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Abstract 

In order to introduce magnetic conductive thin plates in 
quasi-static PEEC method, a coupling with the integro-
differential method is proposed. This coupling enables 
to take the advantage of each method. The complex 
conductor geometry is achieved thanks to the PEEC 
method. The modeling of thin plates is taken into 
account thanks to an integro-differential one. 

1 Introduction 

The PEEC method (Partial Element Equivalent Circuit) 
is mainly used for the modeling of complex 
interconnection and can be applied to a large range of 
devices where the air region is dominant [1], [2]. 
However, the classical PEEC method does not enable 
the 3D modeling of conductive and magnetic thin plates. 
Currently, these kinds of structure are widely present in 
electric and electronic devices (ferromagnetic shielding) 
mainly used to reduce radiated magnetic field.  
On the other hand, some integral formulations, usually 
called integro-differential one, have been developed in 
order to analyze eddy current in thin plate [3], [4]. Like 
the PEEC method, it does not require the meshing of 
the air region. A strong coupling between both methods 
can be accomplished by modeling conductive magnetic 
regions with an integro-differential approach, while 
PEEC method allows the modeling the contributions of 
the inductors fed with alternative currents. This paper 
presents such formulation. 

2 Coupling principle  

2.1 Equation for thin plates 

The magnetization M and the eddy current vector 
potential Tn are used in order to model the conductive 
magnetic thin plate ( nc CurlTJ = ). In this paper, eddy 
currents Jc are assumed to flow tangentially to the shell. 
Moreover, the assumption of a uniform current 
distribution across the thickness of the shell is made 
(i.e. the skin depth is high in comparison with the 
thickness of the shell). Let us notice that it strongly 
limites our approach to low frequency problems. As the 
current is tangential, Tn is normal to the plate so can be 
considered as scalar.  

The governing equation of Tn is given by Maxwell-
Faraday equations [4]:  
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where σ  is the conductivity, µr is the relative 
permeability of the material, Hn is the normal total 
magnetic field. Considering the relation between the 
magnetization M and the magnetic field intensity H, (1) 
can be rewritten as:  
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Let us now consider a conductive magnetic thin plate 
placed in an inductor field H0. The total magnetic field H 
is the sum of H0 and Hm, the reaction of the 
magnetization and Hc, the reaction of the eddy current 
in thin plate. If V is the volume of magnetic material and 
Γ  its average surface, an integral equation linking the 
local field to the magnetization and the electric vector 
potential can be written [3]: 
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where r is the vector linking the integration point to the 
point where the field is expressed and e is thickness of 
plate. These equations have to be discretized. The 
easiest way is to mesh the thin plate into n triangular 
prisms elements associated with a constant 
magnetization (0-order shape functions) a linear 
variation for eddy current vector potential (constant 
value of current per element) [3], [4]. For instance, the 
equation associated to element k becomes: 
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Equations (2) and (4) are solved simultaneously to get a 
linear matrix system if the material is linear. By solving 
it, M and Tn are obtained. 
Let’s now assume that the inductor field is created by m 
unknown alternative currents I flowing in m conductors. 
In a very similar way to the previous one, we can get a 
linear system of equations. For instance, the equation 
associated to element k is:  
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The third integral term corresponds to the Biot and 
Savart’s law integrated on each conductor volume 
Vcond_j. The global matrix system obtained has (6n+2p) 
equations (the mesh is being composed of p nodes) and 
6n+2p+2m unknowns (plus m complex currents). 

2.2 Inductive PEEC method 

Let us consider m volume conductors fed with 
alternative sources placed in a surrounding air region 
without any magnetic materials. The well-known PEEC 
method is particularly reliable to solve this kind of 
problem. It is based on the determination of partial 
voltage generated on each conductor by 
electromagnetic sources. To compute these voltages 
volume integration on the conductor of the magnetic 
vector potential created by all the others conductor is 
provided. For instance, for the conductor k, the 
expression is [1]: 
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where ω is the angular frequency and Si is the section of 
the i-th conductor. This equation links partial voltages of 
conductors to currents flowing in them. If we write this 
equation for all conductors, we get a matrix system 
known as impedance matrix system. By combing these 
electromagnetic equations with the circuit ones 
representative of the conductors wiring and adding 
ohmic effect, it is possible to get a simplified system 
representative of the device which can be easily 
coupled with a standard circuit simulator. This inductive 
PEEC method has already shown is efficiency for the 
modeling of complex conductor geometries in 
comparison with FEM.  
Let us now consider that conductive magnetic thin plate 
is present in the surrounding air region. Equation (6) 
has to be modified by taking into account the influence 
of the field created by the plate. A new voltage has to be 
added to the previous one, for instance: 
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Finally, equations (2), (5) and (7) are brought together in 
a global square (6n+2p+2m)×(6n+2p+2m) matrix 
system. By taking into account circuit equations, it is 
possible to reduce global equation to get a lighter 
system with (6n+2p+2q) unknowns (if we consider that 
there are q independent circuits). This equation is 
solved to get magnetizations, eddy current in thin plate 
and currents in conductors. 

3 Numerical Examples 

In this example, a single conductor is considered with a 
thin plate (µr =50, linear and σ =9.6E+6 S/m) placed 
close to it. The conductor is fed by a voltage source (1V, 

50Hz). Our coupling is compared with results given by 
FEM in Flux software [5]. We focus on the computed 
eddy current distribution and loss in the plate (Figure 1 
and table 1). Whereas the convergence is quickly 
reached with our coupling, the problem needs a very 
fine mesh to be accurately solved with FEM. We can 
see a small difference between both computed values. 
Results provided by our coupling are very encouraging, 
the convergence being reached with a very few number 
of elements (around 600). Of course, the obtained 
matrix is fully dense, but the computation time is divided 
per ten in comparison with FEM.  
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Figure 1: Eddy current in thin plate computed by FEM 
and our coupling 
 

Method Loss in plate (W) Diff. (%) 
FEM with 1.400.000 

elements 
10.9E-3 reference 

Our coupling with 
600 elements 

10.7E-3 1,7% 

Table 1: Loss in thin plate (W) obtained   

4 Conclusions  

In this paper, we have presented a coupling between 
PEEC and an integro-differential method in order to 
introduce any shape of magnetic-conductive thin plates 
in PEEC method. This new coupling can be very fast 
and accurate. In further works, formulations enabling 
smaller skin depth will be investigated.  
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