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Abstract

We study the stochastic FitzHugh–Nagumo equations, modelling the dynamics of
neuronal action potentials, in parameter regimes characterised by mixed-mode oscilla-
tions. The interspike time interval is related to the random number of small-amplitude
oscillations separating consecutive spikes. We prove that this number has an asymp-
totically geometric distribution, whose parameter is related to the principal eigenvalue
of a substochastic Markov chain. We provide rigorous bounds on this eigenvalue in
the small-noise regime, and derive an approximation of its dependence on the system’s
parameters for a large range of noise intensities. This yields a precise description of
the probability distribution of observed mixed-mode patterns and interspike intervals.
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Keywords and phrases. FitzHugh–Nagumo equations, interspike interval distribution,
mixed-mode oscillation, singular perturbation, fast–slow system, dynamic bifurcation, ca-
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1 Introduction

Deterministic conduction-based models for action-potential generation in neuron axons
have been much studied for over half a century. In particular, the four-dimensional
Hodgkin–Huxley equations [HH52] have been extremely successful in reproducing the
observed behaviour. Of particular interest is the so-called excitable regime, when the
neuron is at rest, but reacts sensitively and reliably to small external perturbations, by
emitting a so-called spike. Until recently, most research efforts have been concerned with
the effect of deterministic perturbations. During the last decade, however, there has
been growing interest in quantifying the effect of random perturbations as well. See for in-
stance [TP01b, TTP02, Row07] for numerical studies of the effect of noise on the interspike
interval distribution in the Hodgkin–Huxley equations.

Being four-dimensional, the Hodgkin–Huxley equations are notoriously difficult to
study already in the deterministic case. For this reason, several simplified models have
been introduced. In particular, the two-dimensional FitzHugh–Nagumo equations [Fit55,
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Figure 1. Schematic phase diagram of the stochastic FitzHugh–Nagumo equations. The
parameter σ measures the noise intensity, δ measures the distance to the singular Hopf
bifurcation, and ε is the timescale separation. The three main regimes are characterised
be rare isolated spikes, clusters of spikes, and repeated spikes.

Fit61, NAY62], which generalise the Van der Pol equations, are able to reproduce one type
of excitability, which is associated with a Hopf bifurcation (excitability of type II [Izh00]).

The effect of noise on the FitzHugh–Nagumo equations or similar excitable systems has
been studied numerically [KP03, KP06, TGOS08, BKLLC11] and using moment meth-
ods [TP01a] and approximate solutions of the Fokker–Planck equations [LSG99, SK].
Rigorous results on the oscillatory (as opposed to excitable) regime have been obtained
using the theory of large deviations [MVEE05, DT09] and by a detailed description of
sample paths near so-called canard solutions [Sow08].

An interesting connection between excitability and mixed-mode oscillations (MMOs)
was observed by Kosmidis and Pakdaman [KP03, KP06], and further analysed by Mura-
tov and Vanden-Eijnden [MVE08]. MMOs are patterns of alternating large- and small-
amplitude oscillations (SAOs), which occur in a variety of chemical and biological systems.
In the deterministic case, at least three variables are necessary to reproduce such a be-
haviour (see [DGK+11] for a recent review of deterministic mechanisms responsible for
MMOs). As observed in [KP03, KP06, MVE08], in the presence of noise, already the
two-dimensional FitzHugh–Nagumo equations can display MMOs. In fact, depending on
the three parameters noise intensity σ, timescale separation ε and distance to the Hopf bi-
furcation δ, a large variety of behaviours can be observed, including sporadic single spikes,
clusters of spikes, bursting relaxation oscillations and coherence resonance. Figure 1 shows
a simplified version of the phase diagram proposed in [MVE08].

In the present work, we build on ideas of [MVE08] to study in more detail the transition
from rare individual spikes, through clusters of spikes and all the way to bursting relaxation
oscillations. We begin by giving a precise mathematical definition of a random variable N
counting the number of SAOs between successive spikes. It is related to a substochastic
continuous-space Markov chain, keeping track of the amplitude of each SAO. We use this
Markov process to prove that the distribution of N is asymptotically geometric, with a
parameter directly related to the principal eigenvalue of the Markov chain (Theorem 3.2).
A similar behaviour has been obtained for the length of bursting relaxation oscillations in
a three-dimensional system [HM09]. In the weak noise regime, we derive rigorous bounds
on the principal eigenvalue and on the expected number of SAOs (Theorem 4.2). Finally,
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we derive an approximate expression for the distribution of N for all noise intensities up
to the regime of repeated spiking (Proposition 5.1).

The rest of this paper is organised as follows. Section 2 contains the precise definition of
the model. In Section 3, we define the random variable N and derive its general properties.
Section 4 discusses the weak-noise regime, and Section 5 the transition from weak to strong
noise. We present some numerical simulations in Section 6, and give concluding remarks
in Section 7. A number of more technical computations are contained in the appendix.
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2 Model

We will consider random perturbations of the deterministic FitzHugh–Nagumo equations
given by

εẋ = x− x3 + y

ẏ = a− bx− cy ,
(2.1)

where a, b, c ∈ R and ε > 0 is a small parameter. The smallness of ε implies that x changes
rapidly, unless the state (x, y) is close to the nullcline {y = x3 − x}. Thus System (2.1) is
called a fast-slow system, x being the fast variable and y the slow one.

We will assume that b 6= 0. Scaling time by a factor b and redefining the constants a, c
and ε, we can and will replace b by 1 in (2.1). If c > 0 and c is not too large, the nullclines
{y = x3 − x} and {a = x + cy} intersect in a unique stationary point P . If c < 0, the
nullclines intersect in 3 aligned points, and we let P be the point in the middle. It can be
written P = (α,α3 − α), where α satisfies the relation

α+ c(α3 − α) = a . (2.2)

The Jacobian matrix of the vector field at P is given by

J =







1− 3α2

ε

1

ε

−1 −c






. (2.3)

It has determinant (1− c(1− 3α2))/ε and trace

Tr J =
3(α2

∗ − α2)

ε
, where α∗ =

√

1− cε

3
. (2.4)

Thus if |c| < 1/
√
ε, J admits a pair of conjugate imaginary eigenvalues when α = ±α∗.

Furthermore, the eigenvalues’ real parts are of order (α∗ − α)/ε near α∗. The system
undergoes so-called singular Hopf bifurcations [BE86, BE92, Bra98] at α = ±α∗.
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Figure 2. Some orbits of the deterministic FitzHugh–Nagumo equations (2.1) for param-
eter values ε = 0.05, a = 0.58, b = 1 and c = 0. The black curve is the nullcline, and the
red orbit is the separatrix.

We are interested in the excitable regime, when α − α∗ is small and positive. In this
situation, P is a stable stationary point, corresponding to a quiescent neuron. However, a
small perturbation of the initial condition, e.g. a slight decrease of the y-coordinate, causes
the system to make a large excursion to the region of negative x, before returning to P
(Figure 2). This behaviour corresponds to a spike in the neuron’s membrane potential,
followed by a return to the quiescent state. One can check from the expression of the
Jacobian matrix that P is a focus for α − α∗ of order

√
ε. Then return to rest involves

small-amplitude oscillations (SAOs), of exponentially decaying amplitude.
For later use, let us fix a particular orbit delimiting the spiking and quiescent regimes,

called separatrix. An arbitrary but convenient choice for the separatrix is the negative-
time orbit of the local maximum (−1/

√
3, 2/(3

√
3)) of the nullcline (Figure 2). The main

results will not depend on the detailed choice of the separatrix.
In this work we consider random perturbations of the deterministic system (2.1) by

Gaussian white noise. They are described by the system of Itô stochastic differential
equations (SDEs)

dxt =
1

ε
(xt − x3t + yt) dt+

σ1√
ε
dW

(1)
t

dyt = (a− xt − cyt) dt+ σ2 dW
(2)
t ,

(2.5)

where W
(1)
t and W

(2)
t are independent, standard Wiener processes, and σ1, σ2 > 0. The

parameter a will be our bifurcation parameter, while c is assumed to be fixed, and small
enough for the system to operate in the excitable regime. The scaling in 1/

√
ε of the noise

intensity in the first equation is chosen because the variance of the noise term then grows
like σ21t/ε, so that σ21 measures the ratio of diffusion and drift for the x-variable, while σ22
plays the same rôle for the y-variable.

Figure 3 shows a selection of time series for the stochastic FitzHugh–Nagumo equa-
tions (2.5). For the chosen parameter values, one can clearly see large-amplitude spikes,
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Figure 3. Examples of time series of the stochastic FitzHugh–Nagumo equations (2.5).
The plots show the functions t 7→ ξt, where the variable ξ is defined in Section 4. Parameter
values are ε = 0.01 and δ = 3 · 10−3 for the top row, δ = 5 · 10−3 for the bottom row. The
noise intensities are given by σ1 = σ2 = 1.46 · 10−4, 1.82 · 10−4, 2.73 · 10−4 and 3.65 · 10−4.

separated by a random number of SAOs.

3 The distribution of small-amplitude oscillations

Let us now define an integer-valued random variable N , counting the number of small-
amplitude oscillations the stochastic system performs between two consecutive spikes.
The definition is going to be topological, making our results robust to changes in details
of the definition. We start by fixing a bounded set D ⊂ R

2, with smooth boundary ∂D,
containing the stationary point P and a piece of the separatrix (Figure 4). Any excursion
of the sample path (xt, yt)t outside D will be considered as a spike. N is defined as the
number of times the sample path winds around P before leaving D, and thus displaying a
spike.

To define N precisely, we let B be a small ball of radius ρ > 0 centred in P . Then we
draw a smooth curve F from B to the boundary ∂D, which we parametrise by a variable
r ∈ [0, 1] proportional to arclength (the results will be independent, however, of the choice
of F and of r). We extend the parametrisation of F to a polar-like parametrisation of
all D \ B, i.e. we choose a diffeomorphism T : [0, 1] × S

1 → D, (r, ϕ) 7→ (x, y), where
T−1(F) = {ϕ = 0}, T−1(∂D) = {r = 0} and T−1(∂B) = {r = 1}. We also arrange that
ϕ̇ > 0 near P for the deterministic flow.
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Figure 4. Definition of the number N of SAOs. The sample path (red) enters the region
D, and intersects twice the line F before leaving D, making another spike. Thus N = 2
in this example. The separatrix is represented in blue.

Consider the process (rt, ϕt)t (where the angle ϕ has been lifted from S
1 to R ). Given

an initial condition (r0, 0) ∈ T−1(F) and an integer M > 1, we define the stopping time

τ = inf
{

t > 0: ϕt ∈ {2π,−2Mπ} or rt ∈ {0, 1}
}

. (3.1)

There are four cases to consider:

• The case rτ = 0 corresponds to the sample path (xt, yt) leaving D, and thus to a
spike. This happens with strictly positive probability, by ellipticity of the diffusion
process (2.5). In this situation, we set by convention N = 1.

• In the case ϕτ = 2π and rτ ∈ (0, 1), the sample path has returned to F after performing
a complete revolution around P , staying all the while in D \ B. This corresponds to
an SAO, and thus N > 2.

• The case rτ = 1 corresponds to the sample path entering B, which we consider as the
neuron reaching the quiescent state. In that case we simply wait until the state leaves
B again and either hits F or leaves D.

• The case ϕτ = −2Mπ and rτ ∈ (0, 1) represents the (unlikely) event that the sample
path winds M time around P in the wrong direction. We introduce this case for
technical reasons only, as we will need τ to be the first-exit time of a bounded set. For
simplicity, we also consider this situation as one SAO.

As long as rτ ∈ (0, 1), we repeat the above procedure, incrementing N at each iteration.
This yields a sequence (R0, R1, . . . , RN−1) of random variables, describing the position of
the successive intersections of the path with F , separated by rotations around P , and up
to the first exit from D.

Remark 3.1. The above definition of N is the simplest one to analyse mathematically.
There are several possible alternatives. One can, for instance, introduce a quiescent state
(x, y) ∈ B, and define N as the number of SAOs until the path either leaves D or enters B.
This would allow to keep track of the number of SAOs between successive spikes and/or
quiescent phases. Another possibility would be to count rotations in both the positive and
negative directions. For simplicity, we stick here to the above simplest definition of N ,
but we plan to make a more refined study in a future work.
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The sequence (Rn)n forms a substochastic Markov chain on E = (0, 1), with kernel

K(R,A) = P
{

ϕτ = 2π, rτ ∈ A
∣

∣ ϕ0 = 0, r0 = R
}

, R ∈ E,A ⊂ E a Borel set . (3.2)

The Markov chain is substochastic because K(R,E) < 1, due to the positive probability
of sample paths leaving D. We can make it stochastic in the usual way by adding a
cemetery state ∆ to E (the spike), and setting K(R,∆) = 1 − K(R,E), K(∆,∆) = 1
(see [Ore71, Num84] for the general theory of such processes).

The number of SAOs is given by

N = inf
{

n > 1: Rn = ∆
}

∈ N ∪ {∞} (3.3)

(we set inf ∅ = ∞). A suitable extension of the well-known Perron–Frobenius theorem (see
[Jen12, KR50, Bir57]) shows that K admits a maximal eigenvalue λ0, which is real and
simple. It is called the principal eigenvalue of K. If there exists a probability measure
π0 such that π0K = λ0π0, it is called the quasi-stationary distribution (QSD) of the
kernel K [SVJ66].

Our first main result gives qualitative properties of the distribution of N valid in all
parameter regimes with nonzero noise.

Theorem 3.2 (General properties of N). Assume that σ1, σ2 > 0. Then for any initial
distribution µ0 of R0 on the curve F ,

• the kernel K admits a quasi-stationary distribution π0;
• the associated principal eigenvalue λ0 = λ0(ε, a, c, σ1, σ2) is strictly smaller than 1;
• the random variable N is almost surely finite;
• the distribution of N is “asymptotically geometric”, that is,

lim
n→∞

P
µ0
{

N = n+ 1
∣

∣ N > n
}

= 1− λ0 ; (3.4)

• E
µ0
{

rN
}

<∞ for r < 1/λ0 and thus all moments E
µ0
{

Nk
}

of N are finite.

Proof: Let us denote by K(x,dy) the kernel defined in (3.2). We consider K as a
bounded linear operator on L∞(E), acting on bounded measurable functions by

f(x) 7→ (Kf)(x) =

∫

E
K(x,dy)f(y) = E

x {f(R1)} , (3.5)

and as a bounded linear operator on L1(E), acting on finite measures µ by

µ(A) 7→ (µK)(A) =

∫

E
µ(dx)K(x,A) = P

µ{R1 ∈ A} . (3.6)

To prove existence of a QSD π0, we first have to establish a uniform positivity condition
on the kernel. Note that in K(x,dy), y represents the first-exit location from the domain
G = (0, 1)× (−2Mπ, 2π), for an initial condition (x, 0), in case the exit occurs through one
of the lines ϕ = −2Mπ or ϕ = 2π. In harmonic analysis, K(x,dy) is called the harmonic
measure for the generator of the diffusion in G based at (x, 0). In the case of Brownian
motion, it has been proved in [Dah77] that sets of positive Hausdorff measure have positive
harmonic measure. This result has been substantially extended in [BAKS84], where the
authors prove that for a general class of hypoelliptic diffusions, the harmonic measure
admits a smooth density k(x, y) with respect to Lebesgue measure dy. Our diffusion
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process being uniformly elliptic for σ1, σ2 > 0, it enters into the class of processes studied
in that work. Specifically, [BAKS84, Corollary 2.11] shows that k(x, y) is smooth, and its
derivatives are bounded by a function of the distance from x to y. This distance being
uniformly bounded below by a positive constant in our setting, there exists a constant
L ∈ R+ such that

sup
y∈E

k(x, y)

inf
y∈E

k(x, y)
6 L ∀x ∈ E . (3.7)

We set
s(x) = inf

y∈E
k(x, y) . (3.8)

Then it follows that
s(x) 6 k(x, y) 6 Ls(x) ∀x, y ∈ E . (3.9)

Thus the kernel K fulfils the uniform positivity condition

s(x)ν(A) 6 K(x,A) 6 Ls(x)ν(A) ∀x ∈ E ,∀A ⊂ E (3.10)

for ν given by the Lebesgue measure. It follows by [Bir57, Theorem 3] that K admits
unique positive left and right unit eigenvectors, and that the corresponding eigenvalue λ0
is real and positive. In other words, there is a measure π0 and a positive function h0 such
that π0K = λ0π0 and Kh0 = λ0h0. We normalise the eigenvectors in such a way that

π0(E) =

∫

E
π0(dx) = 1 , π0h0 =

∫

E
π0(dx)h0(x) = 1 . (3.11)

Thus π0 is indeed the quasistationary distribution of the Markov chain. Notice that

λ0 = λ0π0(E) =

∫

E
π0(dx)K(x,E) 6 π0(E) = 1 , (3.12)

with equality holding if and only if K(x,E) = 1 for π0-almost all x ∈ E. In our case,
K(x,E) < 1 since E has strictly smaller Lebesgue measure than ∂G, and the density of
the harmonic measure is bounded below. This proves that λ0 < 1.

Lemma 3 in [Bir57] shows that for any bounded measurable function f : E → R , there
exists a finite constant M(f) such that the spectral-gap estimate

|(Knf)(x)− λn0 (π0f)h0(x)| 6M(f)(λ0ρ)
nh0(x) (3.13)

holds for some ρ < 1 (note that this confirms that λ0 is indeed the leading eigenvalue of
K). In order to prove that N is almost surely finite, we first note that

P
µ0
{

N > n
}

= P
µ0
{

Rn ∈ E
}

=

∫

E
µ0(dx)K

n(x,E) . (3.14)

Applying (3.13) with f = 1, the function identically equal to 1, we obtain

λn0h0(x)−M(1)(λ0ρ)
nh0(x) 6 Kn(x,E) 6 λn0h0(x) +M(1)(λ0ρ)

nh0(x) . (3.15)

Integrating against µ0, we get

λn0
(

1−M(1)ρn
)

6 P
µ0
{

N > n
}

6 λn0
(

1 +M(1)ρn
)

. (3.16)
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Since λ0 < 1, it follows that limn→∞ P
µ0{N > n} = 0, i.e., N is almost surely finite.

In order to prove that N is asymptotically geometric, we have to control

P
µ0
{

N = n+ 1
}

=

∫

E

∫

E
µ0(dx)K

n(x,dy)
[

1−K(y,E)
]

. (3.17)

Applying (3.13) with f(y) = 1−K(y,E), and using the fact that

π0f = 1−
∫

E
π0(dy)K(y,E) = 1− λ0 (3.18)

yields

λn0
(

1− λ0 −M(f)ρn
)

6 P
µ0
{

N = n+ 1
}

6 λn0
(

1− λ0 +M(f)ρn
)

. (3.19)

Hence (3.4) follows upon dividing (3.19) by (3.16) and taking the limit n→ ∞.
Finally, the moment generating function E

µ0
{

rN
}

can be represented as follows:

E
µ0
{

rN
}

=
∑

n>0

rnPµ0
{

N = n
}

=
∑

n>0

[

1 + (r − 1)

n−1
∑

m=0

rm
]

P
µ0
{

N = n
}

= 1 + (r − 1)
∑

m>0

rmP
µ0
{

N > m
}

, (3.20)

which converges for |rλ0| < 1 as a consequence of (3.16).

Note that in the particular case where the initial distribution µ0 is equal to the QSD
π0, the random variable Rn has the law µn = λn0π0, and N follows an exponential law of
parameter 1− λ0 :

P
π0
{

N = n
}

= λn−1
0 (1− λ0) and E

π0
{

N
}

=
1

1− λ0
. (3.21)

In general, however, the initial distribution µ0 after a spike will be far from the QSD π0,
and thus the distribution of N will only be asymptotically geometric.

Theorem 3.2 allows to quantify the clusters of spikes observed in [MVE08]. To this
end, we have to agree on a definition of clusters of spikes. One may decide that a cluster
is a sequence of successive spikes between which there is no complete SAO, i.e. N = 1
between consecutive spikes. If the time resolution is not very good, however, one may
also fix a threshold SAO number n0 > 1, and consider as a cluster a succession of spikes

separated by at most n0 SAOs. Let µ
(n)
0 be the arrival distribution on F of sample paths

after the nth spike. Then the probability to observe a cluster of length k is given by

P
µ
(0)
0
{

N 6 n0
}

P
µ
(1)
0
{

N 6 n0
}

. . .Pµ
(k−1)
0

{

N 6 n0
}

P
µ
(k)
0
{

N > n0
}

. (3.22)

In general, the consecutive spikes will not be independent, and thus the distributions µ
(n)
0

will be different. For small noise, however, after a spike sample paths strongly concentrate
near the stable branch of the nullcline (see the discussion in [BG09, Section 3.5.2]), and

thus we expect all µ
(n)
0 to be very close to some constant distribution µ0. This implies

that the lengths of clusters of spikes also follow an approximately geometric distribution :

P
{

cluster of length k
}

≃ pk(1− p) where p = P
µ0
{

N 6 n0
}

. (3.23)
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4 The weak-noise regime

In order to obtain more quantitative results, we start by transforming the FitzHugh-
Nagumo equations to a more suitable form. The important part of dynamics occurs near
the singular Hopf bifurcation point. We carry out the transformation in four steps, the
first two of which have already been used in [BE86, BE92] :

1. An affine transformation x = α∗ + u, y = α3
∗ − α∗ + v translates the origin to the

bifurcation point, and yields, in the deterministic case (2.1), the system

εu̇ = v + cεu− 3α∗u
2 − u3 ,

v̇ = δ − u− cv ,
(4.1)

where δ = a− α∗ − c(α3
∗ − α∗) is small and positive. Note that (2.2) implies that δ is

of order α−α∗ near the bifurcation point, and thus measures the distance to the Hopf
bifurcation. In particular, by (2.4) the eigenvalues of the Jacobian matrix J have real
parts of order −δ/ε.

2. The scaling of space and time given by u =
√
εξ, v = εη and t =

√
εt′ yields

ξ̇ = η − 3α∗ξ
2 +

√
ε
(

cξ − ξ3
)

,

η̇ =
δ√
ε
− ξ −√

ε cη ,
(4.2)

where dots now indicate derivation with respect to t′. On this scale, the nullcline ξ̇ = 0
is close to the parabola η = 3α∗ξ2.

3. The nonlinear transformation η = 3α∗ξ2 + z − 1/(6α∗) has the effect of straightening
out the nullcline, and transforms (4.2) into

ξ̇ = z − 1

6α∗
+

√
ε
(

cξ − ξ3
)

,

ż =
δ√
ε
− 6α∗ξz +

√
ε

(

6α∗ξ
4 + c

( 1

6α∗
− 9α∗ξ

2 − z
)

)

.

(4.3)

4. Finally, we apply the scaling ξ 7→ −ξ/3α∗, z 7→ z/3α∗, which yields

ξ̇ =
1

2
− z +

√
ε

(

cξ − 1

9α2∗
ξ3
)

,

ż = µ+ 2ξz +
√
ε

(

2

9α2∗
ξ4 + c

(1

2
− 3ξ2 − z

)

)

,

(4.4)

where the distance to the Hopf bifurcation is now measured by the parameter

µ =
3α∗δ√
ε
. (4.5)

If we neglect the terms of order
√
ε in (4.4), we obtain a very simple system, with a

stationary point at (−µ, 1/2). If in addition µ = 0, the line z = 0 is invariant. Orbits
starting in {z < 0} go to −∞ (which corresponds to a spike), while orbits starting in
{z > 0} rotate around the stationary point (making an SAO). Thus {z = 0} is indeed
the separatrix in that limit. Figure 5 shows some orbits in a case with slightly positive
µ, when the separatrix lies in the region {z < 0}.
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ξ

z

Figure 5. Some orbits of the deterministic equations (4.4) in (ξ, z)-coordinates, for pa-
rameter values ε = 0.01, µ = 0.05 and c = 0 (i.e. α∗ = 1/

√
3).

Carrying out the same transformations for the stochastic system (2.5) yields the fol-
lowing result (we omit the proof, which is a straightforward application of Itô’s formula).

Proposition 4.1. In the new variables (ξ, z), and on the new timescale t/
√
ε, the stochas-

tic FitzHugh–Nagumo equations (2.5) take the form

dξt =

[

1

2
− zt +

√
ε
(

cξt −
1

9α2∗
ξ3t

)

]

dt+ σ̃1 dW
(1)
t ,

dzt =

[

µ̃+ 2ξtzt +
√
ε

(

2

9α2∗
ξ4t + c

(1

2
− 3ξ2t − zt

)

)]

dt− 2σ̃1ξt dW
(1)
t + σ̃2 dW

(2)
t ,

(4.6)

where

σ̃1 = −3α∗ε
−3/4σ1 ,

σ̃2 = 3α∗ε
−3/4σ2 , (4.7)

µ̃ = µ− σ̃21 =
3α∗(δ − 3α∗σ21/ε)√

ε
.

When z is close to 0, the dynamics of zt is dominated by two terms : the term µ̃ dt,
which pushes sample paths upwards to the region of SAOs, and the noise terms. We can
thus expect that if σ̃21 + σ̃22 ≪ µ̃2, then the upwards drift dominates, and the system will
make many SAOs between two consecutive spikes. Going back to original parameters, the
condition translates into σ21 + σ22 ≪ (ε1/4δ)2.

Making these ideas rigorous, we obtain the following theorem.

Theorem 4.2 (Weak-noise regime). Assume that ε and δ/
√
ε are sufficiently small. If

c 6= 0, assume further that δ > |c|εβ for some β > 1. Then there exists a constant κ > 0
such that for σ21 + σ22 6 (ε1/4δ)2/ log(

√
ε/δ), the principal eigenvalue λ0 satisfies

1− λ0 6 exp

{

−κ(ε
1/4δ)2

σ21 + σ22

}

. (4.8)
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Furthermore, for any initial distribution µ0 of incoming sample paths, the expected number
of SAOs satisfies

E
µ0
{

N
}

> C(µ0) exp

{

κ
(ε1/4δ)2

σ21 + σ22

}

. (4.9)

Here C(µ0) is the probability that the incoming path hits F above the separatrix.

Proof: The result follows of we can prove the existence of a subset A ⊂ E with positive
Lebesgue measure that the Markov chain is unlikely to leave. Indeed, let

εA = sup
x∈A

[

1−K(x,A)
]

(4.10)

be the maximal probability to leave A when starting in A. Let us show that

λ0 > 1− εA . (4.11)

Indeed, the relation λ0π0 = π0K yields

λ0π0(A) =

∫

A
π0(dx)K(x,A) +

∫

E\A
π0(dx)K(x,A)

> π0(A)(1 − εA) +

∫

E\A
π0(dx)s(x) ν(A) . (4.12)

Either π0(A) = 1, and the result follows immediately. Or π0(A) < 1, and thus π0(E \A) >
0, so that the second term on the right-hand side is strictly positive. It follows that
λ0π0(A) > 0, and we obtain (4.11) upon dividing by π0(A).

Next, let us prove that

E
µ0 {N} >

µ0(A)

εA
. (4.13)

For x ∈ A, let θ(x) = E
x {N} =

∑

n>0K
n(x,E). Then θ(x) = limn→∞ θn(x) where

θn(x) =

n
∑

m=0

Km(x,E) . (4.14)

We have

θn+1(x) = 1 + (Kθn)(x) > 1 +

∫

A
K(x,dy)θn(y) . (4.15)

Now let mn = infx∈A θn(x). Then m0 = 1 and

mn+1 > 1 + (1− εA)mn . (4.16)

By induction on n we get

mn >
1

εA
− (1− εA)

n+1

εA
, (4.17)

so that Ex {N} = θ(x) > 1/εA for all x ∈ A, and (4.13) follows upon integrating against
µ0 over A.

It thus remains to construct a set A ⊂ E such that εA is exponentially small in
µ̃2/(σ̃21 + σ̃22). The detailed computations being rather involved, we give them in the
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appendix, and only summarise the main steps here. We first have to choose the curve F
defining the Markov chain. Let us introduce two broken lines

F− =
{

ξ = −L and z 6
1

2

}

∪
{

−L 6 ξ 6 0 and z =
1

2

}

(4.18)

and

F+ =
{

ξ = L and z 6
1

2

}

∪
{

0 6 ξ 6 L and z =
1

2

}

, (4.19)

where the parameter L is given by

L2 =
γ

2

(

− log(c−µ̃)
)

, (4.20)

where c− > 0 and γ > 0 are adjustable constants. The curve F will correspond to the
broken line F−, while F+ allows to split the computations into two distinct steps.

1. In the first step, we take an initial condition (−L, z0) on F−, with z0 of order µ̃1−γ . It
is easy to show that the deterministic solution starting in (−L, z0) hits F+ for the first
time at a point z0T > c0µ̃

1−γ where c0 > 0. Consider now the stochastic sample path
starting in (−L, z0). Proposition A.4 in Appendix A shows that there are constants
C, κ1 > 0 such that the sample path hits F+ for the first time at a point (L, z1)
satisfying

P
{

z1 < c0µ̃
1−γ − µ̃

}

6
C

µ̃2γ
e−κ1µ̃2/σ̃2

. (4.21)

This is done by first approximating (4.6) by a linear system, and then showing that
the effect of nonlinear terms is small.

2. In the second step, we show that a sample path starting in (L, z1) ∈ F+ returns with
high probability to F− at a point (−L, z′0) with z′0 > z1. The coordinates (ξ, z) are
not well adapted to this part of the dynamics, because z is likely to become very large
and ξ is not monotonous. The idea, already used in [MVE08], is to draw on the fact
that the variable

Q = 2z e−2z−2ξ2+1 (4.22)

is a constant of motion in the deterministic case, when µ̃ = 0. Thus by introducing
an angle variable φ such that the change of variables (ξ, z) 7→ (φ,Q) is well-defined in
the region of interest, and using an averaging procedure, we can show that Q varies
little between F+ and F−. Corollary B.5 in Appendix B shows that there is a κ2 > 0
such that

P
{

z′0 < z1
∣

∣ z1 > c0µ̃
1−γ − µ̃

}

6 2 e−κ2µ̃2/σ̃2
. (4.23)

In the above results, we assume that either c = 0, or c 6= 0 and µ̃1+θ >
√
ε for some θ > 0.

The reason is that if c = 0, we can draw on the fact that the error terms of order
√
ε

in (4.6) are positive, while if c 6= 0 we only know their order. Choosing A as the set of
points in F− for which z > c0µ̃

1−γ − µ̃, we obtain that εA is bounded by the sum of (4.21)
and (4.23), and the results follow by returning to original parameters.

Relation (4.9) shows that the average number of SAOs between two consecutive spikes
is exponentially large in this regime. Note that each SAO requires a rescaled time of order
1 (see Section B.1), and thus a time of order

√
ε in original units. It follows that the

average interspike interval length is obtained by multiplying (4.9) by a constant times
√
ε.

Relation (3.4) shows that the distribution of N is asymptotically geometric with pa-
rameter given by (4.8). Hence the interspike interval distribution will be close to an
exponential one, but with a periodic modulation due to the SAOs.
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5 The transition from weak to strong noise

We now give an approximate description of how the dynamics changes with increasing noise
intensity. Assume that we start (4.6) with an initial condition (ξ0, z0) where ξ0 = −L for
some L > 0 and z0 is small. As long as zt remains small, we may approximate ξt in the
mean by ξ0 + t/2, and thus zt will be close to the solution of

dz1t =
(

µ̃+ tz1t

)

dt− σ̃1t dW
(1)
t + σ̃2 dW

(2)
t . (5.1)

This linear equation can be solved explicitly. In particular, at time T = 4L, ξt is close to
L and we have the following result.

Proposition 5.1. Let 2L2 = γ|log(c−µ̃)| for some γ, c− > 0. Then for any H,

P
{

z1T 6 −H
}

= Φ

(

−π1/4 µ̃
σ̃

[

1 +O
(

(H + z0)µ̃
γ−1
)

])

, (5.2)

where σ̃2 = σ̃21 + σ̃22 and Φ(x) =
∫ x
−∞ e−u2/2 du/

√
2π is the distribution function of the

standard normal law.

Proof: Solving (5.1) by variation of the constant yields

z1T = z0 + eT
2/2

[

µ̃

∫ T

t0

e−s2/2 ds− σ̃1

∫ T

t0

s e−s2/2 dW (1)
s + σ̃2

∫ T

t0

e−s2/2 dW (2)
s

]

. (5.3)

Note that by the choice of L, we have eT
2/2 = e2L

2
= (c−µ̃)−γ . The random variable z1T

is Gaussian, with expectation

E
{

z1T
}

= z0 + µ̃ e2L
2

∫ 2L

−2L
e−s2/2 ds (5.4)

and variance

Var(z1T ) = σ̃21 e
4L2

∫ 2L

−2L
s2 e−s2 ds+ σ̃22 e

4L2

∫ 2L

−2L
e−s2 ds . (5.5)

Using this in the relation

P
{

z1T 6 −H
}

=

∫ −H

−∞

e−(z−E{z1T })2/2Var(z1T )

√

2πVar(z1T )
dz = Φ



−H + E{z1T }
√

Var(z1T )



 (5.6)

yields the result.

Choosing γ large enough, the right-hand side of (5.2) is approximately constant for a
large range of values of z0 and H. The probability that the system performs no complete
SAO before spiking again should thus behave as

P
µ0
{

N = 1
}

≃ Φ

(

−π1/4 µ̃
σ̃

)

= Φ

(

−(πε)1/4(δ − 3α∗σ21/ε)
√

σ21 + σ22

)

. (5.7)

Since 1 − λ0 is equal to the probability of leaving D before completing the first SAO,
when starting in the QSD π0, we expect that 1 − λ0 has a similar behaviour, provided
π0 is concentrated near z = 0. We can identify three regimes, depending on the value of
µ̃/σ̃ :
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Figure 6. Histograms of numerically simulated distributions of the SAO number N ,
obtained from time series containing 1000 spikes each. The superimposed curves show
geometric distributions with parameter λ0, where λ0 has been estimated from the expec-
tation of rN , as explained in the text. Parameter values are ε = 10−4 and σ̃ = 0.1 in all
cases, and (a) µ̃ = 0.12, (b) µ̃ = 0.05, (c) µ̃ = 0.01, and (d) µ̃ = −0.09 (cf. (4.7) for their
definition).

1. Weak noise : µ̃ ≫ σ̃, which in original variables translates into
√

σ21 + σ22 ≪ ε1/4δ.
This is the weak-noise regime already studied in the previous section, in which λ0 is
exponentially close to 1, and thus spikes are separated by long sequences of SAOs.

2. Strong noise : µ̃ ≪ −σ̃, which implies µ ≪ σ̃2, and in original variables translates
into

√

σ21 + σ22 ≫ ε3/4. Then P{N > 1} is exponentially small, of order e−(σ2
1+σ2

2)/ε
3/2

.
Thus with high probability, there will be no complete SAO between consecutive spikes,
i.e., the neuron is spiking repeatedly.

3. Intermediate noise : |µ̃| = O(σ̃), which translates into ε1/4δ 6
√

σ21 + σ22 6 ε3/4.
Then the mean number of SAOs is of order 1. In particular, when σ1 =

√
εδ, µ̃ = 0

and thus P{N = 1} is close to 1/2.

An interesting point is that the transition from weak to strong noise is gradual, being
characterised by a smooth change of the distribution of N as a function of the parameters.
There is no clear-cut transition at the parameter value σ1 =

√
εδ obtained in [MVE08]

(cf. Figure 1), the only particularity of this parameter value being that P{N = 1} is close
to 1/2. The definition of a boundary between the intermediate and strong-noise regimes
mainly depends on how well the SAOs can be resolved in time. A very good time resolution
would put the boundary at noise intensities of order ε3/4, while a lower time resolution
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Figure 7. Empirical expectation of rN as a function of r, for µ̃ = 0.05, σ̃ = 0.1 and
ε = 10−4. The location of the pole allows to estimate 1/λ0.

would move in closer to
√
εδ.

6 Numerical simulations

Figure 6 shows numerically simulated distributions of the SAO number. The geometric
decay is clearly visible. In addition, for decreasing values of µ̃/σ̃, there is an increasing
bias towards the first peak N = 1, which with our convention corresponds to the sys-
tem performing no complete SAO between consecutive spikes. Of course this does not
contradict the asymptotic result (3.4), but it shows that transient effects are important.

Due to the finite sample size, the number of events in the tails of the histograms
is too small to allow for a chi-squared adequacy test. We can, however, estimate the
principal eigenvalue λ0, by using the fact that the moment generating function E

µ0
{

rN
}

has a simple pole at r = 1/λ0 (see (3.16) and (3.20)). Figure 7 shows an example of the
dependence of the empirical expectation of rN on r. By detecting when its derivative
exceeds a given threshold, one obtains an estimate of 1/λ0. Geometric distributions with
parameter λ0 have been superimposed on two histograms in Figure 6.

Figure 8 shows, as a function of −x = −µ̃/σ̃, the curve x 7→ Φ(−π1/4x), as well as the
inverse of the empirical expectation of N , the probability that N = 1, and 1 − λ0 where
the principal eigenvalue λ0 has been estimated from the generating function. The data
points for µ̃ > 0 have been obtained from histograms containing 1000 spikes, while those
for µ̃ < 0 have been obtained from histograms containing 500 spikes separated by N > 1
SAOs (the number of spiking events with N = 1 being much larger). Theorem 4.2 applies
to the far left of the figure, when µ̃≫ σ̃.

As predicted by (5.7), P{N = 1} is indeed close to the theoretical value Φ(−π1/4µ̃/σ̃).
Recall from (3.21) that 1/Eµ0 {N}, Pµ0{N = 1} and 1 − λ0 would be equal if the initial
distribution µ0 after a spike were equal to the QSD π0. The simulations show that 1/E{N}
and 1− λ0 are systematically smaller than P{N = 1}. The difference between P{N = 1}
and 1 − λ0 is a measure of how far away µ0 is from the QSD π0. The difference between
1/E{N} and 1 − λ0 also depends on the spectral gap between λ0 and the remaining
spectrum of the Markov kernel. Note that 1/E{N} and 1 − λ0 seem to follow a similar
curve as P{N = 1}, but with a shifted value of µ̃. We do not have any explanation for
this at the moment.
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7 Conclusion and outlook

We have shown that in the excitable regime, and when the stationary point P is a fo-
cus, the interspike interval statistics of the stochastic FitzHugh–Nagumo equations can
be characterised in terms of the random number of SAOs N . The distribution of N is
asymptotically geometric, with parameter 1 − λ0, where λ0 is the principal eigenvalue
of a substochastic Markov chain, describing a random Poincaré map. This result is in
fact fairly general, as it does not depend at all on the details of the system. It only re-
quires the deterministic system to admit an invariant region where the dynamics involves
(damped) oscillations, so that a Poincaré section can be defined in a meaningful way. Thus
Theorem 3.2 will hold true for a large class of such systems.

To be useful for applications, this qualitative result has to be complemented by quan-
titative estimates of the relevant parameters. Theorem 4.2 provides such estimates for λ0
and the expected number of SAOs in the weak-noise regime σ21 + σ22 ≪ (ε1/4δ)2. We have
obtained one-sided estimates on these quantities, which follow from the construction of an
almost invariant region A for the Markov chain. It is possible to obtain two-sided estimates
by deriving more precise properties for the Markov chain, in particular a lower bound on
the probability of leaving the complement of A. We expect the exponent (ε1/4δ)2/(σ21+σ

2
2)

to be sharp in the case δ ≫ ε, since this corresponds to the drift µ̃ in the expression (4.6)
for ż dominating the error terms of order

√
ε due to higher-order nonlinear terms. For

smaller δ, however, there is a competition between the two terms, the effect of which is
not clear and has to be investigated in more detail. The same problem prevents us from
deriving any bounds for δ 6 ε when the parameter c defining the FitzHugh–Nagumo equa-
tions is different from zero. It may be possible to achieve a better control on the nonlinear
terms by additional changes of variables.

For intermediate and strong noise, we obtained an approximation (5.7) for the proba-
bility P{N = 1} of spiking immediately, showing that the transition from rare to frequent
spikes is governed by the distribution function Φ of the normal law. Though we didn’t
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obtain rigorous bounds on the principal eigenvalue and expected number of SAOs in this
regime, simulations show a fairly good agreement with the approximation for P{N = 1}.
The results on the Markov kernel contained in the appendix should in fact yield more
precise information on λ0 and the law of N , via approximations for the quasistationary
distribution π0. Generally speaking, however, we need better tools to approximate QSDs,
principal eigenvalues and the spectral gap of substochastic Markov chains.

Finally, let us note that the approach presented here should be applicable to other
excitable systems involving oscillations. For instance, for some parameter values, the
Morris–Lecar equations [ML81] admit a stable stationary point surrounded by an unstable
and a stable periodic orbit. In a recent work [DG11], Ditlevsen and Greenwood have
combined this fact and results on linear oscillatory systems with noise to relate the spike
statistics to those of an integrate-and-fire model. It would be interesting to implement the
Markov-chain approach in this situation as well.

A Dynamics near the separatrix

The appendix contains some of the more technical computations required for the proof
of Theorem 4.2. We treat separately the dynamics near the separatrix, and during the
remainder of an SAO.

In this section, we use the equations in (ξ, z)-variables given by (4.6) to describe the
dynamics in a neighbourhood of the separatrix. To be more specific, we will assume that
z is small, of the order of some power of µ, and that ξ varies in an interval [−L,L], where
the parameter L is given by (4.20). Let F± be the two broken lines defined in (4.18)
and (4.19). Given an initial condition (−L, z0) ∈ F−, our goal is to estimate where the
sample path starting in (−L, z0) hits F+ for the first time. This will characterise the first
part of the Markov kernel K.

A.1 The linearised process

Before analysing the full dynamics of (4.6) we consider some approximations of the system.
The fact that ξt ≃ ξ0 + t/2 for small z motivates the change of variable

ξ =
t

2
+ u , (A.1)

which transforms the system (4.6) into

dut =
(

−zt +O(ε̃)
)

dt+ σ̃1 dW
(1)
t ,

dzt =
(

µ̃+ tzt + 2utzt +O(ε̃)
)

dt− σ̃1t dW
(1)
t − 2σ̃1ut dW

(1)
t + σ̃2 dW

(2)
t ,

(A.2)

where we write ε̃ =
√
ε(L4+cL2). We choose an initial condition (0, z0) at time t0 = −2L.

As a first approximation, consider the deterministic system

du0t = −z0t dt ,
dz0t =

(

µ̃+ tz0t
)

dt .
(A.3)

The solution of the second equation is given by

z0t = et
2/2

[

z0 e
−t20/2 +µ̃

∫ t

t0

e−s2/2 ds

]

. (A.4)
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In particular, at time T = 2L, we have ξT = L+ut ≃ L and the location of the first-hitting
point of F+ is approximated by

z0T = z0 + µ̃ eT
2/2

∫ T

t0

e−s2/2 ds = z0 +O(µ̃1−γ) . (A.5)

As a second approximation, we incorporate the noise terms and consider the linear SDE

du1t = −z1t dt+ σ̃1 dW
(1)
t ,

dz1t =
(

µ̃+ tz1t
)

dt− σ̃1t dW
(1)
t + σ̃2 dW

(2)
t .

(A.6)

Let us now quantify the deviation between (u1t , z
1
t ) and (u0t , z

0
t ).

Proposition A.1. Let

ζ(s) = es
2

[

e−t20 +

∫ s

t0

e−u2
du

]

. (A.7)

Then there exists a constant M > 0 such that for all t > t0, all h, h1, h2 > 0 and all
ρ ∈ (0, µ̃2γ/M),

P

{

sup
t06s6t

|z1s − z0s |
√

ζ(s)
> h

}

6
2(t− t0)

ρ
exp

{

−1

8

h2

σ̃2
(

1−Mρ µ̃−2γ
)

}

(A.8)

and

P

{

sup
t06s6t

|u1s − u0s| > h1 + h2

∫ t

t0

√

ζ(s) ds

}

6 2 exp

{

− h21
2(t− t0)σ̃21

}

+
2(t− t0)

ρ
exp

{

−1

8

h22
σ̃2
(

1−Mρ µ̃−2γ
)

}

. (A.9)

Proof: The difference (x1, y1) = (u1 − u0, z1 − z0) satisfies the system

dx1t = −y1t dt+ σ̃1 dW
(1)
t ,

dy1t = t y1t dt− σ̃1t dW
(1)
t + σ̃2 dW

(2)
t .

(A.10)

The second equation admits the solution

y1t = σ̃2 e
t2/2

∫ t

t0

e−s2/2 dW (2)
s − σ̃1 e

t2/2

∫ t

t0

se−s2/2 dW (1)
s =: y1,1t + y1,2t . (A.11)

We first estimate y1,1t . Let u0 = t0 < u1 < · · · < uK = t be a partition of [t0, t]. The
Bernstein-like estimate [BG02, Lemma 3.2] yields the bound

P

{

sup
t06s6t

1
√

ζ(s)
σ̃2

∣

∣

∣

∣

∫ s

t0

e(s
2−u2)/2 dWu

∣

∣

∣

∣

> H0

}

6 2
K
∑

k=1

Pk (A.12)

for any H0 > 0, where

Pk 6 exp

{

−1

2

H2
0

σ̃22
inf

uk−16s6uk

ζ(s)

ζ(uk)
eu

2
k−s2

}

. (A.13)
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The definition of ζ(s) implies

ζ(s)

ζ(uk)
eu

2
k−s2 = 1− 1

ζ(uk)

∫ uk

s
eu

2
k−u2

du > 1−
∫ uk

s
et

2
0−u2

du . (A.14)

Note that et
2
0 = e4L

2
= O(µ̃−2γ). For a uniform partition given by uk − uk−1 = ρ with

ρ≪ µ̃2γ , we can bound this last expression below by

1−Mρ µ̃−2γ (A.15)

for some constant M . This yields

P

{

sup
06s6t

|y1,1s |
√

ζ(s)
> H0

}

6
2(t− t0)

ρ
exp

{

−1

2

H2
0

σ̃22

(

1−Mρ µ̃−2γ
)

}

. (A.16)

Doing the same for y1,2s we obtain

P

{

sup
06s6t

|y1,2s |
√

ζ(s)
> H1

}

6
2(t− t0)

ρ
exp

{

−1

2

H2
1

σ̃21

(

1−Mρ µ̃−2γ
)

}

(A.17)

for any H1 > 0. Letting h = H0 +H1 with H0 = H1 = h/2, we obtain (A.8). Now we can
express x1t in terms of y1t by

x1t = −
∫ t

t0

y1s ds+ σ̃1

∫ t

t0

dW (1)
s . (A.18)

Then the Bernstein inequality

P

{

sup
06s6t

∣

∣

∣

∣

σ̃1

∫ t

t0

dW (1)
s

∣

∣

∣

∣

> h1

}

6 2 exp

{

− h21
2(t− t0)σ̃

2
1

}

(A.19)

yields (A.9).

A.2 The nonlinear equation

We now turn to the analysis of the full system (4.6), or, equivalently, (A.2). Before that,
we state a generalised Bernstein inequality that we will need several times in the sequel.
Let Wt be an n-dimensional standard Brownian motion, and consider the martingale

Mt =

∫ t

t0

g(Xs, s) dWs =

n
∑

i=1

∫ t

t0

gi(Xt, t) dW
(i)
t , (A.20)

where g = (g1, . . . , gn) takes values in R
n and the process Xt is assumed to be adapted

to the filtration generated by Wt. Then we have the following result (for the proof,
see [BGK10, Lemma D.8]):

Lemma A.2. Assume that the integrand satisfies

g(Xt, t)g(Xt, t)
T
6 G(t)2 (A.21)

almost surely, for a deterministic function G(t), and that the integral

V (t) =

∫ t

t0

G(s)2 ds (A.22)
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is finite. Then

P

{

sup
t06s6t

Ms > x

}

6 e−x2/2V (t) (A.23)

for any x > 0.

Proposition A.3. Assume z0 = O(µ̃1−γ). There exist constants C, κ,M > 0 such that
for t0 6 t 6 T +O(|log µ̃|−1/2), all σ̃ 6 µ̃ and H > 0,

P

{

sup
t06s6t

|zs − z0s |
√

ζ(s)
> H

}

6
CT

µ̃2γ

(

exp

{

−κ
[

H −M(T 2µ̃2−4γ + T ε̃µ̃−2γ)
]2

σ̃2

}

+ e−κµ̃2/σ̃2

)

(A.24)
and for all H ′ > 0,

P

{

sup
t06s6t

|us − u0s| > H ′
}

6
CT

µ̃2γ

(

exp

{

−κ
[

H ′ −M(T 2µ̃2−4γ + T ε̃µ̃−2γ)
]2

σ̃2µ̃−2γ

}

+e−κµ̃2/σ̃2

)

.

(A.25)

Proof: The upper bound on t implies that et
2/2 = O(µ̃−γ). Thus it follows from (A.3)

and (A.4) that
z0s = O(µ̃1−γ) and u0s = O(T µ̃1−γ) (A.26)

for t0 6 s 6 t. Given h, h1, h2 > 0, we introduce the stopping times

τ1 = inf
{

s > t0 : |z1s − z0s | > h
√

ζ(s)
}

,

τ2 = inf

{

s > t0 : |u1s − u0s| > h1 + h2

∫ t

t0

√

ζ(s) ds

}

. (A.27)

The integral of
√

ζ(s) is of order T µ̃−γ at most. Thus choosing h = h1 = h2 = µ̃
guarantees that

z1s = O(µ̃1−γ) and u1s = O(T µ̃1−γ) (A.28)

for t0 6 s 6 t ∧ τ1 ∧ τ2. For these values of h, h1 and h2, Proposition A.1 implies that

P
{

τ1 < t
}

6 cT µ̃−2γ e−κµ̃2/σ̃2
,

P
{

τ2 < t
}

6 cT µ̃−2γ e−κµ̃2/σ̃2
(A.29)

for some constants κ, c > 0. We consider the difference (x2t , y
2
t ) = (ut, zt)− (u1t , z

1
t ), which

satisfies the system of SDEs

dx2t =
(

−y2t +O(ε̃)
)

dt ,

dy2t =
[

ty2t + 2(u1t + x2t )(z
1
t + y2t ) +O(ε̃)

]

dt− 2σ̃1(u
1
t + x2t ) dW

(1)
t .

(A.30)

We introduce a Lyapunov function Ut > 0 defined by

(Ut − C0)
2 =

(

x2t
)2

+
(

y2t
)2

2
. (A.31)

The constant C0 will be chosen in order to kill the second-order terms arising from Itô’s
formula. Let

τ∗ = inf{t > t0 : Ut = 1} . (A.32)
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Applying Itô’s formula and choosing C0 of order σ̃21µ̃
−(1−γ) yields

dUt 6
[

C1 + C2(t)Ut

]

dt+ σ̃1g(t) dW
1
t , (A.33)

where (using the fact that σ̃ 6 µ̃)

C1 = O
(

T µ̃2−2γ
)

+O(ε̃) ,

C2(t) = t ∨ 0 +O(T µ̃1−γ) , (A.34)

and g(t) is at most of order 1 for t 6 τ1 ∧ τ2 ∧ τ∗. Hence

Ut∧τ1∧τ2∧τ∗ 6 Ut0+C1(t−t0)+
∫ t∧τ1∧τ2∧τ∗

t0

C2(s)Us ds+σ̃1

∫ t∧τ1∧τ2∧τ∗

t0

g(s) dW 1
s . (A.35)

We introduce a last stopping time

τ3 = inf

{

t > t0 :

∣

∣

∣

∣

σ̃1

∫ t∧τ1∧τ2∧τ∗

0
g(s) dW 1

s

∣

∣

∣

∣

> h3

}

. (A.36)

Then Lemma A.2 implies
P
{

τ3 < t
}

6 e−κ3h2
3/σ̃

2
1 (A.37)

for a κ3 > 0. Applying Gronwall’s lemma to (A.35) we get

Ut∧τ1∧τ2∧τ3∧τ∗ 6
[

Ut0 + C1(t− t0) + h3
]

exp

{∫ t∧τ1∧τ2∧τ3∧τ∗

t0

C2(u) du

}

= O(T 2µ̃2−3γ) +O(σ̃2T 2µ̃1−2γ) +O(ε̃T µ̃−γ) . (A.38)

This shows in particular that τ∗ > t, provided we take γ small enough. Now (A.24) follows
from the decomposition

P

{

sup
t06s6t

|zs − z0s |
√

ζ(s)
> H

}

6 P

{

sup
t06s6t∧τ1∧τ2∧τ3

|z1s − z0s |
√

ζ(s)
> H − sup

t06s6t∧τ1∧τ2∧τ3

Us
√

ζ(s)

}

+ P
{

τ1 > t
}

+ P
{

τ2 > t
}

+ P
{

τ3 > t
}

, (A.39)

and (A.25) is obtained in a similar way.

We can now derive bounds for the contribution of the motion near the separatrix to
the Markov kernel.

Proposition A.4. Fix some γ ∈ (0, 1/4) and an initial condition (ξ0, z0) = (−L, z0) ∈ F−
with |z0| = O(µ̃1−γ).

1. Assume c = 0. Then there exist constants C, κ1, h0 > 0 such that the sample path
starting in (ξ0, z0) will hit F+ for the first time at a point (ξ1, z1) such that

P

{

z1 6 z0T − µ̃
}

6
C

µ̃2γ
exp

{

−κ1
µ̃2

σ̃2

}

. (A.40)

2. If c 6= 0, but
√
ε 6 µ̃1+2γ+θ for some θ > 0, then the first-hitting point of F+ always

satisfies

P

{

|z1 − z0T | > µ̃
}

6
C

µ̃2γ
exp

{

−κ1
µ̃2

σ̃2

}

. (A.41)
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Proof: Consider first the case
√
ε 6 µ̃1+2γ+θ. For any h > 0 we can write

P
{

|zτ − z0T | > µ̃
}

6 P
{

|zτ − z0τ | > µ̃− hµ̃2−2γ
}

+ P
{

|z0τ − z0T | > hµ̃2−2γ
}

. (A.42)

The first term on the right-hand side can be bounded, using (A.24), by a term of order
µ̃−2γ e−κ1µ̃2/σ̃2

. The conditions on γ and
√
ε ensure that the error terms in the exponent

in (A.24) are negligible.
To bound the second term on the right-hand side, we note that (A.3) implies that

|z0τ − z0T | has order µ̃1−γ |τ − T |. Furthermore, the definitions of τ and u0 imply that
|τ − T | = 2|ut − u0t |+O(µ̃1−γ). This shows that

P
{

|z0τ − z0T | > hµ̃2−2γ
}

6 P
{

|ut − u0t | > hc1µ̃
1−γ − c2µ

1−γ
}

(A.43)

for some constants c1, c2 > 0. Taking h = 2c2/c1 and using (A.25) yields a similar bound
as for the first term.

In the case c = 0, we can conclude in the same way by observing that zt is bounded
below by its value for ε = 0, the ε-dependent term of dzt in (4.6) being positive. Thus we
need no condition on

√
ε for the error terms in the exponent to be negligible.

B Dynamics during an SAO

B.1 Action–angle-type variables

In this section, we construct another set of coordinates allowing to describe the dynamics
during a small-amplitude oscillation. In the limit ε → 0 and µ̃ → 0, the deterministic
system (4.4) becomes

ξ̇ =
1

2
− z

ż = 2ξz .
(B.1)

This system admits a first integral

Q = 2z e−2z−2ξ2+1 , (B.2)

which is equivalent to the first integral found in [BE92]. The normalisation is chosen in
such a way that Q ∈ [0, 1] for z > 0. The separatrix is given in this limit by Q = 0, while
Q = 1 corresponds to the stationary point P . When ε and µ̃ are positive, we obtain

Q̇ =

[

2µ̃(1− 2z) +
√
ε

(

4

9α2∗
ξ4 + c

[

4zξ2 − 6ξ2 + 8z2 − 4z + 1
]

)]

e−2z−2ξ2+1 . (B.3)

Observe that if c = 0, the term of order
√
ε is strictly positive.

In order to analyse the dynamics in more detail, it is useful to introduce an angle
variable φ. We define a coordinate transformation from (0, 1] × S

1 to R × R+ by

ξ = −
√

− logQ

2
sinφ

z =
1

2

(

1 + f

(

√

− logQ

2
cosφ

)

)

.

(B.4)
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u

f(u)

Figure 9. Graph of u 7→ f(u).

Here f : R → (−1,+∞) is defined as the solution of

log(1 + f(u))− f(u) = −2u2 (B.5)

such that
sign f(u) = signu . (B.6)

The graph of f is plotted in Figure 9.

Lemma B.1. The function f has the following properties:

• Lower bounds:
f(u) > −1 and f(u) > 2u ∀u ∈ R . (B.7)

• Upper bounds: There exist constants C1, C2 > 0 and a function r : R− → R , with
0 6 r(u) 6 C1 e

−1−2u2
, such that

f(u) 6 C2u+ 2u2 ∀u > 0 , (B.8)

f(u) = −1 + e−1−2u2
[1 + r(u)] ∀u 6 0 . (B.9)

• Derivatives: f ∈ C∞ and

f ′(u) = 4u
1 + f(u)

f(u)
, (B.10)

f ′′(u) = 4
1 + f(u)

f(u)

(

1− 4
u2

f(u)2

)

. (B.11)

• There exists a constant M > 0 such that

0 < f ′′(u) 6M ∀u ∈ R . (B.12)

Proof: The results follow directly from the implicit function theorem and elementary
calculus.
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We can now derive an expression for the SDE in coordinates (Q,φ). To ease notation,
we introduce the function

X = X(Q,φ) =

√

− logQ

2
cosφ , (B.13)

a parameter σ̃ > 0 defined by
σ̃2 = σ̃21 + σ̃22 , (B.14)

and the two-dimensional Brownian motion dWt = (dW̃
(1)
t ,dW̃

(2)
t )T .

Proposition B.2. For z > 0, the system of SDEs (4.6) is equivalent to the system

dQt = µ̃f1(Qt, φt) dt+ σ̃ψ1(Qt, φt) dWt

dφt = f2(Qt, φt) dt+ σ̃ψ2(Qt, φt) dWt ,
(B.15)

where we introduced the following notations.

• The new drift terms are of the form

f1(Q,φ) = −2Q
f(X)

1 + f(X)

[

1 +

√
ε

µ̃
RQ,ε(Q,φ) +

σ̃2

µ̃
RQ,σ(Q,φ)

]

, (B.16)

f2(Q,φ) =
f(X)

2X

[

1 +
2µ̃ tanφ

logQ(1 + f(X))
+

√
εRφ,ε(Q,φ) + σ̃2Rφ,σ(Q,φ)

]

. (B.17)

• The remainders in the drift terms are bounded as follows. Let

ρ(Q,φ) =

{

√

|logQ| if cosφ > 0 ,

Q− cos2 φ if cosφ < 0 .
(B.18)

Then there exists a constant M1 > 0 such that for all Q ∈ (0, 1) and all φ ∈ S
1,

|RQ,ε(Q,φ)| 6M1|logQ|2 , |RQ,σ(Q,φ)| 6M1ρ(Q,φ) ,

|Rφ,ε(Q,φ)| 6M1|logQ|3/2ρ(Q,φ) , |Rφ,σ(Q,φ)| 6M1ρ(Q,φ)
2/|logQ| . (B.19)

Furthermore, if c = 0 then −f(X)RQ,ε(Q,φ) > 0.
• The diffusion coefficients are given by

ψ1(Q,φ) =

(

2
√
2
σ̃1
σ̃
Q

[

√

− logQ− f(X)

1 + f(X)

]

sinφ,−2
σ̃2
σ̃
Q

f(X)

1 + f(X)

)

,

ψ2(Q,φ) =

(

− σ̃1
σ̃

√

2

− logQ

1 + f(X) cosφ

[1 + f(X)] cos φ
,
σ̃2
σ̃

1

logQ

f(X)

1 + f(X)
tanφ

)

. (B.20)

• There exists a constant M2 > 0 such that for all Q ∈ (0, 1) and all φ ∈ S
1,

‖ψ1(Q,φ)‖2 6M2Q
2ρ(Q,φ)2 , ‖ψ2(Q,φ)‖2 6M2

ρ(Q,φ)2

|logQ|2 . (B.21)

Proof: The result follows from Itô’s formula, by a straightforward though lengthy com-
putation. The difference between the bounds obtained for cosφ > 0 and cosφ < 0 is due
to the fact that terms such as f(X) tan(φ)/(1 + f(X)) can be bounded by a constant
times

√− logQ in the first case, and by a constant times Q− cos2 φ in the second one, as a
consequence of Lemma B.1. The fact that −f(X)RQ,ε is positive if c = 0 follows from the
positivity of the term of order

√
ε in (B.3).
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B.2 Averaging

In System (B.15), the variable Q changes more slowly than the variable φ, which is a
consequence of the fact that Q is a first integral when µ̃ = ε = σ̃ = 0. This suggests to
use an averaging approach to analyse the dynamics. However, since the behaviour near
φ = π has already been considered in the previous section, using (ξ, z)-coordinates, we
only need to consider φ ∈ [φ0, φ1], where −π < φ0 < 0 < φ1 < π.

We look for a change of variables of the form

Q = Q+ µ̃w(Q,φ) (B.22)

which eliminates the term of order µ̃ in dQt. Itô’s formula yields

dQt = dQt + µ̃
∂w

∂φ
dφt + µ̃

∂w

∂Q
dQt +

1

2
µ̃

(

∂2w

∂Q2
dQ2

t + 2
∂2w

∂Q∂φ
dQt dφt +

∂2w

∂φ2
dφ2t

)

.

(B.23)
Replacing dQt et dφt by their expressions in (B.15), we get

dQt = µ̃

(

f1 +
∂w

∂φ
f2 +O(µ̃) +O(σ̃2)

)

dt+ σ̃

(

ψ1 + µ̃

(

∂w

∂φ
ψ2 +

∂w

∂Q
ψ1

))

dWt . (B.24)

Thus choosing the function w in such a way that

f1 +
∂w

∂φ
f2 = 0 (B.25)

will decrease the order of the drift term in (B.24). We thus define the function w by the
integral

w(Q,φ) = −
∫ φ

φ0

f1(Q, θ)

f2(Q, θ)
dθ , (B.26)

which is well-defined (i.e., there are no resonances), since (B.7) shows that f2(Q,φ) is
bounded below by a positive constant, for sufficiently small µ̃, ε and σ̃.

Lemma B.3. Let φ0 ∈ (−π,−π/2) and φ1 ∈ (π/2, π) be such that cos2(φ0), cos
2(φ1) 6 b

for some b ∈ (0, 1). Then

w(Q,φ1) = −
√
2 e√− logQ

[

Qsin2 φ0

− sinφ0
+
Qsin2 φ1

sinφ1
+ r1(Q)

]

(

1 + r2(Q) + rε(Q)
)

, (B.27)

where the remainder terms satisfy

r1(Q) = O
(

Q log(|logQ|)
)

,

r2(Q) = O
(

1

|logQ| + µ̃Q−b + σ̃2
(

Q−b

µ̃
+

Q−2b

|logQ|

))

,

rε(Q) 6
√
εO
( |logQ|2

µ̃
+Q−b|logQ|3/2

)

, (B.28)

and rε(Q) > 0 is c = 0. Furthermore, the derivatives of w satisfy the bounds

∂w

∂Q
(Q,φ) = O

(

Q−b

√

|logQ|

)

,
∂w

∂φ
(Q,φ) = O

(

Q1−b
√

|logQ|
)

, (B.29)
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and

∂2w

∂Q2
= O

(

Q−1−b

√

|logQ|

)

,
∂2w

∂Q∂φ
= O

(

Q−b

√

|logK|

)

,
∂2w

∂φ2
= O

(

Q1−b
√

|logQ|
)

.

(B.30)

Proof: We split the integral into three parts. Using the change of variables t = sinφ
and a partial fraction decomposition, we find that the leading part of the integral on
[−π/2, π/2] satisfies

∫ π/2

−π/2

4QX(Q,φ)

1 + f(X(Q,φ))
dφ = O

(

Q
log(|logQ|)
√

|logQ|

)

. (B.31)

Next we consider the integral on [φ0,−π/2]. The change of variables u =
√−2 logQ sinφ,

(B.9) and asymptotic properties of the error function imply

∫ −π/2

φ0

4QX

1 + f(X)
dφ = 2Q

∫ −
√
−2 logQ

sinφ0
√
−2 logQ

du

1 + f
(

−
√

− logQ
2 − u2

4

)

= 2e

∫ −
√
−2 logQ

sinφ0
√
−2 logQ

e−u2/2
[

1 +O(Q e−u2/2)
]

du (B.32)

= −2 e
Qsin2 φ0

√−2 logQ(− sinφ0)

[

1 +O
(

1

|logQ|

)

+O(Qcos2 φ0)

]

.

The integral on [π/2, φ1] can be computed in a similar way. This yields the leading
term in (B.27), and the form of the remainders follows from (B.19) with ρ = Q−b. The
bound on ∂w/∂φ follows directly from (B.25), while the bound on ∂w/∂Q is obtained by
computing the derivative of f1/f2. The bounds on second derivatives follow by similar
computations.

Notice that for the remainder r2(Q) to be small, we need that Qb ≫ µ̃ and Qb ≫ σ̃2/µ̃.
Then the term rε(Q) is of order

√
ε|log µ̃|2/µ̃, which is small for µ̃/|log µ̃|2 ≫ √

ε. If
that is the case, then w(Q,φ1) has order Q1−b/

√

|logQ|. Otherwise, w(Q,φ1) has order√
εQ1−b|logQ|3/2/µ̃. In the sequel, we will sometimes bound 1/

√

|logQ| by 1 to get simpler
expressions.

B.3 Computation of the kernel

We can now proceed to the computation of the rotational part of the kernel of the Markov
chain. Recall the broken lines F± introduced in (4.18) and (4.19). For an initial condition
(L, z0) ∈ F+, we want to compute the coordinates of the point (ξτ , zτ ) at the first time

τ = inf
{

t > 0: (ξt, zt) ∈ F−
}

(B.33)

that the path starting in (L, z0) hits F−.
We will assume that there is a β ∈ (0, 1] such that

(c−µ̃)
β
6 z0 6 zmax <

1

2
. (B.34)
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The (Q,φ)-coordinates of the initial condition are given by

Q0 = 2z0 e
1−2z0 e−2L2

> 2(c−µ̃)
β+γ ,

sin2 φ0 =
2L2

− logQ0
>

γ

β + γ
, (B.35)

with φ0 ∈ (−π,−π/2). Thus Lemma B.3 applies with b = β/(β + γ) < 1. Notice that

Qcos2 φ0
0 > 2b(c−µ̃)

β . (B.36)

Proposition B.4. Assume z0 satisfies (B.34) for a β < 1. Then there exists a constant
κ > 0 such that the following holds for sufficiently small µ̃ and σ̃.

1. If
√
ε 6 µ̃/|log µ̃|2, then with probability greater or equal than

1− e−κµ̃2/σ̃2
, (B.37)

(ξt, zt) hits F− for the first time at a point (−L, z1) such that

z1 = z0 + µ̃A(z0) +
z0

1− 2z0

[

σ̃V (z0) +O
(

µ̃2(1−β) + σ̃2µ̃−2β
)

]

. (B.38)

The function A(z0) is given by

A(z0) =
e2z0

L(1− 2z0)

[

1 +O
(

z0 log|log µ̃|
)

+O
(

1

|log z0|

)]

, (B.39)

and V (z0) is a random variable satisfying

P
{

σ̃|V (z0)| > h
}

6 2 exp

{

−κh
2µ̃2β

σ̃2

}

∀h > 0 . (B.40)

2. If c = 0 and
√
ε > µ̃/|log µ̃|2, then (ξt, zt) hits F− for the first time either at a point

(−L, z1) such that z1 is greater or equal than the right-hand side of (B.38), or at a
point (ξ1, 1/2) with −L 6 ξ1 6 0, again with a probability bounded below by (B.37).

Proof: We first consider the case
√
ε 6 µ̃/|log µ̃|2.

• Step 1 : To be able to bound various error terms, we need to assume that Qt stays
bounded below. We thus introduce a second stopping time

τ1 = inf
{

t > 0: cosφt < 0, Qcos2 φt
t < (c−µ̃)

β
}

. (B.41)

We start by showing that τ ∧ τ1 is bounded with high probability. Proposition B.2
implies the existence of a constant C > 0 such that

dφt > C dt+ σ̃ψ2(Qt, φt) dWt . (B.42)

Integrating this relation between 0 and t, we get

φt > φ0 + Ct+ σ̃

∫ t

0
ψ2(Qs, φs) dWs . (B.43)

Lemma A.2 and (B.21) provide the bound

P

{∣

∣

∣

∣

σ̃

∫ t∧τ1

0
ψ2(Qs, φs) dWs

∣

∣

∣

∣

> h

}

6 exp

{

−κh
2µ̃2β

σ̃2

}

(B.44)
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for some κ > 0. Since by definition, φτ∧τ1 − φ0 < 2π, we get

P

{

τ ∧ τ1 >
2π + h

C

}

6 exp

{

−κh
2µ̃2β

σ̃2

}

. (B.45)

From now on, we work on the set Ω1 = {τ ∧ τ1 6 (2π + 1)/C}, which has probability

greater or equal 1− e−κµ̃2β/σ̃2
.

• Step 2 : The SDE (B.23) for Qt can be written

dQt = Qtf̄(Qt, φt) dt+ σ̃Qtψ̄(Qt, φt) dWt , (B.46)

where the bounds in Proposition B.2 and Lemma B.3 yield

f̄(Q,φ) = O
(

µ̃2(1−β) + σ̃2µ̃1−3β
)

,

‖ψ̄(Q,φ)‖2 = O
(

µ̃−2β
)

. (B.47)

By Itô’s formula, the variable Zt = logQt satisfies

dZt = f̃(Zt, φt) dt+ σ̃ψ̃(Zt, φt) dWt , (B.48)

where f̃(Z, φ) = f̄(eZ , φ) +O(σ̃2µ̃−2β) and ψ̃(Z, φ) = ψ̄(eZ , φ). Setting

Vt =

∫ t

0
ψ̃(Zs, φs) dWs , (B.49)

we obtain, integrating (B.48) and using the fact that µ̃1−3β 6 µ̃−2β,

Zt = Z0 + σ̃V +O
(

µ̃2(1−β) + σ̃2µ̃−2β
)

. (B.50)

Another application of Lemma A.2 yields

P
{

σ̃|Vt∧τ1 | > h1
}

6 2 exp

{

−κ1h
2
1µ̃

2β

σ̃2

}

(B.51)

for some κ1 > 0. A convenient choice is h1 = µ̃1−β. From now on, we work on the set
Ω1 ∩ Ω2, where Ω2 = {σ̃Vt∧τ1 < µ̃1−β} satisfies P(Ω2) > 1− e−κ1µ̃2/σ̃2

.
• Step 3 : Returning to the variable Q, we get

Qt = Q0 e
σ̃Vt

[

1 +O
(

µ̃2(1−β) + σ̃2µ̃−2β
)

]

, (B.52)

and thus
Qt = Q0 e

σ̃Vt

[

1 +O
(

µ̃2(1−β) + σ̃2µ̃−2β
)

]

− µ̃w(Qt, φt) . (B.53)

Using the implicit function theorem and the upper bound on w, we get the a priori
bound

|Qt −Q0|
Q0

= O
(

µ̃1−β + σ̃2µ̃−2β
)

. (B.54)

• Step 4 : The a priori estimate (B.54) implies that on Ω1 ∩ Ω2, the sample path
cannot hit F− on the part {−L 6 ξ 6 0, z = 1/2}. Indeed, this would imply that
Qτ > (c−µ̃)γ , while Q0 6 a(c−µ̃)γ with a = 2zmax e

1−2zmax < 1. As a consequence, we
would have (Qτ −Q0)/Q0 > (1− a)/a, contradicting (B.54).
Let us now show that we also have τ1 > τ on Ω1 ∩ Ω2. Assume by contradiction that
τ1 < τ . Then we have Qτ1 = (c−µ̃)β and cos2 φτ1 < β/(β+γ), so that Qτ1 = O(µ̃β+γ).
Thus µ̃w(Qτ1 , φτ1) = O(Qτ1 µ̃

1−β) = O(µ̃1+γ). Together with the lower bound (B.35)
on Q0, this implies that the right-hand side of (B.53) is larger than a constant times
µ̃β+γ at time t = τ1. But this contradicts the fact that Qτ1 = O(µ̃β+γ).
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• Step 5 : The previous step implies that ξτ = −L on Ω1 ∩ Ω2. We can thus write

φτ = g(Qτ ) where sin(g(Q)) =

√

2

− logQ
L , (B.55)

with g(Q) ∈ (π/2, π). Notice that g(Q0) = −φ0. Furthermore, we have

g′(Q) =
L√

2Q(− logQ)3/2 cos(g(Q))
, (B.56)

and thus Qτg
′(Qτ ) = O(1/|log µ̃|). Using this in the Taylor expansion

w(Qτ , φτ ) = w(Q0,−φ0) + (Qτ −Q0)

[

∂w

∂Q
(Qθ, g(Qθ)) +

∂w

∂φ
(Qθ, g(Qθ))g

′(Qθ)

]

,

(B.57)
which holds for some Qθ ∈ (Q0, Qτ ), yields the estimate

w(Qτ , φτ )

Q0
=
w(Q0,−φ0)

Q0
+O

(

µ̃1−2β + σ̃2µ̃−3β
)

. (B.58)

Substitution in (B.53) yields the more precise estimate

Q1 = Q0

[

eσ̃Vτ −µ̃w(Q0,−φ0)
Q0

+O
(

µ̃2(1−β) + σ̃2µ̃1−3β
)

]

. (B.59)

• Step 6 : Finally, we return to the variable z1 = zτ . Eliminating φ from the equa-
tions (B.4), it can be expressed in terms of Qτ as

z1 = G(Qτ ) :=
1

2

[

1 + f

(

−
√

− logQτ

2
− L2

)

]

. (B.60)

Note that G(Q0) = z0, while

G′(Q0) = − 1

2Q0

1 + f
(

−
√

− logQ0

2 − L2
)

f
(

−
√

− logQ0

2 − L2
)

=
z0

Q0(1− 2z0)
, (B.61)

and

G′′(Q) =
1

2Q2

1 + f
(

−
√

− logQ
2 − L2

)

f
(

−
√

− logQ
2 − L2

)






1− 1

f
(

−
√

− logQ
2 − L2

)2






, (B.62)

which has order z20/Q
2
0. The Taylor expansion

z1 = G(Q0) + (Q1 −Q0)G
′(Q0) +

(Q1 −Q0)
2

2
G′′(Qθ) (B.63)

thus becomes

z1 = z0 +
Q1 −Q0

Q0

z0
1− 2z0

+O
([

Q1 −Q0

Q0
z0

]2)

. (B.64)
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By (B.59), we have

Q1 −Q0

Q0
= σ̃Vτ − µ̃

w(Q0,−φ0)
Q0

+O
(

µ̃2(1−β) + σ̃2µ̃−2β
)

, (B.65)

and Lemma B.3 yields

−µw(Q0,−φ0)
Q0

=
2e

L

[

Q− cos2 φ0
0 +O(log|logQ0|)

][

1 +O
(

1

|logQ0|

)]

. (B.66)

Now (B.35) implies Q− cos2 φ0
0 = e2z0(2 e z0)

−1 and c1|log z0| 6 |logQ0| 6 c2|log µ̃|.
This completes the proof of the case the case

√
ε 6 µ̃/|log µ̃|2.

In the case
√
ε > µ̃/|log µ̃|2, we just use the fact that Qt is bounded below by its value in

the previous case, as a consequence of (B.29).

Corollary B.5. Assume that either c = 0 or
√
ε 6 µ̃/|log µ̃|2. There exists a κ2 > 0 such

that for an initial condition (L, z0) ∈ F− with z0 > (c−µ̃)1−γ , the first hitting of F+ occurs
at a height z1 > z0 with probability larger than 1− e−κ2µ̃2/σ̃2

.

Proof: It suffices to apply the previous result with β = 1− γ and h of order µ̃γ .
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