sn(0")] : |0 — €',z < p}, there exists a
sequence pj tending to 0, such that

(B.1) E(wa(n, pr)) = O(pk).

Let us start with the proof of i) by writing that

dt,

! / (21— f0)°w) " (et

1 n
= — U (Zy, Ly ith W(Z1,Zy) = —R
Sn(0) n; (Z, Zy-1), with ¥(Zy, Zo) = —Re e

that is seen as a function of a strictly stationary and ergodic sequence of random variables. By
the ergodic theorem and Assumption (Ag) we conclude that for any 6 € ©,

Su(0) 5 B((Z1, Z)) = Spo.p, (0).

n—oo

It remains now to check that there exists a sequence pj tending to 0, such that (B.1) holds.
This follows by the assumption (Cz) and by writing that

(B.2) sup  [Sn(0) = Sa(0) < sup [0 —6" |l sup || SV(O) [ -
l6-0"ll2<p l6-0"ll2<p peer
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B.2. Proof of Theorem 3.2. By using a Taylor expansion based on the smoothness properties
of  — w fy and the consistency of 6, we obtain

0=8(9) = (0% + S (6°)(6 — 0°) + Ry, (6 — 6°),
with R, defined by

(B.3) R, = / 1[5,9 (0° + s(6 — 6°)) — SP(6°)]ds.
0

This implies that
(B.4) 0 —6° = —[SP %) + R,] 'S (6°).
Consequently, we have to check the three following points.
) Vs (6% =5 N(0,%0.);
i) S (0°) L S (69);
iii) R, defined in (B.3) satisfies R, N%O 0.

Note that the covariance matrix ¥ ; in i) satisfies ¥ = ¥ /472, with ¥ defined by the
equation (B.6) below. Consequently, according to ii) and iii), the covariance matrix ¥; satisfies

(B.5) = L (5

e (00) IS5 (6°)7!,  with % defined by (B.6).

Proof of i)
Under Assumption (Ca),
o—itZk—1

() - st v (ol

We have thus to prove that

1 n (1) e—itZk‘ 1 r
Re/ —2(Zk — foo) fyo'w) () ——dt — N(0,%01).
o ) | o ) O gy 4t 2 MO B
We first use that E(S,(0)) = Spo p, (#) and thus IE(S( )(90)) Sé(l))P (6°) = 0. Next we write
1 n
(D g0y = (D g0y — (1) (g0
with T}, = —2Wi 1 + 2Wy o, and
1) . e—itzk 1 —’itZk_l
We1 = ZpRe / (fo'w) ™ (t)— [ZkRe / fa0 dt}
fe (_ ) (—t)

AR WA=

3 €
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Let My = o(Xo, X1,€0,€1). According to Dedecker and Rio (2000), n~'/237_, T}, converges
to a centered Gaussian vector with covariance matrix

(B.6) 2 = Cov(Ty,T1) + 2 _ Cov(Ty,Ty),
k>1

as soon as for any (p,q) in {1,--- ,d} x {1,--- ,d}

(B.7) ZE\ T E(Ti)g| M1)| < 0.

For any (p,q) in {1,--- ,d} X {1, -++,d} and any 4,7 € {1,2}, we shall give an upper bound for
E[(W1i)pE((Wk,j)qlM1)] -

We first notice that the sequence (e, ex_1) is independent of M; V o(X, Xi_1). It follows that
for 4,5 € {1,2},

E (W), E((Wij)glMi)| = E ‘(W17,~)pE((Wk’j)q’M1)‘ 7
with
Wea)y = Xk/(fe%,)qw)*(t)eithldt_E [Xk/(fg(é?qw)*(t)e“Xkldt]

(Wia)g = /(f@ofgo w) " (t)e”"Xr1dt — [/ (feOfgo w) " (t)e Xk- 1dt]

Next, since Px, | x,)o(c0.e1,X0,X1) = P(Xp_1,X0)|o(X1), We infer that
E |(WL0)p B((Wi)olM1)| = E [ (W10, B((We )| X1)]

Next we use that under Condition (Cz)

Wil < 12 [ (8,0 (”Z(J) a+e {1 [| () 05| )
: ’Z‘/‘ |2 {1 |0 05 )

< Gi(| 4| +E \le))

In the same way we get that [(W12),] < Co.
Now, since ¢ is independent of Xy, for j € {1,2}

E[(Wa)B((Wi)ol X0)| < CiE [(1Z1] +E(1Z]) [E((Wiky)gl 1)

(B.3) < O [(1X0] + E(X ) [E(Wi e %) |
In the same way

(B.9) E (W) B(Wis)ql X1)| < CE [E((Wi )l X0)]

Note that

E (1] + E(X10) [E(Wik1)gl X1)|| = Cov (10| + E(X1])sign(E(Wi)glX1), (Wia)y):
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Now, we use the covariance inequality (A.24). Note first that

(1X:1] +E(X1]))sign(B((Wi1)q X1)) < [X1] +E(X1])

and
|(Wi1)gl < D(IX1| +E(1X1])) -

Since (X;)i>o is a strictly stationary Markov chain, it is well known that
(BlO) a(a(Xl), O'(Xk:flan:)) = a(a(Xl), O’(kal)) = Ckx(k — 2) .

Hence, applying (A.24),

- ax (k-2
(Wi BT )| <€ [ @k wdu
0

We conclude that

> E|(Wi)pE(Wea) |M1|<CZ/ Q|X1| u)du
k>3 k>3
Finally, using similar arguments for the three quantities Y ;-5 E |[(W12),E((Wi 1)q| M),
> ko3 El(WL1)pE(W2)glMi)| and 324 o3 B [(Wh2), E(W, 2)q|M1)| we conclude that
VaSI(E®) =5 N(0,3/(4r%))

as soon as

Z/ Q\Xl u)du < 0.

k>1
]
Proof of ii)
Under Condition (Cg), for j,k=1,--- ,d,
1 — 0?2 0?2 * e

B.11)S? ) =-—Y R / —2Z () Ee—

(B11{5 ))j,k 2mn 2= 96,00, ")+ 59,06, 98,98, /1) Qe

and by applying the ergodic theorem we get that

P 2
SPO°) = Syp (6.

]

Proof of iii)

Starting from (B.3) and (B.11), the point iii) follows from the assumption (C4) on the properties
of the derivatives at order 3 of wfy and w fg U
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B.3. Proof of Theorem 3.3. We follow the proof of Theorem 3.2 and keep the same notations.
We have to check that the condition (B.7) holds. We start from the inequalities (B.8) and (B.9).
For clarity, let us write

(Wi1)g = (Wi 1)g( Xk, Xe—1) -
Let 15 be the truncating function defined by a(z) = (x A M) V (—M). Applying (A.25), let
(X%, X} _,) be the random variable distributed as (X}, X;_1) and independent of X; such that

1 * *
5 (X = Xl + [[ X1 = Xgall1) = 7(0(X1), (Xp—1, Xk)) < 7x2(k = 2).
Define the constants Ky and K5 by
Ky = / ((fg}qw)*(t)‘ dt < oo, Ky= / 1] ‘(f;;}qw)*(t)‘ dt < o.
Clearly
| X1 E(Wi 1) (X Xi—1)1X1)| < MIB((Wi 1) g (X, Xiem1)| X 1) [+ K2 X1 |1, 1500 (| X | +E(| X)) -
Now, since (X, X;_,) is independent of Xi, one has that
(Wi 1)g(Xns X 1)[X0)| = B((Wi,1)g(Xi, Xi—1) — (Wh,1)g (X5, X5i_ 1)1 X0)] -

By definition of (Wk,1)q(Xk, Xk—_1), there exists a constant C' such that

(Wi 1)g (X Xm1) = (W) g (X5, Xt 1) = (Wie1)g (01 (X3), Xp1) — (Wi )q (nr (X7, X5 1))

< O( Xkl x>0 + X5 x5 0)-

Hence

IE(Wi,1)g (X, Xem1)| XD < E(Wiet)g(¥nr (Xn), Xi—1) — Wiet)g (o (X5), Xii_1) | X))
+ CUXelx > + 1 XEILxp500) -

Since s is 1-Lipschitz and bounded by M, and since x — exp(itx) is |¢t|-Lipschitz and bounded
by 1, under Condition (Cs), one has

|(Wie1)g(nr (X)), Xi—1) — (Wi1)q (s (X75), X5 1) < MEKo|Xpy — X5 |+ K1] Xy — X5
It follows that
[ X1E(Wi1)g(Xe, Xe-1)|X1)| < Ko X1 |1x 150 (| X5 | + E(1X%]))

+ MPKo|Xjy — Xji_ |+ MK X), — X;)

+ OM(| Xkl x>0 + [ X5 xp500) -
Using that

3 1
| X1 x> | Xk] < §X121\X1\>M + §X/§1\Xk\>Ma

we infer from (B.8) with j = 1 that there exists a positive constant K such that

E [ (Wa)pE(We)al X0)|| < K(LOM) + MM + Drxalk = 2).
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where L(t) = E(X§1X3>t). Let then G(t) = t71L(t), and let G~! be the inverse cadlag of G.
Choose then M? = G~(rx 2(k — 2)). We obtain that

E H(Wl71)pE((Wk71)q|X1)H < 2K(2G*1(TX,Q(k—z))TX,Q(k—z)Jr\/G—l(TX,Q(k —9))rxa(k—2)).
It follows that

ZE H (W11)E(Wi1)g |X1)H < 0o as soon as ZGil(TX,Q(k?))TXQ(]C) < 00.
k>3 k>0

Easier control holds for the other terms in (B.8) and (B.9). Consequently (B.7) holds as soon
as (3.7) holds, and the proof is complete.

B.4. Proof of Theorem 5.1. The proof of the consistency under the assumptions of Theorem
5.1 is quite different from the proof of the consistency under Conditions (C1)-(Cz) in Theorem
3.1. This comes from the fact that S,,(#) is now a triangular array of the form

— fo)’w)" (e KL, (1)
f2 (=)

1 1 (
Sn(0) =~ > Un(Zi, Z—r) with Uy (21, Zo) = %Re/ ( dt.
=1

In this context we show that
i) For all § in ©, E[(S,(8) — Sgo p, (0))?] = o(1) as n — oco.
ii) The control (B.1) holds.
Note first that ii) follows from the upper bound (B.2) and Assumption (Ay).
For the proof of i) we check that for all § € O,

(B.12) E[Sn(0)] — Sgo p, (0) = 0(1) and Var(S,(0)) = o(1), asn — oo.

Proof of the first part of (B.12). Since Zy = X+ €9, with g9 independent of (Z7, Xj), it follows
that

E[S,(0)] =E [Re ((Z1 — fo)* w) x Ky 0, (Z0)] = E [(Z1 — fo)* w) * K¢, (X0)]

hence
B(S,(0)) - Sy (6) = 5 / (fi () + 0F + o2)e ™" (u) (K, — 1)(u)duPx (dz)
_—/ foo(x zux (fow)* (u )(Kén — 1)(u)duPx (dx)
+5- // e~ (fw)* (w)(KE, — 1)(u)Px (dz)du.

Now, arguing as in Butucea and Taupin (2008) we get that |E[S,(6)] — Sgo_p, (0)]* = o(1).
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Proof of the second part of (B.12). Using that the Z;’s are strictly stationary we get that

Var[S,,(0)] Var

n! Z Re [((Zk — fo)?w) x Ky 0, (Zk_l)}

S —Var A10 Z’COV Alo,A” 1)’

IN

3
E Var (ALO) + E Z | COV(A170,A]€7]§_1)|

with
Ap -1 =Re [((Zk — fo)?w) * Kn,Cn(Zk‘fl)} .

Arguing as in Butucea and Taupin (2008) we obtain that lim,, o, n~! Var (A1) = 0. It remains
to study

1 n
— Z ‘ COV(AL(), Ak,kfl) ’
n k=3

Lemma B.1. Let ¥ such that E(|]¥(Z)]) < co and let ® be an integrable function. Let
Bk,k—l =R [B\I’(Zk)q) * Kn,Cn (Zk—l)] .
Then for k > 3

COV(Bkk 1,B1 0) COV Zk)q)*KCn(Xk 1) \I/(Zl)CI)*KCn(Xo)]
EIe / / (8)Cov (U (Zy)e "Xr=1 W (Zy)e 50 K¢ (DK, (s)dtds.
)
Proof of Lemma B.1: By stationarity we write

2
Cov(Bi k-1, B10) = E(Byx-1B10) — E(Bk r-1)E(B1,0) = E(Byx-1B10) — (E(B1y))".

Now, we use that the sequences (X)xez and (e )rez are independent. This implies that (Z1, Xj)
is independent of ¢y and thus

E(B1j) = %Re / @*(t)E[qJ(Zl)e—itZO]% = % O*()E[T(Z1)e "“XO)KE, (t)dt.
In the same way, for k > 3,
E(Bg k- 1B1 0)
itz K6, (1) isz0 K, ()
oo // Zk)\IJ(Zl)Re(e tZ m)Re(e Z m)dtds

= W / / O (s)* ()E(W (Zy,)e X100 (Z1)e X0 K¢, (t) K, (s)dtds

and the lemma is proved. O
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It follows from Lemma B.1 that for k& > 3,

Cov(Ak k1, Arg) = Cov | ((Z — fo)? w) * K, (Xer), ((Z1 — o) w) x K, (X0)| = 29; c.
with

Cr = g [ Covte™ e ) ) (0w )" (5) K2, (9K, (s,

¢ = / / Cov(Xe™ X5, X1 e X0) (w fy)* (£) (w o) () K, () K, (s)dtds,

@ = #/ Cov[(X} +ep)e™ 1 (XT + ef)e ™ Jw" (w” () K&, (S, (5)dtds,
G = % / Cov(Xye Xk, e79%0) (w fo)* () (wf§) () K&, () K, () dtds,

G = 5 / / Cov(e™"¥r-1, X1e75%0) (wfp)* (s) (w3)" (1) K, (s) K, (Ddtds,

@ = (27102/ Cov[(XP +ef)eXumt, e X0) (1) (w f7)" () K&, () K, (D),

Cr, = ﬁ / Clov[e 51 (X2 4 2)e 50 () (w f2)* (1) K&, (s)K2, ()dbds,

G = % / / Cov[(X} +ep)e " Xm=1 Xye %ol (1) (wfp) (s) K&, () K, (t)dtds,

G = % / Cov[Xye X0t (XT + ef)e™ " XJw* (s) (wfo)* () K¢, () K¢, (t)dtds

Easy computations give
Corl(X} + )it (X7 + ef)ei%0] =
COV(X/%e_M(’“—1 , Xlze_isxo) + J?COV(Xge_ith_l , e_iSXO)
+ a?Cov(e*itX‘“*1 , Xlze*iSXO) + a::lCov(e*itX‘“*1 ) e*iSXO) ,

Cov[(X,f + az)e*itxkfl,e*isxo] = Cov(X,fe*ithfl,e*iSXO) + UgCov(e*ithfl, e*"SXO) ,

Cov[(X,f + az)e*itx’“*,Xle*iSXO] = Cov(X,fe*"tX’“*,Xle*iSXO) + agCov(e*itX’“*I,Xle*iSXO).

which induces the decomposition Cov(Ak,k,l, ALO) = 2?21 E;, with

1 i —is * *
E1:W/ Cov(e "Xkt e X0 KE (4 KE, (s)

x [(wf§) () (wfF)* (s) + o2w" (tyw*(s) + 2w (t)(wfo)"(s) + oZw” (s)(wfp)* (t)))dtds,
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By = Co= = [ [ Covtiue ™ xae* ) who) (O wo) ()Ke, (0K, (sitds,

Es = ﬁ / Cov(Xpe X1, X2em%0)u* (t)w* (s) K g, () K, (s)dtds,

B= o / Cov(Xye N1 e X0V |, () K, (8)(wfo) (H)(wf3)* (s) + 2w (s))dtds,
By = o [[ Covle ™ i N, ()2, (0w0f)' (5) (wf)' (1) + 2w’ (0)eds,
Fe = (271r)2 / Cov(Xje M¥n=1, e X0 K (1) KE, (s)w* (t)(o2w" (s) + (wfi)* (s))dtds,
B = Gy [ covte o Xt Kz, (e, (5w () 0w (1) + (w3 (1)) deds,
B = % / / Cov(XZe X1, Xy e X0)w* (1) (wfy)* (s) K, () K, ()dtds,

Bo = 2_—7712 / Cov(Xpe X1, X250 )™ (s) (wfp)* (1) K&, (5) K5, (t)dtds

Using (A.24) and (B.10), we have the upper bounds

|Cov(e™Xk-1 e=iX0)| < Cax(k —1)

A A ax (k=2)
|Cov(Xpe X1, X e~ X0)| < C/O Qfx‘(u)du

] ) ax (k—2)
(Cov(xge s Xty < ¢ [ alywa
A A ax (k—1)
(Cov(ape s,y <o [ gk
0
) ) ax (k—2)
(Cov(e s xte )| < ¢ [T Qo

2 _itX —isX, ax(k=2)
|Cov(Xje "3h-1 Xje 20) < C/O Qx| (t)dt

] ] ax (k—2)
|Cov(Xpe—itXi-1, X2e=isX0)| < /0 QP (t)dt.

Since E(X}) < oo and limy_,, ax (k) = 0, we infer that limg_,o | Cov(Ak,k_l, A1,0)| = 0. Now,
by Cesaro’s mean convergence theorem

n

1
Jim —~ 1;,| Cov (A1,0, Ak k1) =0.

This completes the proof of the consistency.

B.5. Proof of Theorem 5.2.
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Proof of 1) in Theorem 5.2. Starting from the decomposition (B.4) we shall check the three
following points.

i) B[ (S87(6%) — S5 (09)(SE(6°) = 5505 (09)T| = Olionit]
i) S (0°) L ST, (6°);
iii) R, defined in (B.3) satisfies R, n%o 0.
The rate of convergence of 9 is thus given by the order of
E |(S(6%) — S5/ p (0°)(S(0°) = S5 (67)
Proof of i)

We first write

(s®) - —Z—Re [(Z = fo)w) % Knc, (Z—1) = E[(Zg = fo Xp—1))*w(Xp1)]]

(2

= E Z <£R6(Zk - f@)zw*Kn,Cn(Zk—l) —-E [a(z (Zk; - fe(Xk 1))2w(Xk_1)]> .
k=1 ’

Study of the bias. As in Butucea and Taupin (2008), we get that

e[

for B9, q = 1,2, defined in Theorem 5.2.

n?],

n,) T n,J

< C1(fgo,w, f) min {B[ | B2 ]]

Study of the variance. For the variance term, note first that

2 n
Var <(S( )(90)) ) < Var(D1 0 E Z |Cov (D10, D k—1)l,
k=3

with
Dot = Re(( = 220fs); +2fof 30, )w) + K, (Zn1).

The first part in Var[(Sy(Ll)(HO))j] is controlled as in Butucea and Taupin (2008) by

C(Ug’ fGO, f,g((%?]aw’ fe)

- min{V,1(6%), V,*1(6°)}

Y n,j

1
(B.13) EVar(Dl,o) <

with Vrgq]]., q = 1,2 defined in Theorem 5.2. We now control the term

1 n
- > " |Cov(D1 0, Dy p—1)l-
k=3

Applying again Lemma B.1, we obtain that
Cov(D1,0, Dy j—1) = F1 + Fo + F3 + F)
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with
I = —Re / Cov(Xpe ¥e1, X7 %0) (0 1) " (1) (£33, w) () K&, (D) KE, (s)dtds
P = %Re / Cov(e k=1 e=15%X0) (oo fia) w) (1) (oo fio,w) " ()G, (DK, (s)dtds
Fy = ;—iﬂ@e / Cov(Xpe ¥kt ei5%0) (70 w) " (1) (foo fon ) " (5) G, (D KE, (s)dtds
F = ;—;Re / Cov(e ¥kt Xy e X0) (£0)w) " (1) (fon)w) " (5) K&, () K, (5)dtds.

Using (A.24) and (B.10) we have the upper bounds

’COV(efith,l , eion)‘ <

COéX )
A A x (k—2)
‘COV(Xke_Zth_I,X1628X0)‘ < C/ Q|X\ )

x(k—1)
|Cov(XeltXr—1 gisXo) < C/o Q| x|(w)du

) ) ax(k—2)
|Cov(eX*=1, X et%0)| < C/O Qx| (u)du

Since E(X{) < oo, we infer that Qx|(u) < Cu~14, and consequently all the covariance terms
are O(y/ax(k)). Finally, if >,/ ax(k) < oo, then

C
—Z|COV D10, Dip—1)| < -
k=3

This, together with (B.13), implies that

mm{V[1 (90) v (00)}

) n]

C
Var {(S(l)(ﬁo)) ] < —
n
Proof of ii)
The proof of ii) starts from the expression of the second derivative of the estimation criterion

(B.14)
1 (t)efz‘tZg,l

(2) = e A
<Sn2 (9))j,k " 2m HR / ( wae 56y, o) + 90,00, 98,90, 0" )> R e

Following the same lines as for the consistency we prove that

S@ ) Ly 5@ (g,

0
n—o00 09, Px

Proof of iii)
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The proof of iii) follows from (B.14), from the smoothness properties of wfy and from Assump-
tion (Ay).

a

Proof of 2) in Theorem 5.2. The proof of 2) in theorem 5.2 is quite similar to the proof of 1).

The main differences appear in the control of the bias and variance of SS)(GO). More precisely,
we start from

S00) = 1 3 Re (55 (2= o)) # Ko, (Bios) ~ B | 252 — faXami)Pu(Xic)
k=1

Study of the bias Since Py x(z,z) = Px(x)f.(z — ) we obtain that E[S,gl)(ﬁo)] Sé(l))P

()

is equal to

= 2 [ fpo(Xo) (f3s'w) * Ko, (Xo) — fo(Xo) fap) (Xo)w(Xo)]
+ 2B (/3 foow) * K, (Xo) = (£ fgow)(Xo)]

that is E[S(l)(ﬁo)] — Sé(l))PX(HO) is equal to

= 2e [ [ folw)e (330 )0, (0) —~ DPx (o) du
+ 2Re / / e (fgo £33 w)* (w) (K&, (w) — 1) Px (dz) du.
It follows that for j =1,--- ,d,
(IS (6°));] - (S5 (60»‘

< Blfp(X0)| [ 1(380)" @), (0) = Dldu + [ (G 1500)" ()(KZ, () = Didu

Study of the variance For the study of the variance we combine the proof in Butucea and
Taupin (2008) and the proof of 1) of Theorem 5.2. For these reasons we only give a sketch of
the proof, with details only for specific parts. As for the proof of 1) we start from

1 O[—27Z;, fow + fPw
Var[(ST(Ll)(HO))j] = EVar [Re( [ kJ(;GHI Jowl |990> *Kn,Cn(Zk;—l):|
J
2
+ﬁ Z COV(Dkk 1,D i 1)
1<j<k<n

with Dy ;—1 defined in (B.5). The control of (2/n?) > 1<j<k<n COV(Dy k-1, Djj-1) is done as in
the proof of 1). We now control the first part of Var((Sr(Ll)(HO))j).

2
Var[(Sy(Ll)(QO))j] < %ReE Ka[—QZiJ;GZ + ngw] ‘(9:00) *Kn,C’n(Zi):| .
J
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In other words,

Var[(SO@);] < SRR [(ZfPw + fpofw) x Knc, (2]

3|

2
= —ReE[((f3(Xo) + ) [ w + foo £33 w) + K, (Z0)] -
Now, write that

2
ReE [((f3:(X0) + o) fiw + foo f3s'w) * K, (Z0)] = I1 + 11,
with

= Re [[ 16— o)) + o ( / <f;3>w><u>f<n,cn<z—u)du)QPwa)dz

I, = Re/ fe(z —x) </ fgofgo w)(u) Ky, c, (2 u)du)zPX(dx)dz.
We apply Holder Inequality and obtain that
11| < supE[(f(Xo) + 09) (2 = Xo) || () w) * K, |,
and that |I1;| is also less than
E{(fio(X0) + G2)] 1| (fgo'w) % K 1%

In the same way we have
(11| < SU£E[fs(Z — Xo)] || (foo fynw) % Kocy 13, and IT <[ (fyo fo'w) * K, 1% -
ze

Consequently we have

C(Jg’feoafe)

(B.15)Var [(S{(89)),] < .

I (3w % Knc, 13 + 1| (o 3o’ w) % Ko, 1]
and

(B.16) Var[(S{)(6°));] < | (f55w) % K B+ Il oo S w) % Knc, 1] -
By combining (B.15) and (B.16), we get that
C((f0070-§7f€)

n

(feO) [

{Vm(eO) V[Q}(GO)}

Y n,j

Var[(5{V(6%));] <

with VTE?J]-, q = 1,2 defined in Theorem 5.2.
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