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Abstract

We propose a purely discrete deformable partition model for segmenting 3D images. Its main ability is to maintain
the topology of the partition during the minimization process. To do so, our main contribution is a new definition of
multi-label simple points (ML simple point) that is easily computable. An ML simple point can be relabeled without
modifying the overall topology of the partition. The definition is based on intervoxel properties, and uses the notion
of collapse on cubical complexes. This work is an extension of a former restricted definition [16] that prohibits the
move of intersections of boundary surfaces. A deformation process is carried out with a greedy energy minimization
algorithm. A discrete area estimator is used to approach at best standard regularizers classically used in continuous
energy minimizing methods. We illustrate the potential of our approach with the segmentation of 3D medical images
with known expected topology.

Keywords: 3D Image Segmentation, Simple Point, Deformable Model, Intervoxel Boundaries, Multi-Label Image,
Cubical complexes.

1. Introduction

1.1. Context and contribution

Over the past twenty years, energy-minimizing tech-
niques have shown a great potential for image segmen-
tation. Originally, most of them were based on a varia-
tional formulation, i.e. a continuous optimization prob-
lem in a functional space. We may quote deformable
models [23], Mumford-Shah approximation [32], geomet-
ric or geodesic active contours and other levelset variants
[6, 31, 7, 38], among others. Their formulation combines
in a single expression a term expressing the fit to data and
a term describing shape priors (generally length or area
penalization) and acting as a regularizer. The parameter
balancing the two terms allows to tune the technique ac-
cording to the amount of noise and perturbation in the
data. In a sense, this parameter acts as a scale factor,
providing a very natural multiscale analysis of images.

Energy-minimization for image segmentation can also
be expressed in a discrete setting: structural split and
merge [15], weighted graph with cut optimization [5, 4],
irregular and combinatorial pyramids [20, 35], Markov
fields and stochastic processes [17], minimum description
length [30, 39]. The discrete approaches present several
advantages for finding the optimal solution. Greig et al.

Email addresses: guillaume.damiand@liris.cnrs.fr (Guillaume
Damiand), dupas@sic.univ-poitiers.fr (Alexandre Dupas),
jacques-olivier.lachaud@univ-savoie.fr (Jacques-Olivier
Lachaud)

[18] have given a polynomial algorithm for solving the
two label segmentation problem. Approximate solutions
for the multi-label partition are also available [5, 19, 35].
However, the regularization/shape prior term of these dis-
crete methods is reduced to the digital length or area of
region boundaries, which is a very poor area estimator.
Therefore, from the regularization point of view, it tends
to flatten optimal configurations. As a consequence, opti-
mal solutions may be geometrically somewhat different.

We propose a novel energy-minimizing model for seg-
menting 3D images into multiple regions. It aims at com-
bining the advantages of the continuous and the discrete
energy-minimizing techniques. This paper is an exten-
sion of the work of [16]. It shares with it the following
features:

discrete model : it is a purely digital formulation of en-
ergy minimization, which can be solved by combi-
natorial algorithms. In this exposition, we have for
now use a simple greedy algorithm;

approximation of continuous regularization : the area
regularizer is approached in this digital setting by
an accurate discrete geometric estimator;

contour-based and region-based energies : both region
structures and the geometry of their interfaces are
encoded in the topological map structure. Any kind
of energy may thus be evaluated efficiently: e.g.
region-based like quadratic deviation [32, 9] or contour-
based like strong gradients [23];
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topological control : it is guaranteed that the topology of
the whole partition remains unchanged during the
evolution of the boundaries between regions.

Furthermore, compared with [16], this paper describes
a new method to guarantee that the topology of the whole
partition is preserved during the deformation process,
which allows a larger class of partition deformation at
each step while guaranteeing that the partition topology
remains unchanged.

1.2. Discussion

Our objective is to mimick as precisely as possible the
behaviour of continuous models while staying in a dis-
crete setting. It is well-known that continuous variational
problems induce PDEs which are solved iteratively. They
are dependent on their initialization and may get stuck
in local minima, except in specific cases [11, 9, 1]. To
our knowledge, none of them are able to find the op-
timal image partition if more than two regions are ex-
pected, although recent works using convex relaxation
seem promising for 2D images [8, 33]. As said above, the
discrete methods have interesting properties for extract-
ing an optimal solution, but their regularization term is
too primitive. As an exception, Boykov and Kolmogorov
[4] have proposed to enrich the neighborhood graph to get
finer area estimators — in a way similar in spirit to cham-
fer distances — but their approach is for now limited to a
26-neighborhood, which remains a coarse approximation.

Our discrete model is related to the discrete deformable
boundaries [27], or to the discrete snake [14]. Instead of
enriching the adjacency graphs, we keep the standard im-
age graph but we compute the regularization term in a
potentially larger neighborhood with discrete geometric
estimators. This term is an estimation of the area of each
surfel. The discrete geometric estimator extracts maximal
digital straight segments along two directions to estimate
the surfel normal, the surfel area is then a byproduct [28].
Such estimators are known to have good convergence be-
havior as the resolution gets finer and finer [29]. In a
sense, the discrete energy tends toward the continuous
energy as the resolution gets finer. This is proved for
the 2D formulation in [26]. In the present paper, we use
only greedy combinatorial optimization schemes, which
entails that our model may also be stuck in local min-
ima, but the proposed framework let us free to test more
elaborate combinatorial optimization algorithm.

This model encodes the 3D evolving digital partition
with a combinatorial map, which offers a simple and opti-
mal access to the partition topology. Regions are then nat-
urally delineated and region energies are easily computed.
This partition model also encodes the digital geometry
between regions with an intervoxel matrix. Frontiers can
be tracked in a straightforward way to compute contour-
based energies. As a consequence, we obtain a versatile
segmentation tool. According to the image characteristics
or the application, it is well known that contour or region

based approaches are more or less adapted. For instance,
region-based energies are generally more convex and thus
easier to minimize [9, 38]. Our partition model allows to
mix energies defined on regions and energies defined on
boundaries. Very few explicit or implicit variational or
deformable models can do that in 3D, except perhaps the
work of Pons and Boissonnat [34], but their approach may
not model energies depending on the inclusion between
regions.

Finally, we address the problem of controlling the
topology of the partition while it is evolving toward a
minimal position. This is critical in several specific image
applications where the topology of anatomic components
is a prior information, like atlas matching. This is even
truer in 3D images, where anatomic components are inter-
twined in a deterministic way. In 2D, when there are only
two labels (foreground and background), simple points
are a classical technique for doing it [3]. Similar tools are
used in level set techniques to control topology changes
[21, 36]. For the more complex case of a multi-label parti-
tion, a few authors have proposed an equivalent to simple
points in a discrete setting [37, 2]. However, they are com-
putationally too costly to be used to drive the evolution
of a digital partition.

This paper is an extension of the work [16], where a
first notion of simple point in a partition was proposed.
This first definition was enough to simulate movements
of boundaries between two regions, but it forbade move-
ments of boundaries between three or more regions (1-
dimensional boundaries). We propose here a more gen-
eral definition of simple points in multi-label partitions,
which we call ML-simple points (ML for Multi-Label). This
new definition gives more freedom to the evolving parti-
tion. Updating ML-simple points induces movements of
surface, edges, and points between regions, while preserv-
ing at all steps the initial partition topology. Moreover,
ML-simpleness is computable in constant time, thanks to
our intervoxel encoding.

The paper is organized as follows. Section 2 recalls
standard notions of digital geometry used later on. Sec-
tion 3 presents the definition of ML-simpleness and proves
that it implies simpleness. The ML-simpleness test derives
from the definition. Section 4 describes a first digital de-
formable partition model that uses ML-simple points to
ensure the preservation of the topology and Sect. 5 shows
some experiments.

2. Preliminary Notions

The first subsection recalls standard digital topology
notions based on voxels. The second subsection gives fur-
ther definitions for intervoxel topology. The third subsec-
tion presents the definitions related to cubical cell com-
plexes and the last subsection gives our first restricted
version of ML-simpleness.

2



2.1. Images and Voxels Notions

A voxel is an element of the discrete space Z3. A 3D
image is a finite set of voxels I (the image domain), and a
mapping between these voxels and a set of colors or a set of
gray levels (the image values). Each voxel v is associated
with a label l(v), a value in a given finite set L. These
labels can be obtained from the image by a segmentation
algorithm.

We use the classical notion of α-adjacency, with α ∈
{6, 18, 26}. The set of voxels α-adjacent to v is noted N∗α(v),
and thus we define Nα(v) = N∗α(v)∪{v}. An α-path between
two voxels v1 and v2 is a sequence of voxels between
v1 and v2 such that each pair of consecutive voxels is α-
adjacent. A set of voxels S is α-connected iff there is an
α-path between any pair of voxels of S, having all its
voxels in S.

We consider the relation induced by being 6-connected
and having the same label. This is an equivalence relation
over the image domain, and the equivalence classes are
the regions of the image. We consider an infinite region R0

that “surrounds” the image (i.e. R0 = Z
3 \ I). Note that

there is only one infinite region, which is not necessarily 6-
connected if the image has some holes. The complement
set of a region X in I is denoted by X̄. We extend the
notion of adjacency to regions: two regions R1 and R2 are
α-adjacent if there is one voxel in R1 and one voxel in R2

that are α-adjacent. One voxel v is α-adjacent to a region R
if there is a voxel in R which is α-adjacent to v.

Now, we recall notations and definitions from [3]. The
set ofα-connected components of a set of voxels X is called
Cα(X). The geodesic neighborhood of v in X of order
k is the set Nk

α(v,X) defined recursively by: N1
α(v,X) =

N∗α(v,X) ∩ X, and Nk
α(v,X) =

⋃

{Nα(Y) ∩ N∗26(v) ∩ X, Y ∈

Nk−1
α (v,X)}.

In other words, Nk
α(v,X) is the set of voxels x belonging

to N∗26(v) ∩ X such that it exists an α-path π from v to x of
length at most k, all the voxels ofπ belonging to N∗26(v)∩X.

In this paper, we use only the couple of neighbor-
hood (6, 18) (6 for object and 18 for background). In
this framework, we obtain the 6-geodesic neighborhood
G6(x,X) = N3

6
(x,X) and the 18-geodesic neighborhood

G18(x,X) = N2
18

(x,X).
From these notations, Bertrand [3] defines the notion

of simple points in a (6, 18)-connectivity as given in Defi-
nition 1.

Definition 1 (Simple points [3]). A voxel x is simple for a
set X if #C6 [G6(x,X)] = #C18

[

G18(x, X̄)
]

= 1, where #Ck[Y]
denotes the number of k-connected components of a set
Y.

2.2. Intervoxel Topology

Given an image I, we describe the boundaries of its
regions by using the classical notion of intervoxel [24]. In
the intervoxel framework, we consider not only voxels,
but also all the unit elements of the subdvision of the dis-
crete space: voxels are unit cubes, surfels are unit squares

between voxels, linels are unit segments between surfels,
and pointels are the points between linels.

In the rest of this paper, we use the following notations:

• for a voxel v: surfels(v) is the set of the six surfels
between v and all its 6-neighbors;

• for a surfel s: linels(s) is the set of the four linels
between s and its adjacent surfels;

• for a linel l: pointels(l) is the set of the two pointels
between l and its adjacent linels.

We extend these notations to any set of elements, for
instance, given a set of voxels V, surfels(V) is the union of
surfels(v) for all v in V.

To make the notation easier to follow, given a voxel v,
linels(v) denotes linels(surfels(v)), and pointels(v) denotes
pointels(linels(v)). Given a surfel s, pointels(s) denotes
pointels(linels(s)).

A pointel p and a linel l (resp. a linel l and a surfel s, a
surfel s and a voxel v) are incident if p ∈ pointels(l) (resp.
l ∈ linels(s), s ∈ surfels(v)). By transitivity, we say that a
linel l is incident to a voxel v if l is incident to a surfel s
which is incident to v (and similarly for other cells, like
for a pointel incident to a surfel or to a voxel). Two linels
(resp. surfels) are adjacent if there is a pointel (resp. linel)
incident to both linels (resp. surfels).

We define SF as the set of boundary surfels of I: SF =
{surfel s|s separates two voxels with different labels}. We
can remark that any surfel incident to a voxel of the infinite
region and to a voxel of I belong to SF since the label of
the infinite region is, by definition, distinct from any other
label. Given a voxel v, we define the set of boundary
surfels incident to v as s f (v) = surfels(v) ∩ SF.

In the following, we need to study the contact area
between a voxel and a region. For that, we note s(v,R) =
{surfel s|s ∈ surfels(v) and s is incident to a voxel v2 ∈ R,
with v2 , v}, and l(v,R) = {linel l|l ∈ linels(v) and the two
surfels incident to l and not to v are incident to two voxels
of R}. The contact area between v and R is thus c(v,R) =
{l(v,R), s(v,R)}. Pointels are not taken into account here
due to the couple of neighborhood considered (6, 18).

There are five possible configurations for c(v,R):

1. no surfel: s(v,R) = ∅, i.e. v is not 6-adjacent to R;

2. sphere: s(v,R) contains the 6 surfels incident to v, and
l(v,R) contains the 12 linels incident to v;

3. disconnected: there is at least two surfels s1 and s2

in s(v,R) for which there is no path of surfels in
s(v,R) such that each couple of consecutive surfels
are adjacent and separated by a linel in l(v,R); or
there is a linel in l(v,R) which is not incindent to a
surfel in s(v,R);

4. with holes: the complementary of the set of linels
and surfels in c(v,R) is composed by at least two
connected components, thus c(v,R) has at least an
hole;
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5. disk: all the other cases i.e. a non empty connected
set of surfels and linels such that its complementary
is non empty and connected.

A discrete surface is defined as a set of surfels that
border a region [22, 25]. It has been shown that discrete
surfaces have the Jordan property, i.e. such a surface sep-
arates the set of voxels in two regions: an interior and an
exterior. A discrete surface is noted ∂(R) = {surfel s ∈ SF|s
is incident to R}. To study the subset of a discrete sur-
face that separates two distinct regions R and R′, we note
f (R,R′) = {surfel s|s is incident to R and to R′} ( f stands
for the frontier between R and R′). If R and R′ are not 6-
adjacent, f (R,R′) is empty. We can easily prove that ∂(R)
is the union for all R′ , R of f (R,R′).

Given a linel l, its degree d(l) is the number of boundary
surfels incident to l, thus d(l) = |{sur f els|s ∈ SF and s is
incident to l}|. Note that d(l) is 0, 2, 3 or 4, but never
1. Given a linel l and a voxel v, we denote by d(l, v) the
degree of l restricted to boundary surfels incident to v,
thus d(l, v) = |{sur f els|s ∈ s f (v)}|.

2.3. Cubical Complexes and Collapse

In this paper, we use another notion of simplicity de-
fined on surfaces. Therefore, we use the work of [12]
which defines the notion of simple sets for cubical com-
plexes. We recall here the main notions of this paper
restricted to the specific case used in this work, called
specific cubical complex (SCC).

A cubical complex is a set of elements having various
dimensions (which are pointels, linels, surfels, voxels),
glued together by adjacency and incidence relations. In
this work, we only use cubical complexes made of a set
of surfels, plus all the linels and pointels incident to these
surfels: this is what we call SCC. For these reasons, we can
describe these specific cubical complexes only by giving
their set of surfels.

A face of a SCC is a surfel, linel or pointel incident to a
surfel of the complex. A facet of a SCC is one of its surfels.
We note X+ the set of facets of the SCC X, i.e. the set of its
surfels.

A SCC is always closed (because it contains all the
linels and pointels incident to surfels): thus the closure1

of a SCC X, noted X−, is equal to X. Moreover, let X
be a cubical complex, for each S included in X+, S− is a
subcomplex of X (the SCC containing the surfels of S plus
all the linels and pointels incident to these surfels).

Intuitively, a subcomplex of a complex X is simple if
its removal from X does not change the topology of X. In
this work, we use this notion to ensure that the topology
of each surface is preserved.

This notion of simplicity is defined using the collapse
operation which is a discrete analogue of a continuous
deformation (more precisely, a retract by deformation).

1In the general case, the closure of a cubical complex is obtained by
adding each face of the complex.

Let X be a SCC, and let (l, s) be an ordered pair such
that l is a linel belonging to X and s is a surfel belonging
to X. The pair (l, s) is a free pair for X if l is incident to s,
and there is no other surfel in X (distinct from s) incident
to l. Intuitively, the linel l is on the “border” of X. Then,
the complex X \ {l, s} is an elementary collapse of X. Now, a
SCC X collapses onto a complex Y if there is a sequence of
elementary collapse going from X to Y (in this work, we
use the collapse operation between a SCC X, and a cubical
complex made of linels plus all the pointels incident to the
linels).

Let X and Y two SCC, X W Y = (X+ \ Y+)−. This is the
SCC obtained by removing from the surfels in X all the
surfels in Y.

The attachment of Y for X is the complex defined by
Att(Y,X) = Y ∩ (X W Y). It is the set of linels and pointels
which are incident both to Y and to X W Y.

Now we use the collapse definition to prove that the
topology of a surface is unchanged when removing some
of its surfels, or when adding some new surfels. Therefore,
we use the two following definitions from [12]:

1. the complex Y is simple for X if and only if Y collapses
onto Att(Y,X);

2. the complex X ∪ Y collapses onto X if and only if Y
collapses onto X ∩ Y. In such a case, we say that Y
is add-simple for X.

2.4. Preliminary Work

In [16], we give a first definition of multi-label simple
points allowing to preserve both the topology of regions
and the surface relations, recalled in Definition 2. In this
paper, we refer to this previous definition as restricted
multi-label simple points (rML-simple points). The defi-
nition allows to change the label of a rML-simple voxel,
and guarantees that the topology of the partition is pre-
served. However, modifications of the edges of the parti-
tion are not allowed: a voxel incident to a linel of degree
3 or degree 4 is not an rML-simple point, even if it is pos-
sible to change its label while preserving the topology of
the regions (see Fig. 1).

Definition 2 (Restricted Multi-Label simple points). A voxel
x is rML-simple if:

1. for each l in linels(x), we have either d(l) = 0 or
d(l) = 2;

2. s f (x) is homeomorphic to a 2-disk;

3. for each l in linels(x), d(l, x) = 0 implies d(l) = 0.

3. Multi-Label Simple Points

In this paper, we extend Definition 2 to the deformation
of any voxel that preserves the topology of the partition,
even when edges are moved. Given a voxel x in some
region X, the deformation operation, called flip, consists
in removing x from X by changing its label. In this context,
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(a) (b)

Figure 1: Configuration where the central voxel is ML-
simple. In each case, we intend to swap the voxel into the
darker region. (a) The voxel is rML-simple: for each linel
l in linels(v) we have d(l) = 0 or d(l) = 2. (b) The voxel is
not rML-simple: there is one linel l incident to the central
voxel with d(l) = 3.

the main tool to control the topology modification is the
notion of simple point. However, there are two main
differences with the classical notion of simple point. First,
we deal with multi-label images and not binary images.
Second, we want to preserve the topology of regions but
also the topology of surfaces between the regions.

3.1. Definition of Multi-Label Simple Points

Before giving the definition of multi-label simple points,
we study the flip operation in multi-label images, and the
related modifications on discrete surfaces. Using the mod-
ifications, we are able to define simple configurations. Let
x be a voxel belonging to a region X, the operation that
flips x in the region R (R being 6-adjacent to region X)
consists in removing voxel x from X and adding x to R.
Note that R and X are the only regions modified, but we
also need to look at the modifications on the intervoxel
boundaries of the regions: each surfel incident to x that
is between X and another region O , X before the flip,
becomes a surfel between R and O after the flip. The flip
implies the following modifications of surfaces:

• f (X,R) ← f (X,R) \ s(x,R) ∪ s(x,X); all the surfels
that are between voxel x ∈ X and R before the flip
are removed from the surface between X and R, and
all the surfels that are between voxel x ∈ X and X
before the flip are added to the surface between X
and R;

• For any region O with O , X, O , R: f (X,O) ←
f (X,O)\s(x,O); all the surfels that are between voxel
x ∈ X and O before the flip are removed from the
surface between O and X;

• For any region O with O , X, O , R: f (R,O) ←
f (R,O)∪s(x,O); all the surfels that are between voxel
x ∈ X and O before the flip are added to the surface
between O and R.

To define the notion of multi-label simple point, which
preserves the topology of the partition, we have to guar-
antee that the topology of region X and region R is pre-

served, and that the topology of each surface is also pre-
served. Definition 3 gives the new definition of multi-label
simple points (called ML-simple points) which guarantees
these two properties.

Definition 3 (ML-simple points). A voxel x, belonging to
region X, is ML-simple for region R if:

1. c(x,R) is homeomorphic to a 2-disk;

2. c(x,X) is homeomorphic to a 2-disk;

3. for each region O 6-adjacent to x, distinct from X
and R: s(x,O) is simple for f (X,O); and s(x,O) is
add-simple for f (R,O).

There are three main differences with the definition
of rML-simple points. First, the condition “for each l in
linels(x), we have either d(l) = 0 or d(l) = 2” is removed
to process voxels incident to several regions and not only
voxels in a binary 18-neighborhood.

Second, the condition “s f (x) is homeomorphic to a 2-
disk” is replaced by conditions (1) and (2) of Definition 3.
In the previous definition there are only two regions in
the 18-neighborhood of x, and s f (x) is homeomorphic to
a 2-disk. Thus, the complementary of s f (x) is also home-
omorphic to a 2-disk. In Definition 3 several regions are
adjacent to x, so we have to check that both c(x,R), and
c(x,X) are homeomorphic to 2-disks. Conditions (1) and
(2) are necessary to ensure that both the topology of R
and the topology of X are preserved. Moreover, to detect
configurations where two surfels are adjacent but sepa-
rated by a linels incident to another region (as seen in
the example of Fig. 2d), the test uses linels in addition to
surfels.

Third, the new condition (3) guarantees that the topol-
ogy of other surfaces incident to x remains unchanged.
The two subproperties induce that removal and addition
of each set of surfels from or to original surfaces does not
modify the surface topology. For the removed surfels, it
prevents any topological modification but also any van-
ishing of existing surface. For the added surfels, it forbids
the creation of a new surface.

Note that all the conditions are local since they are all
restricted to surfels or linels incident to the considered
voxel. In condition (3) the set of surfels s(x,O) is a subset
of the 6 surfels incident to x. Thus, the tests if s(x,O) is
simple for f (X,O) and if s(x,O) is add-simple for f (R, 0)
are achieved locally, whatever f (X,O) and f (R, 0), since
by definition the test is restricted to the study of the inter-
section of these sets with s(x,O) (see Sect. 2.3).

In the following, we first detail the different parts of
Definition 3. Then, we prove that each rML-simple point
is an ML-simple point. Last, we prove the main properties
of ML-simple points: i.e. they are simple points, and
flipping this kind of voxel preserves the topology of both
regions and surfaces.

Informally, each one of the three conditions of Defini-
tion 3 allows:
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Figure 2: Examples of rejected configurations. In each
case, we intend to flip the central voxel x (belonging to
region X) into the darker region (region R). (a) Rejected
by condition (1): c(x,R) is not homeomorphic to a 2-disk.
(b) Rejected by condition (2): c(x,X) is not homeomorphic
to a 2-disk. (c) Rejected by condition (3): s(x, 1) is not add-
simple for f (R, 1). (d) Rejected by condition (2). c(x,X) is
not homeomorphic to a 2-disk since the linel between the
two surfels does not belong in l(x,X).

1. to ensure that the topology of R is preserved when
flipping x in R: if c(x,R) is not homeomorphic to a
2-disk, flipping x in R involves a topological modifi-
cation. If s(x,R) is empty, this creates a new cav-
ity which is an isolated region containing x. If
s(x,R) = surfels(x), x is isolated and flipping x in
R removes a cavity of R. If s(x,R) is not homeomor-
phic to a 2-disk, then either c(x,R) is made of two
connected components (for example two opposite
surfels, or two adjacent surfels but without the inci-
dent linel in l(x,R)) or c(x,R) has a hole. In the first
case flipping x in R creates a tunnel in R, and in the
last case flipping x in R removes a tunnel of R (see
Fig. 2a);

2. to preserve the topology of X: if c(x,X) is not home-
omorphic to a 2-disk, removing x from X involves,
similarly to the previous condition, the removal or
creation of a cavity or a tunnel of X (see Fig. 2b and
Fig. 2d);

3. to preserve the topology of each surface f (X,O)
when removing surfels s(x,O), and to preserve the
topology of each surface f (R,O) when adding sur-
fels s(x,O). This condition has to be satisfied for
each surface between X and a region O 6-adjacent to
x and different from R (see Fig. 2c and Fig. 3).

3.2. Restricted Multi-Label Simple Points are Multi-Label Sim-
ple Points

First, we prove that the previous definition of rML-
simple points, (configurations where linels do not move),

f(X,A)

R

x

A

B

X flip(x,R)

(a)

f(R,B)

R

x

X
A

B

flip(x,R)

(b)

Figure 3: Examples of rejected configurations due to con-
dition (3). In each case, we intend to flip the central voxel
x (belonging to region X) into the darker region (region R).
In both cases, the first two conditions are satisfied. The
flip does not modify the topology of regions, but modifies
the topology of frontiers between regions. (a) s(x,A) is not
simple for f (X,A). (b) s(x,B) is not add-simple for f (R,B)
(here s(x,A) is simple for f (X,A) and s(x,B) is simple for
f (X,B)).
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are ML-simple points (i.e. that the previous definition is
included into the new one). This shows that we do not
miss previous configurations which have been proved to
be simple points.

Proposition 1. If x ∈ X is an rML-simple point, then x is a
ML-simple point for the second region R adjacent to x.

Proof. Since x ∈ X is an rML-simple point, the follow-
ing properties are satisfied (cf. Definition 3): (1) ∀l ∈
linels(x), d(l) ∈ {0, 2}; (2) s f (x) is homeomorphic to a 2-
disk; (3) ∀l ∈ linels(x), d(l, x) = 0 ⇒ d(l) = 0. By using the
Lemma 1 in [16], we know that there are only two regions
in N18(x), X which contains x and R the second region.
Thus, we have s(x,R) equals to s f (x).

We prove that all the conditions of Definition 3 are
satisfied.

First, let us prove that c(x,R) is homeomorphic to a
2-disk. We have s(x,R) equals to s f (x) and s f (x) is home-
omorphic to a 2-disk. Moreover, for each linel l incident
to two surfels in s(x,R), we have d(l) equals 2 (by con-
dition (1) of rML-simple point definition) which implies
that l is in l(x,R). Thus, s(x,R) is homeomorphic to a 2-
disk with all the linels between these surfels in l(x,R): this
shows that c(x,R) is homeomorphic to a 2-disk.

For c(x,X), we use the fact that s(x,X) is the comple-
mentary of s(x), i.e. is the set of the 6 surfels incident
to x minus s f (x) (because there are only two regions in
N18(x)). Hence s(x,X) is homeomorphic to a 2-disk, other-
wise s f (x) would not be homeomorphic to a 2-disk. For
the linels, we have for each linel l incident to two surfels
in s(x,X), d(l, x) equals 0 which implies d(l) equals 0 (by
condition (3) of rML-simple point definition). These linels
belong to l(x,X) and for the same reason as above, we can
conclude that c(x,X) is homeomorphic to a 2-disk.

Condition (3) is satisfied by vacuity since there is no
other region distinct from X and R that is 6-adjacent to x.

Note that the reverse proposition is false: an ML-
simple point is, in the general case, not an rML-simple
point (as seen in Fig. 1). The goal of the extended def-
inition is to allow the flipping of more voxels, namely
the voxels adjacent to more than two regions, which were
classified as non simple in the rML-simple point defini-
tion.

3.3. Multi-Label Simple Points are Simple Points

Now, we prove that the topology of regions is pre-
served when flipping an ML-simple point. First, we show
that ML-simple points are simple points for the two mod-
ified regions.

Proposition 2. If x ∈ X is an ML-simple point for R, then x
is a simple point for X and for R.

Proof. First, if there are exactly two regions in N18(x) (i.e.
X and R), we know by Proposition 1 of [16] that x is simple
for R. Since the 18-neighborhood of x is limited to binary

case, and by definition of simple points the topology of the
complementary of R is preserved: we can deduce that the
topology of X is also preserved, and thus that x is simple
for X.

The case where there are only one region in N18(x) is
impossible since x cannot be an ML-simple point in this
configuration.

In cases with more than two regions, we use a proof
similar to the one in [16], by proving the contrapositive of
Proposition 2, i.e. if x is not a simple point for R, then x is
not an ML-simple point. Let n1 be equal to #C6 [G6(x,R)]
and n2 be equal to #C18

[

G18(x, R̄)
]

, we know that the voxel
x is not simple in the four following cases: (1) n1 = 0,
(2) n2 = 0, (3) n1 ≥ 2, (4) n2 ≥ 2. Let us prove that the voxel
x is not an ML-simple point in each case:

1. n1 = 0. There is no 6-connected component of vox-
els belonging to R in G6(x,R): s(x,R) is empty, and
thus c(x,R) is not homeomorphic to a disk which
contradicts condition (1) of Definition 3.

2. n2 = 0. There is no 18-connected component of
voxels belonging to R̄ in G18(x, R̄): s(x,X) is empty,
and thus c(x,X) is not homeomorphic to a disk which
contradicts condition (2) of Definition 3.

3. n1 ≥ 2: there are at least two 6-connected compo-
nents of voxels belonging to R in G6(x,R). If there
are two 18-adjacent voxels v1 and v2 in two differ-
ent connected components, then the voxel v3 , x
6-adjacent to v1 and to v2 belongs to R̄ (otherwise
there is only one connected component) and thus
c(x,R) is not homeomorphic to a disk since the linel
l incident to x, v1 and v2 is not in l(x,R), and there is
no other path of surfels between these two surfels,
otherwise v1 and v2 would be in the same connected
component. This contradicts condition (1) of Defi-
nition 3.
If there is no voxels v1 and v2 in two different con-
nected components that are also 18-adjacent, the
connected components are separated by x. In this
case, c(x,R) is not homeomorphic to a disk (it is an
annulus) in contradiction to condition (1).

4. n2 ≥ 2: there are at least two 18-connected com-
ponents of voxels belonging to R̄ in G18(x, R̄). If
there are two voxels v1, v2 ∈ N6(x) in two differ-
ent connected components, then v1 and v2 are not
18-adjacent (otherwise there is only one connected
component), and thus all other voxels in N6(x) be-
long to R. Hence, c(x,R) is not homeomorphic to a
disk, which contradicts condition (1) of Definition 3.
If there is no two voxels of N6(x) in two different con-
nected components, that means one of them (say v1)
belongs to N18(x) \ N6(x), and that all the voxels in
N6(x), except v2, belong to R (otherwise we are either
in the case of the previous paragraph, or there is only
one 18-connected components of voxels belonging
to R̄), and thus s(x,R) contains the five surfels incin-
dent to x and not to v2.
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The linel l incident to v1 and x is not in l(x,R) (since
the two 6-neighbors of v1 in N6(x) belong to R while
v1 does not): c(x,R) has a hole and thus is not home-
omorphic to a disk in contradiction to condition (1).

�

We can make a similar proof for the proposition: if x is
not a simple point for X, then x is not an ML-simple point.
This is done again by showing that in each case where x
is not simple, there is a contradiction with a condition of
Definition 3 (and in this second part of the proof, condi-
tion (2) is used instead of condition (1)).

Since regions distinct from X and R are not modified by the
flip operation, this proves that the topology of all regions
in the image is preserved. Note that the reverse propo-
sition is false: simple points are not ML-simple points
(in Fig. 3, for both examples, voxel x is simple but not
ML-simple).

Then, we prove that the topology of each surface is
preserved. This proof is straightforward using the works
in [12].

Proposition 3. If x is an ML-simple point for R, the topology
of each surface is unchanged by flipping x in R.

Proof. First, let us study the surfaces between O, a re-
gion 6-adjacent to x, distinct from X and R, and regions
X and R, and prove that the topology of these surfaces is
preserved. This is a direct consequence of condition (3)
of Definition 3, and the definition of simplicity in cubi-
cal complexes. Since f (X,O) ← f (X,O) \ s(x,O), and
s(x,O) is simple for f (X,O), the topology of f (X,O) be-
fore and after the flip remains the same. Since f (R,O) ←
f (R,O) ∪ s(x,O), and s(x,O) is add-simple for f (R,O), the
topology of f (R,O) before and after the flip remains the
same.

Second, let us study the surface between X and R. This
surface cannot disappear, otherwise s(x,R) is empty and
that contradicts condition (1) of ML-simple point defini-
tion. This surface cannot be cut in two connected compo-
nents, nor topologically modified. We have ∂X that is the
union of all surfaces f (X,O), for all O , X, i.e. ∂X equals to
f (X,R) plus f (X,O), for all O , X and , R. Since we have
shown that the topology of region X is unchanged (no
modification of tunnels nor cavities), and since the topol-
ogy of each surface f (X,O) is preserved for all O , X and
, R, the topology of f (X,R) is also unchanged. Otherwise
∂X is modified.

Since no other surfaces are modified, the topology of
each surface in the image is unchanged by the flip. �

3.4. Detection of Multi-Label Simple Points

Now we present an algorithm allowing to detect if
a given voxel is a ML-simple point. For that, we need
to be able to retrieve efficiently intervoxel information.
This is achieved by using two matrixes. The first one is
a matrix which encodes the regions, i.e. the voxel labels.

The second one is an intervoxel matrix which encodes
the borders of the regions in the 3D image. For each
intervoxel cell c, this matrix store the state of c (“on” or
“off”) depending on the three following rules:

• a surfel s is “on” iff s ∈ SF (i.e. s is between 2 voxels
with different labels);

• a linel l is “on” iff l is incident to > 2 “on” surfels;

• a pointel p is “on” iff p is incident to 1 or > 2 “on”
linels.

We use the intervoxel matrix in Algo. 4 to determine
if voxel x is ML-simple. This algorithm uses the two
functions given in Algo. 1 and Algo. 2. The first function
tests if a set of surfels is homeomorphic to a disk, and
the second function tests if a set of surfels can collapse on
a set of linels. The two algorithms use the fact that the
set of surfels is a subset of the surfels incident to a given
voxel, and the fact that the set of linels is also a subset of
the linels incident to the same voxel. The two properties
allow to define algorithms with constant time complexity
since the number of cases is bounded.

Algorithm 1 tests if the set S is homeomorphic to a
disk by checking that it does not correspond to one of the
four configurations where S is not a disk. The first case
(|S| = 0) corresponds to S is empty. The second case (|S| =
6) corresponds to S is homeomorphic to a sphere. The
third case is if S is composed of two opposite surfels. The
fourth case is if S is composed of 4 surfels homeomorphic
to an annulus.

Algorithm 1: isDisk(S)

Data: set S of surfels incident to a voxel x.
Result: true iff S is homeomorphic to a disk.
if |S| = 0 or |S| = 6 then1

return f alse;2

if S = {s1, s2} then3

if s1 and s2 are adjacent then return true;4

else return f alse;5

if |S| = 4 then6

let s1 and s2 be the two surfels incident to x < S;7

if s1 and s2 are adjacent then return true;8

else return f alse;9

return true;10

Algorithm 2 tests if the set of surfels S can collapse on
the set of linels L by considering the two possible cases
(more precisely the CSS obtained from S by adding all
linels and pointels incident to surfels in S can collapse
on the cubical complex obtained from L by adding all
pointels incident to linels in L). The first case is if S is
homeomorphic to a disk: S can collapse on L if only if
L is homeomorphic to a segment. The second case is if
S is homeomorphic to an annulus: S can collapse on L
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if and only if L is homeomorphic to a circle. To test if L
is homeomorphic to a segment, we consider two different
cases. If |L| = 1, L is homeomorphic to a segment. If |L| > 1,
we check if each linel in L is adjacent to one or two other
linels in L, and there is exactly two linels that are adjacent
to only one other linel. For the circle, the test is similar
but all linels in L have to be adjacent to exactly 2 linels in
L, and there must be only one connected component (to
avoid case where L is homeomorphic to 2 circles). Note
that this algorithm is not generic and can not be used for
any set of surfels, but only for the set of surfels we test
during the simple point detection algorithm.

Algorithm 2: collapse(S,L)

Data: set S of surfels incident to a voxel x;
set L of linels incident to x.

Result: true iff S can be collapsed on L.
if isDisk(s(x,R)) then1

return L is homeomorphic to a segment;2

return L is homeomorphic to a circle;3

Algorithm 3 tests if a contact area c(x,R) is homeo-
morphic to a disk. For that, it uses the remarks given in
Sect. 2.2 about all the possible configurations.

Algorithm 3: isDisk(c(x,R) = (L,S))

Data: contact area c(x,R) between voxel x and
region R.

Result: true iff c(x,R) is homeomorphic to a disk.
if |S| = 0 then return f alse;1

if |S| = 6 and |L| = 12 then return f alse;2

s1 ← one surfel in S;3

make a depth first search algorithm on S starting4

from s1;
if number of visited surfels , |S| or ∃l ∈ L, l is not5

incident to a surfel in S then
return f alse;6

s2 ← one surfel not in S;7

make a depth first search algorithm on S̄ starting8

from s1;
if number of visited surfels , |S̄| or ∃l ∈ L̄, l is not9

incident to a surfel in S̄ then
return f alse;10

return true;11

Line 1 is the case if there is no surfel between x and R,
and line 2 is the contact area is homeomorphic to a sphere.
In both cases, the algorithm returns false. The next step
(between lines 3 and 6) consists in testing if the contact area
is connected. The last step (between lines 7 and 10) is the
test if the complementary of the contact area is connected,
to detect if the surface has an hole or not. In both cases,
the test consists in a depth first search algorithm through
the concerned set of surfels by passing only through linels

of the given set of linels. The algorithm returns false if it
has not visited all the surfels, or if a linel is not incident
to the set of surfels. Last, we have tested all the possible
configurations, and we are sure that c(x,R) is a non empty
connected set of surfels not homeomorphic to a sphere
and without hole: it is homeomorphic to a disk and the
algorithm returns true.

Now by using these functions, Algo. 4 checks if a given
voxel x is ML-simple for a region R.

Algorithm 4: Detection of ML-simple points

Data: voxel x ∈ X;
region R.

Result: true iff x is an ML-simple point for R.
if not isDisk(c(x,R)) then return f alse;1

if not isDisk(c(x,X)) then return f alse;2

foreach region O ∈ N6(x), O , X, O , R do3

L1 ← {l ∈ linels(s(x,O))|l ∈4

linels( f (X,O) \ s(x,O))};
if not collapse(s(x,O),L1) then return f alse;5

L2 ← {l ∈ linels(s(x,O))|l ∈ linels( f (R,O))};6

if not collapse(s(x,O)),L2) then return f alse;7

return true;8

The two first tests of this algorithm correspond directly
to the two first conditions of Definition 3. For the last
condition we have detailed the simple and add-simple
notions.

First, to test if Y = s(x,O) is simple for Z = f (X,O), we
use the first proposition recalled in Sect. 2: the complex
Y is simple for X if and only if Y collapses onto Att(Y,Z).
Att(Y,Z) is the set of linels and pointels that are incident
both to Y and to Z W Y. We consider only linels since
pointels can be retrieved from linels (in our case each
complex is closed). Thus, we have to test if Y collapses
onto the set of linels incident both to Y and to Z W Y.

Second, to test if Y = s(x,O) is add-simple for Z =
f (R,O), we use the second proposition: Z ∪ Y collapses
onto Z if and only if Y collapse onto Z ∩ Y. Since Z and Y
have no common surfels, Z∩Y is the set of linels incident
both to Y and Z (plus the pointels incident to these linels).

Thus, the two cases of simple and add-simple can be
tested using Algo. 2 on the correct set of linels.

Proposition 4. Given a voxel x and a region R, Algo. 4 returns
true iff x is an ML-simple point.

Proof. The first two tests check conditions (1) and (2). We
test if c(x,R) and c(x,X) are homeomorphic to a disk by
calling Algo. 3 on the set of surfels and linels respectively
between x and R, and between x and X.

The last test checks condition (3): we use Algo. 2 that
tests if a set of surfels can collapse on a set of linels. As
explained above, the two tests are respectively equivalent
to test if s(x,O) is simple for f (X,O), and if s(x,O) is add-
simple for f (R,O).
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All the conditions of Definition 3 are satisfied, x is ML-
simple and the algorithm returns true accordingly. �

First, the complexity of Algo. 2 is O(1). There are
6 surfels in surfels(x) and 12 linels in linels(x), and the
complexity of each step of the algorithm can be bounded
by these two numbers. Second, the complexity of Algo. 3
is O(1) since the number of visited surfels in both depth
first search algorithm is at most 6. Finally, the complexity
of Algo. 4 is O(1): to compute the set of linels L1, we test
the 12 linels incident to x, and for each linel l, we verify
if l satisfies the other conditions: l is incident to a surfel
incident to region O, and l is incident to a surfel between
regions X and O that is not incident to x. These tests can
be achieved in constant time using two matrices, one of
voxel and one of intervoxel elements. The same principle
is used to compute the second set of linels L2. Thus, the
computation of the two sets can be achieved by a constant
number of operations, and testing if L is homeomorphic to
a segment or to a circle can also be achieved by a constant
number of operations.

4. Deformable Model Process

We developed a digital deformable partition model
based on the definition of ML-simple points. The geom-
etry of the partition is coded using an intervoxel matrix.
Deformations are carried out by flipping ML-simple vox-
els and Proposition 3 ensures that the topology of the
partition is preserved. The deformation is guided by an
energy-minimizing process. In this work, the energy has
a simple definition to show the feasibility of a deformable
partition model based on ML-simple voxels flips.

The energy of a partition is defined as the sum of the
energies of each digital surface S between pairs of regions
(R1,R2). The energy of a surface S is the weighted sum of
Er a region based energy, and Es an area based energy.

Energy Er is an energy describing the quality of the fit
of regions to image data. Energy Er is the sum of the Mean
Squared Error (MSE) of R1 and R2: as the region becomes
more homogeneous, the value of Er(S) decreases.

Energy Es is based on a discrete area estimator pro-
posed in [28] that gives an estimation of the area of one
surfel s in the digital surface represented by the set of sur-
fels containing s. As the set of surfels changes depending
on the surface side, the area estimation for a surfel also
depends on the surface side. The energy of a surfel is de-
fined as the sum of the estimated area of s from the side of
R1 and the estimated area from the side of R2. Energy Es

is the sum of the energy of each surfel of S: as the surface
becomes smoother, the value of Es decreases.

The deformation process of a surface follows a greedy
optimization algorithm. The initial energy of the surface
is first computed. Then, for each surfel of the surface, the
process temporary flips ML-simple voxels adjacent to the
surfel and computes the resulting energy. Last, the flip
that most reduces the energy is definitively applied.

The deformation algorithm is executed on every bor-
der faces of the partition. The process iterates until a local
minimum energy is reached (i.e. no deformation occurs).
The deformation process always stops since a finite num-
ber of surfels is processed and since flips are only applied
if the global energy strictly decreases.

5. Experiments

We present two sets of experiments. First, we run two
experiments that highlight the advantage of the discrete
area estimator over the number of surfel as energy for
regularization. Second, two examples of a deformation
process in a multi-label partition are proposed.

In the first set of experiments, we use a deformation
process that is governed by the minimization of its esti-
mated area. As input data, we provide noisy versions of
either a slanted plane or a sphere. A good regularizer
should smooth these data into a perfect plane or a perfect
sphere. Two different regularizing energies are compared:
one using the number of surfels (NS) and one using the
discrete area estimator (DAE).

To experiment the process, test images are generated
that contains two regions separated by one face. In the
first experiment, this face is a discrete plane, and in the
second experiment it is a discrete sphere. Noise is added
to the discrete surface using many random flip operations.
Then, the deformation process minimizes the estimated
area using the NS or the DAE methods. This process
smooths the surface, and thus removes some of the noise.
We measure the resulting surface area and compare it with
the theoretical value. The measured values are reported
into the following tables.

Table 1 presents the results of the deformation with
such energies on a noisy slanted plane. We increase the
plane size to observe differences between the two energies.
In this configuration the two energies give approximately
the same results. The accuracy of both estimated area
depends on the angles formed by the plane with the the
three mutually perpendicular planes of the orthonormal
basis. During the smoothing, the deformation process is
stopped in a local minimum where there is no more ML-
simple points that minimize the NS or the DAE energies.
Since the resulting plane are roughly similar, there is no
advantage of the DAE based deformation over the NS
based one. In fact, in this case, the noise perturbates the
plane with voxels that induce local change of orthants.
That kind of perturbation is also removed by an NS energy.

In the second experiment, presented in Table 2, the
same energies are used to smooth noisy spheres of differ-
ent radii. The deformation based on the minimization of
the DAE energy gives a more accurate result with respect
to the theoretical value. Actually, the deformation mini-
mizing the number of surfels tends to produce a discrete
sphere that has an increased radius: the smoothed surface
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Table 1: Smoothing of a noisy plane surface

Size Theoretical NS DAE
10 × 10 141,42 126,73 127,42
15 × 15 318,20 296,13 296,80
20 × 20 565,69 536,25 536,25
25 × 25 883,88 847,07 848,36
30 × 30 1272,79 1228,88 1229,74

Table 2: Smoothing of a noizy sphere.

Radius Theoretical NS DAE
5 314,15 456,56 456,56
8 804,24 788,77 737,42

10 1256,63 1800,43 1206,25
12 1809,55 2409,28 1945,09
15 2827,43 3805,52 2768,96

is larger. In this configuration, the DAE based deforma-
tion produces a better result than the NS based one. But,
as in the first experiment, both deformations reach a local
minimum.

The second sets of experiments consists in optimizing
an initial partition which contains several regions. The ob-
jective is to enhance this initial segmentation with respect
to image and area based energies (see Sect. 4).

The third experiment shows a segmentation of a 3D
medical image with a poor initialization, in a way similar
to continuous deformable partition models [38]. Starting
with a topologically correct segmentation of the image,
the deformation process is used to retrieve shapes in the
image while keeping topological information. The algo-
rithm is applied on a simulated MRI brain image obtained
from [10]. The result proposed in this paper is a gener-
alized version of the second experiment found in [16].
According to a prior knowledge the image is composed of
five regions that are intertwined as displayed on Fig. 4c.
In this configuration, there is no intersection between the
partition boundaries. Figure 4a shows a slice of the orig-
inal image, the initial partition on the same slice is pre-
sented Fig. 4b and the optimized segmentation is shown
in Fig. 4d). The algorithm ensures that the topology of
the optimized segmentation is the same as the topology
of the initial partition of the image. The resulting parti-
tion is not fully satisfactory, but this is mainly due to the
chosen energies, which are very rudimentary. This will
be addressed in future works.

The fourth experiment presents the deformation of a
multi-label partition that contains surface intersections.
The initial partition is produced by an existing algorithm
[15] which is supposed to be topologically correct but rep-
resents a poor result with respect to the partition global
energy. The deformation slightly modifies surfaces of the
image to obtain a better result. Figure 5a and Fig. 5b
present a slice of the partition before and after the defor-
mation processes. Borders of regions match more accu-

(a) (b)

(c) (d)

Figure 4: Optimization of an existing partition without
intersection of boundary surfaces ensuring that the topol-
ogy of the partition is preserved. (a) Slice of a simulated
MRI brain image. (b) Initial partition with five regions.
(c) Imbrication tree of the five regions. (d) Resulting seg-
mentation after deformation.

rately image data. Figure 5c shows a piece of the partition
produced by a deformation algorithm that flips only rML-
simple points. Figure 5d presents the same piece of the
partition but produced by the deformation algorithm us-
ing the ML-simple point definition. The surface intersec-
tions are moved in Fig. 5d. This allows to obtain a partition
with a smaller energy. With this experiment, we show the
interest of the definition of ML-simple points over rML-
simple points to obtain a partition with a smaller energy.

6. Conclusion

In this work, we have proposed a new definition of
ML-simple points, the points which can be flipped with-
out modifying the topology of the partition. The strengths
of our method are:

1. the algorithm allowing to test if a given point is ML-
simple is local, short and easy to implement;

2. our method of deformable model is generic: we can
easily modify the energies used to mix some regions
and surfaces information depending on the needs of
the applications;
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(a) (b) (c)

(d)

Figure 5: Optimization of an initial segmentation with
intersection of boundary surfaces by minimizing the par-
tition energy. The topology of the partition is preserved
during the deformation process. (a) Slice of the initial seg-
mentation. (b) Same slice after deformation. (c) Zoom on
the partition produced by a deformation that flips only
rML-simple points. (d) Zoom on the partition produced
by a deformation that flips ML-simple points. The energy
of this partition is smaller than the energy measured for
(c).

3. our method deals with arbitrary multi-label image
partitions: we can use a partition containing any
number of surfaces, and deform this partition by
preserving its topology.

We have illustrated these interests by showing some
preliminary experiments. A first one shows the advantage
of the discrete area estimator over the number of surfels
as energy for regularization. A second experiment shows
the interest of use an initial set of arbitrary surfaces, by
deforming some included spheres to fit a brain image, or
to smooth an initial partition obtained from a preliminary
segmentation.

In future works, we plan to improve the energies used
in the deformable model to have a better fit with the image
data. We also want to improve the discrete area estimator
in order to be able to process big 3D images. For that,
we want first to make the estimator linear in time in the
same way as the 2D case. Second, we want to update
the estimator dynamically to avoid global recomputation.
A last perspective is to study different area estimators in
order to find a better one with less local minimum, for
example by using a solution similar to [13] in 2D.
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