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Abstract 

This paper presents an efficient preconditioning 
technique in order to couple Partial Element Equivalent 
Circuit (PEEC) method with Fast Multipole algorithm 
(FMM). 

1 Introduction 

The PEEC approach [1] have proven to be a reliable 
and fast method for modelling power electronics 
devices, printed circuit board layouts or EMC filters. 
However, for complicated three-dimensional structures 
like industrial applications, the approach is strongly 
limited due to the fact that it produces a linear system of 
equation Ax = b where the impedance matrix A is 
complex, very large, fully populated, non symmetric and 
with a bad condition number. Using a direct solver, the 
matrix storing cost increases in O(N2) and the 
computational complexity of solving process increases 
in O(N3). To address this problem, an Adaptive Multi-
Level Fast Multipole Method (AMLFMM) [2] must be 
used coupled with an iterative solver like GMRES. Such 
approach speeds-up the matrix-vector product to 
O(NlogN) and also avoids the storage of the fully dense 
matrix. It must be pointed out that only some part of 
matrix A is explicitly known by this approach  
However, even if this technique is applied, we may not 
be able to get a solution because of the non-
convergence of GMRES algorithm. Therefore, we need 
to apply a preconditioning technique in order to ensure 
the convergence and/or to reduce the number of 
iterations.  
The purpose of this paper is to present a new, original 
and efficient preconditioning technique dealing with 
such problems where a small part of matrix A can only 
be known indirectly. 

2 PEEC equivalent circuit formulation with FMM  

In the case of Magneto-harmonic analysis, the classical 
PEEC method is derived from the equation governing 
the total electric field at a point r : 
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 where J is a current density, φ  is a scalar electric 
potential, σ is the material conductivity, µ0 is the vacuum 
permeability and ω is the working frequency. The 
conducting volume V is discretized into elementary 
conductors with constant current density in each of 
them. If the whole current flowing into each elementary 
conductor (or branch) is Ib and associated voltage is Vb, 
we get a system of equations linking currents vector to 
voltages vector.  
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where Zb is called the complex impedance matrix, Rb is 
a diagonal matrix whose elements are DC resistance of 
each branch and Lb is a dense matrix of partial 
inductances. Expressions to compute each element of 
both matrices Rb and Lb can be found in reference [1]. 
In order to solve the problem, it remains to add circuit 
equations (Kirchhoff's circuit law) ensuring the current 
conservation. 
Using a mesh-based analysis [3], where mesh is any 
loop of branches in the graph representing the circuit, 
we can transform (2) into a new equation: 
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with bm IIM =t (4) and mb ZMMZ =t  (5), where Zm 

is a complex mesh-based impedance matrix, Im is a 
vector mesh-based currents, M is the incidence matrix, 
Vs is the vector of source voltages (most part of time 
equal to 0) and the size of Im being the number of 
fundamental loops (or meshes). Finally, we have: 
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This approach used in FastHenry [3] is known to reduce 
the number of unknowns and to lead to a better 
condition number in comparison with classical modified 
nodal analysis (MNA). 
The solution of (6) in the coupling PEEC/AMLFMM 
context [3] leads to the storage of the only part of Zm 
corresponding to near field interactions whereas the far 
field interactions are computed thanks to matrix-vector 
products accelerated by FMM. As a consequence, the 
matrix Zm is decomposed into a far-field and a near-field 
(NF) matrix: 
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Let us notice that to reduce the memory consumption 
only smaller matrix Zb_near is stored and the relation with 
matrix Zm_near is computed via formula (5). This point 
makes the preconditioning technique more difficult to 
apply. 



3 Inner-outer near-field preconditioning technique 

In our approach, the choice of meshes is based on 
geometric criteria leading to the building of a Zm matrix 
with higher elements located mainly to its diagonal. This 
first fundamental step leads to a reliable set of 
equations. However, an efficient preconditioning 
technique is still needed. 
Usually, when an iterative solver is used, the 
preconditioning is applied to the residual and can be 
achieved thanks to the solving of another linear system. 
This technique based on nested solver schemes has 
been investigated by many authors and has shown a 
good efficiency in electromagnetism [4].  
Let us call P the preconditioner and rp the 
preconditioned residual. We have: 
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The system needs to be solved to get the 
preconditioned residual is then:  

rIZVrpP mms =−=⋅                       (9) 

In order to be efficient, the resolution of the last system 
(9) must be faster than the initial one (8). Let us notice 
that the second solving process can lead to a higher 
number of iterations but the time needed must be 
smaller.  
To do this, as P we have chosen an approximation of 
Zm_near matrix called filtered matrix Zm_near_filtered. To build 
it, only most important elements in each row of Zb_near 

are conserved (selected thanks to a coefficient range 
from 0 to 1). We have then to solve:  

rrpZ filterednearm =⋅__                        (10) 

This new system is then solved by a nested GMRES 
solver. The process named outer-inner preconditioning 
strategy is resumed in the following figure: 
 
Outer solver GMRes : 

• Equation : Zm.Im = Vm
• Matrix-vector product: AMLFMM + near product
• Preconditioning : Inner solver GMRes

• Equation : Zm_near_filtered.rp = r
• Matrix-vector product : Low near product
• Preconditioning : block-diagonal (or another Inner solver)  

Figure 1: Nested solver for near-field iterative 
preconditioning 

 
In the inner GMRES solver, the preconditioning strategy 
used is a classical block-diagonal one. Let us notice that 
we could apply this idea recursively and nest several 
GMRES schemes with filtered NF matrix down to 
diagonal matrix. However, a two-level scheme is 
already quite efficient. 

4 Numerical results 

These preconditioning strategies have been used to 
model an EMC filter in InCa3D software [5]. The 
discretization of the geometry leads to 4065 complex 
unknowns. Several preconditioning techniques have 
been tested and compared: 

• Classical block-diagonal preconditioning with 
maximum 100 elements per block. 

• Incomplete LU Factorization [6] with p = 50, τ = 
1E-5. 

• Our Inner-Outer GMRES scheme. 

 
Figure 2: EMC filter structure 

Presented example was computed on Intel Core 2 Duo 
@2.66Ghz with 2 GB memory. Matrix-Vector products 
and block-diagonal preconditioning was computed by a 
parallel version of FMM developed in Java. 
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Figure 3: Convergence of main GMRES solver 

 
The ILUT approach is the most costly in memory and 
computation time. This is due to the fact that Zm_near 
which is quite fully dense has to be explicitly built. Inner-
outer GMRES preconditioning technique presents best 
performances in the context of FMM implementation. 
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