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Maximum Entropies Copulas

Doriano-Boris Pougaza and Ali Mohammad-Djafari

Laboratoire des Signaux et Systemes
UMR 8506 (CNRS-SUPELEC-UNIV PARIS SUD 11)
Plateau de Moulon, 3 rue Joliot Curie, 91192 Gif-sur-Yvé&axex, France

Abstract. New families of copulas are obtained in a two-step processt:donsidering the inverse
problem which consists of finding a joint distribution frois given marginals as the constrained
maximization of some entropies (Shannon, Rényi, Burg, liBsdlavrda-Charvat), and then using
Sklar’s theorem, to define the corresponding copula.
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INTRODUCTION

Copulas have been proved useful for modelling the depemdstnecture between vari-
ables in the presence of partial information: the knowleafgearginal distributions. For
example, recently we pointed out how to use the notion of ojputomography [1, 2].
The problem in which we are interested in the present papeifisd the bivariate distri-
bution when we know only its marginals. This problem is aspilsed inverse problem
[3] in the sense that it does not have a unique solution @x¢&, uniqueness and stabil-
ity of the solution being the three necessary conditionsealf-posedness). One possible
way to select a unique solution to this problem is to choosaepropriate copula and
then useSklar’s theorenj4, 5] according to which there exists a copula which reléttes
marginal distributions yielding to the joint distributiofhe problem then becomes the
choice of a copula. Note that there are many other ways toe&&milies of continuous
multivariate distributions with given univariate margisge.g. [6, 7, 8], and references
therein).

Two years befor&klar’s theorenwas published, Edwin Jaynes proposed, in two sem-
inal papers [9, 10], th@rinciple of Maximum Entrop{PME) which defines probability
distributions given only partial information. PME has besed in many areas and orig-
inally when the partial information is in the form of knowigel of some geometric or
harmonic moments (e.g.[11, 12]).

Entropy maximization of a joint distribution subject to giv marginals has been
studied in statistical and probabilistic literature sirtise 1930s [13]. The condition for
existence of the solution has also been known [14]. Thislprolwas also considered
in [15] and [16]. The case where the entropy considered isStinnon entropy on a
measurable space was discussed more rigorously in [17]trasddea was later used
in [18], where the authors derive the joint distribution vgiven uniform marginals on
| =[0,1] and given correlation.

Here the partial information is the knowledge of the margidistributions. The



main result is that we can determine a multivariate distrdmuwith given marginals
and which maximizes an entropy. Many types of entropies H@een proposed. A
consequence of this is that we can now, depending on thepsnéxpression used,
obtain different multivariate distributions, and henc#atent families of new copulas.
The main contribution of this paper is to consider the cadesra/we can obtain explicit
expressions for the maximum entropy problem and so the eofarhilies. To our
knowledge, these families have not been discussed beftine iiterature.

MAXIMUM ENTROPIES COPULAS

Denote byF (x,y) an absolutely continuous bivariate cumulative distribatfunction
(cdf), andf(x,y) its bivariate probability density function (pdf). LE{(x), F»(y) be the
marginal cdf's andf1(x), f2(y) their respective pdf’s.

A bivariate copulaC is a function froml? to | with the following properties:

1. Yu,vel,C(u,0)=0=C(0,v),
2.Vu,vel,C(u,1) =uandC(1,v) =vand
3. C(ug,V2) —C(uz,v1) —C(ug,v2) +C(ug,v1) >0
for all ug, uz, vy, v2 € [0,1] such thatu; < up, vi < vo.

One can construct copul@sfrom joint distribution functions by
C(U7V> =F (Fl_l(u)7 F2_1(V)>7

where the quantile function §~*(t) = inf {u: Fi(u) > t}. For further details see [19].

Problem’s for mulation

In order to find the bivariate maximum entropy pidi, y), the marginal distributions
become the constraints:

Cl:/f(x,y)dy: f1(x), WX
Cz: [ 1(xy)dx=faly), vy &)
Cg://f(x,y)dxdy: 1

Hence, the goal is then to find the bivariate density distiiou f (x,y), compatible
with available information in the PME sense. Among all pbkesi (x,y) satisfying the
constraints (1), PME selects the one which optimizes aropyti(f), i.e. :

f := maximizeJ(f) subject to(1).

Because the constraints are linear, the choice of a condgeetive functionJ guar-
antees the existence of a unique solution to the problem.yMatropy functionals



can serve as concave objective functions. We focus on then®haentropy [20] ,
Rényi entropy [21], Burg entropy [22], and Tsallis-Havr@aarvat entropy [23, 24]
respectively given by :

1. 3i(f) :—//f(x,y)lnf(x,y)dxdy (Shannon);

2. B(f) = —In (/ fq(x,y)dxdy) q>0andq£1 (Rényi):

1-q
3. J(f) :/ Inf(x,y)dxdy (Burg):
4. J4(f) = ﬁ (1—/ fq(x,y)dxdy) g=>0andg#1 (Tsallis-Havrda-Charvat)

One can get a continuum of entropy measures by choosingetffgalues of parameter
g # 1. Shannon entropy is the special limithf f) andJ,(f) asq — 1.

Method and parametric solution

The maintool is to define the following Lagrange multiplisgshnique. When solving
the Lagrangian functional equation, we assume that thes¢éseonly one feasiblé > 0
with finite entropy satisfying

Zy(f. 20 A A2) = J(F) + Ao (1— /f f(x,y>dxdy)

-I-/)\l(x) (fl(x)—/f(x,y)dy) dx
+ [ ety (00 - [ 10xy)ax) oy

and the critical point of7y holds for the following system of equations:

039(](7)\0,)\17)\2) —0 039(](7)\0,)\17)\2) -0
of - oA T
Assuming that the integrals converge within the intervjathis system of equations
yields:

f(X,y) = exp(—A1(X) — A2(y) — Ao) (Shannon’s entropy);
frixy)  _1-q

//|z £9(x,y) dxdy

f6y) = (A1(%) +A2(y) +A0) ™ (Burg’s entropy);

A1(X) + A2(y) + Ao) (Rényi’s entropy);

f(xy) = % (A1(X) + A2(y) +)\o)qT11 (Tsallis-Havrda-Charvat's entropy)



whereA1(x), A2(y) andAg are obtained by replacing these expressions in the contstrai
(1) and solving the resulting system of equations.
For the Shannon entropy, the constraints can be solvedtarzily:

M) =—In <f1(x) /I)\l(x)dx) ,

Aaly) = —In (f2<y> / A2<y>dx)

Ao=In (/I)\l(x)dx/l)\z(y)dx) ,

and the joint distribution becomes

f(xy) = f1(x) f2(y). (2)

Unfortunately, in the cases of Rényi, Burg and Tsallis-ldav€harvat entropies, it is
not possible, to find general solutions f&, A1, andA» as explicit functions off; and
f», and numerical approaches become necessary.

and

Special case q=2

The special case when Tsallis-Havrda-Charvat's entropgxm is equal to 2 is
known as the Simpson’s diversity index [25]. Here the pralitgtdensity function has
the form f(x,y) = —32 (A1(x) +A2(y) +Ao) and we can obtain explicit expressions for
)\1(X), )\2(X) and)\o:

M) = —2f1(x) + /| A (x) dx+2,
Maly) = ~2faly) + [ Maly)dy+2.

do=—2~ [Ma(x)dx— [ Aaly)dy

Substituting these expressions gives the following prdipalensity function on the
bounded interval (wheref; and f, are chosen properly):

f(xy) = fi(x) + fa(y) — 1. 3)

Assuming| f||5 = //2 f2(x,y) dxdy= 1, the resulting pdf obtained when maximizing
|
Rényi’'s entropy is the same as the pdf (3). General form ofptifeover any bounded
i i i ituti i ithX=Xmin Y—Ymin
interval s ob.talned by substitutingandy respectively wﬂi*gm"”;(min and =,
The multivariate case of (3) ové? follows

n

f(xl,...,xn):zifi(xi)—n+1. (4)



FAMILIESOF COPULAS

With the bivariate density obtained from the maximum engrppnciple, we can imme-
diately find the corresponding bivariate copula.
For the case of the Shannon entropy,(2), we have :

F(x,y):/ox/oyf(s,t)dsdt
:/OX/Oy f1(9) fa(t) ds it

_ /OX fl(s)ds/oy fo(t) dt.

F(xy) = F1(x) F2(y),

The cdf becomes

and the copulais
C(u,v) = F(Ffl(u)7 szl(V)) =UuVv. (5)

The maximum copula obtained from the Shannon entropy is #lekmown indepen-
dent copula which describes independence between twomamdoables.
In the particular caseg(= 2) of the Tsallis-Havrda-Charvat entropy, (3)

Fxy) = /OX/Oyf(s,t)dsdt
= [ [ (9 + o)~ 1 dset
X y
F(x,y) :y/0 fl(s)ds+x/0 fa(t)dt—xy,
with the cdf
F(xy) =YFR(X) +xR(y)—xy, 0<xy<1 (6)
and the associated copula
C(u,v) = uF, }(V) + VR H(u) — F H(U) Ry H(v). (7)

In the multivariate case (4), the cdf is :
X1 Xn n
F(xl,...,xn):/o /0 f(sl,...,sn)igds
X1 Xn n n
:/0 /0 (i;fi(s)—n+1> iElds

:Iil:lb(l)fllxj—i_(l_n)ll_ﬂlxh O§X| <1 (8)
j#



and the associated multivariate copula, dependingblnwill have the following form

C(ug,...,un) = iui ﬁle‘l(uj) +(1—n) ﬁ Ft(w). 9)
1= = 1=
J#

One has to verify that (9) satisfies the properties of a copukguivalently that (8) is

a cdf onl". The first two properties of copula are easily proven (siﬁéé(O) =0and
F (1) =1).

SOME FAMILIESOF COPULAS

Beta distributions are very interesting and general caatirs distribution on the finite
interval [0, 1]. This is the main reason for choosing this family as a firsheie for our
development. We consider then :

1
B(al, bl)

1
B(az, bz)

f1(x) = 11 —x)" L and fa(y) = yet(1—y)t,

where .
B(a,bj) :/ t3-1(1—t)Pi~1dt, 0 < x,y < 1andaj,bj > 0.
0

We consider the inverse of the Beta cumulative distributiorction in some particular
and interesting values of the parametgrandb;.

Case 13 =1, bj = 1 which corresponds to uniform margindisand f,

fi(x) =1 — F1(x) = x — F{ Y(u) = u
() =1=F(y)=y—=F {(v)=v
F(xy) =xy,

gives the well known independent copula :
C(u,v) =uv. (10)
Case 2a; >0,bj=1

F(xy;a1,82) = yX* +xy® —xy,
using this in (7) gives :

1 1 11
C(u,v;ag,a2) = UV + VU — UBLV32 (11)



which is a well defined copula for appropriate valuesagfa, and for almosu,vin I.
1 . .
Ifag=ay= ~ we notice that (11) can be rewritten as

C(u,v;a) = (uv)3(ut 2@ vi?), (12)
wherea> 1 andu®aVv = [U?+ V2 — 1]% is the generalized product [26].

Case 3a; = bj = 1/2 which corresponds to the density of the arcsine distriputi

f1(x) = — F1(x) = 7—2Tarcsir(\/>_<) — F N u) = sinz(gu)

—
N
>

N—

/(1 —
) = 1y o) = RS = B = sy
F(xy) = 2—garcsir(\/)_() + 2 arcsin(\/y) —xy, 0<xy<1.

ks
The corresponding copula:

C(uv) = u sinz(%v) +vsin2(%) —sinz(%) sinz(%v).

There are also other bounded distributions beyond the Bstiabdition [27] which have
explicit quantile functions and the procedure of constarctve have discussed can be
extended to obtain other new families of copulas.

CONCLUSION

In this paper we have proposed a new way to derive familiespiilas using the princi-
ple of maximum entropy. PME is used for finding a joint distitibn given its marginals
as the linear constraints, and Sklar's theorem to obtairctteesponding copula. We
considered only some particular cases for which we couldinl#xplicit expressions,
but we are now investigating other cases of entropy expassas well as other cases
of marginals in an effort to obtain either analytical or nuroal representations of other
new families of continuous and discrete copulas.
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