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Abstract. New families of copulas are obtained in a two-step process : first considering the inverse
problem which consists of finding a joint distribution from its given marginals as the constrained
maximization of some entropies (Shannon, Rényi, Burg, Tsallis-Havrda-Charvát), and then using
Sklar’s theorem, to define the corresponding copula.
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INTRODUCTION

Copulas have been proved useful for modelling the dependence structure between vari-
ables in the presence of partial information: the knowledgeof marginal distributions. For
example, recently we pointed out how to use the notion of copula in tomography [1, 2].
The problem in which we are interested in the present paper isto find the bivariate distri-
bution when we know only its marginals. This problem is an ill-posed inverse problem
[3] in the sense that it does not have a unique solution (existence, uniqueness and stabil-
ity of the solution being the three necessary conditions of well-posedness). One possible
way to select a unique solution to this problem is to choose anappropriate copula and
then useSklar’s theorem[4, 5] according to which there exists a copula which relatesthe
marginal distributions yielding to the joint distribution. The problem then becomes the
choice of a copula. Note that there are many other ways to derive families of continuous
multivariate distributions with given univariate marginals (e.g. [6, 7, 8], and references
therein).

Two years beforeSklar’s theoremwas published, Edwin Jaynes proposed, in two sem-
inal papers [9, 10], thePrinciple of Maximum Entropy(PME) which defines probability
distributions given only partial information. PME has beenused in many areas and orig-
inally when the partial information is in the form of knowledge of some geometric or
harmonic moments (e.g.[11, 12]).

Entropy maximization of a joint distribution subject to given marginals has been
studied in statistical and probabilistic literature sincethe 1930s [13]. The condition for
existence of the solution has also been known [14]. This problem was also considered
in [15] and [16]. The case where the entropy considered is theShannon entropy on a
measurable space was discussed more rigorously in [17], andthis idea was later used
in [18], where the authors derive the joint distribution with given uniform marginals on
I = [0,1] and given correlation.

Here the partial information is the knowledge of the marginal distributions. The



main result is that we can determine a multivariate distribution with given marginals
and which maximizes an entropy. Many types of entropies havebeen proposed. A
consequence of this is that we can now, depending on the entropy expression used,
obtain different multivariate distributions, and hence different families of new copulas.
The main contribution of this paper is to consider the cases where we can obtain explicit
expressions for the maximum entropy problem and so the copula families. To our
knowledge, these families have not been discussed before inthe literature.

MAXIMUM ENTROPIES COPULAS

Denote byF(x,y) an absolutely continuous bivariate cumulative distribution function
(cdf), and f (x,y) its bivariate probability density function (pdf). LetF1(x), F2(y) be the
marginal cdf’s andf1(x), f2(y) their respective pdf’s.

A bivariate copulaC is a function fromI2 to I with the following properties:

1. ∀u,v∈ I, C(u,0) = 0=C(0,v),
2. ∀u,v∈ I, C(u,1) = u andC(1,v) = v and
3. C(u2,v2)−C(u2,v1)−C(u1,v2)+C(u1,v1)≥ 0

for all u1,u2,v1,v2 ∈ [0,1] such thatu1 ≤ u2 , v1 ≤ v2.

One can construct copulasC from joint distribution functions by

C(u,v) = F(F−1
1 (u),F−1

2 (v)),

where the quantile function isF−1
i (t) = inf {u : Fi(u)≥ t} . For further details see [19].

Problem’s formulation

In order to find the bivariate maximum entropy pdff (x,y), the marginal distributions
become the constraints:























C1 :
∫

f (x,y)dy= f1(x), ∀x

C2 :
∫

f (x,y)dx= f2(y), ∀y

C3 :
∫∫

f (x,y)dxdy= 1.

(1)

Hence, the goal is then to find the bivariate density distribution f (x,y), compatible
with available information in the PME sense. Among all possible f (x,y) satisfying the
constraints (1), PME selects the one which optimizes an entropy J( f ), i.e. :

f̂ := maximizeJ( f ) subject to(1).

Because the constraints are linear, the choice of a concave objective functionJ guar-
antees the existence of a unique solution to the problem. Many entropy functionals



can serve as concave objective functions. We focus on the Shannon entropy [20] ,
Rényi entropy [21], Burg entropy [22], and Tsallis-Havrda-Charvát entropy [23, 24]
respectively given by :

1. J1( f ) =−
∫∫

f (x,y) ln f (x,y)dxdy (Shannon);

2. J2( f ) =
1

1−q
ln

(

∫∫

f q(x,y)dxdy

)

, q> 0 andq 6= 1 (Rényi);

3. J3( f ) =
∫∫

ln f (x,y)dxdy (Burg);

4. J4( f )=
1

1−q

(

1−
∫∫

f q(x,y)dxdy

)

q>0 andq 6=1 (Tsallis-Havrda-Charvát),

One can get a continuum of entropy measures by choosing different values of parameter
q 6= 1. Shannon entropy is the special limit ofJ2( f ) andJ4( f ) asq→ 1.

Method and parametric solution

The main tool is to define the following Lagrange multiplierstechnique. When solving
the Lagrangian functional equation, we assume that there exists only one feasiblef > 0
with finite entropy satisfying

Lg( f ,λ0,λ1,λ2) = Ji( f )+λ0

(

1−
∫∫

f (x,y)dxdy

)

+
∫

λ1(x)

(

f1(x)−
∫

f (x,y)dy

)

dx

+
∫

λ2(y)

(

f2(y)−
∫

f (x,y)dx

)

dy,

and the critical point ofLg holds for the following system of equations:

∂Lg( f ,λ0,λ1,λ2)

∂ f
= 0,

∂Lg( f ,λ0,λ1,λ2)

∂λi
= 0.

Assuming that the integrals converge within the intervalI, this system of equations
yields:

f (x,y) = exp(−λ1(x)−λ2(y)−λ0) (Shannon’s entropy);

f q−1(x,y)
∫∫

I2
f q(x,y)dxdy

=
1−q

q
(λ1(x)+λ2(y)+λ0) (Rényi’s entropy);

f (x,y) = (λ1(x)+λ2(y)+λ0)
−1 (Burg’s entropy);

f (x,y) =
1−q

q
(λ1(x)+λ2(y)+λ0)

1
q−1 (Tsallis-Havrda-Charvát’s entropy),



whereλ1(x), λ2(y) andλ0 are obtained by replacing these expressions in the constraints
(1) and solving the resulting system of equations.

For the Shannon entropy, the constraints can be solved analytically:

λ1(x) =− ln

(

f1(x)
∫

I
λ1(x)dx

)

,

λ2(y) =− ln

(

f2(y)
∫

I
λ2(y)dx

)

and

λ0 = ln

(

∫

I
λ1(x)dx

∫

I
λ2(y)dx

)

,

and the joint distribution becomes

f (x,y) = f1(x) f2(y). (2)

Unfortunately, in the cases of Rényi, Burg and Tsallis-Havrda-Charvát entropies, it is
not possible, to find general solutions forλ0, λ1, andλ2 as explicit functions off1 and
f2, and numerical approaches become necessary.

Special case q=2

The special case when Tsallis-Havrda-Charvát’s entropy index q is equal to 2, is
known as the Simpson’s diversity index [25]. Here the probability density function has
the form f (x,y) = −1

2 (λ1(x)+λ2(y)+λ0) and we can obtain explicit expressions for
λ1(x), λ2(x) andλ0:

λ1(x) =−2 f1(x)+
∫

I
λ1(x)dx+2,

λ2(y) =−2 f2(y)+
∫

I
λ2(y)dy+2,

λ0 =−2−
∫

I
λ1(x)dx−

∫

I
λ2(y)dy.

Substituting these expressions gives the following probability density function on the
bounded intervalI (where f1 and f2 are chosen properly):

f (x,y) = f1(x)+ f2(y)−1. (3)

Assuming‖ f‖2
2=

∫∫

I2
f 2(x,y)dxdy= 1, the resulting pdf obtained when maximizing

Rényi’s entropy is the same as the pdf (3). General form of thepdf over any bounded
interval is obtained by substitutingx andy respectively with x−xmin

xmax−xmin
and y−ymin

ymax−ymin
.

The multivariate case of (3) overIn follows

f (x1, . . . ,xn) =
n

∑
i=1

fi(xi)−n+1. (4)



FAMILIES OF COPULAS

With the bivariate density obtained from the maximum entropy principle, we can imme-
diately find the corresponding bivariate copula.

For the case of the Shannon entropy,(2), we have :

F(x,y) =
∫ x

0

∫ y

0
f (s, t)dsdt

=

∫ x

0

∫ y

0
f1(s) f2(t)dsdt

=
∫ x

0
f1(s)ds

∫ y

0
f2(t)dt.

The cdf becomes
F(x,y) = F1(x)F2(y),

and the copula is
C(u,v) = F(F−1

1 (u),F−1
2 (v)) = uv. (5)

The maximum copula obtained from the Shannon entropy is the well-known indepen-
dent copula which describes independence between two random variables.

In the particular case (q= 2) of the Tsallis-Havrda-Charvát entropy, (3)

F(x,y) =
∫ x

0

∫ y

0
f (s, t)dsdt

=

∫ x

0

∫ y

0
( f1(s)+ f2(t)−1) dsdt

F(x,y) = y
∫ x

0
f1(s)ds+x

∫ y

0
f2(t)dt−xy,

with the cdf

F(x,y) = yF1(x)+xF2(y)−xy, 0≤ x,y≤ 1 (6)

and the associated copula

C(u,v) = uF−1
2 (v)+vF−1

1 (u)−F−1
1 (u)F−1

2 (v). (7)

In the multivariate case (4), the cdf is :

F(x1, . . . ,xn) =

∫ x1

0
. . .

∫ xn

0
f (s1, . . . ,sn)

n

∏
i=1

dsi

=
∫ x1

0
. . .
∫ xn

0

(

n

∑
i=1

fi(si)−n+1

)

n

∏
i=1

dsi

=
n

∑
i=1

Fi(xi)
n

∏
j=1
j 6=i

x j +(1−n)
n

∏
i=1

xi , 0≤ xi ≤ 1 (8)



and the associated multivariate copula, depending onF−1
i will have the following form

C(u1, . . . ,un) =
n

∑
i=1

ui

n

∏
j=1
j 6=i

F−1
j (u j)+(1−n)

n

∏
i=1

F−1
i (ui). (9)

One has to verify that (9) satisfies the properties of a copulaor equivalently that (8) is
a cdf onIn. The first two properties of copula are easily proven (sinceF−1

i (0) = 0 and
F−1

i (1) = 1).

SOME FAMILIES OF COPULAS

Beta distributions are very interesting and general continuous distribution on the finite
interval[0,1]. This is the main reason for choosing this family as a first example for our
development. We consider then :

f1(x) =
1

B(a1,b1)
xa1−1(1−x)b1−1 and f2(y) =

1
B(a2,b2)

ya2−1(1−y)b2−1 ,

where

B(ai,b j) =
∫ 1

0
tai−1(1− t)b j−1dt, 0≤ x,y≤ 1andai ,b j > 0.

We consider the inverse of the Beta cumulative distributionfunction in some particular
and interesting values of the parametersai andb j .

Case 1: ai = 1, b j = 1 which corresponds to uniform marginalsf1 and f2

f1(x) = 1→ F1(x) = x→ F−1
1 (u) = u

f2(y) = 1→ F2(y) = y→ F−1
2 (v) = v

F(x,y) = xy,

gives the well known independent copula :

C(u,v) = uv. (10)

Case 2: ai > 0, b j = 1

f1(x) = a1xa1−1 → F1(x) = xa1 → F−1
1 (u) = u

1
a1

f2(y) = a2ya2−1 → F2(y) = ya2 → F−1
2 (v) = v

1
a2

F(x,y;a1,a2) = yxa1 +xya2 −xy,

using this in (7) gives :

C(u,v;a1,a2) = uv
1

a2 +vu
1
a1 −u

1
a1 v

1
a2 , (11)



which is a well defined copula for appropriate values ofa1, a2 and for almostu,v in I.

If a1 = a2 =
1
a

, we notice that (11) can be rewritten as

C(u,v;a) = (uv)a(u1−a⊗1 v1−a), (12)

wherea≥ 1 andu⊗a v= [ua+va−1]
1
a is the generalized product [26].

Case 3: ai = b j = 1/2 which corresponds to the density of the arcsine distribution:

f1(x) =
1

π
√

x(1−x)
→ F1(x) =

2
π

arcsin(
√

x)→ F−1
1 (u) = sin2(

π
2

u)

f2(y) =
1

π
√

y(1−y)
→ F2(y) =

2
π

arcsin(
√

y)→ F−1
2 (v) = sin2(

π
2

v)

F(x,y) =
2y
π

arcsin(
√

x)+
2x
π

arcsin(
√

y)−xy, 0≤ x,y≤ 1.

The corresponding copula:

C(u,v) = u sin2(
πv
2
)+v sin2(

πu
2
)−sin2(

πu
2
)sin2(

πv
2
).

There are also other bounded distributions beyond the Beta distribution [27] which have
explicit quantile functions and the procedure of construction we have discussed can be
extended to obtain other new families of copulas.

CONCLUSION

In this paper we have proposed a new way to derive families of copulas using the princi-
ple of maximum entropy. PME is used for finding a joint distribution given its marginals
as the linear constraints, and Sklar’s theorem to obtain thecorresponding copula. We
considered only some particular cases for which we could obtain explicit expressions,
but we are now investigating other cases of entropy expressions as well as other cases
of marginals in an effort to obtain either analytical or numerical representations of other
new families of continuous and discrete copulas.
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