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Abstract

Background: Recent approaches mixing frequentist principles with Bayesian inference propose internal goodness-of-fit
(GOF) p-values that might be valuable for critical analysis of Bayesian statistical models. However, GOF p-values developed
to date only have known probability distributions under restrictive conditions. As a result, no known GOF p-value has a
known probability distribution for any discrepancy function.

Methodology/Principal Findings: We show mathematically that a new GOF p-value, called the sampled posterior p-value
(SPP), asymptotically has a uniform probability distribution whatever the discrepancy function. In a moderate finite sample
context, simulations also showed that the SPP appears stable to relatively uninformative misspecifications of the prior
distribution.

Conclusions/Significance: These reasons, together with its numerical simplicity, make the SPP a better canonical GOF p-
value than existing GOF p-values.
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Introduction

Statistical model criticism, which tests a fitted statistical

parametric model against observed data, is valuable for gaining

more confidence in the statistical results [1-5]. Box [6] identified

model criticism as one of the two main steps in statistical model

development. Although many other terms have been used – model

adequacy, model checking, model validation, model evaluation

[3,5] –, we will use the term goodness-of-fit to refer to this

confrontation between statistical model and observed data. To

date, the generally preferred method has been external goodness-of-

fit, where data used to assess the model are not those used to fit the

model. The evaluation is performed either through data splitting

or by comparing the model predictions against a completely

different dataset [5]. External goodness-of-fit avoids using the data

twice, and should result in more interpretable and less circular

goodness-of-fit [7,8]. However, many researchers have proposed

internal goodness-of-fit methods (see later), where predictions from

the fitted model are compared with the observations that were

used to estimate the parameters of the model. One obvious

advantage of internal goodness-of-fit (GOF) is to allow fuller use of

data in model checking. We will therefore focus our attention on

these methods, and more precisely on GOF p-values. The GOF p-

values we use are Fisherian p-values, i.e. probabilities of ‘‘seeing

something [with the statistical model] as weird or weirder than you

actually saw’’ [9]. Fisherian p-values compare the model to the

data, and therefore differ from Neyman-Pearson tests which

compare two models or hypotheses [9]. ‘‘Weirdness’’ is quantified

using specific discrepancy functions, which are real-valued

functions of data and of statistical model parameters. Fisherian

p-values are simply calculated as the quantile of the discrepancy

function calculated on the observed data in the probability

distribution of discrepancy functions of data and parameters

randomly generated according to some given probabilistic scheme

associated to the fitted statistical model. Let us assume that, when

replicating over hypothetical datasets sampled from a probabilistic

model, we know these p-values have a uniform distribution on

0; 1½ � under assumption (A1):

(A1) the likelihood in the statistical model – or inference model,

used to analyze data – is the same as the likelihood in the

probabilistic model – or sampling model, used to generate data;

then an extreme Fisherian p-value – i.e. a p-value very close to 0

or a p-value either very close to 0 or to 1, depending on the

discrepancy function – is interpreted as contradicting (A1). The

reader will find the mathematical formulation of these statements

at the beginning of the Material & Methods section.

When the statistical model is fitted with Bayesian methods, these

GOF p-values clearly rely on both Bayesian and frequentist ideas:

they are Bayesian because the statistical parameters come either

from the prior or the posterior distribution, or modifications

thereof, and they are frequentist because they embed the observed

data within a set of unobserved datasets sampled from a

probabilistic model. This is why such methods are called

calibrated Bayesian [10]. Calibrated Bayesian GOF has progres-
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sively gained popularity over the last few decades, resulting in a

number of more or less sophisticated techniques [6,11-18].

Calibrated Bayesian GOF differ from classical purely Bayesian

methods that specify a family of alternative, more complex models

and use Bayes Factors to indicate which family of models – the

original or the alternative models – is the most likely [6,19]. Even

though this purely Bayesian method does have some interesting

features (e.g. discussion in [13]), it cannot deal with the Fisherian

view of model checking, i.e. testing whether the data are consistent

with a given model, without the need for an alternative hypothesis

[9,10,20]. What if both the original and the alternative models

were inconsistent with the data? Huber [19] qualifies these purely

Bayesian procedures as ‘tentative overfitting’, commenting that

these Bayesian methods ‘‘are based on the unwarranted

presumption that by throwing in a few additional parameters

one can obtain a perfectly fitting model. But how and where to

insert those additional parameters often is far from obvious (...).

Remember that Kepler rejected the epicyclic Ptolemaic/Coper-

nican models because he could not obtain an adequate fit within

that class.’’ In turn, we note that emerging Bayesian GOF methods

involve nonparametric alternatives [21-23], thus enriching the

Bayesian GOF toolbox.

Given that frequentist statistics are believed to be more powerful

than Bayesian statistics for model criticism [6,12], Little [10]

viewed calibrated Bayesian p-values as an improvement over

purely Bayesian p-values – and in this article we will indeed focus

on calibrated Bayesian techniques. The Material and Methods

section begins by proposing a brief overview of what is known on

frequentist and calibrated Bayesian GOF p-values under assump-

tion (A1) according to three criteria:

– C1: asymptotically with respect to sample size, the probability

distribution of the p-value when replicating over observed

datasets should be known for a variety of discrepancy functions

and priors;

– C2: under reasonable finite sample sizes, the probability

distribution of the p-value when replicating over observed

datasets should be close to a known reference distribution for a

variety of discrepancy functions and priors;

– C3: the p-values should be numerically inexpensive and

relatively easy to implement based on a Monte Carlo Markov

Chain or frequentist model fit [3,16].

Conditions (C1) and (C2) are required in order to use candidate

GOF p-values as described above in the Fisherian perspective.

Having p-values that work for very different probability distribu-

tions and any discrepancy function has an obvious advantage: it

provides users with assurance that they can use the method for

different kinds of statistical models, and that they have sufficient

flexibility to check the model [4,15,20,24]. Condition (C3) is

motivated by time constraints in the application of such methods.

As will be seen in the Material and Methods section – to which

point we defer a precise definition of the p-values – some

calibrated Bayesian and classical frequentist GOF p-values share

the difficulty that their probability distribution is generally

unknown, even asymptotically; this contradicts (C1), which makes

it difficult to interpret the surprise resulting from a given p-value

[14-17]. For this reason, posterior predictive p-values (ppop) [4,13],

which are possibly the most widely used in modern applied

Bayesian settings, have come under challenge from the statistical

literature [14,15,17]. Other calibrated Bayesian GOF p-values

prove very computer-intensive – thus contradicting (C3). Finally,

most of them do not apply to general discrepancy functions – thus

contradicting (C1) and (C2). Three of the reviewed p-values – the

prior predictive p-value (pprp; [6]), the plug-in half-sample ML p-

value (pMLhs
; [25]) and the normalized sampled posterior p-value

(pnsp), developed in [16,18] – meet these three criteria, provided

we have the same prior and likelihood in the data analysis as we

had when generating data – for pprp and pnsp, and provided that

the discrepancy function depends solely on normalized data – for

pnsp, on uniformized data for pMLhs
– or on data – for pprp.

Normalized data are simple transformations of the observed data

that:

(i) calculate uniformized data in 0; 1½ �, which are the values of

the empirical cumulative distribution at observed values –

based on the probability distribution used in the statistical

likelihood and on a suitable parameter value;

(ii) calculate the inverse cumulative function of the standard

normal distribution on these uniformized data (cf. legend of

Table 1 for a mathematical formulation).

The mathematical results we know for pMLhs
are limited to

uniformized data. Also, we know that, in general, pprp strongly

depends on the prior chosen in data analysis, which is not the case

for pMLhs
. But is this also the case for pnsp? Indeed, what happens

to pnsp when the prior used in data analysis does not correspond to

the prior used in data generation? Also, what happens when

discrepancy functions are more general, i.e. dependent on

statistical parameters or on unnormalized data – which leads to

Table 1. Discrepancy functions d X,h,yð Þ considered in the
simulations of this paper.

Description
General shape of the discrepancy
function

Test statistic function t(X)

Test statistic function
on normalized data

t(Y)

Other kinds of
discrepancy functions

Centered mean (denoted meanc), variance
(denoted varc), log-likelihood (LL)

NOTE: y denotes a vector of length n, composed of random numbers from the
uniform distribution that are independent from each other and from all the
other random variables considered. F0 denotes the cumulative distribution
function of the standard normal distribution, and F :Dh,yð Þ denotes the
cumulative distribution function F :Dhð Þ of the density f :Dhð Þ of the model – or a
randomized version of it when X is discrete:

F XDh,yð Þ~F X{gDhð Þzy � F XDhð Þ{F X{gDhð Þ½ �,

where g is a small positive number so that Xi{g remains bigger than the
closest smaller discrete value to Xi . Normalized data are defined as

Y~F{1
0 F XDh,yð Þ½ �.

We considered the following t functions: mean, variance, and only in the case of

unnormalized data, p0 Xð Þ~
Xn

i ~ 1

1Xiƒ0 and maximum (only for comparing

psp with ppop under the Poisson model), and only in the case of normalized data,

skewness, kurtosis, and

Za Yð Þ ~ {
Xn

i ~ 1

logF0 Y �i
� �

n{iz:5
z

log 1{F0 Y �i
� �� �

i{:5

� �
,

where Y �i
� �

denotes the ascending ordered version of Y. Za is obtained as

Z~

ð?

{?

Ztdw tð Þ, with the likelihood ratio statistic as Zt and an adequate

weight function w tð Þ [37]. Centered mean and variance are the empirical mean
and variance minus the mean and variance expected with h.
doi:10.1371/journal.pone.0014770.t001
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the more general sampled posterior p-value (psp)? And does psp or

pnsp apply to discrete data? Finally, are psp or pnsp more powerful

than ppop for detecting discrepancies between the data and the

statistical model in situations when the likelihood in the statistical

model is not the same as the likelihood in the probabilistic model?

And how do psp and pMLhs
compare in such situations? In the

second part of the paper, we study the promising p-values psp or

pnsp both mathematically and through simulations. Our main

results are that:

(i) psp meets criterion (C1);

(ii) provided the prior distribution in the statistical analysis is

equally or less informative than the prior in the probabilistic

model, simulations on simple models indicate that psp has an

approximately uniform distribution and fulfils criterion (C2)

with sample size from several dozens to several hundreds; and

(iii) based on a specific example, psp and pnsp are shown to be

more powerful p-values than ppop and as powerful as pMLhs
.

This yields an easier way of calculating GOF p-values than the

methods proposed in [7,14,17,26]. In the last part of the paper, we

discuss the benefits and drawbacks of this new p-value. Leading

out of this discussion, psp, pnsp and pMLhs
appear to be preferable to

ppop and other p-values.

Materials and Methods

Review of published results
For the sake of simplicity, this section will concentrate only on

the mathematical setting for continuous observations. The case of

discrete valued observations will be dealt with in the next section.

Suppose that we have observed a realization xobs of a random

variable X, X[Rn. We propose a parametric probability family

model, f XDhð Þ, h[H5Rp, for the density of X given h, and a prior

probability distribution p hð Þ for h. Although some of the results in

this paper might also extend to cases where the prior is improper

and the posterior is proper, we will assume (A2) throughout, i.e.:

(A2) the prior distribution is proper.

This paper will walk us through an investigation of the fit of the

above statistical model with the observed data xobs. We do so by

comparing the distribution of a given discrepancy function d X,hð Þ –

where X and h are simulated in some way from the statistical

model – with the value involving observed data, d xobs,hð Þ, using the

Fisherian p-value:

pm,d xobsð Þ:Pm :ð Þ d X,hð Þwd xobs,hð Þ½ �

as a measure of compatibility, where m :ð Þ:m X,hð Þ is a reference

probability density for X,hð Þ that depends on the statistical model.

Each GOF p-value is defined by a reference density m and a

discrepancy function d [15,20]. When the discrepancy function d

does not depend on h, Robins et al. [15] propose to shift terms and

call d a test statistic function.

Our setting has so far been purely Bayesian. The frequentist

part of the setting is defined by a probabilistic model for the

random sampling of data x,m0 according to a given density

m0 xð Þ~
ð
H

f0 xDhð Þ p0 hð Þ dh

based on the parametric probability family model, f0 :Dhð Þ, and on

a prior probability distribution p0 hð Þ – which can be a Dirac or

point mass distribution. Following many authors [14-17,27], we

require that, under (A1) (i.e. f ~f0), the probability distribution of

pm,d xobsð Þ½ � xobs*m0
be known at least asymptotically – i.e. when

the size n of xobs tends to infinity – and, more precisely, that this

distribution be the uniform distribution on 0; 1½ �, i.e.

lim
n? ?

Pm0
pm,d xobsð Þƒs½ �:Pxobs*m0

pm,d xobsð Þƒs½ �~s,Vs [ 0; 1½ �:

Such GOF p-values will hereafter be called asymptotically uniform.

The classical p-values proposed in the literature meet criterion

(C3). They correspond to the following reference densities:

– the plug-in ML density: mML X,hDxobsð Þ~f XDhð Þ dĥh(:), where

dĥh(:) is the Dirac function at ĥh, which is the Maximum

Likelihood Estimator (MLE) of h – given xobs and the

likelihood f. Even though other values than the MLE can be

used for h in a plug-in p-value (cf. [16]), this is a reference

density that is used at least implicitly in many frequentist

diagnostic tools (cf. graphical tools in [1,2]);

– the prior predictive density: mprp X,hð Þ~f XDhð Þ p hð Þ [6];

– the posterior predictive density: mpop X,hDxobsð Þ~f XDhð Þ Ppop hDxobsð Þ,
where Ppop hDxobsð Þ~f xobsDhð Þ p hð Þ=n xobsð Þ is the posterior

density of h, given xobs, and n xobsð Þ~
ð
H

f xobsDhð Þ p hð Þ dh is

the marginal density of xobs [12,13].

This paper will not go further in investigating the prior predictive

p-value – dubbed pprp – because of its strong dependence on the

statistical prior p, in contradiction with (C2) [10,14] (also see Text

S6).

With p0~dh0
for some fixed h0, and under the general

assumption that the function d is a function of X alone that has

a normal limiting distribution, Robins et al. [15] showed that the

plug-in ML and posterior predictive p-values – respectively

dubbed pML and ppop – are asymptotically uniform when the

asymptotic mean of d Xð Þ does not depend on h. If the asymptotic

mean of d Xð Þ depends on h, then as shown by Robins et al. [15],

pML and ppop are generally not asymptotically uniform: more

precisely, they are conservative p-values, which means the

probability of extreme values is lower than the nominal

probabilities from the uniform distribution. These p-values

therefore only fulfill criterion (C1) if we greatly restrict the

discrepancy functions considered.

This has led to the development of other p-values associated

with less classical densities m, among which:

– the post-processing method of the posterior predictive p-value to

render it a uniform p-value [17];

– the partial posterior predictive density: mppop X,hDxobsð Þ~
f XDhð Þ Pppop hDxobsð Þ, where Pppop hDxobsð Þ is the partial poste-

rior density of h, proportional to f xobsDdobs,hð Þ p hð Þ where

f XDdobs,hð Þ is the density function of X conditional on the

value of h and on d Xð Þ~dobs~d xobsð Þ [14];

– the conditional predictive density: mcp X,hDxobsð Þ~f XDĥhcML,obs,h
� �

Pcp hDxobsð Þ, where Pcp hDxobsð Þ is the density that is propor-

tional to f ĥhcML,obs,h
� �

p hð Þ, where ĥhcML,obs is the maximizer

of the likelihood f xobsDdobs,hð Þ and where f ĥhcML,obs,h
� �

is the

marginal density of the random variable ĥhcML,obs evaluated at

its observed value [15];

– the plug-in half-sample ML density: mMLhs
X,hDxobsð Þ~f XDhð Þ

dĥhhs
(:), where dĥhhs

(:) is the Dirac function at ĥhhs, which is the

MLE of h given a half random sample of xobs and likelihood f [25];

Sampled Posterior p-Values
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– what we hereby term the sampled posterior p-value (psp) developed

in [16,18], based on msp X,hDxobsð Þ~f XDhð Þd~hh(:), where ~hh is a

unique value of h, which is a random sample of the posterior

distribution Ppop :Dxobsð Þ.

With p0~dh0
for some fixed h0, it has been proved mathe-

matically, under certain assumptions, that the partial posterior

predictive and conditional predictive p-values are asymptotically

uniform p-values whatever the test statistic function and the prior

distribution [15], thus fulfilling criterion (C1), with restrictions on

discrepancy functions. However, due to criterion (C3), we will

consider neither the partial posterior predictive density, nor the

conditional predictive p-value [15,16] nor the post-processing

method in [17] in this paper.

Durbin [28] showed that the plug-in half-sample ML p-value pMLhs

was asymptotically uniform provided it was used on uniformized data

and with specific test statistic functions. This p-value has seldom been

adopted, although Stephens [25] stressed its usefulness.

Johnson [16] proved that for a specific discrepancy measure, the

sampled posterior p-value is also asymptotically uniform. More

recently, Johnson [18] showed that if:

– the statistical model – including the prior p – is the same as the

probabilistic model – including the prior p0 – from which the

data were sampled; and

– G sð Þ:
ð
Rn

IA h, Xð ÞðXÞf XDhð ÞdX, where A h,Xð Þ~ h,Xð Þ :d X,hð Þf

ƒsg, depends solely on s, whatever the value of h – i.e. in

short, if d X,hð Þ is pivotal;

then psp is not only asymptotically uniform, but is also uniform

whatever the sample size. Normalized sampled posterior p-values

(pnsp) that use test statistics on normalized transformations of X
possess this property. These p-values thus fulfill criteria (C1) and

(C2) but with restrictions on discrepancy functions and on the

prior distribution, as p must be equal to p0.

Simulation setting
What do we know about psp, with more general discrepancy

functions? We will show in the Results section that, for any

discrepancy function, psp is uniform for p~p0 and asymptotically

uniform for p=p0, including for discrete-valued discrepancy

functions. We also wanted to include discrete-valued discrepancy

functions, due to the discrete nature of either the random variables

X or the discrepancy function. We will therefore consider the

following modified p-value:

pm,d xobs,eð Þ~Pm :ð Þ d X,hð Þwd xobs,hð Þ½ �zePm :ð Þ d X,hð Þ~d xobs,hð Þ½ �,

where e is drawn from a uniform distribution, independently of the

other random variables.

Based on the mathematical results to come, psp appears a

promising p-value that applies widely in terms of discrepancy

functions, and – asymptotically – in terms of prior distributions.

However, these results no longer hold when the land of

asymptotia is obviously not reached, as can be the case in

hierarchical models or in models that fit parameters with a

limited number of observations (see, for instance, the last model

in the Poisson example in [16]). Furthermore, when sample size

is moderate and the statistical prior does not correspond to the

data generation prior, we have no clear information on how

close psp is to being uniform. We therefore used simulations to

study how psp behaves in a finite sample context under four

scenarios.

Objectives and scenarios. Our first scenario was performed

to illustrate the uniformity results in the Results section when

f ~f0 and p~p0, while the three other scenarios were conceived

to study in a finite sample context the distance to uniformity of the

empirical distribution of psp, pmsp ,d xobs,eð Þ
� 	

xobs*m0,e*U(0;1)
, for

different kinds of discrepancies between the probabilistic and

statistical prior distributions:

Scenario 1: Perfect fit between the probabilistic and statistical models.

Here, the model that generated the data and the model used to fit

the data were exactly the same – including for the prior

distribution.

Scenario 2: The statistical and probabilistic models differ only by the

dispersion of their priors.

Scenario 3: The statistical and probabilistic models differ only by the

centering and dispersion of their priors.

Scenario 4: The statistical and probabilistic models differ only by their priors,

the probabilistic prior p0 being a Dirac distribution. This setting is the same as

in Scenario 1, except that data were generated from fixed parameters

chosen at the mean of their statistical prior under Scenario 1.

Finally, we compared psp with ppop and pMLhs
under Scenario 4

and a modification of Scenario 4 in which f=f0 to illustrate the

conservativeness of ppop and the potentially good properties of

pMLhs
under Scenario 4, and to study the difference of power

between the three p-values.

Models and methods. We dealt with these issues on the

following parametric models, both for data generation and data

analysis, which involved conjugate priors [4] (also see Table 2):

– Poisson model: f xi,lð Þ~Poisson xi Dlð Þ , 1ƒiƒn with a Gam-

ma prior for l: l*Gamma a0,b0ð Þ;
– Normal model: f xi,h,sð Þ~Normal xi Dh,s2

� �
, 1ƒiƒn with

the priors: 1=s2*Gamma a0,b0ð Þ and h*Normal h0,s2=s2
0

� �
;

– Bernoulli model: f xi,hð Þ~Bern xi Dhð Þ , 1ƒiƒn with a Beta

prior for h: h*Beta a0,b0ð Þ.

For each dataset, a0, b0, h0 and s0 were held fixed in data

generation and data analysis but were allowed to differ between

the two phases. As conjugate priors were used, the explicit formula

for the posterior distribution was known [4] and thus used under R

2.2.1 software [29] to fit the Bayesian models to the data.

Under Scenario 1, the priors were as above, with some

parameters held fixed and some parameters that were capable of

varying between datasets:

– for the Poisson model, constant mean and random index of

dispersion of the Gamma prior: a0=b0~h0~exp 1ð Þ and

a0=b2
0

� �
= a0=b0ð Þ~r0*Uniform 0; 2ð Þz:05;

– for the Normal model, constant mean and random variance of the

prior for 1=s2: a0=b0~1 and a0=b2
0~r0*10 Uniform 0;1ð Þ{1ð Þ,

and constant h0~0, s0~1 in the prior for h; and

Table 2. Summary of the models considered in simulations.

Poisson model f xi ,lð Þ~Poisson xi Dlð Þ , 1ƒiƒn and l*Gamma a0,b0ð Þ

Normal model f xi ,h,sð Þ~Normal xi Dh,s2
� �

, 1ƒiƒn,

1=s2*Gamma a0,b0ð Þ and h*fNormal h0,s2=s2
0

� �
Bernoulli model f xi ,hð Þ~Bern xi Dhð Þ , 1ƒiƒn and h*Beta a0,b0ð Þ

NOTE: For each dataset, a0 , b0 , h0 and s0 were held fixed in the data generation
and data analysis steps.
doi:10.1371/journal.pone.0014770.t002
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– for the Bernoulli model, a0~2 h0 r0 and b0~2 1{h0ð Þ r0,

with r0*10Uniform 0;1ð Þ and h0~:5.

The setting of Scenario 2 is the same as in Scenario 1, except that

r0 is replaced in the statistical model by ms
0
r0 in the Poisson and

normal cases and by r0{1ð Þ=ms
0
z1 in the Bernoulli case, where

log ms
0

� �
*Normal 0,1:42

� �
. Scenario 3 differs from Scenario 2

by h0 values in the statistical model that are no longer fixed but

drawn at random according to h0*exp Normal 1,:42
� �� 	

in the

Poisson case, h0*Normal 0,32
� �

in the Normal case and

h0*Uniform :25,:75ð Þ in the Bernoulli case. The distributions

for parameters ms
0

and h0 in Scenarios 2 and 3 were chosen to

vary the levels of informativeness and off-centering of the statistical

prior with respect to the probabilistic prior. Finally, in Scenario 4,

data were generated from fixed parameters, chosen at the mean of

their statistical prior under Scenario 1, i.e. l~exp 1ð Þ in the

Poisson case, s~1 and h~0 in the Gaussian case, and h~:5 in

the Bernoulli case.

We considered three kinds of discrepancy function, d X,hð Þ, i.e.

test statistics, test statistics on normalized data and other

discrepancy functions (cf. Table 1). Test statistics on normalized

data were introduced because they define pivotal quantities used

by [18] to find results under the condition p~p0.

The number of observations in each dataset, n, was a random

figure between 20 and 1,000: n*exp 3:45 �U 0; 1ð Þz3½ � with

probability 0.7 and n*U 250; 1,000ð Þ with probability 0.3. n was

rounded to the nearest ten or – if the value was above 200 – to the

nearest hundred. We used 5,000 sampled values of X to calculate

p-values. The programs were run either on a DELL Latitude

D830 Intel Centrino T7250 or on a server with two dual-core

Opteron 2.2 GHz processors and 3 Gb of RAM. One hundred

thousand replicated datasets were studied under Scenarios 2 to 4

and 10,000 under Scenario 1. To illustrate the dependence of pprp

on the statistical prior distribution, we also calculated the pprp

based on 3,000 datasets under Scenario 2.

The p-value associated to each dataset and each chosen

discrepancy function differed from the classical calculation for

predictive p-values. Let us denote:

a~
X

j

1
d Xj ,~hh
� �

w d xobs,~hhð Þze
X

j

1
d Xj ,~hh
� �

~~ d xobs,~hhð Þ

and

b~
X

j

1
d Xj ,~hh
� �

v d xobs,~hhð Þz 1{eð Þ
X

j

1
d Xj ,~hh
� �

~~ d xobs ,~hhð Þ,

where e is a random value from the uniform distribution. Instead

of the classical formula a=(azb) [4], the p-value was drawn at

random from the beta distribution with the respective shape

parameters az1 and bz1. Indeed, it can be shown that this

distribution is the posterior distribution of the underlying p-value

pmsp ,d xobs,eð Þ~ð
Rn

1 X;d X,hð Þw d xobs,hð Þf gze 1 X;d X,hð Þ~ d xobs,hð Þf g
h i

f X ~hh


� �

d X ,

once we have observed or sampled Xj

� �
j
, ~hh, e and xobs, provided

the prior of the p-value is uninformative [4] (p.40). In contrast, the

use of a=(azb) can result in significant departures from the

uniform distribution, which would be due to the calculation

method and not to the underlying p-value; this would especially

occur with a low number of replicated data Xj

� �
j

or to estimate

the tails of the uniform distribution (see Text S9).

The resulting p-values were considered as sampled from the

distribution pmsp ,d xobs,eð Þ
� 	

xobs*m0,e*U(0;1)
. They were numerical-

ly compared with the uniform distribution, through Kolmogorov-

Smirnov tests, which are adequate and easy to calculate for such

continuous valued distributions, as well as through binomial two-

sided tests for the proportion of p-values that were in the 5% or

1% extremities of the 0; 1½ � interval. As stated above, we used a

uniform random number e’ to ventilate between the ‘‘less extreme’’

and ‘‘more extreme’’ categories, the probability of the event when

the proportion simulated from the binomial distribution was equal

to the observed proportion. This guaranteed a uniform distribution

of the associated p-value. For the proportion of p-values in the 5%

or 1% extremities of the 0; 1½ � interval, we also calculated the

posterior density of the estimated proportion from the observed

number, using a beta distribution as above. We then analyzed

where the posterior estimates were positioned relative to intervals

around the target probabilities of 5% or 1%. For example, we

distinguished cases where 95% of the estimates of the underlying

proportion of p-values fell in the interval ½0; :04½ (proportion of p-

values is estimated to be non-negligibly less than 5%), from cases

where 95% of the estimates fell in the interval :04; :06½ � (proportion

of p-values is estimated to be negligibly different from 5%), and from

cases where 95% of the estimates fell in the interval �:06; 1�
(proportion of p-values is estimated to be non-negligibly greater

than 5%) (see Text S1).

Comparing psp with ppop and pMLhs
under the Poisson

model. Finally, for the Poisson model, we compared psp with

ppop and pMLhs
under Scenario 4 and a modification of Scenario 4

in which f=f0. We used the same test statistics as above, plus the

maximum function. Forty-thousand datasets were generated as in

Scenario 4 or from a Polya distribution [30] with a maximum

value nmax drawn at random from the values 4 and 5, and a mean

and variance equal to those of the aforementioned Poisson

distribution. The sample size was drawn at random from between

20 and 50, except for Figure 1 where it was sampled from the set

(20,30,40,50,60,70,80).

The R commands to run and analyze the simulations described

above can be found in Text S8.

Results

The sampled posterior p-value: mathematical results
psp is uniform when f ~f0 and p~p0. The following lemma

extends Johnson’s [18] results on test statistics applied on

normalized data to general discrepancy functions, including

discrete-valued discrepancy functions:

Lemma: Assume that p~p0 is proper, and f ~f0 – so

that assumptions (A1) and (A2) are met. Then, for every

discrepancy function d, the probability distribution of

pmsp ,d xobs,eð Þ
� 	

xobs*m0,e*U(0;1)
is uniform, i.e.

Pm0,U pmsp ,d xobs,eð Þƒs
h i

:

Ð
Rn

Ð1
0

1
pmsp,d xobs,eð Þƒs

n o m0(xobs) de dxobs~s,Vs[ 0; 1½ �:

Proof. The proof of this Lemma follows the same line as the

proof of the Lemma in [18]. For the sake of clarity, let us denote
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g X, xobs, h, eð Þ~1 X; d X, hð Þw d xobs,hð Þf gze1 X; d X,hð Þ~f
d xobs,hð Þg, so that pmsp ,d xobs,eð Þ~

ð
Rn

g(X,xobs,~hh,e) f XD~hh
� �

d X.

Then, by simply substituting the place where the marginal density

n xobsð Þoccurs in the integrals,

Pm0,U pmsp ,d xobs,eð Þƒs
h i

~:::=:::

~

ð
H

ð
Rn

ð
H

ð1

0

1 ð
Rn

g(X,xobs,~hh,e) f X ~hh


� �

d X

2
4

3
5ƒs

Ppop
~hh xobsj
� �

f xobs h0jð Þ p(h0) d ed~hh d xobsd h0

~

ð
H

ð
Rn

ð
H

ð1

0

1 ð
Rn

g(X,xobs,~hh,e) f X ~hh


� �

d X

2
4

3
5ƒ s

f xobs
~hh


� �

p(~hh)

n(xobs)
f xobs h0jð Þ p(h0) d ed~hh d xobsd h0

~

ð
H

ð
Rn

ð1

0

1 ð
Rn

g(X,xobs,~hh,e) f X ~hh


� �

d X

2
4

3
5ƒ s

ð
H

f xobs h0jð Þ p(h0)

n(xobs)
d h0

2
4

3
5 f xobs

~hh


� �

p(~hh) d e d xobsd~hh

~

ð
H

ð
Rn

ð1

0

1 ð
Rn

g(X,xobs,~hh,e) f X ~hh


� �

d X

2
4

3
5ƒ s

f xobs
~hh


� �

d e d xobs p(~hh) d~hh

However, in this last equation, conditional on ~hh, d X,~hh
� �

and

d xobs,~hh
� �

in function g have the same probability distribution and

are independent. Then, still conditional on ~hh, due to the very

definition of g,

ð
Rn

g(X,xobs,~hh,e) f XD~hh
� �

d X has a uniform

distribution between 0 and 1 when xobs then e are sampled as

specified in the integral. For this reason, the above formula can be

rewritten as:

Pm0,U pmsp , d xobs,eð Þƒs
h i

~

ð
H

ð1

0

1p ƒ s p(~hh) dp d~hh~s,

which yields our result.
psp is asymptotically uniform when f ~f0 and p=p0. The

above result shows that psp is uniform provided (A1), (A2) and the

statistical prior p – which generates the posterior distribution

Ppop hDxobsð Þ – is the same as the probabilistic prior p0. We can

extend this result when both priors differ by showing that that

under conditions:

– on the likelihood – including the identifiability of the model,

and the independence of observations;

– on the priors – including that for every h such that p0 hð Þw0,

we must have p hð Þw0;

– on the discrepancy function – its continuity relative to h;

– on the parameter space H – its compactness;

then, psp is asymptotically uniform under (A1) and (A2).

Sketch of proof. If we assume that the parameter space H is

compact, that the model is identifiable and that the random

variables are independent and identically distributed, i.e.

f XDhð Þ~P
i

f xi Dhð Þ, then when the size n of the sample xobs

drawn from f :Dh0ð Þ for a given h0 tends to infinity, whatever the

neighborhood A of h0, lim
n? ?

ð
Rn

Ppop h[ADxobsð Þ f xobsDh0ð Þ d xobs

~1, i.e. lim
n? ?

Ppop h[ADxobsð Þ~1, f :Dh0ð Þ-almost surely [4] (p.587

in Appendix B). From the continuity of d X,hð Þ relative to h condi-

Figure 1. Power of the sampled posterior (psp; solid line), half-
sample ML (pMLhs

; dotted line) and posterior predictive (ppop;
dotted-dashed line) p-values. Power of the p-values psp (solid line),
pMLhs

(dotted line) and ppop (dotted-dashed line) used with the
maximum test statistic to detect departures from the Poisson
distribution at the level of p = 0.05 when data are distributed according
to a Polya distribution with nmax~5. Power is plotted as a function of
sample size N varying between 20 and 80. psp and pMLhs

were
equivalent in terms of power, and both were more powerful than ppop

except at the highest sample sizes. The dotted baseline level
corresponds to p = 0.05.
doi:10.1371/journal.pone.0014770.g001
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tions, we deduce that

ð
Rn

ð
H

ð1

0

1 ð
Rn

g(X,xobs,~hh,e) f XD~hh
� �

d X

2
4

3
5ƒ s

Ppop
~hhDxobs

� �
f xobsDh0ð Þ d ed~hh d xobs is asymptotically equal to

ð
Rn

ð
H

ð1

0

1 ð
Rn

g(X,xobs,h0,e) f XDh0ð Þd X

2
4

3
5ƒ s

f xobsDh0ð Þ d e d xobs,

which as in the proof of the above Lemma is equal to s. Since these

quantities are bounded by 1, we get through an integration over h0

according to the prior p0, that lim
n??

Pm0,U pmsp, d xobs,eð Þƒs
� 	

~s.

We speculate that the proof in Gelman et al. [4] (p.587 in

Appendix B) can be extended to the case where the random

variables are independent but not identically distributed – i.e.

f XDhð Þ~P
i

fi xi Dhð Þ– provided the fi distributions are sampled

from a common probability law, making it possible to use

Kolmogorov’s strong law of large numbers instead of the usual law

of large numbers employed in [4].

Discussion. In these conditions, psp is asymptotically uniform even

when p=p0. These results also hold when p0 is a Dirac

distribution dh0
. Under more stringent conditions on the likelihood

and the prior, these results can be made sharper – and inform on

the speed of convergence – by using the convergence of the

posterior distribution to normality [4,31-33].

The sampled posterior p-value: simulation results. Our

above results are mathematical and mostly asymptotic. We now

study the finite sample behavior of the sampled posterior p-value

based on our simulations. Overall, our results for Scenario 1 –

corresponding to a perfect matching of the statistical and

probabilistic models – were in accordance with our expectations:

psp and pnsp then had behaviors compatible with uniform p-values

(Text S1).

When the statistical prior had the same mode but was sharper

than the probabilistic prior in Scenario 2, psp and pnsp yielded poor

results for the studied sample sizes (Table 3 and Text S2), in

contrast with their asymptotic good behavior (previous section).

Conversely, when the statistical prior was less informative than the

probabilistic prior, both p-values were much closer to being

uniform (Text S2), in sharp contrast with pprp (Text S6).

Except in one case, psp and pnsp were also not far from being

asymptotically uniform in Scenario 4 when the true parameter

value was equal to the mode of the statistical prior (cf. Text S4). An

exception was observed for the Bernoulli model with psp and

t~var or d~varc: in this case, psp did not approach uniformity,

even with relatively high sample sizes. On the whole, however, psp

and pnsp were further from being uniform for small sample sizes in

Scenario 4 than in Scenario 2 with uninformative statistical priors.

De-centering of the statistical prior (Scenario 3) yielded psp and

pnsp values that were further from the uniform distribution (Table 4

and Text S3). However, psp and pnsp remained relatively close to

being uniform when the statistical prior was less informative than

the probabilistic prior and when de-centering was not too strong.

Comparing psp against ppop and pMLhs
for the Poisson model

under Scenario 4 with t~max showed thatppop was conservative,

as expected by the mathematical results in [15] while psp and

pMLhs
were closer to being uniform for sample sizes 20 and 50

(Text S5). When the true distribution was a Polya distribution

instead of a Poisson distribution, psp and pMLhs
were of similar and

greater power, except for the highest sample sizes where ppop

tended to be slightly more powerful (Figure 1). A difference in

power of 10 to 20% in favor of psp, pnsp or pMLhs
was not

uncommon and was observed with various discrepancy functions

(Figure 1 and Table 5).

Discussion

Synthesis of results
In this paper, we first recap on various calibrated Bayesian

methods for goodness-of-fit (GOF) p-values and extend the results

found in [18] for normalized sampled posterior p-values (pnsp) in

different directions. We show in particular that similar results

apply for the more general psp when the data are not normalized

and for discrepancy functions that can be discrete-valued rather

than only for continuous-valued test statistic functions. We also

show that this p-value is asymptotically uniform when the

statistical prior differs from the probabilistic prior (p=p0).

Through simulations, we empirically tested this p-value under

p=p0 in a finite sample context. The results show that psp has a

relatively correct behavior provided that the statistical prior is ‘‘not

too informative and not too uninformative’’, and not too far off-

centered, relative to the probabilistic prior. An exception to this

statement occurred in Scenario 4 with the Bernoulli model and

t~var or d~varc, for which psp was far from being uniform even

for relatively large sample sizes. We think this is because the fixed

parameter h~:5 used to sample xobs was precisely the parameter

value for which the variance was the largest over the full

parameter space. This might correspond to a very slow

convergence in this specific case or to a restriction of our

asymptotic mathematical results, somewhat similar to the

convergence at the edge of parameter space in [4] (Section 4.3).

A simulation with h~:7 yielded a psp that was much closer to

being uniform (Text S4).

Table 3. Behavior of pnsp relative to the uniform distribution
under Scenario 2, depending on the interval housing the
statistical prior sharpness parameter ms0

.

Interval to which
ms0 belongs [.0;.40[ [.40;1.01[ [1.01;2.59[ [2.59;‘[

D .080*** .005 .01* .009*

P5% .091***,++ .04900 .05000 .05200

P1% .035***,++ .0110 .0090 .0110

Kolomogorov-Smirnov distance (D) between the simulated pnsp and the uniform
distribution and frequency (P5% and P1%) of pnsp found at the 5% and 1%
extremities of the unit interval for the Poisson model with t~Za in Scenario 2
based on 100,000 different datasets. In this Scenario, the statistical prior

l*Gamma

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= h0ms

0
r0

� �r
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0= ms

0
r0

� �r� 
, has a different sharpness to the

probabilistic prior l*Gamma
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= h0r0ð Þ

p
,
ffiffiffiffiffiffiffiffiffiffiffiffi
h0=r0

p� �
. The statistics for the

overall sample were D~:019�� , P5%~:061���,z and P1%~:016���,zz . These
results illustrate that for pnsp to be approximately uniform when the statistical
prior is not the same as the probabilistic prior, it is preferable for the statistical
prior to be less informative rather than more informative compared with the
probabilistic prior. Similar results were found for other test statistics and other
probability distributions (cf. Text S2).
NOTE: The notation for the significance of the tests is as follows: (*) means that
the test is significant at a level between .05 and .1; * between .01 and .05; **
between .0001 and .01; *** less than .0001. The notation system for the study of
the negligibility of departures from expected values is as follows, for P5% : 00
(respectively, 0) means 95% of the estimated values of the underlying p-value
are in the interval :045; :055½ � (resp. :04; :06½ �); ++ (respectively, +) means 95% of
the estimated values are in the interval �:06; 1� (resp. �:055; 1�); – (respectively,
-) means 95% of the estimated values are in the interval ½0; :04½ (resp. ½0; :045½).
For P1% , the notations are the same but with cutoff points divided by 5.
doi:10.1371/journal.pone.0014770.t003
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Based on these new results and on the review of published

results (Material and Methods Section), we shortlisted three

alternative methods as simple candidates of asymptotically

uniform GOF p-values:

Method 1: psp, with a variety of discrepancy functions d and

with not too inadequate statistical priors;

Method 2: ppop or pML with a test statistic function t such that

asymptotically the mean of t Xð Þ is not dependent on h [15].

Examples of such functions include skewness or kurtosis for the

normal distribution, skewness for the t distribution, or the ratio

between the mean of the sample and its variance for a Poisson

distribution;

Method 3: pMLhs
, with specific test statistic functions used on

uniformized data.

We will also discuss two other, more elaborate sets of methods:

Method 4: partial posterior predictive p-values (pppop) or

conditional predictive p-values (pcp) used only with test statistic

functions, as developed and proposed by [14,15,26];

Method 5: calibrated posterior predictive p-values (pcpp) as

proposed in [17].

One last method could have been to use ppop or pML with test

statistic functions, knowing that they are conservative [15].

However, our results for ppop show that we then lose a significant

amount of power compared with psp and pnsp (Figure 1 and

Table 5). This strategy will therefore not be considered further

here.

The relative merits of candidate p-values
We hereafter discuss the merits and limits of our preferred

method – Method 1 or psp – in comparison with the other

candidate methods. With respect to Method 2, Method 1 has the

advantage of allowing the use of various discrepancy functions

whereas Method 2 requires very specific test statistic functions; this

means that different aspects of the probabilistic model can be

studied with Method 1 rather than only the t functions that

characterize the hypothesized probabilistic distribution. We agree

with [4,20,24] on the necessary adaptation of discrepancy

functions to each particular situation where we might want to

test departures of data from the model on case-specific features.

This makes it possible to include problems involving detection of

outliers (t~min or t~max) and dependence between observations

[24] in model checking. It also means that psp appears more

flexible and better applicable to very different probability

distributions than Method 2: for more complicated hypothesized

distributions, it might be difficult to build t functions such that

asymptotically the mean of t Xð Þ does not depend on h.

On a more theoretical grounding, while ppop and pML provided

default and intuitive responses to question (b) in [34], i.e. ‘‘what

replications should we compare the data to?’’ – psp gives a different

and less intuitive answer, based on mathematical results:

replications should all be sampled from the likelihood based on

a unique parameters value, itself sampled from the posterior

distribution, and not from multiple parameters values sampled

from the same distribution (ppop) or from the Maximum Likelihood

parameters (pML).

In comparison with pcpp (Method 5), the main advantage of psp

is its much weaker computational cost inside MCMC computa-

tions, including for complicated models. By contrast, pcpp entails

multiplying the MCMC computational burden by the number of

‘‘repetitions’’ of the model on which post-processing is based. This

would take from at least a hundred to a thousand times longer

than psp. From our point of view, this is a major problem,

especially in cases such as hierarchical models on large datasets.

Therefore, the choice between Methods 1 and 5 may primarily

depend on the length of time required to fit the model.

Regarding Method 4, the apparent weakness of psp compared

with the results in [26] for pcp is that we have no information on

when the asymptotic behavior is reached – except when the whole

Table 4. Behavior of pnsp relative to the uniform distribution under Scenario 3, based on the frequency of pnspvalues found at the
5% extremities of the unit interval, depending on the interval of the statistical prior sharpness parameter ms0

(in rows) and off-
centering parameter Dlog h0ð Þ{1D (in columns).

Interval to which ms0 (row) and |log(h0) -1|
(column) belong [.0;.14[ [.14;.28[ [.28;.47[ [.47; 1.73[

[.0;.40[ .093***,++ .106***,++ .157***,++ .241***,++

[.40;1.01[ .0530 .0530 .0540 .081***,++

[1.01;2.59[ .0500 .0540 .0460 .056*

[2.59;‘[ .0500 .0530 .0510 .0500

Frequency (P5%) of pnsp that are at the 5% extremities of the unit interval, for the Poisson model with t~Za under Scenario 3, according to the values of ms0
and

Dlog h0ð Þ{1D, for 100,000 different simulated datasets. Similar results were found for other t functions and for the Poisson distribution, with more significant results for
certain other t functions when ms0

[½:01; 1:0½ and Dlog (h0){1D[½:0; 2:03½ (see Text S3).
NOTE: The notation system for the significance of the tests and the negligibility of departures from expected values are as in Table 3. Qualitatively similar results were
found for t~mean and t~variance. For t~kurtosis and t~skewness, results were much less strongly and much less frequently significant.
doi:10.1371/journal.pone.0014770.t004

Table 5. Difference in power between psp or pnspand ppop

according to sample size (in columns) and discrepancy
function (in rows).

Sample size N 20 50

Skewness on normalized data .050 .103

Kurtosis on normalized data .119 .243

Za on normalized data .031 .135

Maximum on normalized data .068 .204

Maximum on raw data .083 .113

Difference in power between psp or pnspand ppop for detecting departures from
the Poisson distribution at the 5% level and when the true distribution is a
Polya distribution with maximum value nmax equal to 5, with the sample size N
equal to 20 or 50. Various discrepancy functions and test statistic functions are
considered. The difference in power is positive, indicating more power for psp or
pnsp . The magnitude of the difference can be quite substantial, ranging from 0.1
to 0.25. Similar results were obtained between pMLhs

and ppop , with slightly
greater power differences than between psp or pnspand ppop .
doi:10.1371/journal.pone.0014770.t005
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statistical model is the same as the probabilistic model used to

sample the data. Nevertheless, our simulation results do show that

provided the priors are not too informative or too uninformative,

and not too far off-centered, psp is not very far from being uniform.

An advantage of psp over pppop or pcp is its simplicity: we do not

need to calculate the calibrated likelihood of the model with

respect to the test statistic, as we do for pppop or pcp. Moreover, if

one wishes to calculate N different p-values based on different test

statistics, it can be done inside the same numerical fitting in the

case of psp but must be done N times on N different calibrated

likelihoods for pppop or pcp. A final advantage of psp over pppop or

pcp is that we have mathematical results for discrepancy functions

in general, rather than just for test statistic functions as is the case

for pppop and pcp.

Methods 1 and 3 appear very close in terms of applicability and,

in the example studied, in terms of power. Their respective powers

could be studied in more detail in the future. A common feature of

both methods is that they give random results, in the sense that we

can randomly reach different p-values for the same observed data

xobs. A small advantage in favor of psp in Method 1 is that it does

not require a separate fit on the half-sample, which contrasts with

Method 3. A stronger advantage for Method 1 is that its

asymptotic validity is proved for general discrepancy functions,

whereas the mathematical results we have for pMLhs
in Method 3

only apply to specific test statistic functions of uniformized data

[28]. This in particular implies that we have no mathematical

result on the asymptotic uniformity of pMLhs
in Figure 1.

We therefore propose using psp and pnsp as a good GOF strategy,

which is unrestricted with respect to distributions and d functions and

which has a reasonable numerical and coding cost. To our

knowledge, these are the only p-values that have a known asymptotic

probability distribution whatever the discrepancy function.

Notes on how to use the psp

This section discusses two points related to the strategy of using

psp: the choice of prior distribution, and the choice of the

parameter value(s) used to sample ‘‘new data’’ and normalize it.

First, our results indicate that we should generally prefer priors

that are moderately less informative in data analysis than in data

sampling (Table 4 and Appendices 2 and 3). This statement

somewhat echoes similar considerations in [17] (Section 9.3). If

this result were to be generalizable, it would mean that when psp

indicates a significant departure from the uniform distribution,

depending on whether the prior is judged as too informative (or

respectively, too uninformative), the same model should be tested

with less informative (or respectively more informative) priors. An

alternative might be to use psp in a frequentist setting, provided the

asymptotic assumption of normality of the estimators is assumed

correct (cf. next section). If significant departures from a uniform

distribution are still found, the probability distribution used in the

likelihood should be reconsidered in data analysis.

Second, psp involves a single sampled value ~hh value of the model

parameter h, which means that the psp method might give different

random results on the same dataset with the same model [18]. An

alternative solution would be to use the probabilistic bounds

method proposed in [18] (Section 2.3). A further potential

alternative we propose, with the formalism of psp (see Table 1),

could be –:

1–for each dataset xobs and function d, draw at random

a*U 0,1ð Þ;
2–after MCMC, calculate the sampled posterior p-values

pmsp :Dhið Þ,d xobs,eið Þ
n o

hi ,eið Þ
associated with the hið Þ s sampled

from the posterior distribution associated with xobs and eið Þ
sampled from the uniform distribution;

3–consider the empirical a-quantile of the latter distribution.

Provided analysts use the same value for a drawn at random at the

beginning of the first analysis for the same dataset, this would

guarantee a better comparability of the analysis of the same

dataset by different analysts.

Final global remarks
In contrast to the likelihood principle, calibrated Bayesian

techniques involve the use of artificial data – i.e. data that were not

observed. This makes pure Bayesians reluctant to use these

techniques [35]. Indeed, internal calibrated Bayesian goodness-of-

fit is sometimes considered to be a hopeless cause, where

proponents want to have the cake – i.e. estimate model parameters

based on all the data available – and eat it too – by confronting the

fitted model to the same data that were used to fit it. Calibrated

internal goodness-of-fit consequently attracts criticism for using the

data twice [8]. Strikingly, psp seems to provide a nearly uniform p-

value, although it uses the data xobs twice: once to estimate the

posterior distribution – from which ~hh is sampled – and once again

to calculate d xobs,~hh
� �

. It therefore appears to warrant the same

criticisms as pML or ppop, which were supposed to justify their lack of

asymptotical uniformity. Johnson [16] explains it in these terms, in the

context of chi-square statistics: ‘‘Heuristically, the idea [...] is that the

degrees of freedom lost by substituting the grouped MLE for h in

Pearson’s x2 statistic are exactly recovered by replacing the MLE with

a sampled value from the posterior [distribution]’’. The proof of

Lemma 1 in the Results section reveals another explanation: as we are

working on sampled data to fit statistical models, we should also agree to

work on sampled parameters to criticize the model. Indeed, this double

sampling allowed us to make the roles of data and parameters

symmetrical, enabling us to prove our mathematical results.

Therefore, the problem lies less in that a GOF p-value uses data

twice, but more in how it uses the data twice – see [36] on the need to

more precisely define what we mean by ‘‘using the data twice’’.

We have applied psp and pnsp in a Bayesian context. However,

as stressed in [16], these p-values might also be used with

frequentist methods when the asymptotic assumption of normality

of the estimators is correct. Indeed, we applied pnsp on the Poisson

case by drawing a value of h at random on the log scale from a

normal distribution with the estimated mean as mean and with the

estimated standard error as standard error fitted with a Poisson

generalized linear model (glm). The results indicate as good a

behavior as pnsp used in Bayesian models under Scenarios 1 and 4

(Text S7).

Little [10] once wrote that Bayesian statistics were relatively

weak for model assessment compared to frequentist statistics.

Although the underused pMLhs
might be a good frequentist GOF

p-value if its properties are known for more general discrepancy

functions, our results highlight an even more attractive solution

that mixes frequentist reasoning with a completely Bayesian

modeling formulation, by using the sampled posterior p-values

(psp) in a calibrated Bayesian framework. The transposition of psp

into a frequentist setting has been shown to be correct in the above

example, and could therefore represent another potential

‘‘frequentist’’ solution. However, we believe that for the not-so-

infrequent cases where the normal approximation of the estimate

distribution is not accurate – as can be found for binomial or

Poisson regression with a high proportion of zero values – a

Bayesian framework is more adequate than a frequentist setting for

sampling a value of h.

Sampled Posterior p-Values
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25. Stephens MA (1978) On the half-sample method for goodness-of-fit. J R Stat Soc

Ser B-Stat Methodol 40: 64–70.

26. Fraser DA, Rousseau J (2008) Studentization and deriving accurate p-values.

Biometrika 95: 1–16.

27. Bayarri MJ, Berger JO (2004) The interplay of Bayesian and frequentist analysis.

Stat Sci 19: 58–80.

28. Durbin J (1973) Distribution theory for tests based on the sample distribution

function. Philadelphia: SIAM Publications nu9. 64 p.

29. R Development Core Team (2005) R: A language and environment for

statistical computing. Vienna: R Foundation for Statistical Computing.

30. Patil GP, Boswell MT, Joshi SW, Ratnaparkhi MV (1984) Dictionary and

classified bibliography of statistical distributions in scientific work. Volume 1:

Discrete models. Mairland, Maryland, USA: International Co-operative

Publishing House. 458 p.

31. Walker AM (1969) On the Asymptotic Behaviour of Posterior Distributions.

J R Stat Soc Ser B-Stat Methodol 31: 80–8.

32. Johnson RA (1970) Asymptotic Expansions Associated with Posterior Distribu-

tions. Ann Math Stat 41: 851–64.

33. Shen X, Wasserman L (2001) Rates of convergence of posterior distributions.

Ann Stat 29: 687–714.

34. Gelman A (2007) Comment: Bayesian checking of the second levels of

hierarchical models. Stat Sci 22: 349–52.

35. Piccinato L (2000) Comments on Asymptotic distribution of P values in

composite null models by J. M. Robins, A. van der Vaart and V. Ventura. J Am

Stat Assoc 95: 1166–7.

36. Evans M (2007) Comment: Bayesian checking of the second levels of

hierarchical models. Stat Sci 22: 344–8.

37. Zhang J (2002) Powerful goodness-of-fit tests based on the likelihood ratio.

J R Stat Soc Ser B-Stat Methodol 64: 281–94.

Sampled Posterior p-Values

PLoS ONE | www.plosone.org 10 March 2011 | Volume 6 | Issue 3 | e14770


