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The uniform controllability property of

semidiscrete approximations for the parabolic

distributed parameter systems in Banach spaces.

Thuy NGUYEN

(communicated with Emmanuel TRELAT)

1 Abstract

The problem we consider in this work is to minimize the Lq-norm (q¿2) of the
semidiscrete controls. In the present paper, under the main assumptions that
the discretized semigroup is uniformly analytic, and that the control operator
is mildly unbounded, we prove that the semidiscrete approximation models are
uniformly controllable. Moreover, the minimization procedure to compute the
approximation controls is provided. An example of application is implemented
for the one dimensional heat equation with Dirichlet boundary control.

2 Introduction

Consider an infinite dimensional linear control system

ẏ(t) = Ay(t) +Bu(t), y(0) = y0 (1)

where the state y(t) belongs to a reflexive Banach space X, the control u(t)
belongs to a reflexive Banach space U, A : D(A) → X is an operator, and B
is a control operator (in general, unbounded) on U. Discretizing this partial
differential equation by using, for instance, a finite difference or a finite element
scheme, leads to a family of finite dimensional linear control systems

.
yh(t) = Ahyh(t) +Bhuh(t), yh(0) = y0h (2)

where yh(t) ∈ X and uh(t) ∈ Uh, for 0 < h < h0 .
Let y1 ∈ X . If the control system (1) is controllable in time T then there

exists a solution y(.) of (1) associated with a control u such that y(T ) = y1.
The following question arises naturally: is it possible to find controls uh, for
0 < h < h0, converging to the control u as the mesh size h of the discretization
process tends to zero, and such that the associated trajectories yh, the solution
of (2), converges to y(.)?
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The question was investigated by the authors of [13]. They got the affirma-
tive answer in the case the controllability of (1) is achieved in L2 norm by using
the Hilbert uniqueness method (HUM). It is the well-known method , introduced
in [18] , which consists in minimizing a cost function, namely, the L2 norm of
the control. In this paper, we investigate the above question in the case where
the minimization procedure of (1) is achieved in Lq norm (1 < q < ∞ ). Our
objective is to establish some conditions ensuring the existence and convergence
of the minimal of Lq norm :

min
1

q

∫ T

0

‖uh(t)‖qdt (3)

Necessary conditions for optimal control in finite dimensional state space
were derived by Pontryagin et al [24] ( see also [2,25]). The Maximum Principle
as a set of necessary conditions for optimal control in infinite dimensional space
has been studied by many authors. Since it is well known that the Maximum
Principle may be false in infinite dimensional space, there are still many papers
that give some conditions to ensure that the Maximum Principle remains true.
It was Li and Yao [16] who used the Eidelheit separation theorem and of the
Uhl’s theorem in order to extend the Maximum Principle to a large class of
problems in infinite dimensional spaces when the target set is convex and the
final time T is fixed. Additionally, the authors of [7,8,17], by making use of Eke-
land’s variational principle, give some conditions on the reachable set and on
the target set in order to get an extension of Maximum Principle. Nevertheless,
the problem is that when we applied the result of [7,17] for the system (1) in the
case the final state and final time are fixed, the finite-codimensional condition in
[7,17] does not satisfy for the system (1) in general. Hence we cannot use Max-
imum Principle in our problem. Fortunately, thanks to the Fenchel-Rockafellar
duality theorem which is used in the same manner in [3,11], the constrainted
minimization of the function can be replaced by the unconstrainted minimiza-
tion problem of corresponding conjugate function. Therofore, we consider here
our problem in the same framework with [11].

Our objective is to establish conditions ensuring a uniform controllability
property of the family of discretized control systems (2) in Lp and to establish
a computationally feasible approximation method for realizing controllability.

The uniform observability is an important area of research and it has been
the subject of many papers in recent years. Some relevant references concerning
this property has been investigated by Zuazua and collaborators in series of
articles [12,15,20,21,27,28,29,30,31]. When the observability constant of the
finite dimensional approximation systems does not depend on h, one says that
the property of uniform observability holds. For finite difference schemes, a
uniform observability property holds for one-dimensional heat equation [20],
beam equation [15], Schrodinger equations [28], but does not hold for 1-D wave
equations [12]. This is due to the fact that the discrete dynamics generates
high frequency spurious solutions for which the group velocity vanishes that do
not exist at the continuous level. To overcome these high frequency spurious for
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wave equations, [28] showed some remedies such that Tychonoff’s regularization,
multigrid method, mixed finite element and filtering of high frequency, etc.

To our knowledge, in 1-D heat equation case, due to the fact that the dis-
sipative effect of the 1-D heat equation acts as a filtering mechanicsm by itself
and it is strong enough to exclude high frequency spurious oscillations[20]. How-
ever, the situation is more complex in multi-dimensional. The counter-example
is shown in [31] for the simplest finite difference semi-discretization scheme for
the heat equation in the square.

In recent works in L2-norm, by means of discrete Carleman inequalities, the
authors in [1,2] obtain the weak uniform observability inequality for parabolic

case by adding reminder terms of the form e−Ch
−2 ‖ψh(T )‖2L2(Ω) which vanishes

asymptotically as h → 0. Moreover,as in [13], the approximate controllability
is derived from using semigroup arguments and introducing a vanishing term of
the form hβ ‖ψh(T )‖2L2(Ω) for some β > 0.

In fact, an efficient computing the null control for a numerical approxima-
tion scheme of the heat equation is itself a difficult problem. Accoding to the
pioneering work of Carthel, Glowinski and Lions in [3], the null control problem
is reduced to the minimization of a dual conjugate function with respect to final
condition of the adjoint state. However, as a consequence of high regulariz-
ing property of the heat kenel, this final condition does not belong to L2, but
a much large space that can hardly be approximated by standard techniques
in numerical analysic. Recently, A. Munch and collaborators have developped
some feasible numericals such that the transmutation method, variational ap-
proach, dual and primal algorithms allow to more efficiently compute the null
control .(see in series [9,10,19,23])

The discretization framework in this paper is the same spirit as [13,14]. In
[13], under standard assumptions on the discretization process and for an exactly
null controllable parabolic system (1), if the degree of unboundedness of the
control operator is lower than 1/2 then the semidiscrete approximation models
are uniformly controllable and they also showed that for the (2), the minimizing
of the cost function of discretized control with power q =2 is obtained.

In this article, we prove the existence of the minimum of the cost function
of discretized control power q (q > 2) for type (2), in the case the operator A
generates an analytic semigroup. Of course, due to regularization properties,
the control system (1) is not exactly controllable in general. Hence, we focus on
exact null controllability. Our main result, theorem 3.1, states that for exactly
null controllable parabolic system (1) and under standard assumptions on the
discretization process (that are satisfied for most of classical schemes), if the
discretized semigroup is uniformly analytic, and if the degree of unboundedness
of the control operator B with respect to A is greater than 1/2, then a uniform
observability inequality in (Lp) is proved. We stress that we do not prove
uniform exact null controllability property for the approximating system (2).
Moreover, a minimization procedure to compute the approximation controls is
provided.

The outline of the paper is as follows. In Section 2, we briefly review some
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well-known facts on controllability of linear partial differential equation in reflex-
ive Banach spaces. In Section 3, we consider the existence and unique solution
of the minimization problem in continuous case. By making use of the Fenchel-
Rockafellar duality theorem, we gives a constructive way to build the control of
minimal Lq norm. The main result is stated in Section 4 and proved in Section
5. An example of application and numerical simulations are provided in Section
6, for the one-dimensional heat equation with Dirichlet boundary control. An
Appendix is devoted to the proof of a lemma.

3 A short review on controllability of linear par-
tial differential equations in reflexive Banach
spaces

In this section, we review some known facts on controllability of infinite di-
mensional linear control systems in reflexive Banach spaces. (see more [4,22,26])

The notation L(E,F) stands for the set of linear continuous mappings from
E to F, where E and F are reflexive Banach spaces.

Let X be a reflexive Banach space. Denote by <,>X the inner product on
X, and by ‖.‖X the associated norm. Let S(t) denote a strongly continuous
semigroup on X, of generator (A,D(A)). Let X−1 denote the completion of X
for norm ‖x‖−1 =

∥∥(βI −A)−1x
∥∥, where β ∈ ρ(A) is fixed. Note that X−1

does not depend on the specific value of β ∈ ρ(A). The space X−1 is isomorphic
to (D(A∗))′, the dual space of D(A∗) with respect to the pivot space X, and
X ⊂ X−1 , with a continuous and dense embedding. The semigroup S(t) extends
to a semigroup on X−1, still denoted S(t), whose generator is an extension of
the operator A, still denoted A. With these notations, A is a linear operator
from X to X−1.

Let U be a reflexive Banach space. Denote by <,>U the inner product on
U, and by ‖.‖U the associated norm.

A linear continuous operator B : U → X−1 is admissible for the semigroup
S(t) if every solution of

y′ = Ay(t) +Bu(t) (4)

with y(0) = y0 ∈ X and u(.) ∈ Lq(0,+∞;U), satisfies y(t) ∈ X, for every t ≥ 0.
The solution of equation (1) is understood in the mild sense,i.e,

y(t) = S(t)y(0) +

∫ T

0

S(t− s)Bu(s)ds (5)

for every t ≥ 0.
For T > 0, define LT : Lq(0, T ;U)→ X−1 by :

LTu =

∫ T

0

S(T − s)Bu(s)ds (6)
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A control operator B ∈ L(U,X−1) is admissible, if and only if ImLT ⊂ X,
for some (and hence for every T > 0).

The adjoint L∗T of LT satisfies:

L∗T : X∗ → (Lq(0, T ;U))∗ = Lp(0, T ;U∗)

L∗Tψ(t) = B∗S(T − t)∗ψ (7)

a.e on [0,T] for every ψ ∈ D(A∗). Moreover, we have:

‖L∗Tψ‖ = sup
‖u‖q≤1

∫ T

0

< B∗S∗(T − s)ψ, u(s) > ds (8)

for every ψ ∈ X∗
Let B ∈ L(U,X−1) denote an admissible control operator.
We use two following lemma: (for the proofs we refer to [26])

Lemma 1. Z, X are reflexive Banach spaces. G ∈ L(Z,X) then the following
statements are equivalent:

• G is onto

• G∗ bounded from below i.e there exists C > 0 such that:

‖G∗x‖Z ≥ C ‖x‖X every x ∈ X

Lemma 2. : Z1, Z2, Z3 are reflexive Banach spaces. And f ∈ L(Z1, Z3) ,
g ∈ L(Z2, Z3). Then the following statements are equivalent:

• Imf ⊂ Img

• There exists a constant C > 0 such that : ‖f∗z‖Z1
≤ C ‖g∗z‖Z2

for every
z ∈ Z3

• There exists an operator h ∈ L(Z1, Z2) such that f=gh

We state some concepts as follows:

For y0 ∈ X, and T > 0, the system (4) is exactly controllable from y0 in time
T if for every y1 ∈ X, there exists u(.) ∈ Lq(0, T ;U) so that the corresponding
solution (4), with y(0) = y0 satisfies y(T ) = y1.

In fact that the system (4) is exactly controllable from y0 in time T if and
only if LT is onto, that is ImLT = X. Making use of lemma 1, there exists
C > 0 such that:

C ‖ψ‖X ≤ ‖L
∗
Tψ‖ = sup

‖u‖q≤1

∫ T

0

< B∗S∗(T − s)ψ, u(s) > ds

≤ sup
‖u‖q≤1

∫ T

0

‖B∗S(T − t)∗ψ‖‖u(t)‖dt

≤ (

∫ T

0

‖B∗S(t)∗ψ‖pdt)
1
p
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Therefore, the system (4) is exactly controllable in time T if and only if :∫ T

0

‖B∗S(t)∗ψ‖pdt ≥ C ‖ψ‖pX (9)

For T > 0, the system (4) is said to be exactly null controllable in time T
if for every y0 ∈ X, there exists u(.) ∈ Lq(0, T ;U) so that the corresponding
solution of ( 4), with y(0) = y0 satisfies y(T ) = 0

This means that the system (4) is exactly null controllable in time T if and
only if ImS(T ) ⊂ ImLT . Making use of lemma 2 and the same argument as
above, there exists C > 0 such that:

C ‖S(T )∗ψ‖X ≤ ‖L
∗
Tψ‖ ≤ (

∫ T

0

‖B∗S(t)∗ψ‖pdt)
1
p

Thus, the system (4) is exactly null controllable in time T if and only if :∫ T

0

‖B∗S(t)∗ψ‖pdt ≥ C ‖S(T )∗ψ‖pX (10)

4 Dual problem

Consider the system :{
.
y(t) = Ay(t) +Bu(t) on QT = (0, T )× Ω

y(0) = y0

(11)

where B is admissible and A generates an analytic semigroup S(t) in the reflexive
Banach space X.

Our aim is to mimimize the following functional:{
Minimize J(u) = 1

q

∫ T
0
‖u‖q dt

Subject to u ∈ E
(12)

where E = {u ∈ U : u steering the system from y0 at time zero to y(T)=0}

Theorem 1. The problem (12) has a unique solution u.

Proof. First of all, we show the existence of the solution of the optimal problem.
Consider a minimizing sequence (un)n∈N of controls on [0, T ], i.e:∫ T

0

‖un‖q dt converges to infJ(u) as n→ +∞ (13)

Hence, (un)n∈N bounded in Lq(0, T ;U).
Since U is reflexive space and q < +∞, then Lq(0, T ;U) is also reflexive.
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Thus, up to a sequence, un converges weakly to u in Lq. Note that the
trajectory yn (resp. y) associated with the control un (resp. u) on [0,T] through
the system:

ẏn = Ayn +Bun, yn(0) = y0

and the solution of the above system is expressed in form:

yn(t) = S(t)y0 +

∫ T

0

S(T − s)Bunds

A passage to the limit imples that:

ẏ = Ay +Bu, y(0) = y0

and the solution y associated with control u in the form:

y(t) = S(t)y0 +

∫ T

0

S(T − s)Buds

As un converges weakly to u in Lq, we get the inequality:

∫ T

0

‖u(t)‖q dt ≤ liminf
n→+∞

∫ T

0

‖un(t)‖q dt

= inf

∫ T

0

‖u(t)‖q dt

It follows easily that∫ T

0

‖u(t)‖q dt = inf

∫ T

0

‖u(t)‖q dt

Hence u is optimal of (12). This ensures the existence of a optimal control.
Moreover, the cost function is strictly convex then the solution is obvious

uniqueness.

By making use of convex duality, the problem of control to trajectories is
reduced to the minimization of the corresponding conjugate function. Roughly
speaking, it is stated through the following theorem:

Theorem 2. (i) We have the identity:

inf
u∈E

1

q

∫ T

0

‖u‖q dt = −inf
ψT

(
1

p

∫ T

0

‖B∗ψ‖p dt+ < ψ(0), y0 >) (14)

where ψ be solution of :

−ψ̇ = A∗ψ (15)

ψ(T ) = ψT (16)
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Or, we have in the form:

inf
u∈E

1

q

∫ T

0

‖u‖q dt = − inf
ψ∈X∗

(
1

p

∫ T

0

‖B∗S(T − t)∗ψ‖p dt+ < S(T )∗ψ, y0 >)

(17)
(ii) If uop is optimal of the problem (12) then

uop(t) = ‖B∗S(T − t)∗ϕ‖p−2
B∗S(T − t)∗ϕ

where ϕ be optimal of the function:

J∗(ψ) =
1

p

∫ T

0

‖B∗S(T − t)∗ψ‖p dt+ < S(T )∗ψ, y0 >

Proof.
(i) Let ȳ be solution of (1) with u = 0 and we introduce the operator:

N ∈ L(Lq(QT ), X) with Nu = zu(., T ) for all u ∈ Lq(QT ), where zu is solution
to:

ż = Az +Bu (18)

z(x, 0) = 0 (19)

Accordingly, the solution y of (11) can be decomposed in the form:

y = zu + ȳ (20)

The adjoint N∗ is given as follows:
For each ψT ∈ X∗, N∗ψT = B∗ψ where ψ is solution of (15), (16).
Let us introduce the following functions F and G:

F (zT ) =

{
0 for z(T ) = −ȳ(T )

+∞ otherwise

G(u) =
1

q

∫ T

0

‖u‖q dt

Then, the problem (12), where the infimium is taken over all u satisfying E,
is equivalent to the following minimization problem:

inf
u∈Lq(QT )

(F (Nu) +G(u)) (21)

We can apply now duality theorem of W.Fenchel and T.R.Rockafellar (see
Theorem 4.2 p.60 in [5]). It gives:

inf
u∈Lq(QT )

(F (Nu) +G(u)) = − inf
ψT∈X∗

(G∗(N∗ψT ) + F ∗(−ψT )) (22)
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where F ∗ and G∗ are the convex conjugate of F and G, respectively. Denote
that ψT = ψ(T ), zT = z(T )

Note that

F ∗(ψT ) = sup
zT=−ȳT

< zT , ψT >= − < ψT , ȳT >

for all ψT ∈ X∗.
On the other hand,

G∗(ω) =
1

p

∫ T

0

‖ω‖p dt

Therefore,

G∗(N∗ψT ) + F ∗(−ψT ) =
1

p

∫ T

0

‖B∗ψ‖p dt+ < ψT (x), ȳT (x) > (23)

Finally, multiplying the state equation (15) by ȳ and due to (11), we obtain:

< ψT , ȳT >=< ψ(0), y0 >

Rewrite (23) as follows:

G∗(N∗ψT ) + F ∗(−ψT ) =
1

p

∫ T

0

‖B∗ψ‖p dt+ < ψ(0), y0 >

=
1

p

∫ T

0

‖B∗S(T − t)∗ψT ‖p dt+ < S(T )∗ψT , y0 >

since ψ is the solution of (15) , (16).
From (21) and (22), we have the identity:

inf
u∈E

1

q

∫ T

0

‖u‖q dt = −inf
ψT

(
1

p

∫ T

0

‖B∗ψ‖p dt+ < ψ(0), y0 >)

where ψ be solution of (15), (16).
Or, we have in the form:

inf
u∈E

1

q

∫ T

0

‖u‖q dt = − inf
ψ∈X∗

(
1

p

∫ T

0

‖B∗S(T − t)∗ψ‖p dt+ < S(T )∗ψ, y0 >)

(ii) If we denote by (uop) , (ϕT ) the unique solution to ”LHS of (14)” and
”RHS of (14)” respectively, then one has:

0 =
1

q

∫ T

0

‖uop‖q dt+
1

p

∫ T

0

‖B∗ϕT ‖p dt+ < ϕT (0), y0 > (24)
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We apply Young’s inequality for the first two terms of RHS (24):

1

q

∫
QT

‖uop‖q dt+
1

p

∫
QT

‖B∗ϕT ‖p dt ≥
∫
QT

uop.B
∗ϕT (25)

Then, ”RHS of (24)” ≥
∫
QT

uop.B
∗ϕT+ < ϕT (0), y0 >

Futhermore, by multiplying two sides of (15) by y and applying Green’s
formula, we obtain:

< B∗ϕT , u > + < ϕT (0), y0 >= 0 (26)

On the one hand, ”RHS of (24)” ≥ 0 ( due to (26))
On the other hand, ”RHS of (24)” = 0 ( due to (24))
This is equivalent to that the sign ”=” in inequality (14) happens, i.e:

‖uop‖q = ‖B∗ϕT ‖p

It is also rewritten as follows:

uop(t) = ‖B∗S(T − t)∗ϕ‖p−2
B∗S(T − t)∗ϕ

where ϕ be optimal of the function J∗ is given as above.

Remark: It is easily seen that the functional J∗ is convex, and from the
inequality (10), is coercive. Hence, it admits a unique minimizer ϕ ∈ D(A∗).
As above explanation, the control ū is chosen by:

ū(t) = ‖B∗S(T − t)∗ϕ‖p−2
B∗S(T − t)∗ϕ (27)

for every t ∈ [0, T ] and let y(.) be the solution of (11), such that y(0) = y0,
associated with the control ū, then we have y(T)=0

Therefore, ū is the control of minimal of Lq norm, among all controls whose
associated trajectory satisfied y(T ) = 0

We emphasize that observability in Lp norm (1 < p < 2) implies control-
lability and gives a constructive way to build the control of minimal Lq norm
(q > 22). A similar result was known in L2 norm through using HUM ( see
more [4],[18],[27],[28]).

5 The main result

Let X and U be Hilbert spaces, and let A : D(A)→ X be a linear operator
and self-adjoint, generating a strongly continuous semigroup S(t) on X. Let
B ∈ L(U,D(A∗)′) be a control operator. We make the following assumptions:

(H1) The semigroup S(t) is analytic
Therefore, ( see[22]) there exist positive real number C1 and Ω such that
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‖S(t)‖X 6 C1e
ωt ‖y‖X , ‖AS(t)y‖X 6 C1

eωt

t
‖y‖X (28)

for all t > 0 and y ∈ D(A), and such that, if we set Â = A−ωI, for θ ∈ [0, 1]
and there holds ∥∥∥(−Âθ)S(t)y

∥∥∥
X
≤ C1

eωt

tθ
‖y‖X (29)

for all t > 0 and y ∈ D(A).
Of course, inequalities (28) hold as well if one replaces A by A∗, S(t) by

S(t)∗, for y ∈ D(A∗).
Moreover, if ρA denotes the resolvent set of A, then there exists δ ∈

(
0, π2

)
such that ρ(A)⊃∆δ =

{
ω + ρeiθ|θ > 0, |θ| ≤ π

2 + δ
}

.

For λ ∈ ρ(A) , denote by R(λ,A) = (λI−A)−1 the resolvent of A . It follows
from the previous estimates that exists C2 > 0 such that

‖R(λ,A)‖L(X) ≤
C2

|λ− ω|
, ‖AR(λ,A)‖L(X)) ≤ C2 (30)

for every λ ∈ ∆δ, and∥∥∥R(λ, Â))
∥∥∥
L(X)

≤ C2

|λ|
,
∥∥∥ÂR(λ, Â)

∥∥∥
L(X)

≤ C2 (31)

for every λ ∈ ∆δ + ω. Similarly, inequalities (30) and (31) hold as well with A∗

and Â∗.
(H2) The degree of unboundedness of B is γ. Assume that γ ∈

[
1/2, 1

p

)
(

where p,q are conjugate ,i.e 1
p + 1

q = 1 and 1 ≤ p < 2) . This means that:

B ∈ L(U,D((−Â∗)γ)′). (32)

In these conditions, the domain of B∗ is D(B∗) = D((−Â∗)γ), and there exists
C3 > 0 such that

‖B∗ψ‖ ≤ C3

∥∥∥((−Â∗)γ)ψ
∥∥∥
X

(33)

for every ψ ∈ D((−Â∗)γ).
(H3) We consider two families (Xh)0<h<h0

and (Uh)0<h<h0
of finite dimen-

tional spaces, where h is the discretization parameter.
For every h ∈ (0, h0), there exist the linear mappings Ph : D((−Â∗) 1

2 )′ → Xh

and P̃h : Xh → D((−Â∗) 1
2 ) and ˆ(A∗)

−γ+ 1
2

: D(−(Â∗)
1
2 ) → D(−(Â∗)γ) (resp.,

there exist linear mappings Qh : U → Uh and Q̃h : Uh → U), satisfying the
following requirements:

(H3.1) For every h ∈ (0, h0). The following properties hold:

PhP̃h = idXh and QhQ̃h = idUh (34)
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(H3.2) There exist s > 0 and C4 > 0 such that there holds, for every h ∈
(0, h0) , ∥∥∥∥(I − ˆ(A∗)

−γ+ 1
2
P̃hPh

)
ψ

∥∥∥∥
X

≤ C4h
s ‖A∗ψ‖X (35)∥∥∥∥((−Â∗)γ)

(
I − ˆ(A∗)

−γ+ 1
2
P̃hPh

)
ψ

∥∥∥∥
X

≤ C4h
s(1−γ) ‖A∗ψ‖X (36)

for every ψ ∈ D(A∗) and∥∥∥(I − Q̃hQh)u
∥∥∥
U
→ 0 (37)

for every u ∈ U , and∥∥∥(I − Q̃hQh)B∗ψ
∥∥∥
U
≤ C4h

s(1−γ)‖A∗ψ‖X (38)

for every ψ ∈ D(A∗)
For every h ∈ (0, h0) , the vector space Xh (resp. Uh) is endowed with the

norm ‖.‖Xh (resp. ‖.‖Uh) defined by:

‖yh‖Xh =
∥∥∥P̃hyh∥∥∥

X
for yh ∈ Xh (resp. ,‖uh‖Uh =

∥∥∥Q̃huh∥∥∥
U

)

Therefore, we have the properties:∥∥∥P̃h∥∥∥
L(Xh,X)

=
∥∥∥Q̃h∥∥∥

L(Uh,U)
= 1 and

∥∥∥∥ ˆ(A∗)
−γ+ 1

2
x

∥∥∥∥
X

≤ C ‖x‖X (39)

‖Ph‖L(X,Xh) ≤ C5 and ‖Qh‖L(U,Uh) ≤ C5 (40)

(H3.3) For every h ∈ (0, h0) , there holds

Ph = P̃h
∗

and Qh = Q̃h
∗

(41)

where the adjoint operators are considered with respect to the pivot spaces
X,U,Xh,Uh.

(H3.4) There exists C6 such that∥∥∥∥B∗ ˆ(A∗)
−γ+ 1

2
P̃hψh

∥∥∥∥
U

≤ C6h
−γs ‖ψh‖Xh (42)

for all h ∈ (0, h0) and ψh ∈ Xh.
For every h ∈ (0, h0), we define the approximation operators A∗h : Xh → Xh

of A∗ and B∗h : Xh → Uh of B∗, by

A∗h = PhA
∗P̃h and B∗h = QhB

∗ ˆ(A∗)
−γ+ 1

2
P̃h (43)

(H4) The following properties hold:
(H4.1) The family of operators etAh is uniformly analytic, in sense that there

exists C7 > 0 such that ∥∥etAh∥∥
L(Xh)

≤ C7e
ωt (44)
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∥∥AhetAh∥∥L(Xh)
≤ C7

eωt

t
(45)

for all t > 0 and h ∈ (0, h0).
(H4.2) There exists C8 > 0 such that, for every f ∈ X and every h ∈ (0, h0),

the respective solutions of Â∗ψ = f and Â∗hψh = Phf satisfy

‖Phψ − ψh‖Xh ≤ C8h
s ‖f‖X (46)

In other words, there holds
∥∥∥PhÂ∗−1 − Â∗−1Ph

∥∥∥
L(X,Xh)

≤ C8h
s

Remark 4.1 The important point to note here is the appearance of the
function (Â∗)−γ+ 1

2 .
According to [13], the inequality (22) make sense since γ < 1

2 and thus

imP̃h ⊂ D((−Â∗)1/2) ⊂ D((−Â∗)γ).
In our context, on account of γ ≥ 1

2 , the inequality (36), which is similar to

inequality (22) in [13], only make sense if we add the functional (Â∗)−γ+ 1
2 in

order that im(Â∗
γ+ 1

2 P̃h) ⊂ D((−Â∗)γ). The choice of the function (Â∗)−γ+ 1
2

seems to be the best adapted to our theory.

Namely, we give here for instance about the functional (Â∗)−γ+ 1
2 through

the heat equation with Dirichlet boundary control as follows:

.
y = ∆y + c2y in (0, T )× Ω

y(0, .) = y0 in Ω

y = u in (0, T )× Γ = Σ

Set X = L2(Ω) and U = L2(Γ). It can be written in the form (4), where the
self-adjoint operator A : D(A)→ X is defined by

Ay = ∆y + c2y : D(A) = H2
⋂
H1

0 → L2

In this case, the degree of unbounded of B is γ = 3
4 +ε(ε > 0) (see [14,section

3.1]).
We may take Â as follows:

Âh = −∆h, D(Â) = H2
⋂
H1

0

Therefore, (Â∗)−γ+ 1
2 = (Â∗)−

1
4 +ε : H1(Ω)→ H

3
2 +ε(Ω).

Remark 4.2 By means of the condition of the degree of unbounded of
operator B and (33), we imply that B is admissible.
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Indeed, we have

‖L∗Tψ‖ = sup
‖u‖q≤1

∫ T

0

< B∗S∗(T − s)x, u(s) > ds

≤ (

∫ T

0

‖B∗S(t)∗ψ‖pdt)
1
p

≤ C3(

∫ T

0

∥∥∥( ˆ−A∗)γS(t)∗ψ
∥∥∥pdt) 1

p

≤ C3(

∫ T

0

eωt

tpγ
‖ψ‖pdt)

1
p dt (pγ < 1)

≤ CT ‖ψ‖

Remark 4.3. It is easily seen that assumptions (H3) ( except for the in-
equalities (35), (36), (42) ) and (H4.2) hold for most of the classical numerical
approximation schemes, such as Galerkin methods, centered finite difference
schemes,...Additionally, by using some approximation properties and the prop-
erties of the functional (Â∗)−γ+1/2, we prove that the inequalities (35), (36),
(42) also hold for most of the above classical schemes (see the proof in Section
5). As noted in [14], the assumption H4.1 of uniform analyticity is not standard,
and has to be checked in each specific case.

The main result of the article is the following :

Theorem 3. Under the previous assumptions, if the control system ẏ = Ay+Bu
is exactly null controllable in time T > 0, then there exist β > 0, h1 > 0, and
positive real numbers C, C’ satisfying:

C
∥∥∥eTA∗

hψh

∥∥∥p
Xh

≤
∫ T

0

∥∥∥B∗hetA∗
hψh

∥∥∥p
U
dt+ hβ‖ψh‖pXh

≤ C ′‖ψh‖pXh (47)

for every h ∈ (0, h1) and every ψh ∈ Xh , (1 ≤ p < 2)
In these conditions, for every y0 ∈ X, and every h ∈ (0, h1), there exists a

solution ϕh ∈ Xh minimizing the functional

Jh(ψh) =
1

p

∫ T

0

∥∥∥B∗hetA∗
hψh

∥∥∥p
U
dt+

1

p
hβ‖ψh‖pXh+ < eTA

∗
hψh, Phy0 >Xh , (1 ≤ p < 2)

(48)
and the sequence (Q̃huh)0<h<h1

, where the control uh is defined by

uh(t) =
∥∥∥B∗he(T−t)A∗

hϕh

∥∥∥p−2

B∗he
(T−t)A∗

hϕh

for every t ∈ [0, T ] converges weakly (up to a subsequence), in the space Lq(0, T ;U)
to a control u such that the solution of :

.
y = Ay +Bu, y(0) = y0

14



satisfies y(T ) = 0. For every h ∈ (0, h1), let yh(.) denote the solution of

.
yh = Ahyh +Bhuh, yh(0) = Phy0

Then,

• yh(T ) = −hβ ‖ϕh‖p−2
ϕh;

• The sequence (P̃hyh)0<h<h1
converges strongly (up to subsequence) in the

space Lq(0, T ;X), to y(.).

Futhermore, there exists M > 0 such that∫ T

0

‖u(t)|pU ≤M
p/p−1 ‖y0|p/p−1

X

and, for every h ∈ (0, h1),∫ T

0

‖uh(t)‖pUh ≤M
p/p−1 ‖y0‖p/p−1

X

hβ ‖ϕh‖pXh ≤M
p/p−1 ‖y0‖p/p−1

X

‖yh(T )‖Xh ≤M
1/p−1hβ/p ‖y0‖1/p−1

X (49)

Remark 4.4 The left hand side of (47) is uniform observability type inequal-
ity for control system (2). This inequality is weaker than the uniform exact null
controllability. No attempt has been made here to prove uniform exact null
control for the approximation systems (2).

Remark 4.5 A similar result holds if the control system (1) is exactly
controllable in time T. However, due to assumption (H1 ), the semigroup S(t)
enjoys in general regularity properties. Therefore, the solution y(.) of the control
system may belong to a subspace of X, whatever the control u is. For instance,
in the case of the heat equation with a Dirichlet or Neumann boundary control,
the solution is the smooth function of the state variable x, as soon as t > 0 ,for
every control and initial condition y0 ∈ L2. Hence, exact controllability does
not hold in this case L2.

Moreover, one may wonder under which assumptions the control u is the con-
trol, is defined by (27), such that y(T)=0. As in [13], the following proposition
give an answer:

Proposition 1. With the notations of theorem, if the sequence of real numbers
‖ψh‖Xh , 0 < h < h1, is moreover bounded, then the control u is the unique con-

trol, is defined by (27), such that y(T)=0. Moreover, the sequence (Q̃huh)0<h<h1

converges strongly (up to a sequence) in the space Lq(0, T ;U) to the control u.
A sufficient condition on y0 ∈ X, ensuring the boundedness of the sequence

(‖ϕh‖Xh)0<h<h1 , is the following : there exists η > 0 such that the control
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system
.
y = Ay + Bu is exactly null controllable in time t, for every t ∈ [T −

η, T + η], and the trajectory t 7→ S(t)y0 in X, for t ∈ [T − η, T + η], is not
contained in a hyperplane of X.

Other sufficient condition on control u, also ensuring the boundedness of the
sequence (‖ϕh‖Xh)0<h<h1 , is the following : there exists η > 0 such that the

control system
.
y = Ay + Bu is exactly null controllable in time t, for every

t ∈ [T − η, T + η], and with the control u is defined as (27), the trajectory
t 7→ S(t− ξ)Bu(ξ) in X, for t ∈ [T − η, T + η], every ξ ∈ (0, t) is not contained
in a hyperplane of X.

6 Proof of the main results

1. The proof of theorem:

Proof. The proof is based on the following approximation lemma, whose
proof readily follows that of [13,14]. The proof of this lemma is provided
in the Appendix.

Lemma 3. There exists C9 > 0 such that , for all t ∈ (0, T ] and h ∈
(0, h0), there holds:

∥∥∥(etA
∗
hPh − PhS(t)∗)ψ

∥∥∥
Xh
≤ C9

hs

t
‖ψ‖X (50)

∥∥∥Q̃hB∗hetA∗
hψh

∥∥∥
U
≤ C9

tγ
‖ψh‖Xh (51)

for every θ ∈ [0, 1]∥∥∥Q̃hB∗hetA∗
hψh −B∗S(t)∗P̃hψh

∥∥∥
U
≤ C9

hs(1−γ)θ

tθ+(1−θ)γ ‖ψh‖Xh every ψh ∈ Xh

(52)

We carry out proving the theorem as follows:

The degree of unboundedness γ of the control operator B is lower than 1
p ,

there exists θ ∈ (0, 1) such that 0 < θ + (1− θ)γ < 1
p

For all h ∈ (0, h0) and ψh ∈ Xh we have:∫ T

0

∥∥∥Q̃hB∗hetA∗
hψh

∥∥∥p
U
dt =

∫ T

0

(
∥∥∥Q̃hB∗hetA∗

hψh

∥∥∥p
U
−
∥∥∥B∗S(t)∗P̃hψh

∥∥∥p
U

)dt

+

∫ T

0

∥∥∥B∗S(t)∗P̃hψh

∥∥∥p
U
dt (53)

We estimate two terms of right hand side of (53)
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The control system is exactly null controllable in time T, then there exists
a positive real number C > 0 such that:∫ T

0

∥∥∥B∗S(t)∗P̃hψh

∥∥∥pdt ≥ C ∥∥∥S(T )∗P̃hψh

∥∥∥p
X

(54)

We have the following property:

|yp − zp| < p(yp−1 + zp−1) |y − z| (55)

where y, z ∈ R+, p > 1

Indeed, we apply mean-value theorem for f(x) = xp(p > 1, x ∈ R+) ,
there exists ξ ∈ (y, z) such that:

|yp − zp| = |f ′(ξ)| |y − z|

= p
∣∣∣ξ(p−1)

∣∣∣ . |y − z|
< p(yp−1 + zp−1). |y − z|

We apply this property as follows:∣∣∣∣∥∥∥PhS(T )∗P̃hψh

∥∥∥p
Xh
−
∥∥∥eTA∗

h

ψh

∥∥∥p
Xh

∣∣∣∣
≤ p(

∥∥∥PhS(T )∗P̃hψh

∥∥∥p−1

Xh
+
∥∥∥eTA∗

hψh

∥∥∥p−1

Xh
)

×
∣∣∣∣∥∥∥PhS(T )∗P̃hψh

∥∥∥
Xh
−
∥∥∥eTA∗

hψh

∥∥∥
Xh

∣∣∣∣
≤ p(C5C1e

ωt ‖ψh‖p−1
Xh

+ C7 ‖ψh‖p−1
Xh

).
∥∥∥PhS(T )∗P̃hψh − eTA

∗
hψh

∥∥∥
Xh

≤ Cp ‖ψh‖p−1
Chs ‖ψh‖

≤ Cmh
s ‖ψh‖pXh

Therefore , from above estimate and (39) , we get:∥∥∥eTA∗
hψh

∥∥∥p
Xh
− Ckhs‖ψh‖pXh ≤

∥∥∥PhS(T )∗P̃hψh

∥∥∥p
Xh
≤ Cp5

∥∥∥S(T )∗P̃hψh

∥∥∥p
X

(56)

Combine (54) with (56) we have:∫ T

0

∥∥∥B∗S(t)∗P̃hψh

∥∥∥p
U
dt ≥ C14

∥∥∥eTA∗
hψh

∥∥∥p
Xh
− C15h

s‖ψh‖pXh (57)

For the first term on the right hand side of (53) ,one has, using (33),
(51),(52) and applying the inequality (55)
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∣∣∣∥∥∥Q̃hB∗hetA∗
hψh

∥∥∥p
U
−
∥∥∥B∗S(t)∗P̃hψh

∥∥∥p
U

∣∣∣
≤ p(

∥∥∥Q̃hB∗hetA∗
hψh

∥∥∥p−1

U
+
∥∥∥B∗S(t)∗P̃hψh

∥∥∥p−1

U
)

×
∣∣∣∥∥∥Q̃hB∗hetA∗

hψh

∥∥∥
U
−
∥∥∥B∗S(t)∗P̃hψh

∥∥∥
U

∣∣∣
≤ p(

Cp−1
9

tγ(p−1)
‖ψh|p−1

Xh
+ Cp−1

3

eωt(p−1)

tγ(p−1)
‖ψh‖p−1

Xh
)

×
∣∣∣∥∥∥Q̃hB∗hetA∗

hψh −B∗S(t)∗P̃hψh

∥∥∥
U

∣∣∣
≤ Cl

tγ(p−1)
‖ψh‖p−1

Xh
.C9

hs(1−γ)θ

tθ+(1−θ)γ ‖ψh‖Xh

≤ Cn
hs(1−γ)θ

tθ+(1−θ)γ+γ(p−1)
‖ψh‖pXh

We have γ < 1
p (p ≥ 1), therefore θ + (1− θ)γ + γ(p− 1) < 1 and we can

get, by integration,∣∣∣∫ T0 (
∥∥∥Q̃hB∗hetA∗

h P̃hψh

∥∥∥p
U
− ‖B∗S(t)∗ψh‖pU )dt

∣∣∣ ≤ Chs(1−γ)θ‖ψh‖pXh
Therefore,∫ T

0

∥∥∥Q̃hB∗hetA∗
hψh

∥∥∥p
U
dt ≥

∫ T

0

‖B∗S(t)∗ψh‖pUdt−Ch
s(1−γ)θ‖ψh‖pXh (58)

We choose a real number β such that 0 ≤ β ≤ s(1− γ)θ. Combine results
(53), (57), (58) we have inequality (47).

For h ∈ (0, h1) , the functional Jh is convex, and inequality (47), is coer-
cive. Therefore, it admits a solution minimum at ϕh ∈ Xh so that

0 = 5Jh(ϕh) = Gh(T )ϕh + hβ‖ϕh‖p−2
ϕh + eTAhPhy0

where Gh(T ) =
∫ T

0

∥∥B∗hetA∗
hϕh

∥∥p−2
etAhBhB

∗
he
tA∗
hdt is the Gramian of the

semidiscrete system.

With uh(t) =
∥∥B∗he(T−t)A∗

hϕh
∥∥p−2

B∗he
(T−t)A∗

hϕh is chosen then, the solu-
tion yh(.) satisfies:

yh(T ) = eTAhyh(0) +

∫ T

0

e(T−t)AhBhuh(t)dt

= eTAhPhy0 +Gh(T )ϕh

= −hβ‖ϕh‖p−2
ϕh
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Note that, since Jh(0) = 0, there must hold, at the minimum, Jh(ϕh) ≤ 0.
Hence, using the observability inequality (47) and the Cauchy-Schwarz
inequality, one gets

c
∥∥∥eTA∗

hϕh
∥∥∥p
Xh

≤
∫ T

0

∥∥∥B∗hetA∗
hϕh
∥∥∥p
Uh

+ hβ ‖ϕh‖pXh

≤ 2
∥∥∥eTA∗

hϕh

∥∥∥
Xh
‖Phy0‖Xh ,

and thus, ∥∥∥eTA∗
hϕh
∥∥∥
Xh
≤ (

2

c
)1/(p−1)(‖Phy0‖Xh)1/(p−1) (59)

As a consequence,∫ T

0

∥∥∥B∗hetA∗
hϕh
∥∥∥p
Uh
≤ (

2p

c
)1/(p−1)(‖Phy0‖p/(p−1)

Xh
) (60)

and hβ ‖ϕh‖pXh ≤ ( 2p

c )1/(p−1)(‖Phy0‖p/(p−1)
Xh

), and the estimates (49) fol-
low.

2. Proof of proposition

Proof. If the sequence (
∥∥∥P̃hϕh∥∥∥

X
)0<h<h1

is bounded then up to a sub-

sequence, it converges weakly to an element ϕ ∈ X. It follows from the
estimate (52) that u(t) = ‖B∗S(T − t)∗ϕ‖p−2

B∗S(T − t)∗ϕ for every
t ∈ [0, T ]. Moreover, Q̃huh tends strongly to u in Lq(0, T ;U). Indeed, for
t ∈ [0, T ]:

Q̃huh(t)− u(t)

= Q̃h

∥∥∥B∗he(T−t)A∗
hϕh

∥∥∥p−2

B∗he
(T−t)A∗

hϕh

−‖B∗S(T − t)∗ϕ‖p−2
B∗S(T − t)∗ϕ

=
∥∥∥B∗he(T−t)A∗

hϕh

∥∥∥p−2

(Q̃hB
∗
he

(T−t)A∗
h −B∗S(T − t)∗P̃h)ϕh

+
∥∥∥B∗he(T−t)A∗

hϕh

∥∥∥p−2

B∗S(T − t)∗(P̃hϕh − ϕ)

+ B∗S(T − t)∗ϕ(
∥∥∥B∗he(T−t)A∗

hϕh

∥∥∥p−2

− ‖B∗S(T − t)∗ϕ‖p−2
) (61)

Since the ϕh are bounded, then the ‖uh‖ are bounded. From that, we

imply the
∥∥B∗he(T−t)A∗

hϕh
∥∥p−2

are bounded .

Using (52), the first term of right hand side of (61) tends to zero clearly.
For the second term, for every t ∈ [0, T ] the operator B∗S(T − t)∗ is
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compact, as a strongly limit of finite rank operators and since P̃hϕh − ϕ
tends to weakly to zero, it follows the second term of the right hand side
(61) tends to zero. Furthermore, by applying inequality (55) we get:∥∥∥B∗he(T−t)A∗

hϕh

∥∥∥p−2

− ‖B∗S(T − t)∗ϕ‖p−2

< (2− p)(
∥∥∥B∗he(T−t)A∗

hϕh

∥∥∥p−3

+ ‖B∗S(T − t)∗ϕ‖p−3
)

×(
∥∥∥B∗he(T−t)A∗

hϕh −B∗S(T − t)∗ϕ
∥∥∥)

As the
∥∥B∗he(T−t)A∗

hϕh
∥∥p−3

are bounded and inequality (52) is used again
. Hence, the third term tends to zero clearly.

The control u is such that y(T)=0, hence the vector ϕ must be solution
of ∇J∗(ψ) = 0, where J is defined as in Theorem 2. Since J is convex, ϕ
is the minimum of J∗, that is, u is the control such that y(T ) = 0.

We next prove, by contradiction, that the sufficient conditions provided in
the statement of the proposition implies that the sequence (‖ϕh‖Xh)0<h<h1

is bounded. As the proof of the first sufficient condition is found in
[13], we give here the proof only for the second sufficient condition. If
the sequence (‖ϕh‖Xh)0<h<h1 is not bounded, then, up to subsequence,

P̃h(ϕh/ ‖ϕh‖Xh) converges weakly to Φ in X, as h tends to 0. For every
t ∈ [T − η, T + η], the control system is exactly null controllable in time

t; and thus, from (60), the sequence
∫ t

0
< B∗he

(t−s)A∗
hϕh, Qhu(s) >Uh ds is

bounded, uniformly for h ∈ (0, h1). Thus, passing to the limit, one gets∫ t

0

< Φ, S(t− s)Bu(s) >X ds = 0

This equality is equivalent to the fact that : there exists ξ ∈ (0, t) such that
< Φ, S(t− ξ)Bu(ξ) >X= 0. This contradicts the fact that the trajectory
t 7→ S(t− ξ)Bu(ξ), t ∈ [T − η, T + η] and every ξ ∈ (0, t), is not contained
in a hyperplane of X.

7 Numerical simulation for the heat equation
with Dirichlet boundary control

In this section, We give an example of a situation where the theorem 3.1 are
satisfied.

Let Ω ⊂ Rn be an open bounded domain with sufficiently smooth boundary
Γ. We consider the Dirichlet mixed problem for the heat equation:

.
y = ∆y + c2y in (0, T )× Ω
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y(0, .) = y0 in Ω

y = u in (0, T )× Γ = Σ

with boundary control u ∈ L6(0, T ;L2(Γ)) and y0 ∈ L2(Ω).
Set X = L2(Ω) and U = L2(Γ). We introduce the self-adjoint operator:

Ah = ∆h+ c2h : D(A) = H2 ∩H1
0 → L2(Ω)

The adjoint B∗ ∈ L(D(A∗), U) of B is given by

B∗ψ = −∂ψ
∂ν

, ψ ∈ D(A∗)

Moreover, the degree of unboundedness of B is γ = 3
4 + ε (ε > 0) (see[14,

section 3.1]).

1. 1D Finite-Difference semi-discretized model:

We next introduce a semi-discretized model of the above heat equation,
using 1D Finite-Difference.

For simplicity, we set Ω = (0, 1), Γ = {0, 1}, c=1 and T=1.

Given n ∈ N we define h = 1
n+1 > 0. We consider the following simplex

mesh:

Ωh = {x0 = 0;xi = ih, i = 1, ..., N ;xn+1 = 1}

which divides [0,1] into n+1 subintervals Ij = [xj , xj+1] j=0,...,n+1. Set

Xh =
{
y ∈ C0(Ωh)

}
Uh =

{
y ∈ C0(Γ)

}
Define P̃h (resp., Q̃h) as the canonical embedding fromXh intoD((−A)1/2)
(resp., from Uh to U). For xh ∈ Xh and uh ∈ Uh, set, P̃h(xh) = xh and
Q̃h(uh) = uh. For y ∈ D((−A)1/2)′ = H1(Ω)′, set Phy = (y1, .., yi, .., yn+2)
where yi = y((i−1)h) and, for u ∈ U , set, Qhu = (u1, .., ui, .., un+2) where
ui = u((i− 1)h).

It is clear that the assumptions (H3.1) and (H3.3) are here satisfied. Our
aim is next to verify the inequalities in (H3.2) and (H3.4).

In order to get these inequalities, it will necessary to making use of the
following usual approximation properties (see [14,section 5]):

(i) ‖Πhy − y‖Hl(Ω) ≤ chs−l ‖y‖Hs(Ω), s ≤ r + 1, s− l ≥ 0, 0 ≤ l ≤ 1
and the inverse approximation properties
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(ii) ‖yh‖Hα(Ω) ≤ ch−α ‖yh‖
2
L (Ω), 0 ≤ α ≤ 1

(iii) h−1 ‖y −Πhy‖L2
(Γ)

+
∥∥∥(I −Πh) ∂y∂ν

∥∥∥
L2(Γ)

≤ chs−
3
2 ‖y‖Hs(Ω),

3
2 < s <

r + 1, y ∈ Hs(Ω)

(iv) ‖yh‖L2(Γ) + h
∥∥∥∂yh∂ν ∥∥∥

L2(Γ)
≤ Ch− 1

2 ‖yh‖L2(Ω), yh ∈ Vh
where r is the order of approximation (degree of polynomials) and Πh is
the orthogonal projection of L2(Ω) onto Vh .

First, by applying (i) we easily get the inequality (36) :∥∥∥∥(I − Â∗
−γ+ 1

2 P̃hPh)ψ

∥∥∥∥
L2(Ω)

≤ Ch2 ‖ψ‖H2(Ω)

≤ Ch2 ‖ψ‖D(A∗)

≤ Ch2 ‖A∗ψ‖X

in this case s=2.

We next verify the inequality (37) as follows:∥∥∥∥((−Â∗)γ)

(
I − ˆ(A∗)

−γ+ 1
2
P̃hPh

)
ψ

∥∥∥∥
X

≤ C

∥∥∥∥(I − ˆ(A∗)
−γ+ 1

2
P̃hPh)ψ

∥∥∥∥
D((−Â∗)γ)

≤ Chs−l ‖ψ‖D(A∗)

≤ Chs(1−γ) ‖A∗ψ‖X

where we have used (i) with s=2, D(A∗) = Hs(Ω) and D((−Â∗)γ) =
H l(Ω) .

For the inequality (39), using (iii) with s=2∥∥∥(I − Q̃hQh)B∗ψ
∥∥∥
L2(Γ)

=

∥∥∥∥(I − Q̃hQh)
∂ψ

∂ν

∥∥∥∥
L2(Γ)

≤ Ch1/2 ‖ψ‖H2(Ω)

≤ Chs(1−γ) ‖ψ‖D(A∗)

≤ Chs(1−γ) ‖A∗ψ‖X
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For the inequality (43), using (iv) and (40)

∥∥∥∥B∗ ˆ(A∗)
−γ+ 1

2
P̃hψh

∥∥∥∥
U

=

∥∥∥∥∥∥∂( ˆ(A∗)
−γ+ 1

2
P̃hψh)

∂ν

∥∥∥∥∥∥
L2(Γ)

≤ Ch−
3
2

∥∥∥∥ ˆ(A∗)
−γ+ 1

2
P̃hψh

∥∥∥∥
L2(Ω)

≤ Ch−
3
2 ‖ψh‖Xh

Therefore, the inequality (43) is satisfied for s=2, γ = 3
4 + ε.

Moreover, the assumption (H4.2) is satisfied with s=2 (see[14]).

Hence, theorem 3.1 applies, with β = 0.16, for instance.

Consider the following finite difference approximation of the above heat
equation :

ẏj =
1

h2
[yj+1 + yj−1 − 2yj ] + c2yj 0 < t < T, j = 1, ..., n

yj(0) = yj0 , j = 1, ..., n

y0(t) = yn+1(t) = uh , 0 < t < T

where y ∈ Rn+2 , y0 ∈ Rn+2 , uh ∈ R and

Ah =
1

h2



0 0 0 . . . 0
0 (c2h2 − 2) 1 . . . 0
0 1 (c2h2 − 2) . . . 0
...

...
. . .

...
...

0 . . . (c2h2 − 2) 1 0
0 . . . 1 (c2h2 − 2) 0
0 . . . 0 0 0



Bh =


1
0
...
0
1
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2. Numerical simulation

The minimization procedure described in Theorem 3.1 has been implement
for d=1, by using a simple gradient method that has the advandtages not
to require the complex computations and this method can applied with
any power p. However, the computation of gradient of Jh is very expensive
since the gradient is related to the Gramian matrix.

name Sh h y0

1D-10 10 10−1 y0(x) = e−x
2

1D-100 100 10−2 y0(x) = e−x
2

1D-500 500 2.10−3 y0(x) = e−x
2

Table 1: Data for the one-dimensional heat equation.

name ‖ϕh‖X hβ(β = 0.16) ‖yh(T )‖
1D-10 0.1690 0.6814 0.4775
1D-100 0.7960 0.4779 0.4565
1D-500 2.0570 0.3699 0.4273

Table 2: Numerical results for one dimensional equation for beta =0.16.

name ‖ϕh‖X hβ(β = 2) ‖yh(T )‖
1D-10 4.4266 10−2 0.0111
1D-100 4.8933 10−4 1.3467e-004
1D-500 5.0956 4.10−6 5.5178e-006

Table 3: Numerical results for one dimensional equation for beta=2.

Numerical simulation are carried out with a space-discretization step equal
to 0.005, with the data of Table 1. The numerical results are provided in
Table 2 for beta =0.16 and Table 3 for beta=2.

The convergence of the method is very slow. From the result of Theorem 3,
the final state yh(T ) is equal to −hβ ‖ϕh‖p−2

ϕh in which ϕh is minimizer
of Jh. We note that the maximum value for which the theorem asserts
the convergence is very small. For such a small value of β (for instance
β = 0.16), hβ converges to 0 very slowly. It follows that yh(T ) converges
very extremely slow.

In practice, the unique minimizer ϕh of Jh is obtained through the simple
gradient method in which the step is equal to 0.01 and the error ε = 10−2

is taken. With the small value β = 0.16, it took a long time to achieve
the results in Table 2. Namely, for n=500, it took more one month to get
the result after 1000 iterations. It is clearly seen from Table 2 that the
convergence of yh(T ) is very slow. These results illustrate the difficult in
using our method to compute controls. Although the case beta=2 is not
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covered by our main theorem, the method seems to converge for this value
for beta and we provide hereafter the numerical results in Table 3. Since
the value of the beta is greater, the convergence is quicker.

Appendix: proof of lemma

Proof. • First of all, we will prove (51)

For every ψ ∈ D(A∗), one has:

∥∥∥∥Q̃hB∗hetA∗
hPhψ −B∗ ˆ(A∗)

−γ+ 1
2
P̃hPhS(t)∗ψ

∥∥∥∥
U

≤
∥∥∥Q̃hB∗hetA∗

hPhψ
∥∥∥
U

+

∥∥∥∥B∗ ˆ(A∗)
−γ+ 1

2
P̃hPhS(t)∗ψ

∥∥∥∥
U

(62)

We estimate each term of the right hand side of (62). Since B∗h =

QhB
∗ ˆ(A∗)

−γ+ 1
2
P̃h and thus, using (40) (42) (44) one gets:

∥∥∥Q̃hB∗hetA∗
hPhψ

∥∥∥
U
≤ C5

∥∥∥∥B∗ ˆ(A∗)
−γ+ 1

2
P̃he

tA∗
hPhψ

∥∥∥∥
U

≤ C5C6h
−γs
∥∥∥etA∗

hPhψ
∥∥∥
Xh

≤ C2
5C6C7h

−γseωt‖ψ‖X (63)

On the other hand, from (28),(40),(42)

∥∥∥∥B∗ ˆ(A∗)
−γ+ 1

2
P̃hPhS(t)∗ψ

∥∥∥∥
U

≤ C6h
−γs‖PhS(t)∗ψ‖Xh

≤ C5C6h
−γs‖S(t)∗ψ‖X

≤ C1C5C6h
−γseωt‖ψ‖X (64)

Hence, combine (63),(64) with (62), there exists C10 > 0 such that:∥∥∥∥Q̃hB∗hetA∗
hPhψ −B∗ ˆ(A∗)

−γ+ 1
2
P̃hPhS(t)∗ψ

∥∥∥∥
U

≤ C10h
−γs‖ψ‖X (65)

for every ψ ∈ D(A∗), every t ∈ [0, T ], and every h ∈ (0, h0).

Moreover, we get another estimate of this term. By using (33),(38),(40)
,(42),(50) one gets:
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∥∥∥∥Q̃hB∗hetA∗
hPhψ −B∗ ˆ(A∗)

−γ+ 1
2
P̃hPhS(t)∗ψ

∥∥∥∥
U

=

∥∥∥∥Q̃hQhB∗ ˆ(A∗)
−γ+ 1

2
P̃he

tA∗
hPhψ −B∗ ˆ(A∗)

−γ+ 1
2
P̃hPhS(t)∗ψ

∥∥∥∥
U

≤
∥∥∥∥Q̃hQhB∗ ˆ(A∗)

−γ+ 1
2
P̃h(etA

∗
hPhψ − PhS(t)∗ψ)

∥∥∥∥
U

+

∥∥∥∥Q̃hQhB∗( ˆ(A∗)
−γ+ 1

2
P̃hPh − I)S(t)∗ψ

∥∥∥∥
U

+
∥∥∥(Q̃hQh − I)B∗S(t)∗ψ

∥∥∥
U

+

∥∥∥∥B∗(I − ˆ(A∗)
−γ+ 1

2
P̃hPh)S(t)∗ψ

∥∥∥∥
U

≤ C5C6h
γs
∥∥∥etA∗

hPhψ − PhS(t)∗ψ
∥∥∥
Xh

+C5C3

∥∥∥∥(−Â)γ( ˆ(A∗)
−γ+ 1

2
P̃hPh − I)S(t)∗ψ

∥∥∥∥
X

+C4h
s(1−γ)‖A∗S(t)∗ψ‖X

+C3

∥∥∥∥(−Â)γ( ˆ(A∗)
−γ+ 1

2
P̃hPh − I)S(t)∗ψ

∥∥∥∥
X

≤ C5C6C9
hs(1−γ)

t
‖ψ‖X

+Chs(1−γ)‖A∗S(t)∗ψ‖X

≤ C11
hs(1−γ)

t
‖ψ‖X (66)

Then, raising (65) to the power 1− γ, (66) to power to γ and multiplying
both result estimates, we obtain :∥∥∥∥Q̃hB∗hetA∗

hPhψ −B∗ ˆ(A∗)
−γ+ 1

2
P̃hPhS(t)∗ψ

∥∥∥∥
U

≤ C12

tγ
‖ψ‖X

hence,∥∥∥Q̃hB∗hetA∗
hPhψ

∥∥∥
U
≤ C12

tγ
‖ψ‖X +

∥∥∥∥B∗ ˆ(A∗)
−γ+ 1

2
P̃hPhS(t)∗ψ

∥∥∥∥
U

(67)

From (29),(33),(36),∥∥∥∥B∗ ˆ(A∗)
−γ+ 1

2
P̃hPhS(t)∗ψ

∥∥∥∥
U

≤
∥∥∥∥B∗(I − ˆ(A∗)

−γ+ 1
2
P̃hPh)S(t)∗ψ

∥∥∥∥
U

+ ‖B∗S(t)∗ψ‖U

≤ C13
eωt

tγ
‖ψ‖X (68)
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Combine (67) with (68) and by setting ψ = P̃hψh we get (51).

• Finally, we prove (52). On the one hand, reasoning as above for obtaining
(66), we get:∥∥∥Q̃hB∗hetA∗

hPhψ −B∗S(t)∗ψ
∥∥∥
U
≤ Ch

s(1−γ)

t
‖ψ‖X (69)

for every ψ ∈ D(A∗), every t ∈ [0, T ] and every h ∈ (0, h0)

On the other hand, from (51) and setting ψ = P̃hψh∥∥∥Q̃hB∗hetA∗
hPhψ −B∗S(t)∗ψ

∥∥∥
U
≤

∥∥∥Q̃hB∗hetA∗
hPhψ

∣∣∣
U

+ ‖B∗S(t)∗ψ‖U

≤ C9

tγ
‖ψh‖+ C3

∥∥∥(−Â∗)γS(t)∗ψ
∥∥∥
X

≤ C

tγ
‖ψh‖X (70)

Raising (69) to the power θ, (70) to the power 1−θ and multiplying both
resulting estimates, we obtain (52).

The proof of the inequality (50) is found in [13,14].

8 Conclusion

We have shown that the appropriate duality techniques can be applied to
solve (3), namely the Fenchel-Rockafellar theorem.

Additionally, it is also stated that under standard assumptions on the dis-
cretization process, for an exactly null controllable linear control system, if the
semigroup of approximating system is uniformly analytic, and if the degree of
unboundedness of the control operator is greater than 1

2 then the unform ob-
servability type inequality is proved. Consequently, a minimization procedure
was provided to build the aproximation controls. This is implemented in the
case of the one dimensional heat equation with Dirichlet boundary control.

Note that, we only stress our problem on the case γ ≥ 1/2. Some relevant
problems for which γ < 1/2 that are refered to [13].

One open question is given: how the above results change if we remove the
assumption of uniform analyticity of the discretized semigroup.
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